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Abstract. Recently, the first author together with Jens Marklof stud-
ied generalizations of the classical three distance theorem to higher di-
mensional toral rotations, giving upper bounds in all dimensions for the
corresponding numbers of distances with respect to any flat Riemannian
metric. In dimension two they proved a five distance theorem, which
is best possible. In this paper we establish analogous bounds, in all
dimensions, for the maximum metric. We also show that in dimensions
two and three our bounds are best possible.

1. Introduction

Suppose that d ∈ N, let L be a unimodular lattice in Rd, and define
Td = Rd/L. For each ~α ∈ Rd and N ∈ N let SN = SN (~α,L) denote the
d-dimensional Kronecker sequence defined by

SN = {n~α+ L : 1 ≤ n ≤ N} ⊆ Td.

Given a metric d on Rd we define, for each 1 ≤ n ≤ N ,

(1.1) δdn,N = min{d(n~α,m~α+ ~̀) > 0 : 1 ≤ m ≤ N, ~̀ ∈ L}.

The quantity δdn,N is the smallest positive distance in Rd from n~α to an
element of the set SN + L. As a natural generalization of the well known
three distance theorem [5, 6, 7, 8], we are interested in understanding, for
each ~α and N , the number

gdN = gdN (~α,L) = |{δdn,N : 1 ≤ n ≤ N}|

of distinct values taken by δdn,N , for 1 ≤ n ≤ N . We will focus our discussion

on two metrics: the Euclidean metric (for which we will write δdn,N = δn,N
and gdN = gN ), and the maximum metric (for which we will write δdn,N = δ∗n,N
and gdN = g∗N ). To be clear, by the maximum metric on Rd we mean the
metric defined by

d(~x, ~y) = max
1≤i≤d

|xi − yi|.
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For the case of the Euclidean metric it is known that, for any L, ~α, and
N ,

gN (~α,L) ≤


3 if d = 1,

5 if d = 2,

σd + 1 if d ≥ 3,

where σd is the maximum number of non-overlapping spheres of radius one
in Rd which can be arranged so that they all touch the unit sphere in exactly
one point (σd is also known as the kissing number for Rd). The bound for
d = 1, in which case the Euclidean and maximum metrics coincide, is a
slightly modified version of the three distance theorem (the classical three
distance theorem considers the number of ‘one-sided’ gaps, which can in
general be greater than gN ). The bounds for d ≥ 2 were recently established
in [3]. For d = 1 and 2 there are examples of L, ~α, and N for which the upper
bounds above are actually obtained (see the introduction of [3]), therefore
those bounds are best possible. For d ≥ 3 the upper bounds above are 13,
25, 46, 79, 135, 241, 365, 555, etc. These are probably far from best possible,
but improving them substantially may require new ideas.

In this paper, motivated both by historical precedent and by questions
which were asked of us after the publication of [3], we will show how the
machinery from that paper can be used to easily bound the corresponding
quantity g∗N for the maximum metric, and even to obtain the best possible
bounds in dimensions d = 2 and 3. To our knowledge, the only known result
about this problem is due to Chevallier [1, Corollaire 1.2], who showed that
g∗N ≤ 5 when d = 2 and L = Z2. Chevallier also gave an example in this
case (see remark at end of [1, Section 1]) for which g∗N = 4. We will prove
the following theorem.

Theorem 1. For any d,L, ~α, and N , we have that

g∗N (~α,L) ≤ 2d + 1.

Furthermore, when d = 2 or 3 this bound is, in general, best possible.

To prove Theorem 1 we will first realize the quantity g∗N as the value of
a function G defined on the space SL(d+ 1,Z)\ SL(d+ 1,R) of unimodular
lattices in Rd+1. This part of the proof, carried out in Section 2, is exactly
analogous to the development in [2] and [3], which in turn is an extension of
ideas originally presented by Marklof and Strömbergsson in [4]. In Section
3 we will use a simple geometric argument to bound G(M), when M is an
arbitrary unimodular lattice in Rd, and for d = 2 and 3 we will give examples
of L, ~α, and N for which our upper bounds are attained. Such examples,
especially when d = 3, appear to be quite difficult to find.

Finally we remark that for d = 2 the conclusions of Theorem 1 also hold
for the Manhattan metric (i.e. the `1 metric on Rd). To see this, observe
that the unit ball for this metric is a rotated and homothetically scaled copy
of the unit ball for the maximum metric. It follows that, if d = 2 and if d is
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the Manhattan metric on R2, then there is a matrix R ∈ SO(2,R) (rotation
by π/4) with the property that, for every L, ~α, and N ,

gdN (~α,L) = g∗N (R~α,RL) .

Therefore gdN ≤ 5 for this metric also, and this bound is best possible.

Acknowledgments: We would like to thank Jens Marklof and Nicolas Cheval-
lier for bringing this problem to our attention, and for helpful comments.
We also thank the referee for their feedback, and for carefully reading our
paper. This project is part of the second author’s undergraduate senior
research project at the University of Houston.

2. Lattice formulation of the problem

As mentioned above, the observations in this section are very similar to
those in [3, Section 2]. Therefore we will omit some of the details, which are
explained in full in that paper.

Let |·|∞ denote the maximum norm on Rd. By a linear change of variables
in the definition (1.1), we have that

δ∗n,N = min{|k~α+ ~̀|∞ > 0 : −n < k < N+ − n, ~̀ ∈ L},

where N+ := N + 1
2 . Choose M0 ∈ SL(d,R) so that L = ZdM0, and let

AN (~α) = AN (~α,L) =

(
1 0
0 M0

)(
1 ~α
0 1d

)(
N−1 0

0 N1/d1d

)
.

Then, for all 1 ≤ n ≤ N , we have that

δ∗n,N = N
−1/d
+ min

{
|~v|∞ > 0 : (u,~v) ∈ Zd+1AN+(~α), − n

N+
< u < 1− n

N+

}
.

Now write G = SL(d + 1,R) and Γ = SL(d + 1,Z) and, for M ∈ G and
t ∈ (0, 1), define

F (M, t) = min
{
|~v|∞ > 0 : (u,~v) ∈ Zd+1M, −t < u < 1− t

}
.

It follows from the proof of [3, Proposition 1] that F is well-defined as a
function from Γ\G× (0, 1) to R>0. It is also clear that

δ∗n,N = N
−1/d
+ F

(
AN+(~α),

n

N+

)
.

Given M ∈ G, a bounded region of Rd+1 can contain only finitely many
points of the lattice Zd+1M . This implies, after a short argument, that the
function F (M, t) can only take finitely many values as t varies over (0, 1).
We denote this finite number by

G(M) = |{F (M, t) | 0 < t < 1}|,
and for N ∈ N we also write

GN (M) = |{F (M, n
N+

) | 1 ≤ n ≤ N}|.
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It follows from the definitions above that

(2.1) g∗N = GN (AN+(~α)) ≤ G(AN+(~α)).

This is the key connection which we will use in our proof of Theorem 1.

3. Proof of Theorem 1

To prove the first part of Theorem 1, in light of (2.1) it is sufficient to
show that, for any M ∈ Γ\G,
(3.1) G(M) ≤ 2d + 1.

Suppose that M ∈ Γ\G and choose vectors (u1, ~v1), . . . , (uK , ~vK) ∈ Zd+1M ,
with K = G(M), so that the following conditions hold:

• 0 < |~v1|∞ < |~v2|∞ < · · · < |~vK |∞.

• For each t ∈ (0, 1), there exists an 1 ≤ i ≤ K such that |~vi|∞ =
F (M, t).

• For each 1 ≤ i ≤ K, there exists a t ∈ (0, 1) such that −t < ui < 1−t
and |~vi|∞ = F (M, t).

Note that each ui lies in the interval (−1, 1). We make the following basic
observation.

Proposition 2. If (u,~v) ∈ Zd+1M satisfies |u| < 1/2, then

F (M, t) ≤ |~v|∞,
for all 0 < t < 1.

Proof. If u ∈ [0, 1/2) then for any 0 < t < 1 − u, we have that F (M, t) ≤
|~v|∞. Noting that (−u,−~v) ∈ Zd+1M , we see that this inequality also
holds for any t satisfying u < t < 1. Since u < 1/2, we conclude that
F (M, t) ≤ |~v|∞ for all 0 < t < 1. The case when u ∈ (−1/2, 0] follows from
the same argument. �

Next we use geometric information to place restrictions on the vectors
(ui, ~vi). This is where we will use the fact that we are working with the
maximum norm.

Proposition 3. For 1 ≤ i < j ≤ K, if sgn(ui)~vi and sgn(uj)~vj lie in the

same orthant of Rd, then j = K.

Proof. If |uj | < 1/2 then by the previous proposition we have that F (M, t) ≤
|~vj |∞ for all 0 < t < 1, which implies that j = K. Therefore suppose that
|uj | ≥ 1/2. Then, by Proposition 2 again, this forces |ui| ≥ 1/2.

If sgn(ui) = sgn(uj) and if ~vi and ~vj lie in the same orthant, then |ui −
uj | < 1/2, and

0 < |~vi − ~vj |∞ ≤ max {|~vi|∞, |~vj |∞} = |~vj |∞.
Since (ui − uj , ~vi − ~vj) ∈ Zd+1M , it follows from Proposition 2 that

(3.2) F (M, t) ≤ |~vi − ~vj |∞ ≤ |~vj |∞
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for all 0 < t < 1. Therefore we conclude that j = K.
Similarly, if sgn(ui) = − sgn(uj) and if ~vi and −~vj lie in the same orthant,

then |ui + uj | < 1/2, and

0 < |~vi + ~vj |∞ ≤ max {|~vi|∞, |~vj |∞} = |~vj |∞.
Since (ui +uj , ~vi +~vj) ∈ Zd+1M , this again implies that (3.2) holds, and we
conclude that j = K. �

By Proposition 3, each of the vectors sgn(ui)~vi, for 1 ≤ i ≤ K − 1, must
lie in a different orthant of Rd. This immediately gives the bound in (3.1),
and therefore completes the proof of the first part of Theorem 1.

Finally, we give examples with d = 2 and 3 for which the bound in
Theorem 1 is attained. In what follows, for ~x ∈ Rd we write

‖~x‖ = min{|~x− ~̀|∞ : ` ∈ L}.
For d = 2 take L = Z2, ~α = (157/500,−23/200), and N = 11. Then we

have that

δ∗1,N = ‖10~α‖ =
3

20
, δ∗2,N = ‖9~α‖ =

87

500
, δ∗4,N = ‖7~α‖ =

99

500
,

δ∗5,N = ‖6~α‖ =
31

100
, and δ∗6,N = ‖~α‖ =

157

500
,

therefore g∗N (α,L) = 5.
For d = 3 take L = Z3, ~α = (−157/10000,−742/3125,−23/400), and

N = 73. Then we have that

δ∗1,N = ‖72~α‖ =
7

50
, δ∗2,N = ‖71~α‖ =

443

3125
, δ∗5,N = ‖68~α‖ =

456

3125
,

δ∗6,N = ‖67~α‖ =
59

400
, δ∗18,N = ‖55~α‖ =

13

80
, δ∗19,N = ‖54~α‖ =

557

3125
,

δ∗22,N = ‖51~α‖ =
1993

10000
, δ∗23,N = ‖50~α‖ =

43

200
, and δ∗24,N = ‖4~α‖ =

23

100
,

therefore g∗N (α,L) = 9.
This completes the proof of our main result. We conclude with a couple

of remarks. First of all, we note that the proof that we have given here (in
particular, establishing the optimal bounds in dimensions 2 and 3) is simpler
than the proof of the corresponding result for the Euclidean metric given in
[3]. For the proof of the optimal bounds in dimensions 2 and 3 here, we only
needed Proposition 3, which plays a similar role for the maximum metric as
[3, Proposition 2] does for the Euclidean metric. However, for the Euclidean
metric, [3, Proposition 2] is not enough to establish the optimal bound in
dimension 2, which is the reason for the additional geometric arguments
given in [3, Section 5]. Of course, a less precise explanation for this is that
cube packing is easier and more efficient than sphere packing.

Finally, for d ≥ 4, it seems likely that the upper bound of Theorem 1 is
too large. In fact, for d = 4, we have not found any examples so far with
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g∗N > 9. Establishing optimal upper bounds in these cases is an interesting
open problem.

References

[1] N. Chevallier: Distances dans la suite des multiples d’un point du tore à deux dimen-
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[4] J. Marklof, A. Strömbergsson: The three gap theorem and the space of lattices, Amer.
Math. Monthly 124 (2017), no. 8, 741–745.

[5] V. T. Sós: On the theory of diophantine approximations I, Acta Math. Acad. Sci.
Hungar. 8 (1957), 461–472.

[6] V. T. Sós: On the distribution mod 1 of the sequence nα, Ann. Univ. Sci. Budapest
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