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Abstract

Our group recently characterized a cell-autonomous mammalian 12-h clock independent

from the circadian clock, but its function and mechanism of regulation remain poorly under-

stood. Here, we show that in mouse liver, transcriptional regulation significantly contributes

to the establishment of 12-h rhythms of mRNA expression in a manner dependent on

Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, the motif stringency of

XBP1s promoter binding sites dictates XBP1s’s ability to drive 12-h rhythms of nascent

mRNA transcription at dawn and dusk, which are enriched for basal transcription regulation,

mRNA processing and export, ribosome biogenesis, translation initiation, and protein pro-

cessing/sorting in the Endoplasmic Reticulum (ER)-Golgi in a temporal order consistent with

the progressive molecular processing sequence described by the central dogma information

flow (CEDIF). We further identified GA-binding proteins (GABPs) as putative novel tran-

scriptional regulators driving 12-h rhythms of gene expression with more diverse phases.

These 12-h rhythms of gene expression are cell autonomous and evolutionarily conserved

in marine animals possessing a circatidal clock. Our results demonstrate an evolutionarily

conserved, intricate network of transcriptional control of the mammalian 12-h clock that

mediates diverse biological pathways. We speculate that the 12-h clock is coopted to

accommodate elevated gene expression and processing in mammals at the two rush hours,

with the particular genes processed at each rush hour regulated by the circadian and/or tis-

sue-specific pathways.
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Introduction

All life on earth is governed by biological rhythms that are defined as self-sustained oscillations

cycling with a fixed period. Biological clocks enable organisms to keep track of the time of day

and to adjust their physiology to recurring daily changes in the external environment, including

nutrient and microenvironment status. Our understandings of biological rhythms in mammals

have expanded beyond the well-characterized circadian rhythms (approximately 24-h oscilla-

tion) in recent years through the discovery of the existence of 12-h rhythms in mice [1,2]. A

handful of studies followed up on these initial studies and have proposed different hypotheses

regarding how 12-h rhythms are established [1,3–5]. Early studies favor the hypothesis that the

mammalian 12-h rhythms are not cell autonomous and instead are established by the combined

effects of circadian clock and fasting-feeding cues. This conclusion was largely based upon the

findings showing the lack of cell-autonomous 12-h rhythms of gene expression in forskolin-

synchronized NIH3T3 cells and altered 12-h rhythms of gene expression under certain feeding

and circadian clock perturbation conditions [2–4]. Alternatively, it was suggested that 2 circa-

dian transcription activators or repressors appearing in antiphase are theoretically capable of

establishing 12-h rhythms of gene expression in a cell-autonomous manner [5]. Contrary to

these hypotheses, our group discovered that the mammalian 12-h rhythms are not only cell

autonomous, but they are also established by a dedicated “12-h clock” separate from the circa-

dian clock and function to coordinate cellular stress with metabolism [1,6,7].

The main line of evidences supporting the existence of a cell-autonomous mammalian 12-h

clock include (1) the presence of intact hepatic 12-h rhythms of gene expression in circadian-

clock–deficient mice in vivo under free-running conditions [1,6]; (2) the detection of cell-autono-

mous 12-h rhythms of gene expression in mouse embryonic fibroblasts (MEFs) in a Bmal1-inde-

pendent manner [1,6]; (3) that similar genes are regulated in a 12-h rhythmic manner in different

organisms, indicating evolutionary conservation of these 12-h mechanisms [1]; and (4) that genes

exhibiting 12-h rhythms arose much earlier during evolution than circadian genes [1,6,8]. It is

hypothesized that circatidal clock mechanisms would have developed before the divergence of the

major animal clades, existing in a common ancestor, occupying bodies of water in which tidal

cycles would have been as ecologically important—if not more so—than the circadian cycle [8–10].

Due to the strong enrichment of unfolded protein response (UPR) pathways in hepatic 12-h

transcriptomes, we hypothesized that the mammalian 12-h clock may be regulated transcrip-

tionally by the UPR transcription factor Spliced Form of X-box Binding Protein 1 (XBP1s) [6].

In agreement with this hypothesis, we previously found that small interfering RNA (siRNA)-

mediated knockdown of Xbp1 in MEFs impaired cell-autonomous 12-h mRNA oscillations of

several genes, including Eif2ak3 and Sec23b [1,6]. While these data suggest a role of XBP1s in

regulating 12-h rhythms of gene expression in vitro, it remains undetermined whether XBP1s is

a major transcriptional regulator of the mammalian hepatic 12-h clock in vivo. In the current

study, we addressed this question and discovered that XBP1s contributes significantly to the

establishment and maintenance of 12-h rhythms, but not circadian rhythms, at the transcrip-

tional level. Our study therefore demonstrates an intricate network of transcriptional control of

the mammalian 12-h clock that mediates diverse biological pathways, including transcription,

translation, ribosome biogenesis, mRNA and protein processing, and vesicle trafficking.

Results

Liver-specific deletion of XBP1 does not affect the core circadian clock in mice

To delete XBP1 specifically in the liver, we crossed XBP1Flox mice (XBP1fl/fl mice with loxP

sites flanking exon 2 of the Xbp1 gene [S1A Fig]) [11] with Albumin-CRE transgenic mice as
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previously described [12]. Liver-specific deletion of XBP1s was confirmed by both quantitative

PCR (qPCR) and western blot analysis (Fig 1A–1C, S1B and S1C Fig). Consistent with previ-

ous reports [3,6], robust 12-h rhythms of total Xbp1 as well as spliced form of Xbp1 (Xbp1s)
mRNA levels were observed in control (XBP1Flox) mice but not in XBP1 liver-specific knock-

out (XBP1LKO) mice, indicating that XBP1s autoregulates its own 12-h rhythm of expression

(Fig 1A–1C). We further observed an approximately 3-h phase delay between the acrophases

of Xbp1s (0.3 h) and total Xbp1 (3.4 h) (Fig 1C).

To rule out the potential effects of liver-specific ablation of XBP1s on mouse locomotor

activity and/or feeding behavior, which could confound the interpretation of the transcrip-

tome data, we subjected both XBP1Flox and XBP1LKO mice to home cage and Comprehensive

Lab Animal Monitoring System (CLAMS), respectively. As shown in S1D–S1H Fig, liver-spe-

cific deletion of XBP1 does not alter the rhythmic locomotor activity or fasting-feeding cycles

in mice.

To identify the XBP1s-dependent oscillating transcriptome, we performed RNA sequencing

(RNA-Seq) analysis in the liver of XBP1Flox and XBP1LKO mice at 2-h intervals for a total of 48

h under constant darkness in duplicates (S1 and S2 Tables and see Materials and methods for

details). The absence of reads mapped to exon 2 of the Xbp1 gene in XBP1LKO mice further

confirmed the successful knockout of the Xbp1 gene (S1A Fig). Averaged gene expression

across 48 h was comparable between XBP1Flox and XBP1LKO mice (Fig 1D). All superimposed

oscillations in either XBP1Flox or XBP1LKO mice were identified by the newly developed eigen-

value/pencil method [6,7], which (unlike canonical oscillation-identification methods such as

JTK_CYCLE and ARSER) does not require a pre-assignment of period range and therefore

allows unbiased identification of all superimposed oscillations [6,7]. Consistent with past find-

ings [6], the vast majority of oscillations identified were circadian rhythms and oscillations

that cycle at the second (approximately 12 h) and third (approximately 8 h) harmonics of the

circadian rhythm (due to the 2-h sampling frequency of the current study, only up to the third

harmonics can be identified with high confidence [7]) (Fig 1E and S3 Table). To determine the

false discovery rate (FDR) of the identified rhythmic transcripts, we used a permutation-based

method that randomly shuffles the time label of gene expression data and subjects all of the

permutation dataset to the eigenvalue/pencil method as previously described [13]. As

expected, permutation datasets are devoid of distinct populations of oscillations cycling at dif-

ferent harmonics of the circadian rhythm (S2A Fig). In this way, we identified a total of 4,258

circadian genes (21.70 ± 2.58 h) (among which 3,251 have dominant circadian rhythms) with

an FDR of 0.07, a total of 4,594 approximately 12-h genes (11.62 ± 0.48 h) (among which 1,709

have dominant 12-h rhythms) with an FDR of 0.21, and a total of 3,792 approximately 8-h

cycling genes (among which 910 have dominant approximately 8-h rhythms) with an FDR of

0.31, respectively, in XBP1Flox mice (S2B and S2C Fig) (see Materials and methods for details).

Agreeing with past findings [6], the average amplitude of 12-h genes are smaller compared to

that of circadian genes in XBP1Flox mice (Fig 1F). Furthermore, while the phases of circadian

rhythms are evenly distributed throughout the day in XBP1Flox mice (Fig 1G and 1H), the

phases of 12-h rhythms are more enriched at dawn (constant time [CT]0–CT2) and dusk

(CT12–CT14), which is more evident for dominant oscillations (Fig 1G).

Of all circadian genes identified in XBP1Flox mice, approximately two-thirds (2,807 out of

4,258) were unaffected by hepatic XBP1s ablation, which includes all known core circadian

clock genes (Fig 1I and 1J and S2B Fig). On average, comparable average gene expression and

phase distribution of circadian oscillations are found between XBP1Flox and XBP1LKO mice

(Fig 1G–1J), although a very small average phase advance of 4 min was observed in XBP1LKO

mice that reached statistical significance (P = 0.024) (Fig 1H). We believe this phase difference

most likely resulted from technical bias because we always euthanized XBP1Flox mice first and
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Fig 1. Liver-specific deletion of XBP1s impairs global hepatic 12-h transcriptome but not the circadian rhythm in mice. (A) qPCR

analysis of total hepatic Xbp1 mRNA in wild-type (XBP1Flox) and XBP1 liver-specific knockout (XBP1LKO) mice. (B) Calculated splicing
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therefore the actual circadian time should be a few minutes later than what is reported for the

XBP1LKO mice. Circadian genes not affected by hepatic XBP1s ablation are enriched in circa-

dian rhythm and metabolic pathways (S2D Fig), which are the dominant biological pathways

under hepatic circadian clock control [14,15]. We further identified 1,451 genes, whose super-

imposed circadian rhythms are not found in XBP1LKO mice according to the eigenvalue/pencil

method (Fig 1I). The top enriched Gene Ontology (GO) terms include a number of metabolic

pathways (S2E Fig). A closer examination revealed that many of these genes have a period just

falling out of the 21-h to 25-h range in XBP1LKO mice and were thus deemed not to have circa-

dian rhythm (such as the Ppox gene shown in S2E Fig). We conjecture that the circadian

rhythms of these genes are likely not driven by the circadian clock and are altered as an indi-

rect consequence of XBP1s ablation, with a possibility that these circadian rhythms are

impaired at the post-transcriptional level in XBP1LKO mice. Taken together, our data indicate

that the liver-specific deletion of XBP1 does not affect the core circadian clock in mice.

Liver-specific deletion of XBP1 globally impairs the 12-h transcriptome,

which is enriched in pathways regulating central dogma information flow

In sharp contrast to largely intact circadian rhythms in XBP1LKO mice, ablation of XBP1 in the

liver significantly impairs the global 12-h transcriptome profile (Fig 1K and S2C Fig). Specifi-

cally, we identified 2,501 (54.5%), 1,454 (31.6%), and 639 genes (13.9%), whose superimposed

12-h rhythms were abolished, dampened, or increased, respectively, in the absence of XBP1

(Fig 1K). For the 12-h genes commonly found in both XBP1Flox and XBP1LKO mice, we

observed an average phase advance of 31 min in XBP1LKO mice (Fig 1H). Subsequent GO anal-

ysis on either all 4,594 twelve-hour genes or those 3,955 (86.0%) genes whose 12-h rhythms

were either abolished or dampened in XBP1LKO mice revealed top enriched pathways of RNA

polymerase II–mediated transcription, mRNA processing and surveillance, RNA export, trans-

lation and ribosome biogenesis, protein processing and sorting in the Endoplasmic Reticulum

(ER) and Golgi apparatus, vesicle trafficking, and—to a lesser degree—immune pathway (Fig

2A–2C, S2F–S2I Fig, S4 and S6 Tables). The top enriched biological pathways are reminiscent

of the progressive molecular processing sequence described by the central dogma information

flow (CEDIF), namely, transcription and mRNA processing in the nucleus, ribosome biogene-

sis/translation in the nucleus and/or cytosol, and protein processing and sorting in the ER

and/or Golgi apparatus in a temporal order (Fig 2A–2C). The GO analysis is robust to different

GO category and background gene selections (S2F–S2I Fig). We further found that the 12-h

rhythmic expression of genes involved in different steps of CEDIF are similarly affected by the

ablation of XBP1s (S4 Table). Importantly, we found that both anabolism and catabolism path-

ways are enriched in both 12-h cycling mRNA and protein processing genes, suggesting an

XBP1s-mediated overall 12-h rhythm of RNA and protein processing.

efficiency (ratio of Xbp1s to total Xbp1 mRNA) and total hepatic Xbp1 mRNA in XBP1Flox mice. (C) Eigenvalue/pencil analysis of total Xbp1
mRNA level in XBP1Flox and XBP1LKO mice, Xbp1s mRNA level and the splicing efficiency in XBP1Flox mice. (D) Distributions of mean

FPKM values in XBP1Flox and XBP1LKO mice. (E) Distribution of the periods of dominant oscillations identified by the eigenvalue/pencil

method from XBP1Flox and XBP1LKO mice. (F) Distribution and median values of the relative amplitudes of all 12-h and circadian rhythms in

XBP1Flox and XBP1LKO mice. (G) Polar histograms demonstrating the phase distributions of all dominant circadian and 12-h rhythms from

XBP1Flox and XBP1LKO mice. (H) Scatter plot showing the phases of each commonly shared 12-h (left) and circadian (right) genes in XBP1Flox

and XBP1LKO mice. (I) Heat map of all circadian gene expression (or lack thereof) in XBP1Flox and XBP1LKO mice with both raw data and

superimposed 24-h rhythms shown. (J) Heat map of 15 core circadian clock gene expression in XBP1Flox and XBP1LKO mice with raw data

shown. (K) Heat map of all approximately 12-h gene expression (or lack thereof) in XBP1Flox and XBP1LKO mice with both raw data and

superimposed 12-h rhythms shown. Data are graphed as the mean ± SEM (n = 2 to 5) for (A) and (B). Numerical values are available in S1

and S2 Data. ΔF, phase difference; Amp, amplitude; CT, constant time; FPKM, Fragments Per Kilobase of transcript per Million mapped

reads; NS, not significant; qPCR, quantitative PCR; R.E., relative expression; XBP1, X-box binding protein 1.

https://doi.org/10.1371/journal.pbio.3000580.g001
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We subsequently focused on the XBP1s-dependent 12-h CEDIF genes. We divided CEDIF

into 12 steps, carefully annotated the genes, and assigned each of them into one of the 12 steps

(Fig 2C). We identified 54 genes involved in basal transcription regulation that include RNA

polymerase II subunits (Polr2b, Polr2h), mediator complex subunits (Med12, Med24), and gen-

eral transcription factor complex units (Taf11, Taf12, Gtf2a2). For genes involved in RNA

metabolism (a total of 148 genes), they encompass pre-mRNA cleavage and polyadenylation,

pre-mRNA splicing, RNA export, and mRNA degradation and nonsense-mediated mRNA

decay, with prominent examples including cleavage stimulatory factor (Cstf) and cleavage and

polyadenylation specificity factor (Cpsf) family members, numerous mRNA splicing factors

and small nuclear ribonucleoproteins that are part of spliceosome (Sf3a1, Snrpa, Snrpd1,

Snrpe), RNA export factors Nxf1 and Nxt1, multipotent gene expression regulator Carbon

Catabolite Repressor 4-Negative on TATA (CCR4-NOT) complex family member (Cnot3,

Cnot4, Cnot6), and exosome complex components mediating RNA degradation (Exosc1,

Exosc3) (Fig 2C and S6 Table). Overall, we found that the mean expression level of these genes

was elevated in XBP1LKO mice (Fig 2B).

The most dominant GO pathways are protein metabolism, which include a total of 393

genes that can be further categorized into 185 genes involved in protein processing in the ER

and 208 genes in the Golgi apparatus (Fig 2B and 2C and S6 Table). These pathways include

ER-associated protein degradation (Edem1 and Edem3), translation initiation (eukaryotic ini-

tiation factor members), protein translocation across the ER membrane (the ER translocon

Sec61 members), protein folding in the ER (Heat Shock Protein 40 kD [HSP40] family mem-

bers), protein glycosylation in the ER (multiple Asparagine-Linked Glycosylation [ALG] mem-

bers), protein transport from the ER to the Golgi (Coatomer II [COPII] subunits Sec13, Sec22,
and Sec23), Golgins family members (Golga3–5) playing key roles in the stacking of Golgi cis-

ternae, and Golgi transport protein (Golt1a and Golt1b) involved in fusion of ER-derived

transport vesicles with the Golgi complex. For these genes, the average expression level was

lower in XBP1LKO mice (Fig 2B).

To determine whether nuance exists in the 12-h transcriptome profile of genes involved in

different steps of CEDIF, we performed t-distributed Stochastic Neighbor Embedding (t-SNE)

analysis on the superimposed 12-h transcriptome of XBP1Flox mice revealed by the eigenvalue/

pencil method and revealed that the clustering of CEDIF genes by their superimposed 12-h

transcriptome exhibits a spatial trajectory consistent with the direction of CEDIF (Fig 2D).

Lastly, we observed a statistically significant progressive phase delay of genes involved in

mRNA processing, protein processing in the ER, and protein sorting in the Golgi in XBP1Flox

mice, with an overall phase delay observed from CT1 and CT13 for mRNA processing genes

to CT2 and CT14 for Golgi genes (Fig 2E). By contrast, no significant difference in phase

Fig 2. XBP1s-dependent hepatic 12-h transcriptome is enriched in regulating CEDIF. (A) GO analysis showing top-enriched KEGG pathways and

their corresponding P values for XBP1s-dependent 12-h transcriptome. (B) Heat map of 12-h cycling gene expression (or lack thereof) involved in

transcription (I), mRNA metabolism (II), protein metabolism in the ER (III) and the Golgi apparatus (IV) in XBP1Flox and XBP1LKO mice with both

raw data and superimposed 12-h rhythms shown. (C) Diagram illustrating each step involved in the CEDIF (from transcription all the way to protein

sorting in the Golgi) and RNA-Seq data for representative genes in XBP1Flox and XBP1LKO mice. Additional selected gene names belonging to each

step are also shown. Data are graphed as the mean ± SEM (n = 2). P values indicating the robustness of 12-h rhythms detected by the RAIN method are

shown for each gene in both XBP1Flox (black) and XBP1LKO (cyan) mice. (D) Clustering of genes involved in mRNA processing, ribosome biogenesis/

translation initiation, and protein processing and transport based upon their superimposed 12-h transcriptome projected onto 3D t-SNE space in

XBP1Flox mice. (E) Polar histograms demonstrating phase distributions of genes involved in different steps of CEDIF in XBP1Flox mice. (F) Scatter plot

showing the phases of commonly found 12-h genes involved in different steps of CEDIF in XBP1Flox and XBP1LKO mice. Transcription is in cyan,

mRNA processing in red, protein processing in the ER in blue, and Golgi apparatus in black. Numerical values are available in S2 Data, except for Figs

2D, the 3D scatter plot of which was automatically generated by Matlab. 3D, three-dimensional; CEDIF, central dogma information flow; CT, constant

time; ER, Endoplasmic Reticulum; FPKM, Fragments Per Kilobase of transcript per Million mapped reads; GO, Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; RAIN, Rhythmicity Analysis Incorporating Nonparametric; RNA-Seq, RNA sequencing; t-SNE, t-distributed

stochastic neighbor embedding; XBP1s, Spliced Form of X-box Binding Protein 1.

https://doi.org/10.1371/journal.pbio.3000580.g002
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distribution was observed between 12-h cycling transcription and mRNA processing genes in

XBP1Flox mice (Fig 2E), consistent with the known fact that pre-mRNA splicing occurs co-

transcriptionally [16]. A similar progressive phase delay was not observed among 12-h genes

in XBP1LKO mice, and markedly different phase distributions of genes involved in different

steps of CEDIF were also found between XBP1Flox and XBP1LKO mice (Fig 2E and 2F). This

progressive phase delay observed in XBP1Flox mice is again consistent with the unidirectional

genetic information flow (Fig 2E). In sum, these data indicate a delicately orchestrated 12-h

rhythm of CEDIF by XBP1s.

Twelve-hour–clock regulation by XBP1s is robust to analytical method and

threshold selection

To ensure that our discovery of the 12-h clock regulation by XBP1s is robust to different ana-

lytical methods and threshold selections, we further applied an alternative rhythm-identifica-

tion algorithm, Rhythmicity Analysis Incorporating Nonparametric (RAIN) [17], to the

hepatic RNA-Seq dataset (S6 Table). RAIN is a nonparametric method for the detection of

rhythms of prespecified periods and of arbitrary wave forms and was previously found capable

of robustly identifying both circadian and ultradian rhythms, although it can only identify one

oscillation from each gene [6,7]. Consistent with the largely unaltered circadian rhythms in

XBP1LKO mice revealed by the eigenvalue/pencil method, similar numbers of circadian genes

were identified under a wide range of FDR cut-offs in both XBP1Flox and XBP1LKO mice (Fig

3A). By contrast, compared to XBP1LKO mice, XBP1Flox mice are much more enriched with

12-h genes with small P values (a smaller P value indicates a much more robust 12-h rhythm)

(Fig 3B). These results therefore demonstrate globally impaired 12-h rhythms, but not circa-

dian rhythms, in XBP1LKO mice, consistent with the results by the eigenvalue method.

A high congruence was found between the hepatic 12-h transcriptome uncovered by the

eigenvalue and RAIN methods in XBP1Flox mice, which became even more evident with more

stringent FDR cut-offs with the RAIN method (Fig 3C and 3D, S3A and S3B Fig). At the FDR

cut-off of 0.05, a total of 3,876 twelve-hour genes were identified in XBP1Flox mice by the

RAIN method, among which 2,558 genes were not found in XBP1LKO mice (Fig 3D). GO anal-

ysis on the 12-h genes identified by the RAIN method (under different FDR cut-offs) and the

12-h genes commonly identified by both methods both revealed strongly enriched biological

pathways of CEDIF as expected (Fig 3E and 3F). Because the RAIN method does not generate

the exact amplitude of 12-h oscillation in each gene, we further performed DODR [18] analysis

to detect differentially rhythmic 12-h oscillations in the 1,318 commonly found 12-h genes

(FDR < 0.05) in both XBP1Flox and XBP1LKO mice and identified 106 twelve-hour genes that

oscillate less robustly in XBP1LKO mice with an FDR cut-off of 0.05 (S7 Table). Consequently,

combining both RAIN and DODR analysis, with an FDR cut-off of 0.05, we identified a total

of 2,664 XBP1s-dependent hepatic 12-h genes, of which 1,573 are commonly revealed by the

eigenvalue method (Fig 3G and 3H). Not surprisingly, these 1,573 genes are very strongly

enriched in CEDIF pathways and include canonical 12-h clock genes, including Eif2ak3,

Gfpt1, Alg12, Sec23b, and Xbp1 itself (Fig 3G–3I).

While a significant convergence of the identified 12-h transcriptome in XBP1Flox mice was

observed between the RAIN and eigenvalue methods, a 12-h transcriptome specifically identi-

fied by either one alone was also found (Fig 3C and 3G and S3C–S3I Fig). Many RAIN-specific

12-h transcriptomes were found to exhibit periods outside of the lower (10.5 h) and upper

bound (13.5 h) of eigenvalue-defined 12-h rhythm (such as Sec16b and Nphp3) and thus was

omitted by the eigenvalue analysis (S3D and S3E Fig). The eigenvalue-specific 12-h transcrip-

tome, on the other hand, often contained superimposed circadian rhythms with larger
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Fig 3. Prevalent XBP1s-dependent 12-h hepatic transcriptome revealed by RAIN. (A, B) Cumulative distribution of the percentage of circadian genes (A) or

12-h genes (B) under different FDR cut-offs in both XBP1Flox and XBP1LKO mice. (C) Venn diagram comparison of 12-h transcriptome uncovered by the

eigenvalue and RAIN method (with different FDR cut-offs of 0.001, 0.01, and 0.05) in XBP1Flox mice. (D) Heat map of the expression of 12-h cycling genes

identified by RAIN. With an FDR < 0.05, 1,318 twelve-hour genes were commonly found in both XBP1Flox and XBP1LKO mice, and 2,558 twelve-hour genes

were only identified in XBP1Flox mice. Heat map showing the log10 transformed Benjamini-Hochberg procedure–adjusted P value for each identified 12-h gene

was shown on the right. (E, F) Heat map summary of GO analysis demonstrating the log10 transformed P value of different enriched pathways under

GOTERM_BP_DIRECT (panel E) and KEGG pathway (panel F) GO terms. GO was performed using all hepatic expressed genes as background. (G) Venn

Regulation of mammalian 12-h clock by XBP1s
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amplitude (such as Themis and Gm12718) (S3F and S3G Fig) and thus was deemed not statisti-

cally significant to be considered 12-h rhythm by the RAIN method. Consequently, perform-

ing RAIN analysis on XBP1Flox RNA-Seq data with all superimposed circadian rhythms

removed identified a larger number of 12-h transcriptomes shared with the eigenvalue result

(S3J Fig). Next, we compared the performance of the two methods in identifying 12-h tran-

scriptomes that are abolished or dampened in XBP1LKO mice (S3K–S3O Fig). Similar to the

1,573 commonly identified 12-h transcriptomes, 2,382 eigenvalue-specific XBP1s-dependent

12-h transcriptomes were also significantly enriched in CEDIF pathways (Fig 3H and 3I),

many of which exhibited reduced amplitude in XBP1LKO mice but did not reach statistical sig-

nificance of FDR < 0.05 by the DODR analysis (such as Sec61a1 and Ddx55) (S3N and S3O

Fig). By contrast, the 1,091 RAIN-specific 12-h genes were not enriched in any CEDIF path-

ways, but rather showed enriched pathways of cell cycle and Mitogen-Activated Protein Kinase

(MAPK) signaling (Fig 3I and S3K–S3M Fig). However, eigenvalue analysis of such genes as

Cdk2 and Dusp10 did not reveal any superimposed 12-h oscillations, but rather a combination

of oscillations with various other periods (S3L and S3M Fig).

Because many 12-h cycling oscillations are superimposed with other oscillations with larger

amplitude (circadian oscillations, for example) (S4A and S4B Fig), we went on to confirm that

these “non-dominant” 12-h rhythms are also subject to XBP1s-dependent 12-h clock regulation.

We first compared the 12-h transcriptome identified from RAIN (FDR < 0.05) with all the

4,594 12-h genes and the 1,709 dominant 12-h genes identified by the eigenvalue method. In

fact, under the FDR cut-off of 0.05, 1,428 “non-dominant” 12-h genes can be identified by the

RAIN method (S4C Fig). GO analysis revealed that these 1,428 genes are also enriched in

CEDIF pathways (S4D Fig). Taking the Sec63 gene as an example, in XBP1Flox mice, the eigen-

value/pencil method showed that it has a larger circadian rhythm superimposed with a smaller

12-h rhythm. In XBP1LKO mice, only the circadian rhythm was identified. Similar results were

also validated by the RAIN method (in XBP1Flox mice, the P value for detecting a circadian and

a 12-h rhythm was 1.04 × 10−11 and 0.0020, respectively; in XBP1LKO mice, the P value for

detecting a circadian and a 12-h rhythm was 5.44 × 10−11 and 0.869, respectively) (S4E Fig).

These results indicate that XBP1s regulates the 12-h—but not the circadian—rhythm of Sec63
expression, even though the 12-h oscillation is not the dominant one. Globally, of the 1,428

genes, the 12-h rhythms of 889 genes were not identified in the XBP1LKO mice by the RAIN

method (FDR < 0.05) (S4F Fig). For the 1,458 “non-dominant” 12-h–rhythm genes that are

specifically identified by the eigenvalue method, they are enriched in a number of immune

pathways as well as splicesomes (S4G Fig). For instance, Setd1b has superimposed 12-h and

24-h rhythms in XBP1Flox mice. In XBP1LKO mice, the 12-h rhythm was abolished, while the cir-

cadian rhythm remained intact (S4H Fig). Globally, of the 1,458 genes, the 12-h rhythms of 818

genes were not identified in the XBP1LKO mice by the eigenvalue method (S4I Fig). These results

demonstrate that the “non-dominant” 12-h rhythms are still under XBP1s-dependent 12-h

clock control. In sum, notwithstanding some disparity between the 12-h transcriptome revealed

by the two methods, the discovery of prevalent XBP1s-dependent 12-h transcriptomes—espe-

cially those involved in CEDIF—is robust to statistical methods and threshold choices.

diagram comparison of XBP1s-dependent 12-h transcriptome uncovered by the eigenvalue and RAIN + DODR method (FDR < 0.05), with a short list of

representative commonly identified genes. (H) Heat map of commonly and uniquely identified XBP1s-depenent 12-h transcriptome by the eigenvalue and

RAIN methods. (I) GO analysis of commonly and uniquely identified XBP1s-depenent 12-h transcriptome by the eigenvalue and RAIN methods. Numerical

values are available in S3 Data. BG, background; DODR, Detection of Differential Rhythmicity; ER, Endoplasmic Reticulum; FDR, False Discovery Rate; GO,

Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAPK, Mitogen-Activated Protein Kinase; RAIN, Rhythmicity Analysis Incorporating

Nonparametric; SRP, Signal Recognition Particle; SSU rRNA, small subunit ribosomal ribonucleic acid; TNF, tumor necrosis factor; XBP1s, Spliced Form of X-

box Binding Protein 1.

https://doi.org/10.1371/journal.pbio.3000580.g003
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Cell-autonomous 12-h rhythms of CEDIF gene expression in hepatocytes

and MEFs

We next addressed the question of whether the 12-h rhythms of gene expression observed in vivo

are also cell autonomous. First, we performed a post hoc analysis of time series transcriptome of

serum-synchronized murine liver MMH-D3 cells [19] (see Materials and methods for details)

using the eigenvalue method. Similar to what is observed in vivo, the majority of oscillations

identified in MMH-D3 cells were circadian rhythms (which cycle at a slightly shorter period of

21.6 h, with an FDR of 0.08) and oscillations that cycle at the second (approximately 10.8 h,

FDR = 0.22) and third harmonics (approximately 7.3 h) of the circadian rhythm (S5A and S5B

Fig, and S8 Table). Genes with circadian oscillations were enriched in biological pathways of cir-

cadian rhythm and Hypoxia-Inducible Factors (HIF-1) signaling and include core circadian

clock genes (S3C–S3E Fig and S8 Table), consistent with past findings [19–22]. The eigenvalue-

method–identified 12-h transcriptomes were further confirmed by the RAIN method (S9 Table).

Enriched biological pathways associated with 12-h genes (9.5 h to 12.5 h) in MMH-D3 cells

reveal large convergence with those found in mouse liver in vivo, including all CEDIF as well

as several immune pathways (Fig 4A–4C, S5F–S5K Fig, S10 and S11 Tables). Specifically, 202

twelve-hour CEDIF genes were commonly found in mouse liver in vivo and in MMH-D3 cells

in vitro (Fig 4C–4F, S10 and S11 Tables), which also include the 12-h oscillation of total Xbp1
mRNA expression (Fig 4F). After converting the time post serum shock into CT time, we fur-

ther observed a similar bimodal phase distribution of those 12-h CEDIF genes at dawn and

dusk (Fig 4D and 4E). For the other 390 twelve-hour CEDIF genes only found in MMH-D3

cells in vitro, they often represent different members of the same gene family as found in vivo

(S5K Fig). While the phases of 12-h CEDIF genes were also largely enriched around dawn and

dusk (at CT11 and CT23) in MMH-D3 cells, compared to their in vivo counterparts, they

exhibited a larger variance (S5L Fig). In addition, 12-h genes involved in mRNA processing

and protein processing in the ER and Golgi apparatus in these cells did not exhibit a statisti-

cally significant progressive phase delay as observed in vivo (S5L Fig). This discrepancy could

be due to the technical aspects of the original microarray data and data analysis (e.g., lack of

replicates of the raw microarray data, introduction of bias during data detrending, etc.), or it

could imply the existence of non–cell-autonomous factors that also contribute to the 12-h

clock phase control.

To determine whether the 12-h and circadian clocks are also independently regulated in a

cell-autonomous manner in vitro, we knocked down Xbp1 or Bmal1 using siRNA and per-

formed qPCR in dexamethasone- or tunicamycin-synchronized MEFs as previously described

[6]. In agreement with the unaffected core circadian clock in XBP1LKO mice liver, knocking

down Xbp1 does not diminish dexamethasone-synchronized circadian oscillations of Bmal1,

Per2, or Reverbα (Nr1d1) expression, whose rhythms are nonetheless significantly impaired by

Bmal1 knockdown as expected (Fig 4G and S5M Fig). To more quantitatively evaluate the

effects of 12-h clock knockdown on the circadian clock period, phase, and amplitude, we

knocked down Xbp1 and performed real-time luminescence on MEFs stably expressing Bmal1
promoter-driven destabilized luciferase. Under both dexamethasone and serum shock condi-

tions, knocking down Xbp1 did not alter the period, the amplitude, or the phase of Bmal1
oscillation, to a level that reached statistical significance (P < 0.05) (Fig 4H and S5N Fig). Post

hoc analysis of a previously published dataset [23] further demonstrated that Xbp1 knocking

down did not change the circadian period or the amplitude of Bmal1 oscillation in human

U2OS cells, although a slight phase delay of Bmal1 oscillation was observed in this study post

Xbp1 knocking down (Fig 4I). This discrepancy in phases could be due to different cell lines

and synchronization methods used.
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Fig 4. The 12-h rhythms of gene expression are cell autonomous. (A) Heat map of all 12-h cycling gene expression uncovered from serum shock-

synchronized murine liver cell line MMH-D3 identified by the eigenvalue/pencil analysis [19], with both raw data and superimposed 12-h rhythms
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While Xbp1 knocking down does not affect the circadian clock in vitro, it significantly

impairs the cell-autonomous 12-h CEDIF gene expression in tunicamycin-synchronized

MEFs, which are not affected by Bmal1 knockdown (Fig 4G). Consistent with the in vivo

result, robust 12-h rhythms of both total and spliced Xbp1 expression were observed, with a

similar phase difference of 3.5 h found between the two (Fig 4G). We next confirmed that

horse serum shock can indeed entrain the 12-h clock by performing real-time luminescence

on MEFs stably expressing Manf promoter-driven destabilized luciferase (Manf-dluc) (Manf
gene encodes an ER-resident/secreted protein that is under 12-h clock–control [6]) and found

that Xbp1s but not Bmal1 knockdown significantly reduces both the basal expression as well as

the amplitude (both raw and mean-normalized) of 12-h luciferase oscillation (Fig 4J). Single-

cell time-lapse imaging using MEFs stably expressing Eif2ak3-destabilized green fluorescent

protein (dGFP) [6] further demonstrated that Xbp1, but not Bmal1, regulates cell-autonomous

12-h rhythms of gene expression (Fig 4K). This evidence strongly supports the existence of

cell-autonomous 12-h rhythms of CEDIF gene expression.

One intriguing observation from analyzing the periods of all harmonic oscillations in

MMH-D3 cells is that these oscillations seem to be period-locked to the circadian rhythm (7.3

h × 3 = 21.9 h; 10.8 h × 2 = 21.6 h) (S5A Fig). To determine whether the period of approxi-

mately 12-h oscillation is also 1:2 locked to that of the circadian rhythm in cells with altered

circadian period, we analyzed a previously published metabolome dataset in dexamethasone-

synchronized U2OS cells [24]. In agreement with the results shown in Fig 4J and 4K, knocking

down Bmal1 did not alter the period of 12-h–oscillating metabolites while almost completely

ablating the circadian metabolites (S5O Fig). Intriguingly, while Cry2 knocking down length-

ened the period of circadian metabolites in U2OS cells as expected, it failed to affect the period

of 12-h–oscillating metabolites (S5O Fig). These results strongly demonstrate that the 12-h

and circadian periods are independent of each other at the cellular level. Based upon these

data, we hypothesize that the period locking of 12-h and circadian rhythms observed in

MMH-D3 cells likely indicates that the two clocks can adjust their periods concordantly with a

locked 1:2 ratio in the presence of varying environmental changes. As previous studies showed

that the circadian period will change in response to pH, oxygen, and temperature alterations

[21,25,26], it is equally possible that the period of 12-h clock can also change accordingly.

Future studies are needed to further test this hypothesis.

shown. Both the original time after serum shock as well as the CT are shown. (B) GO analysis showing enriched KEGG pathways and their

corresponding P values for cell-autonomous 12-h transcriptome, with GO terms related to CEDIF highlighted in red. (C) Venn diagram

comparison of 12-h transcriptome involved in CEDIF from mouse liver in vivo and MMH-D3 cells in vitro. (D) Scatter plot comparing phases of

CEDIF-related 12-h gene oscillation in MMH-D3 cells and mouse liver. The phases of 12-h oscillations in MMH-D3 are converted to CT. (E) Heat

map of side-by-side comparison of CEDIF-related 12-h gene expression in MMH-D3 cells and mouse liver, with both raw data and superimposed

12-h rhythms shown. (F) Microarray data of representative 12-h cycling genes involved in CEDIF in MMH-D3 cells compiled from [19]. P values

indicating the robustness of 12-h rhythms detected by RAIN are also shown for each gene. (G) MEFs were transfected with different siRNAs and

treated with Tu (25 ng/ml) for 2 h, and qPCR was performed at different times post Tu shock. Data are graphed as the mean ± SEM (n = 3–9). (H)

Real-time luminescence analysis of Bmal1-dluc MEFs post 100 nM Dex treatment. Representative raw and detrended traces of luminescence

recordings from MEFs subject to different siRNA transfection (top) and quantified amplitude, period, and phases (bottom). (I) Real-time

luminescence traces of Bmal1-dluc U2OS cells transfected with different siRNAs as reported in [23] (top) and quantified amplitude, period, and

phases (bottom). (J) Real-time luminescence analysis of Manf-dluc MEFs post 50% horse serum shock. Raw and detrended traces of luminescence

recordings from MEFs subject to different siRNA transfection (left) and calculated period, amplitude, and mean-normalized amplitude (right). (K)

Representative recordings (top) and period quantification (bottom) of single-cell time-lapse microscopy analysis of Eif2ak3 promoter-driven dGFP

oscillation in scrambled siRNA, Bmal1 siRNA, or Xbp1 siRNA transfected MEFs. Data are graphed as the mean ± SEM. Numerical values are

available in S4 Data. AMPK, 5’ AMP-activated protein kinase; CEDIF, central dogma information flow; CT, constant time; Dex, dexamethasone;

dGFP, destabilized green fluorescent protein; GO, Gene Ontology; HIF, Hypoxia-inducible factor; KEGG, Kyoto Encyclopedia of Genes and

Genomes; MAPK, Mitogen-Activated Protein Kinase; MEF, mouse embryonic fibroblast; MMH-D3, Met murine hepatocytes-3 days old; ns/NS,

not significant; qPCR, quantitative PCR; RAIN, Rhythmicity Analysis Incorporating Nonparametric; siRNA, small interfering RNA; SNARE,

soluble nsf attachment protein receptor; TNF, tumor necrosis factor; Tu, tunicamycin; XBP1s, Spliced Form of X-box Binding Protein 1.

https://doi.org/10.1371/journal.pbio.3000580.g004
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GA-binding proteins as putative novel transcription regulators of the

mammalian 12-h clock

Having established that XBP1s contributes to the establishment of 12-h rhythms of mRNA

expression, we next set out to investigate the detailed molecular mechanisms by which it

occurs. XBP1s is known to act as a basic region leucine zipper (bZIP) transcription factor acti-

vating gene expression by binding to gene regulatory regions harboring consensus DNA

sequence GCCACGT under ER stress condition [27–29]. Since hepatic XBP1s expression

exhibits a 12-h rhythm under physiological conditions without exogenous ER stress at both

the mRNA and protein level (Fig 1A–1C) [3,6], we performed hepatic XBP1s chromatin

immunoprecipitation sequencing (ChIP-Seq) (at a 4-h interval for a total of 48 h) to globally

profile its cistrome under constant darkness condition and identified a total of 1,681 high con-

fidence binding sites (see Materials and methods for details) (Fig 5A and S12 Table). Consis-

tent with its oscillating expression, XBP1s cistrome cycles with a 12-h period, with peak

binding observed at CT0, CT12, CT24, and CT36 (Fig 5A and 5B). Consistent with the inde-

pendent relationship between the circadian and 12-h clocks, very limited overlap of core circa-

dian clock transcription factors’ cistromes is observed with that of XBP1s (S6A Fig).

The hepatic XBP1s cistrome is predominantly enriched around the proximal promoter,

compared to other regions of the genome (Fig 5C and S6B–S6D Fig), which is consistent with

previously reported XBP1s cistrome distribution in human triple-negative breast cancers [28].

Very intriguingly, we found highly enriched XBP1s binding sites at bidirectional promoter

regions (S6C and S6D Fig). Gene pairs regulated by XBP1s-targeted bidirectional promoters

exhibit similar XBP1s-dependent 12-h oscillation of expression (S6C Fig). XBP1s transcrip-

tional regulation of bidirectional promoters may allow for a more tightly coordinated temporal

control of the mammalian 12-h clock [30].

Motif analysis of the XBP1s cistrome reveals enriched motifs associated with leucine zipper-

containing transcription factor binding sites as expected, including XBP1, Activating Transcrip-

tion Factor 6 (ATF6), and Cyclic AMP-Responsive Element-Binding protein 3 (CREB3)/Cyclic

AMP-Responsive Element-Binding protein 3-Like (CREB3L) (Fig 5D). Both ATF6 and CREB3/

CREB3L1/CREB3L2 are known to activate gene expression involved in UPR [31–34], and

ATF6 and CREB3L2 also exhibit 12-h rhythms of gene expression (S6E Fig), with 12-h rhythm

of the active form of ATF6 (p60) protein level also confirmed by western blot (S6F Fig) [6].

These data suggest that ATF6 and CREB3L2 may cooperate with XBP1s in dictating 12-h

rhythms of gene expression at the transcriptional level. In addition to leucine zipper transcrip-

tion factors, we unexpectedly found enriched motifs of E26 Transformation-Specific (ETS)

transcription factors, including GA-binding protein (GABP) and E74 Like ETS Transcription

Factor 1 (ELF1) at the XBP1s cistrome (Fig 5D). While the ETS transcription factors are known

to play important roles in tissue development and cancer progression [35,36], to the best of our

knowledge, their potential involvement in the regulation of CEDIF and cross-talk with XBP1s

remains unreported. Compared to XBP1s DNA binding motif, GABP binding sites are distrib-

uted more diffusely around XBP1s peak center (Fig 5E). This result indicates that GABP and/or

ELF1 binding sites most likely occur adjacent to that of XBP1s in cis. GABP transcriptionally

regulates gene expression predominantly by forming a heterotetrameric complex composed of

2 α and 2 β subunits encoded by the Gabpa and Gabpb1/b2 genes, respectively [37]. Both

hepatic Gabpa and Gabpb2 mRNA exhibit XBP1s-depenent 12-h oscillations (Fig 3G and S6G

Fig), and 12-h chromatin recruitment of XBP1s to Gabpa gene promoter was also found (S6H

Fig). By examining a previously published temporal hepatic proteome database [38], we found a

robust 12-h oscillation of nuclear GABPA level (S6I Fig). In addition, robust 12-h oscillations of

nuclear GABPA/GABPB2 bound to an artificial DNA fragment harboring GABP consensus
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Fig 5. GABPA is a putative new transcriptional regulator of the mammalian 12-h clock. (A) Heat maps of all XBP1s binding signal at 4-h intervals in XBP1Flox

mice as well as in XBP1LKO mice surrounding the center of XBP1s binding sites (±2 kb). (B) Snapshot of target genes selected for alignment of hepatic XBP1s

binding sites at different CTs in XBP1Flox and XBP1LKO mice. (C) Distribution of the distance between XBP1s binding sites and the TSS. (D) Top enriched SeqPos

motifs common to 12-h cycling XBP1s cistrome. (E) Position distribution of XBP1s or GABPA motifs relative to XBP1s peak center. (F, G) Real-time
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sequence were also reported in the same study (S6I Fig) [38]. Contrary to the phase of XBP1s

expression, GABPA protein level peaks at CT6 and CT18 (S6I Fig). To determine whether

GABPA regulates 12-h rhythm of gene expression, we utilized the Manf-dluc MEF cell line.

Motif analysis of the Manf promoter revealed 2 GABPA DNA binding motifs (Fig 5F). siRNA-

mediated knockdown of Gabpa lowered the basal level of the luciferase signal but did not alter

the relative amplitude of Manf-dluc oscillation. Instead, it significantly lengthened the period of

12-h luciferase oscillation (Fig 5F and 5G). While future efforts are needed to firmly establish

the causal roles of GABP in transcriptionally regulating the mammalian 12-h rhythms of gene

expression, these data nevertheless imply the putative concerted actions of GABP with XBP1s in

regulating the mammalian 12-h clock (see Discussion section for further details).

The motif stringency of XBP1s promoter binding sites dictates XBP1s’s

ability to drive 12-h rhythms of transcription of CEDIF genes

We focused our subsequent analysis on proximal promoter XBP1s binding sites as they can be

unambiguously assigned to each gene and thus permit identification of genes exhibiting both

12-h cycling mRNA and 12-h XBP1s cistrome. Compared to total mRNA expression, pre-

mRNA have been shown to provide better proxies for transcription regulation due to their

short half-life [39–41]. We therefore estimated the pre-mRNA level of each transcript by quan-

tifying intron-mapping reads from the RNA-Seq dataset and identified 4,280 twelve-hour–

cycling intron-mapping transcripts in XBP1Flox mice (Fig 6A and S13 Table). Comparison of

12-h pre-mRNA transcriptome and XBP1s cistrome revealed a moderate overlap, which

reaches statistical significance, indicating an enrichment of XBP1s target genes with 12-h

rhythm of pre-mRNA expression (Fig 6A). The 3,730 twelve-hour genes without XBP1s bind-

ing were strongly enriched in mRNA processing pathways (S6J Fig). Motif analysis on the pro-

moters of these genes confirmed the lack of XBP1s consensus binding motif but instead

revealed strong enrichment of GABP and ELF1 binding sequences (S6K Fig). Furthermore,

the 12-h phases of these genes are heavily enriched at CT6 and CT18 (S6L Fig), matching

those of GABP protein oscillations (S6I Fig). These data strongly suggest that GABP may drive

12-h rhythms of gene expression with more diverse phases.

We were surprised to find 699 genes with XBP1s binding near promoters but without 12-h

pre-mRNA oscillation and eager to identify the potential mechanisms that distinguish these

699 genes (cistrome positive) from the 550 genes (double positive) with both 12-h XBP1s cis-

trome and transcriptome (Fig 6A). GO analysis revealed that while the 550 double-positive

genes (including Eif2ak3, Manf, Sec61a, and Xbp1 itself) are strongly enriched in CEDIF path-

ways as expected, the 699 cistrome-positive genes lack strongly enriched GO categories (Fig 6B

and S14 Table). Motif analysis of the promoters of double-positive genes reveals expected

XBP1s consensus motif CCACGTCA (Fig 6C). Very intriguingly, the top enriched motif for

the cistrome-positive gene promoters is identified as a de novo motif with the sequence (C/G)

ACGT(G/C), which resembles a degenerate XBP1s motif (Fig 6C). XBP1s binding intensity to

the degenerate motif is weaker compared with the binding to the consensus XBP1s sequence

(Fig 6D). Accordingly, XBP1s binding to the double-positive—but not the cistrome-positive—

gene promoters is strongly associated with the 12-h rhythm of nascent pre-mRNA

luminescence analysis of Manf-dluc MEFs post 50% horse serum shock. Consensus GABPA binding sites in the promoter of mouse Manf gene, raw and

detrended traces of luminescence recordings from MEFs subject to different siRNA transfection (F) and quantification of relative amplitude and period (G). Data

are graphed as mean ± SEM. Numerical values are available in S12 Table and S4 Data except for Fig 5E, which was automatically generated by CentriMo

toolbox (version 5.1.0) (http://meme-suite.org/tools/centrimo). ATF6, Activating Transcription Factor 6; CREB3, Cyclic AMP-Responsive Element-Binding

protein 3; CT, constant time; ELF1, E74 Like ETS Transcription Factor 1; GABPA, GA-binding protein; MEF, mouse embryonic fibroblast; SeqPos, Sequence

Position; siRNA, small interfering RNA; TF, transcription factor; TSS, transcription start site; XBP1s, Spliced Form of X-box Binding Protein 1.

https://doi.org/10.1371/journal.pbio.3000580.g005
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Fig 6. The motif stringency of XBP1s binding sites underlies the 12-h rhythms of mRNA transcription. (A) Venn diagram depicting common and unique

intron-mapping 12-h cycling and TSS XBP1s-binding genes. (B) GO analysis showing enriched MSigDB pathways and their corresponding P values for 550 genes
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transcription initiation (but not elongation) peaking at CT0 and CT12, as assayed by both cal-

culating the area under the curve of the pre-pausing portion of Global run-on Sequencing

(Gro-Seq) signal [42] (Fig 6E and S6M Fig) and our intron-mapping RNA-Seq data (Fig 6F–

6M and S6N Fig). Overall, for the 550 double-positive genes, we observed a positive correlation

among the amplitude of nascent pre-mRNA oscillation (assayed by Gro-Seq), the amplitude of

pre-mature mRNA oscillation (assayed by intron-mapping reads), and the XBP1s binding

motif stringency score (assayed by ChIP-Seq and the higher the score, the more similar the

XBP1s binding motif is to the consensus sequence) in XBP1Flox mice (Fig 6G–6M).

Taken together, we hereby demonstrated that the ability of XBP1s to drive 12-h rhythms of

mRNA transcription is strongly influenced by the motif of its DNA binding sites: while 12-h

XBP1s chromatin recruitment to gene promoters harboring consensus XBP1s DNA binding

motif CCACGTCA is strongly associated with its ability to drive 12-h rhythms of transcription

initiation, weaker XBP1s binding to promoters with degenerate motifs is much less likely to

lead to robust 12-h gene oscillations (S6O–S6R Fig).

The 12-h rhythms of gene expression are evolutionarily conserved in

marine animals possessing circatidal clock

We originally hypothesized that the mammalian 12-h clock evolved from the circatidal clock

of coastal and estuarine animals that modulates their behavior in tune with the ebb and flow of

the tides with an approximately 12.4-h period [1,6], which were also shown to be driven by a

dedicated circatidal pacemaker distinct from the circadian clock [43–47]. To seek further sup-

port for our hypothesis, we analyzed 2 recently published time series RNA-Seq datasets of 2

marine animals exhibiting a circatidal clock, aposymbiotic sea anemone Aiptasia diaphaha
[48] and the limpet Cellana rota [10]. In both cases, we found a large overlap of 12-h cycling

transcripts between mouse and these two tidal species (Fig 7A–7C, S6A–S6C Fig, and S15

Table). Computationally constructing predicted interactive networks using the overlapping

12-h cycling genes in both species via Search Tool for the Retrieval of Interacting Genes/Pro-

teins (STRING) [49] or by traditional GO analysis revealed sub-hubs involved in different

steps of CEDIF (Fig 7B, S6B Fig, and S16 Table). In addition, we found that the spliceosome is

within the top two enriched KEGG GO terms in the circatidal transcriptomes of the 2 marine

animals (regardless of their conservation status in mice) (S16 Table). We further observed

with both intron-mapping 12-h cycling transcriptome and TSS XBP1s binding (purple) and 699 genes with TSS XBP1s binding but no intron-mapping 12-h cycling

transcriptome (beige). (C) Top enriched SeqPos motifs common to XBP1s cistromes with or without associated intron-mapping 12-h cycling transcriptome. (D)

Calculated peak intensity of XBP1s binding at CT24 for XBP1s cistrome associated with or without intron-mapping 12-h cycling transcriptome. (E) A representative

diagram depicting a typical Gro-Seq signal from TSS to TES of a gene and using AUC to calculate both transcription initiation/pausing and transcription elongation

rates. (F) Log2 mean-normalized transcription initiation rates calculated from the Gro-Seq data [42] for TSS XBP1s target genes with or without associated intron-

mapping 12-h transcriptome. (G–L) 550 genes with both proximal promoter XBP1s binding and intron-mapping 12-h transcriptome in XBP1Flox mice. (G) Heat

maps of XBP1s binding intensity, transcription initiation rates calculated from the Gro-Seq [42], intron-mapping 12-h cycling gene expression (or lack thereof) in

XBP1Flox and XBP1LKO mice with both raw data and superimposed 12-h rhythms shown, and XBP1s binding motif score. (H) Polar histogram demonstrating the

phase distributions of 550 intron-mapping 12-h cycling genes with TSS XBP1s binding in XBP1Flox mice. (I) Scatter plot of Log2 transformed XBP1s binding motif

score versus the relative amplitude of mRNA transcription initiation rates calculated from the Gro-Seq [42] in XBP1Flox mice, together with Spearman’s rank

correlation coefficient r, and the P value at which r is significantly different than 0. (J) Scatter plot of Log2 transformed XBP1s binding motif score versus the relative

amplitude of superimposed intron-mapping 12-h rhythms in XBP1Flox mice, together with Spearman’s rank correlation coefficient r, and the P value at which r is

significantly different than 0. (K) Relative amplitude of intron-mapping 12-h rhythms for each gene in XBP1Flox and XBP1LKO mice. If a 12-h rhythm is not found in

XBP1LKO mice, then an amplitude of 0 is used. (L) Snapshot of target genes selected for alignment of hepatic XBP1s binding sites at different CTs in XBP1Flox and

XBP1LKO mice as well as published Gro-Seq data [42]. Consensus XBP1s binding motifs identified at each gene promoter are also shown. (M) RNA-Seq data (both

intron and exon mapping) for representative genes in XBP1Flox and XBP1LKO mice. Data are graphed as the box and whisker plot (minimum to maximum) in panels

D and K and mean ± SEM in panel M. Numerical values are available in S4 Data. AUC, area under the curve; ChIP-Seq, Chromatin Immunoprecipitation

Sequencing; CT, constant time; FPKM, Fragments Per Kilobase of transcript per Million mapped reads; GO, Gene Ontology; Gro-Seq, Global run-on Sequencing;

MHC, major histocompatibility complex; MSigDB, Molecular Signatures Database; PERK, Protein kinase R-like Endoplasmic Reticulum Kinase; RNA-Seq, RNA

sequencing; SeqPos, Sequence Position; SRP, Signal Recognition Particle; TES, transcription termination site; TF, transcription factor; TSS, transcription start site;

XBP1s, Spliced Form of X-box Binding Protein 1.

https://doi.org/10.1371/journal.pbio.3000580.g006
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12-h oscillations of Gabpa in both A. diaphaha and C. rota and of Gabpb2 in A. diaphaha (Fig

7D and S6D Fig). Twelve-hour oscillation of Xbp1 in C. rota was previously reported [1].

These data combined with the recent independent report of an earlier evolutionary origin of

genes cycling with a 12-h period [8] provide strong support for our hypothesis that the mam-

malian 12-h clock evolved from the circatidal clock.

Discussion

The eigenvalue/pencil versus RAIN method

In this study, we applied eigenvalue/pencil and RAIN methods to detect 12-h transcriptome.

Apart from the commonly found 12-h transcriptome, we further observed 12-h transcriptome

that is uniquely identified by each method. This discrepancy can be largely contributed to the dis-

tinct nature of the two methods. Most of the current rhythm-identification methodologies (such

as RAIN, JTK_CYCLE, and ARSER) require the user to define a narrow period range and then

use respective algorithms to identify one oscillation from each temporal dataset that minimizes

the P value [7]. Because the P value of each identified oscillation is known, the users are given the

freedom to select the FDR threshold of their choice. The eigenvalue method, on the other hand,

presumes that each biological time series dataset consists of multiple superimposed oscillations (a

fact also highlighted by a recent study examining ultradian rhythms in Neurospora [50]) and thus

permits unbiased identification of all superimposed oscillations without any constraints on the

period, amplitude, or phases. As such, the P value information for each identified oscillation is

not available, and only one fixed FDR can be obtained for all identified oscillations through a per-

mutation-based method. While a strong oscillation (which alone can largely account for the

waveform of the original temporal dataset) can be detected by both methods with high confi-

dence (such as Alg12 and Sec23b), a weaker oscillation (which is superimposed by other oscilla-

tions with similar or larger amplitudes) often evades detection (and is mistaken for different

periods) by the RAIN method (such as Cdk2 and Dusp10). Nevertheless, there always remains

the question of whether such weaker oscillations with small amplitudes are a consequence of

technical artifacts or of real biological significance. This problem can often be satisfactorily

addressed by cross-validation with additional data from independent sources and/or technical

platforms. Overall, the eigenvalue/pencil method is more sensitive in detecting weaker ultradian

oscillations but at the same time has a higher type I error (higher false positive rate), while the

RAIN method is more stringent and consequently has a higher type II error (higher false negative

rate). We thus recommend that the eigenvalue/pencil method be used first as a discovery tool to

identify all potential oscillations, followed by RAIN analysis to solidify the conclusion.

The working model of the transcriptional regulation of the mammalian

12-h clock by XBP1s

Our study establishes XBP1s as a major transcriptional regulator of the mammalian 12-h

clock. Hepatic ablation of XBP1 results in the impairment of 86% (by eigenvalue method) or

Fig 7. The 12-h rhythms of CEDIF gene expression are evolutionarily conserved in circatidal animals. (A) Heat map of side-by-side comparison of

evolutionarily conserved 12-h gene expression in aposymbiotic A. diaphaha [48] and mouse liver, with both raw data and superimposed circatidal rhythms

shown for the mouse liver data. (B) Predicted interactive network construction of these conserved 12-h cycling genes using STRING [49]. Genes involved in

different biological pathways are colored differently. (C) RNA-Seq data for representative genes in A. diaphaha [48] and XBP1Flox and XBP1LKO mouse

liver. Data are graphed as the mean ± SEM (n = 2). (D) Gabpa and Gabpb2 expression in aposymbiotic A. diaphaha [48] (top) and Gabpa expression in

mouse liver from the 48-h microarray dataset [2] indicated by 2 different probes. Numerical values are available in S4 Data. A higher-resolution image of

panel B is available in S2 Raw images. CEDIF, central dogma information flow; CT, constant time; R.E., relative expression; RNA-Seq, RNA sequencing;

STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; UPR, Unfolded Protein Response; XBP1, X-box Binding Protein 1; ZT, Zeitgeber

time.

https://doi.org/10.1371/journal.pbio.3000580.g007
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69% (by RAIN method) of hepatic 12-h cycling transcriptome. XBP1s directly transcriptionally

regulates more than 500 genes (with acrophases around CT0 and CT12) via rhythmic binding

to promoters containing consensus sequence CCACGTCA. Alternatively, XBP1s transcrip-

tionally regulates 12-h oscillations of GABP expression, which in turn can bind to gene pro-

moters harboring ETS consensus sequence CCGGAAG and putatively regulates additional

12-h transcriptome with a wider range of acrophases (particular at CT6 and CT18). GABP can

also act in concert with XBP1s in cis on a subset of genes containing adjoining XBP1s and

GABP DNA binding motifs in gene promoters (Fig 8A). XBP1s also regulates its own 12-h

transcription, thus completing a positive feedforward loop (Fig 8A) [51]. At this point, what

remains elusive is the mechanism(s) of negative feedback required for sustaining cell-autono-

mous oscillations of the 12-h clock. One potential candidate is the unspliced form of XBP1

(Xbp1us), which has been previously shown to negatively regulate UPR by forming a complex

with XBP1s and ATF6 in the cytosol and targeting them for ubiquitin-mediated degradation

[52,53]. One last note is that what is summarized in Fig 8 is the current working model of the

transcriptional regulation of the mammalian 12-h clock by XBP1s; it is subject to revision and

modification with more available experimental and mathematical modeling data in the future.

For instance, it is equally likely that GABPA can act upstream of XBP1s and transcriptionally

regulates 12-h rhythm of Xbp1s expression and subsequent 12-h cycling output genes. In this

case, XBP1s becomes the mediator between GABPA and 12-h cycling output genes. Future

work focused on temporal transcriptome profiling in GABPA liver-specific knockout mice

will distinguish between these two models.

As an important note, the data presented herein do not rule out the possibility that the 12-h

rhythms of some genes may be influenced by the circadian clock and/or the effects of certain exter-

nal cues as previously suggested [3,5]. Furthermore, although our data indicate that the 12-h clock

is independent from the circadian clock at the cellular level, they appear to be able to cross-talk at

the systemic metabolic level [4]. Therefore, future studies are needed to investigate the physiologic

conditions by which these distinct clocks can interact systemically in model organisms.

The vehicle-cargo hypothesis on the distinct functions of 12-h clock versus

the circadian clock

A very fascinating finding from our study is the coordinated 12-h oscillations of genes involved

in the entire CEDIF, ranging from mRNA transcription, mRNA processing and export, and

Fig 8. XBP1s transcriptionally regulates 12-h rhythms of gene expression involved in CEDIF. (A) A simplified model

summarizing our current understanding of the transcriptional regulation of the mammalian 12-h clock by XBP1s. Twelve-

hour rhythmic XBP1s binding to consensus XBP1s binding motif CCACGCTA within proximal promoter regions drives

12-h rhythms of gene expression that are involved in regulating the traffic capacity of CEDIF. XBP1s further self-regulates its

own 12-h gene expression via this mechanism, thus forming a positive feedforward loop. On the other hand, 12-h rhythmic

XBP1s binding to degenerate XBP1s binding motif fails to drive 12-h rhythms of gene expression. XBP1s further

transcriptionally regulates 12-h oscillation of GABP transcription factors, whose binding motif exhibits equal strong

enrichment on the promoters of XBP1s-dependent 12-h genes. (B) The vehicle-cargo hypothesis on the distinct functions of

12-h clock versus the 24-h circadian clock. Similar to the increased traffic at “rush” hours at each dawn and dusk in people’s

daily life, 12-h rhythms of CEDIF gene expression peaking at dawn (CT0) and dusk (CT12) (indicated by the circular heat

map in the middle) suggest the existence of a 12-h oscillation of “traffic” of CEDIF, which consists of progressive molecular

processing steps from transcription, mRNA processing, ribosome biogenesis, and translation, all the way to protein

processing/sorting in the ER and Golgi. At this point, it remains to be determined whether it is the total number of molecules

undergoing processing (illustrated by the varying arrow sizes) or the metabolic rate of processing (or both) that exhibits a

12-h oscillation. The vehicle-cargo hypothesis posits this: whereas the 12-h clock regulates the 12-h rhythms of the traffic

capacity of the CEDIF (thus the vehicle), the circadian clock (and other temporal and tissue-specific mechanisms)

contributes to the regulation of diurnal oscillations of specific cargos that undergo molecular processing. CEDIF, central

dogma information flow; CT, constant time; ER, Endoplasmic Reticulum; GABP, GABPA, GA-binding protein; HOV, high-

occupancy vehicle; XBP1s, Spliced Form of X-box Binding Protein 1; ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.3000580.g008
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translation regulation to protein processing and sorting in the ER and Golgi, which include both

anabolic and catabolic processes. The vast majority of these genes peak at dawn (CT0 to CT3)

and dusk (CT12 to CT15), corresponding to the transition periods between fasting/feeding and

rest/activity that are associated with elevated metabolic stress [1]. In light of these findings, we

hereby propose a vehicle-cargo hypothesis that attempts to decipher the distinct functions of the

12-h clock versus the circadian clock (Fig 8B). We argue that the 12-h clock accommodates rush

hours’ (at dawn and dusk) elevated gene expression and processing by controlling the 12-h

rhythms of the global traffic capacity (and/or the traffic rate) of the CEDIF (thus the vehicle), in

tune with the 12-h cycle of metabolic stress [1] (Fig 8B). The circadian clock and/or other tissue-

specific pathways, on the other hand, dictate the particular genes or gene products processed at

each rush hour (thus the cargo) as previously suggested [54] (Fig 8B). An everyday metaphor

would be the fluctuating daily traffic on the highway: the 12-h clock is analogous to the highway

that increases its operating capacity during the morning and evening rush hours (by opening the

high-occupancy vehicle [HOV] lane, for example), while the 24-h circadian clock is likened to

dictating the specific cars that go on the highway during morning and evening (Fig 7B). Future

efforts should be directed toward characterizing the temporal profile of mRNAs and proteins

being processed in response to the 12-h clock in the nucleus and the ER/Golgi, respectively.

Materials and methods

Ethics statement

The animal studies were carried out in accordance with the National Institutes of Health

guidelines and were granted formal approval by the University of Pittsburgh’s Institutional

Animal Care and Use Committee (approval number IS00013119 and IS00013119) and BCM’s

Institutional Animal Care and Use Committee (approval number AN-544).

Cell lines

MEF was prepared as previously described [14]. Manf-dluc MEF was generated by cloning a

750-bp (−569 bp to +181 bp) promoter region of mouse Manf gene into pGL4.16[luc2CP/

Hygro] vector (E6711; Promega), which encodes for a destabilized luciferase gene (forward

primer: TAGGCAGGCCGAGACCTTTCGTTTA; reverse primer: ATAACTAGTCTTTCGC

TTTCCTTGGGTTTAG) and subsequently transfecting the vector into MEFs and selecting for

stable clones in the presence of 200 μg/ml hygromycin. Bmal1-dluc MEF was generated by len-

tiviral infection of MEFs with pLV6-Bmal-luc-packaged lentivirus, and stable clones were

selected by culturing in the presence of 10 μg/ml blasticidin. pLV6-Bmal-luc was a gift from

Steven Brown (Addgene [https://www.addgene.org/] plasmid #68833; http://n2t.net/

addgene:68833; RRID:Addgene_68833).

Animals

XBP1Flox mice were previously described [11]. XBP1LKO mice were generated by crossing

Albumin-CRE mice with XBP1Flox mice. All mice are of C57BL/6 background, male, and

between 3 and 4 mo of age. Mice were first entrained under LD12:12 conditions for 2 wk

before being transferred to constant darkness for 24 h. Mice were then euthanized at 2-h inter-

vals for a total of 48 h. Mice were fed ad libitum during the entire experiment.

Food intake monitoring

Comprehensive Lab Animal Monitoring System (CLAMS) Calorimetry (Columbus Instru-

ments, http://www.colinst.com/) was used for real-time measuring of food intake. XBP1Flox
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(n = 4) and XBP1LKO (n = 4) mice were acclimated to the chambers for at least 1 wk, and ad

libitum food intake was monitored for 72 h under LD12:12 followed by 96 h of constant

darkness.

Locomotor activity monitoring

The Home Cage Activity System (Omnitech Electronics, http://www.omnitech-electronics.

com/) was used for real-time measuring of spontaneous locomotor activity in a home-cage

environment. XBP1Flox (n = 3–4) and XBP1LKO (n = 3–4) mice were acclimated to the home

cage for at least 1 wk and fed ad libitum. Spontaneous locomotor activity was measured under

either LD12:12 condition or constant-darkness conditions.

siRNA transient transfections

MEFs were transfected with 10 μM of different siRNAs for approximately 24 to 48 h with Lipo-

fectamine RNAiMAX reagents (Life Technologies, https://www.thermofisher.com/us/en/

home.html) per the manufacturer’s instructions. Sources of siRNA (from Horizon Discovery,

https://horizondiscovery.com/) are as follows: siGENOME Non-Targeting siRNA pool (Dhar-

macon, D-001206-1305), siGENOME SMARTpool ARNTL (Dharmacon, L-040483-01-0005),

siGENOME SMARTpool XBP1 (Dharmacon, L-040825-00-0005), and siGENOME SMART-

pool GABPA (Dharmacon, L-041036-01-0005).

Synchronization of MEFs

MEFs were isolated from male SRC-2fl/fl mice and immortalized by SV40 T antigen as previ-

ously described [14]. For tunicamycin treatment, MEFs were cultured in DMEM (4.5 g/L glu-

cose) supplemented with 10% FBS, treated with 25 ng/ml of tunicamycin for 2 h, and then

washed with 1X PBS before cultured in the same medium. For dexamethasone treatment, MEFs

were cultured in DMEM (4.5 g/L glucose) supplemented with 10% FBS, treated with 100 nM

dexamethasone for 30 min, and then washed with 1X PBS before cultured in the same medium.

For all cell culture experiments, cells were cultured at 37˚C with 5% CO2. For serum shock,

MEFs were cultured in DMEM (4.5 g/L glucose) supplemented with 10% FBS, treated with 50%

horse serum for 2 h, and then washed with 1X PBS before cultured in the same medium.

Real-time luminescence assay

Stable Manf-dluc or Bmal1-dluc MEFs were cultured in DMEM (4.5 g/L glucose) supple-

mented with 10% FBS and treated with 50% horse serum in DMEM for 2 h or 100 nM for 30

min before being subjected to real-time luminescence assay using a Lumicycle (Actimetrics,

https://www.actimetrics.com/) as previously described [55]. Briefly, after serum shock treat-

ment, MEFs were washed with 1X PBS and cultured with DMEM (4.5 g/L glucose) supple-

mented with 0.1 mM Luciferin and 10 mM HEPES buffer in 35-mm tissue culture dishes in

the absence of serum and were transferred immediately to Lumicycle for real-time lumines-

cence analysis. Periods of oscillation were identified by embedded Periodogram function. For

siRNA-treated MEFs, MEFs were transfected with nontargeting or Bmal1, Gabpa, or Xbp1
siRNA for 48 h before being subjected to serum shock and real-time luminescence assay as

described earlier.

Time-lapse microscopy

Time-lapse microscopy was performed on Eif2ak3-dGFP cells transfected with scrambled,

Bmal1, or Xbp1 siRNAs using IncuCyte Live Cell Analysis System (Essen Bioscience, https://
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www.essenbioscience.com/en/) as previously described [6]. Eif2ak3-dGFP was subject to

imaging using 300 ms integration time at 30-min interval. During the imaging, the cells were

cultured in serum-free medium. GFP intensity for single cells (cell lineages) was subsequently

quantified automatically by automated image processing software CellProfiler (version 2.2.0,

https://cellprofiler.org/) [56]. The raw data were subjected to polynomial detrend (n = 4–7),

and the eigenvalue/pencil method was applied to uncover top superimposed oscillations from

mathematically detrended data.

Immunoblot

Immunoblot analyses were performed as described previously [57]. Briefly, proteins separated

by 4% to 20% gradient SDS-PAGE gels (Bio-rad, https://www.bio-rad.com/) were transferred

to nitrocellulose membranes, blocked in TBST buffer supplemented with 5% bovine serum

albumin (BSA), and incubated overnight with primary anti-XBP1s antibody (Biolegend

Poly6195, https://www.biolegend.com/), anti-ATF6 antibody (Santa Cruz 22799, http://www.

scbt.com), and anti-BMAL1 antibody (Abcam 3350, https://www.abcam.com/) at 4˚C. Blots

were incubated with an appropriate secondary antibody coupled to horseradish peroxidase at

room temperature for 1 h, reacted with ECL reagents per the manufacturer’s (Thermo, https://

www.thermofisher.com/us/en/home.html) suggestion, and were detected on X-ray film by

autoradiography.

qRT-PCR

Total mRNA was isolated from MEFs with PureLink RNA mini kit (Thermo) per the manu-

facturer’s instructions. Reverse transcription was carried out using 5 μg of RNA using Super-

script III (Thermo) per the manufacturer’s instructions. For gene expression analyses, cDNA

samples were diluted 1/30-fold (for all other genes except for 18S RNA) and 1/900-fold (for

18S RNA). qPCR was performed using the Taqman or SYBR green system with sequence-spe-

cific primers and/or the Universal Probe Library (Roche, https://www.roche.com/). All data

were analyzed with 18S or β-actin as the endogenous control. qPCR primer sequences are as

follows:

Mouse total Xbp1 forward primer: gggtctgctgagtcc

Mouse total Xbp1 reverse primer: cagactcagaatctgaagagg

Mouse Xbp1s forward primer: ccgcagcaggtgc

Mouse Xbp1s reverse primer: cagactcagaatctgaagagg

Mouse Xbp1us forward primer: actatgtgcacctctgcag

Mouse Xbp1us reverse primer: cagactcagaatctgaagagg

Mouse Arntl forward primer: gccccaccgacctactct

Mouse Arntl reverse primer: tgtctgtgtccatactttcttgg

Mouse Nr1d1 forward primer: acgaccctggactccaataa

Mouse Nr1d1 reverse primer: ccattggagctgtcactgtaga

Mouse Per2 forward primer: caacacagacgacagcatca

Mouse Per2 reverse primer: tcctggtcctccttcaacac

Mouse Ero1lb forward primer: atgattcgcaggaccacttt

Mouse Ero1lb reverse primer: tcagcagcaggtccacatac

Mouse Sf3a1 forward primer: gatgatgaggtttatgcaccag

Mouse Sf3a1 reverse primer: agtacgtcgctcagccaact

Mouse Tmed7 forward primer: agttggagaagacccaccttt

Mouse Tmed7 reverse primer: agagcttcatgaatggaaacg

Mouse 18s RNA forward primer: ctcaacacgggaaacctcac
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Mouse 18s RNA reverse primer: cgctccaccaactaagaacg

Mouse β-actin forward primer: aaggccaaccgtgaaaagat

Mouse β-actin reverse primer: gtggtacgaccagaggcatac

RNA-Seq

Mouse liver tissues were collected from XBP1Flox (n = 2) and XBP1LKO (n = 2) mice at 2-h

intervals for a total of 48 h under constant-darkness condition. Total RNA was isolated from

mouse liver with miRNeasy Mini Kit (Qiagen, https://www.qiagen.com/us/) per the manufac-

turer’s instructions. Extracted RNA samples underwent quality control assessment using the

RNA Pico 6000 chip on Bioanalyzer 2100 (Agilent, https://www.agilent.com/) and were quan-

tified with Qubit Fluorometer (Thermo Fisher, https://www.thermofisher.com/us/en/home.

html). Strand-specific total mRNA-Seq libraries were prepared using the Universal Plus

mRNA-Seq kit (NuGen, https://www.nugen.com/) per the manufacturer’s instructions using

200 ng of RNA. The size selection for libraries were performed using SPRIselect beads (Beck-

man Coulter, https://www.beckman.com/), and purity of the libraries was analyzed using the

High Sensitivity DNA chip on Bioanalyzer 2100 (Agilent). The prepared libraries were pooled

and sequenced using NoveSeq 6000 (Illumina, https://www.illumina.com/), generating an

average of 40 million paired-end reads of 2 × 100 bp length per sample (S1 Table). RNA-Seq

library preparation and sequencing were performed at UPMC Genome Center (https://ipm.

pitt.edu/UGC). Raw RNA-Seq FASTQ files were analyzed by FastQC (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) for quality control. Adaptors and low-quality

reads were filtered by Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic)

[58]. Then, the processed reads were aligned by HISAT2 (https://ccb.jhu.edu/software/hisat2/

index.shtml) [59] against mouse reference mm10. Gene and isoform FKPM values were calcu-

lated by Cufflinks (http://cole-trapnell-lab.github.io/cufflinks/). For gene-level intron quantifi-

cation, BEDTools software (https://bedtools.readthedocs.io/en/latest/content/tools/intersect.

html) [60] was used to collect and count reads that aligned to any intron of the given gene. If

one read spanned across multiple exons of the same gene, it would only be counted once. The

intron counts were normalized by gene length and total reads for FPKM normalization.

Identification of oscillating transcriptome

Averaged FPKM values at each time were used for cycling transcripts identification. Superim-

posed oscillations for the remaining transcripts were identified using the previously described

eigenvalue/pencil method [6,7]. Specifically, 3 oscillations were identified from each gene. The

criteria for circadian genes are as follows: period between 21 h and 25 h, decay rate between

0.8 and 1.2, and mean expression FPKM larger than 0.1; for approximately 12-h genes: period

between 10.5 h to 13.5 h, decay rate between 0.8 and 1.2, and mean expression FPKM larger

than 0.1; for approximately 8-h genes: period between 7 h and 9 h, decay rate between 0.8 and

1.2, and mean expression FPKM larger than 0.1. The mean value and standard deviation of cir-

cadian and approximately 12-h oscillations were determined by fitting 2 normal distributions

to the experimental data, and the results are provided in Tab 1 of S3 Table. The relative ampli-

tude is calculated by dividing the amplitude by the mean expression value of each gene. We

determined the background gene expression level of FPKM = 0.1 by randomly selecting 70

genes that are known to be not expressed in the liver (or at least not expressed to a level

deemed to be physiologically important). These genes include 50 keratin family members pref-

erentially expressed in the skin, 19 genes preferentially expressed in the neurons, and the adi-
ponectin gene preferentially expressed in the adipocyte. The average expression of these 70

genes is 0.092, and we rounded up to 0.1. To determine the FDR of identification of rhythmic
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transcripts, we used a permutation-based method that randomly shuffles the time label of gene

expression data and subjected each of the permutation datasets to the eigenvalue/pencil

method applied with the same criteria [13]. These permutation tests were run 10,000 times,

and the FDR was estimated by taking the ratio of the mean number of rhythmic profiles identi-

fied in the permutated samples (false positive ones) to the number of rhythmic profiles identi-

fied in the original data. All the analyses were performed in MatlabR2017A (https://www.

mathworks.com/?s_tid=gn_logo). Heat maps were generated by Gene Cluster 3.0 (http://

bonsai.hgc.jp/~mdehoon/software/cluster/) and TreeView 3.0 alpha 3.0 (https://bitbucket.org/

TreeView3Dev/treeview3/src/master/) using log2 mean-normalized values. The sorting of

heat maps in Fig 1J and 1L was performed by averaging the phases between the two genotypes

for each gene and ranked from small to large phases (phase delay from top to bottom). RAIN

analysis was performed as previously described in Bioconductor (3.4) (http://www.

bioconductor.org/packages/release/bioc/html/rain.html) [17], and DODR analysis was per-

formed as previously described in R package [18].

Defining oscillating genes

For the eigenvalue method, every gene consists of multiple superimposed oscillations. There-

fore, we define a circadian gene as any gene that exhibits a superimposed circadian rhythm,

regardless of its relative amplitude compared to other superimposed oscillations. Similar defi-

nitions apply to 12-h and 8-h genes. Under this definition, a gene can be both a circadian and

12-h cycling gene. By comparison, we define a dominant circadian gene as any gene whose

superimposed circadian rhythm has the largest amplitude among all oscillations. Similar defi-

nitions also apply to 12-h and 8-h genes. Under this definition, dominant circadian and domi-

nant 12-h genes are mutually exclusive.

t-SNE analysis

t-SNE analysis was performed on identified pure 12-h oscillations using MatlabR2017A using

the “tsne” function. The “Exact” algorithm and “Euclidean” distance metric were used. The

three-dimensional scatter graph was generated with the “scatter3” function.

Statistical test on phase segregation

The Watson-Wheeler (or Mardia-Watson-Wheeler, or uniform score) test was performed to

detect the difference among the phase distributions of different groups of genes. The difference

between the samples can be in either the mean or the variance.

ChIP-Seq

ChIP for XBP1s was performed using anti-XBP1s antibody (Biolegend Poly6195) as previously

described [57]. Briefly, mouse liver samples were submerged in PBS + 1% formaldehyde, cut

into small (approximately 1 cm3) pieces with a razor blade, and incubated at room temperature

for 15 min. Fixation was stopped by the addition of 0.125 M glycine (final concentration). The

tissue pieces were then treated with a TissueTearer and finally spun down and washed twice in

PBS. Chromatin was isolated by the addition of lysis buffer, followed by disruption with a

Dounce homogenizer. The chromatin was enzymatically digested with MNase. Genomic DNA

(Input) was prepared by treating aliquots of chromatin with RNase and proteinase K and

heated for reverse-crosslinking, followed by ethanol precipitation. Pellets were resuspended,

and the resulting DNA was quantified on a NanoDrop spectrophotometer. An aliquot of chro-

matin (30 μg) was precleared with protein A agarose beads (Invitrogen, https://www.
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thermofisher.com/us/en/home.html). Genomic DNA regions of interest were isolated using

4 μg of antibody. Complexes were washed, eluted from the beads with SDS buffer, and sub-

jected to RNase and proteinase K treatment. Crosslinking was reversed by incubation over-

night at 65˚C, and ChIP DNA was purified by phenol-chloroform extraction and ethanol

precipitation. The DNA libraries were prepared at the University of Pittsburgh and sequenced

at Gene by Gene (https://genebygene.com/) per standard protocols. DNA libraries were pre-

pared with Ovation Ultralow V2 DNA-Seq library preparation kit (NuGen) using 1 ng input

DNA. The size selection for libraries was performed using SPRIselect beads (Beckman Coul-

ter), and purity of the libraries was analyzed using the High Sensitivity DNA chip on Bioanaly-

zer 2100 (Agilent). The prepared libraries were pooled and sequenced using Nova-Seq 6000

(Illumina), generating approximately 30 million 75-bp single-end reads per sample.

ChIP-Seq analysis

Replicates were pooled at each time point for subsequent ChIP-Seq analysis. The sequences

identified were mapped to the mouse genome (UCSC mm10) using the “BOWTIE” function

in Galaxy Deeptool (https://usegalaxy.org/) [61]. Only the sequences uniquely mapped with

no more than 2 mismatches were kept and used as valid reads. PCR duplicates were also

removed. Peak calling was carried out by MACS2 (version 2.1.1.20160309) in Galaxy (https://

usegalaxy.org/) (options—mfold 5, 50—P = 1 × 10−4), on each ChIP-Seq file against the ChIP--

Seq of XBP1LKO mice. To account for the different sequencing depths between samples, the

BAM files generated from MACS2 were RPKM normalized to sequencing depth using the

bamCoverage function in Galaxy Deeptool (https://usegalaxy.org/), and the bigwig files were

generated accordingly. The relative intensity of each XBP1 binding site is further calculated via

the computeMatrix function with the RPKM normalized bigwig files and bed files from the

peak calling as inputs by calculating the area under the curve. Due to the robust 12-h oscilla-

tion of XBP1s hepatic nuclear proteins [3,6], only XBP1s cistromes whose binding intensity

exhibits robust 12-h oscillations (period between 10.5 h and 13.5 h; decay rate between 0.8 and

1.2; phase between 0 h and 3 h) are selected as bona fide XBP1s binding sites.

GO analysis

DAVID (version 6.8) [62] (https://david.ncifcrf.gov) and GREAT (version 3.0.0, http://great.

stanford.edu/public/html/) [63] were used to perform GO analysis. Briefly, gene names were

first converted to DAVID-recognizable IDs using Gene Accession Conversion Tool. The

updated gene list was then subjected to GO analysis using all Mus musculus genes or genes

only expressed in mouse liver (FPKM > 0.1) as background and with the “Functional Annota-

tion Chart” function. KEGG_PATHWAY were used as GO categories for all GO analysis.

Only GO terms with P < 0.05 were included for further analysis. For GREAT analysis, the

−500 bp to 500 bp window of TSS for each gene was input as a bed file, and enriched MSigDB

pathways were generated. The criteria for associating genomic regions with genes are as fol-

lows: each gene is assigned a basal regulatory domain of a minimum distance upstream and

downstream of the TSS (regardless of other nearby genes) (proximal 5 kb upstream, 1 kb

downstream, plus distal up to 100 kb). The gene regulatory domain is extended in both direc-

tions to the nearest gene’s basal domain but no more than the maximum extension in one

direction.

Binding site annotation and profiling

The Cis-regulatory Element Annotation System (CEAS) function in Galaxy/Cistrome (http://

cistrome.org/ap/) was applied to calculate the enrichment of the binding sites in the promoter,
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exon, intron, UTR, and other genomic regions against the mappable mouse genome using the

binomial model.

Motif analysis

Motif analysis was performed with the Discriminative DNA Motif Discovery (DREAM) tool

(version 4.9.1) or the SeqPos motif tool (version 0.590) embedded in Galaxy Cistrome using

the all motifs within mouse reference genome mm10 as background. The distribution of

XBP1s and GABPA motifs around XBP1s ChIP-Seq signal was generated by the CentriMo

online toolbox (version 5.1.0) (http://meme-suite.org/tools/centrimo).

Network analysis

Construction of interacting networks of evolutionarily conserved 12-h genes was performed

by STRING (https://string-db.org/).

Post hoc analysis of serum-synchronized MMH-D3 transcriptome

The time series transcriptome of serum-synchronized murine liver MMH-D3 cells was pub-

lished previously [19]. Transcripts with averaged expression larger than 20 were used for sub-

sequent analysis. Upon examining the raw data, we observed noticeable baseline changes in

most reported mRNA oscillations. Therefore, we subjected the raw data to polynomial detrend

(n = 3) (we found that higher order of polynomial detrend [n > 3] will lead to the disappear-

ance of circadian rhythm in some core circadian genes, therefore we think that n = 3 is the

optimal trade-off between overfitting and underfitting). Then, we added the mean expression

of the raw data to the detrended data so that the mean expression of detrended data was equal

to that of the raw data (instead of being 0). The polynomial detrended data were then subjected

to eigenvalue/pencil analysis to identify superimposed oscillations, and the relative amplitude

was calculated similarly as in vivo studies. Specifically, 3 oscillations were identified from each

gene. The criteria for circadian genes are a period between 20.5 h and 23.5 h and a decay rate

between 0.9 and 1.1; for approximately 12-h genes, the criteria are a period between 9.5 h and

12.5 h and a decay rate between 0.9 and 1.1. The smaller periods for both circadian and 12-h

genes were selected based upon the distribution of all periods uncovered as shown in S3A Fig.

For RAIN analysis, the detrended data underwent log 2 normalization first and then were sub-

jected to RAIN analysis as described previously.

Supporting information

S1 Fig. Liver-specific deletion of XBP1s does not alter rhythmic locomotor activity or fast-

ing-feeding cycles in mice, related to Fig 1. (A) Diagram showing the Xbp1 locus of XBP1Flox

and XBP1LKO mice (top) and RNA-Seq data depicting the absence of reads mapped to the sec-

ond exon in XBP1LKO mice (bottom). (B) Diagram showing the position of primers designed

to measure the mRNA level of Xbp1us and Xbp1s. (C) Western blot analysis of total hepatic

XBP1s in XBP1Flox and XBP1LKO mice. (D, E) Real-time home cage activity monitoring of

total distance covered (top), number of movements recorded (middle), and movement time

recorded (bottom) in XBP1Flox and XBP1LKO mice under 12-h light/12-h dark conditions

(panel D) and constant darkness condition (panel E). (F) Averaged measurements within the

first and second 12 h of a day as described in panels D and E. (G) Real-time measurement of

food intake in XBP1Flox and XBP1LKO mice under both 12-h light/12-h dark and constant-

darkness condition measured by the CLAMS system. (H) Averaged measurements within the

first and second 12 h of a day as described in panel D. Data are graphed as the mean ± SEM
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(n = 3–4). Numerical values are available in S5 Data.

(TIF)

S2 Fig. Liver-specific deletion of XBP1s impairs global hepatic 12-h transcriptome, but not

the circadian rhythm, in mice, related to Figs 1 and 2. (A) Permutation was performed on

the raw data by randomly shuffling the time label. Distribution of periods of all oscillations

identified by the eigenvalue/pencil method from 4 representative permutated datasets from

XBP1Flox mice. (B, C) UCSC genome browser snapshot view of RNA-Seq tracks of selective

circadian (panel B) and 12-h cycling (panel C) gene expression in XBP1Flox mice and XBP1LKO

mice. (D) Genes with superimposed 24-h rhythms found in both XBP1Flox and XBP1LKO mice.

GO analysis showing enriched KEGG pathways and their corresponding P values (top) and

RNA-Seq data for representative genes (bottom). (E) Genes with superimposed 24-h rhythms

only found in XBP1Flox mice. GO analysis showing enriched KEGG pathways and their corre-

sponding P values (top) and RNA-Seq data for representative genes (bottom). (F, G) GO anal-

ysis of all XBP1s-dependent 12-h genes showing enriched KEGG pathways using either all

mouse genes (panel F) or hepatic expressed genes (panel G) as background, with correspond-

ing P values ranked. GO associated with CEDIF are highlighted in red. (H, I) GO analysis of

all XBP1s-dependent 12-h genes showing enriched GOTERM_BP_DIRECT pathways using

either all mouse genes (panel H) or hepatic expressed genes (panel I) as background, with cor-

responding P values ranked. GO associated with CEDIF are highlighted in red. Numerical val-

ues are available in S5 Data.

(TIF)

S3 Fig. Prevalent XBP1s-dependent 12-h hepatic transcriptome revealed by RAIN, related

to Fig 3. (A) Heat map of the expression of 12-h cycling genes identified by RAIN, with

FDR < 0.001 and FDR < 0.01. Heat map showing the log10 transformed Benjamini-Hochberg

procedure–adjusted P value for each identified 12-h gene was shown on the right. (B) Heat

map of the expression of 12-h cycling genes identified in both XBP1Flox and XBP1LKO mice by

RAIN with 3 different FDR cut-offs ranked according to the phase in XBP1LKO mice. (C)

Venn diagram comparison of 12-h transcriptome uncovered by the eigenvalue and RAIN

methods (with different FDR cut-offs of 0.001, 0.01, and 0.05) in XBP1Flox mice. (D) Distribu-

tion of the periods of dominant oscillations uncovered by the eigenvalue method for the 1,288

genes whose 12-h rhythms are specifically identified by the RAIN method in XBP1Flox mice.

(E) RNA-Seq data for 2 representative genes selected from these 1,288 genes in both XBP1Flox

and XBP1LKO mice. The period (red) is calculated by the eigenvalue method for the dominant

oscillation in each gene in XBP1Flox mice. The two P values (indicating how robust their 12-h

rhythms are) are calculated by the RAIN method for each gene in XBP1Flox (black) and

XBP1LKO (cyan) mice, respectively. (F) Distribution of the periods of dominant oscillations

uncovered by the eigenvalue method for the 2,009 genes whose 12-h rhythms are specifically

identified by the eigenvalue method in XBP1Flox mice. (G) RNA-Seq data for 2 representative

genes selected from these 2,009 genes in XBP1Flox mice. Both the original (black) and circadian

rhythm removed (green) expressions are shown. The period (red) is calculated by the eigen-

value method for the superimposed 12-h oscillation present in each gene in XBP1Flox mice.

The two P values (indicating how robust their 12-h rhythms are) are calculated by the RAIN

method for each gene in the original (black) and circadian-rhythm-removed (green) data,

respectively. (H) Distribution of the periods of dominant oscillations uncovered by the eigen-

value method for the 2,590 genes whose 12-h rhythms are identified by both methods in

XBP1Flox mice. (I) RNA-Seq data for 2 representative genes selected from these 2,590 genes in

both XBP1Flox and XBP1LKO mice. The period (red) is calculated by the eigenvalue method for

the 12-h oscillation in each gene in XBP1Flox mice. The two P values (indicating how robust
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their 12-h rhythms are) are calculated by the RAIN method for each gene in XBP1Flox (black)

and XBP1LKO (cyan) mice, respectively. (J) Venn diagram comparison of 12-h transcriptome

uncovered by the eigenvalue, RAIN method (with the FDR cut-off of 0.05), RAIN method

(with the FDR cut-off of 0.05) using circadian rhythm removed data in XBP1Flox mice. (K)

Venn diagram comparison of XBP1s-dependent 12-h transcriptome uncovered by the eigen-

value and RAIN + DODR methods (FDR < 0.05), with a short list of representative commonly

and uniquely identified genes. (L–M) RNA-Seq data for cell cycle gene Cdk2 (panel L) and

MAPK gene Dusp10 (panel M) in XBP1Flox and XBP1LKO mice, as well as data fit (dashed red

line) by adding up all 3 superimposed oscillations uncovered by the eigenvalue method in

XBP1Flox mice (left). Three superimposed oscillations identified by the eigenvalue method in

XBP1Flox mice (right). (N, O) RNA-Seq data for Sec61a1 (panel N) and Ddx55 (panel O) in

XBP1Flox and XBP1LKO mice as well as DODR P value and FDR cut-off. Numerical values are

available in S5 Data.

(TIF)

S4 Fig. Nondominant 12-h rhythm genes are also under XBP1s-dependent 12-h clock con-

trol, related to Fig 3. (A, B) Venn diagram showing the common and unique circadian and

12-h transcriptome identified by the RAIN method (FDR < 0.05) (A) or the eigenvalue

method (B) in XBP1Flox mice. (C) Venn diagram showing the common and unique 12-h tran-

scriptome identified by the eigenvalue method (both total and dominant) and by the RAIN

method in XBP1Flox mice. (D, G) KEGG enriched pathways of 1,428 (D) or 1,458 (G) “non-

dominant” 12-h transcriptome. (E, H) Representative RNA-Seq and eigenvalue decomposition

of Sec63 (panel E) or Sedt1b (panel H). (F, I) Heat map of commonly found and XBP1Flox

mice-specific 12-h transcriptome for the 1,428 (panel F) and 1,458 (panel I) genes. Numerical

values are available in S5 Data.

(TIF)

S5 Fig. The 12-h rhythms of CEDIF gene expression are cell autonomous, related to Fig 4.

(A, B) Distribution of periods of all (A) and dominant oscillations (B) identified by eigenvalue/

pencil method from MMH-D3 cells. (C, D) Heat map of all circadian (C) and core circadian

clock (D) gene expression identified from MMH-D3 cells with both raw data and superim-

posed 24-h rhythms shown. Both the original time after serum shock as well as converted time

in CT are shown. (E) GO analysis showing enriched KEGG pathways and their corresponding

P values for all circadian gene identified in panel C. (F) Venn diagram comparison of all 12-h

transcriptome from mouse liver in vivo and MMH-D3 cells in vitro. (G, H) GO analysis show-

ing enriched KEGG pathways and their corresponding P values for all 1,529 commonly found

12-h transcriptomes using all mouse genes (G) or all hepatic expressed genes (H) as back-

ground. (I) RNA-Seq (top) and microarray (bottom) data of representative 12-h immune

genes in mouse liver (top) and MMH-D3 cells (bottom). (J) Microarray data of representative

12-h cycling genes involved in CEDIF in MMH-D3 cells that are commonly shared with

mouse liver. P values indicating the robustness of 12-h rhythm detection by RAIN are also

shown for each gene. (K) Microarray data of representative 12-h cycling genes involved in

CEDIF uniquely found in MMH-D3 cells. P values indicating the robustness of 12-h rhythm

detection by RAIN are also shown for each gene. (L) Polar histograms demonstrating phase

distributions of 12-h genes involved in different steps of CEDIF in MMH-D3 cells. (M) MEFs

were transfected with different siRNAs and treated with dexamethasone (100 nM) for 30 min.

Western blot analysis of XBP1s and BMAL1 (top left), and qPCR was performed at different

time points post dexamethasone shock. (N) Real-time luminescence analysis of Bmal1-dluc
MEFs post 50% horse serum shock. Representative raw and detrended traces of luminescence

recordings from MEFs subjected to different siRNA transfection (top) and quantified
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amplitude, period, and phases (bottom). (O) Distribution of periods of all oscillating metabo-

lites identified by the eigenvalue/pencil method compiled from a published metabolome data-

set in human U2OS cells [24] (top) and calculated periods of approximately 12-h metabolites

(bottom) in the presence of different siRNAs. Data are graphed as the mean ± SEM (n = 2–9).

Numerical values are available in S5 Data.

(TIF)

S6 Fig. The motif stringency of XBP1s promoter binding sites dictates XBP1s’s ability to

drive 12-h rhythms of nascent mRNA transcription, related to Figs 5 and 6. (A) Venn dia-

gram depicting common and unique XBP1s cistrome and those of core circadian clock tran-

scription factors compiled from [40,57,64]. (B) Snapshot of selected genes for alignment of

hepatic XBP1s binding sites at different CTs in XBP1Flox and XBP1LKO mice. (C) Snapshot of

selected genes for alignment of hepatic XBP1s binding sites at bidirectional promoters at dif-

ferent CTs in XBP1Flox and XBP1LKO mice. (D) Percentage of XBP1s cistromes identified at

different positions relative to target genes compared with that of mouse genome. (E) RNA-Seq

data for Creb3l2, Elf1, and Atf6 in XBP1Flox and XBP1LKO mice. (F) Western blot analysis and

quantification of temporal ATF6 and XBP1s levels in mouse liver. (G) RNA-Seq data for

Gabpa and Gabpb1 in XBP1Flox and XBP1LKO mice with calculated periods in XBP1Flox mice

shown (panel F). (H) Snapshot of Gabpa promoter for alignment of hepatic XBP1s binding

sites at different CTs in XBP1Flox and XBP1LKO mice. (I) Nuclear level of GABPA and nuclear

level of GABPA and GABPB2 bound to DNA compiled from [38]. (J) GO analysis showing

enriched MSiIgDB pathways and their corresponding P values for 3,730 12-h intron-mapping

transcriptome without XBP1s binding sites. (K) Top enriched SeqPos motifs common to prox-

imal promoters (1,000 bp around TSS) of 3,730 twelve-hour intron-mapping transcriptome

without XBP1s binding sites. (L) Polar histogram demonstrating phase distributions of 3,730

intron-mapping 12-h cycling genes without XBP1s binding in XBP1Flox mice. (M) Log2 mean-

normalized transcription elongation rates calculated from the Gro-Seq data [42] for XBP1s tar-

get genes with or without associated 12-h transcriptome. (N) Snapshot of target genes selected

for alignment of hepatic XBP1s binding sites at different CTs in XBP1Flox and XBP1LKO mice

as well as published Gro-Seq data [42]. Consensus XBP1s binding motifs identified at each

gene promoter are also shown; (O–R) 699 genes with proximal promoter XBP1s binding but

without 12-h intron-mapping transcriptome in XBP1Flox mice. (O) Comparisons of heat maps

of XBP1s binding intensity, transcription initiation rates calculated from Gro-Seq [42], intron-

mapping gene expression in XBP1Flox and XBP1LKO mice, and XBP1s binding motif score. (P)

Average expression for each gene in XBP1Flox and XBP1LKO mice. (Q) Snapshot of Aasdh gene

selected for alignment of hepatic XBP1s binding sites at different CTs in XBP1Flox and

XBP1LKO mice as well as published Gro-Seq data [42]. Degenerate XBP1s binding motifs iden-

tified at gene promoter are also shown. (R) RNA-Seq data (both intron and exon mapping) for

Aasdh gene in XBP1Flox and XBP1LKO mice. Data are graphed as mean ± SEM (n = 2). Numeri-

cal values are available in S5 Data except for S6D Fig, which was automatically generated by

the CEAS toolbox in Galaxy/Cistrome.

(TIF)

S7 Fig. The 12-h rhythms of CEDIF gene expression are evolutionarily conserved in the

limpet C. rota, which possesses a circatidal clock, related to Fig 7. (A) Heat map of side-by-

side comparison of evolutionarily conserved 12-h gene expression in C. rota [10] and mouse

liver, with both raw data and superimposed circatidal rhythms shown. The level of tides corre-

sponding to each time point is also shown. (B) Predicted interactive network construction of

these conserved 12-h cycling genes using STRING [49]. Genes involved in different biological

pathways are colored differently. (C) RNA-Seq data for representative genes in C. rota [10]

Regulation of mammalian 12-h clock by XBP1s

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000580 January 14, 2020 32 / 40

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000580.s006
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000580.s007
https://doi.org/10.1371/journal.pbio.3000580


and in XBP1Flox and XBP1LKO mice. (D) RNA-Seq data for Gabpa in C. rota. Data are graphed

as the mean ± SEM (n = 2). Numerical values are available in S5 Data. A higher-resolution

image in panel B is available in S3 Raw images.

(TIF)

S1 Table. Alignment statistics for RNA-Seq, related to Fig 1. The number of total and

mapped reads for RNA-Seq data.

(XLSX)

S2 Table. FPKM quantification of RNA-Seq data in XBP1Flox and XBP1LKO mice, related

to Fig 1. Gene ID, coordinate (mm10), and FPKM quantification at each CT in XBP1Flox and

XBP1LKO mice are shown.

(RAR)

S3 Table. Eigenvalue/pencil decomposition of all transcriptomes with means larger than

0.1 in XBP1Flox and XBP1LKO mice, related to Fig 1. Period, decay rate, biological phase

(time of peak), and amplitude for each gene are provided as well as the mean value. Relative

amplitude was calculated by normalizing the absolute amplitude to the mean. Tab 1: Basic sta-

tistics of distribution of period and decay rates for all oscillations. Tab 2: Genes in XBP1Flox

mice. Tab 3: Genes in XBP1LKO mice.

(XLSX)

S4 Table. GO terms associated with genes with 12-h rhythms of expression, related to Fig

2. Tab 1: GO terms associated with all genes with 12-h rhythms in XBP1Flox mice, identified

using the eigenvalue/pencil method, using all mouse genes as background. Tab 2: GO terms

associated with all genes with 12-h rhythms in XBP1Flox mice, identified using the eigenvalue/

pencil method, using all expressed mouse genes as background. Tab 3: GO terms associated

with the genes whose 12-h rhythms were either abolished or dampened in XBP1LKO compared

to XBP1Flox mice, identified using the eigenvalue/pencil method, using all mouse genes as

background. Tab 4: GO terms associated with the genes whose 12-h rhythms were either abol-

ished or dampened in XBP1LKO compared to XBP1Flox mice, identified using the eigenvalue/

pencil method, using all expressed mouse genes as background. Tab 5: GO terms associated

with all 2,501 genes with 12-h rhythms only in XBP1Flox mice, identified using the eigenvalue/

pencil method, using all 12-h mouse genes as background. Tab 6: GO terms associated with all

1,454 genes with 12-h rhythms larger in XBP1Flox mice, identified using the eigenvalue/pencil

method, using all 12-h mouse genes as background. Tab 7: GO terms associated with all 638

genes with 12-h rhythms smaller in XBP1Flox mice, identified using the eigenvalue/pencil

method, using all 12-h mouse genes as background. Tab 8: GO terms associated with com-

monly found 12-h rhythms in XBP1Flox mice, identified using the eigenvalue/pencil and RAIN

methods (FDR < 0.05), using all mouse genes as background. Tab 9: GO terms associated with

commonly found 12-h rhythms in XBP1Flox mice, identified using the eigenvalue/pencil and

RAIN methods (FDR < 0.05), using all expressed mouse genes as background. Tab 10: GO

terms associated with all genes with 12-h rhythms in XBP1Flox mice, identified using the RAIN

method (FDR < 0.05), using all mouse genes as background. Tab 11: GO terms associated

with all genes with 12-h rhythms in XBP1Flox mice, identified using the RAIN method

(FDR < 0.05), using all expressed mouse genes as background. Tab 12: GO terms associated

with all genes with 12-h rhythms in XBP1Flox mice, identified using the RAIN method

(FDR < 0.01), using all mouse genes as background. Tab 13: GO terms associated with all

genes with 12-h rhythms in XBP1Flox mice, identified using the RAIN method (FDR < 0.01),

using all expressed mouse genes as background. Tab 14: GO terms associated with all genes

with 12-h rhythms in XBP1Flox mice, identified using the RAIN method (FDR < 0.001), using
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all mouse genes as background. Tab 15: GO terms associated with all genes with 12-h rhythms

in XBP1Flox mice, identified using the RAIN method (FDR < 0.001), using all expressed

mouse genes as background. Tab 16: GO terms associated with all 12-h genes abolished or

with amplitude dampened in XBP1LKO mice using the RAIN and DODR method

(FDR < 0.05), using all mouse genes as background. Tab 17: GO terms associated with all 12-h

genes abolished or with amplitude dampened in XBP1LKO mice using the RAIN and DODR

method (FDR < 0.05), using expressed mouse genes as background.

(XLSX)

S5 Table. Lists of genes involved in transcription, RNA metabolism, protein metabolism in

the ER, maintaining Golgi integrity and function, whose 12-h rhythms were either abol-

ished or dampened in XBP1LKO compared to XBP1Flox mice, related to Fig 2. Twelve-hour

period, decay rate, biological phase, and amplitude for each gene were provided as well as the

mean value. Relative amplitude was calculated by normalizing the absolute amplitude to the

mean. If a 12-h rhythm is not found, it is indicated by “N/A.” Tab 1: Genes involved in tran-

scription. Tab 2: Genes involved in RNA metabolism. Tab 3: Genes involved in ribosome bio-

genesis. Tab 4: Genes involved in protein metabolism. Tab 5: Genes involved in maintaining

Golgi integrity and function.

(XLSX)

S6 Table. Analysis of hepatic transcriptome by RAIN, related to Fig 3. Tab 1: 12-h rhythm

identified by RAIN in XBP1Flox mice. Tab 2: 12-h rhythm identified by RAIN in XBP1LKO

mice. Tab 3: 24-h rhythm identified by RAIN in XBP1Flox mice. Tab 4: 24-h rhythm identified

by RAIN in XBP1LKO mice. Tab 5: 12-h rhythm identified by RAIN in XBP1Flox mice, all

superimposed 24-h removed.

(XLSX)

S7 Table. DODR analysis of commonly found 12-h genes by RAIN (FDR < 0.05), related

to Fig 4. Tab 1: DODR analysis demonstrating differentially expressed 12-h genes that have a

lower amplitude in XBP1 LKO mice. Tab 2: DODR analysis demonstrating differentially

expressed 12-h genes that have a higher amplitude in XBP1 LKO mice. Tab 3: the list of 1,573

XBP1s-dependent 12-h cycling hepatic genes that are commonly identified by both eigenvalue

and RAIN + DODR methods (FDR < 0.05).

(XLSX)

S8 Table. Eigenvalue/pencil decomposition of MMH-D3 transcriptome, related to Fig 4.

Period, decay rate, biological phase, and amplitude for each gene were provided as well as the

mean value. Relative amplitude was calculated by normalizing the absolute amplitude to the

mean. Tab 1: all genes. Tab 2: 12-h genes. Tab 3: Circadian genes.

(XLSX)

S9 Table. Analysis of MMH-D3 transcriptome by RAIN, related to Fig 4. Tab 1: 12-h

rhythm identified by RAIN. Tab 2: A list of 12-h genes that are shared between the eigenvalue/

pencil and RAIN methods.

(XLSX)

S10 Table. List of 12-h cycling CEDIF genes uniquely and commonly found in mouse liver

in vivo and MMH-D3 cells in vitro, related to Fig 4.

(XLSX)

S11 Table. GO terms associated with 12-h cycling genes in MMH-D3 cells, related to Fig 4.

(XLSX)
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S12 Table. Quantification and eigenvalue/pencil decomposition of XBP1s ChIP-Seq,

related to Fig 5. RPKM quantification and eigenvalue/pencil-identified 12-h rhythm of XBP1s

cistrome.

(XLSX)

S13 Table. FPKM quantification of intron-mapping RNA-Seq data in XBP1Flox and

XBP1LKO mice, related to Fig 6. Gene ID, coordinate (mm10), and FPKM quantification at

each CT in XBP1Flox and XBP1LKO mice are shown.

(RAR)

S14 Table. GO terms associated with all XBP1s-bound genes, related to Fig 6.

(XLSX)

S15 Table. Eigenvalue results of circatidal transcripts in C. rota and list of genes with or

without conserved 12-h rhythms in C. rota or A. diaphaha, related to Fig 7 and S7 Fig. Tab

1: eigenvalue results of circatidal genes in C. rota. Circatidal period, decay rate, mathematical

and biological phase, and amplitude for each gene were provided as well as the mean value.

Relative amplitude was calculated by normalizing the absolute amplitude to the mean. Tab 2:

gene list of unique and evolutionarily conserved (in mouse) circatidal genes in C. rota and A.

diaphaha.

(XLSX)

S16 Table. GO terms associated with all and conserved 12-h genes in C. rota and A. dia-
phaha, related to Fig 7 and S7 Fig. Tab 1: All circatidal genes in C. rota. Tab 2: All conserved

12-h genes in mouse and C. rota. Tab 3: All circatidal genes in A. diaphaha. Tab 4: All con-

served 12-h genes in mouse and A. diaphaha.

(XLSX)

S1 Raw images. Original images of western blot gels shown in S1C Fig, S5M Fig and S6F

Fig.

(PDF)

S2 Raw image. High-resolution image of Fig 7B.

(PDF)

S3 Raw image. High-resolution image of S7B Fig.

(PDF)

S1 Data. Original numerical values for Fig 1A, 1B, 1D, 1E, 1F, 1G, 1H, 1I and 1J.

(XLSX)

S2 Data. Original numerical values for Figs 1K, 2B, 2C, 2E and 2F.

(XLSX)

S3 Data. Original numerical values for Fig 3A, 3B, 3D, 3E, 3F and 3H.

(XLSX)

S4 Data. Original numerical values for Figs 4A, 4D, 4E, 4F, 4G, 4H, 4I, 4J, 4K, 5C, 5F, 5G,

6D, 6E, 6G, 6H, 6I, 6J, 6K, 6M, 7A, 7C and 7D.

(XLSX)

S5 Data. Original numerical values for S1D, S1E, S1F, S1G, S1H, S2A, S2D, S2E, S2F, S2G,

S2H, S2I, S3D, S3E, S3F, S3G, S3H, S3I, S3L, S3M, S3N, S3O, S4E, S4F, S4H, S4I, S5A, S5B,

S5C, S5D, S5I, S5J, S5K, S5L, S5M, S5N, S5O, S6C, S6E, S6F, S6G, S6I, S6L, S6M, S6N, S6P,
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S6R, S7A, S7C and S7D Figs.

(XLSX)
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