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Abstract. Cameras are prevalent in our daily lives, and enable many
useful systems built upon computer vision technologies such as smart
cameras and home robots for service applications. However, there is
also an increasing societal concern as the captured images/videos may
contain privacy-sensitive information (e.g., face identity). We propose a
novel face identily transformer which enables automated photo-realistic
password-based anonymization and deanonymization of human faces ap-
pearing in visual data. Our face identity transformer is trained to (1)
remove face identity information after anonymization, (2) recover the
original face when given the correct password, and (3) return a wrong—
but photo-realistic—face given a wrong password. With our carefully
designed password scheme and multi-task learning objective, we achieve
both anonymization and deanonymization using the same single net-
work. Extensive experiments show that our method enables multimodal
password conditioned anonymizations and deanonymizations, without
sacrificing privacy compared to existing anonymization methods.

1 Introduction

As computer vision technology is becoming more integrated into our daily lives,
addressing privacy and security questions is becoming more important than ever.
For example, smart cameras and robots in homes are widely being used, but their
recorded videos often contain sensitive information of their users. In the worst
case, a hacker could intrude these devices and gain access to private information.

Recent anonymization techniques aim to alleviate such privacy concerns by
redacting privacy-sensitive data like face identity information. Some methods [3,
27] perform low-level image processing such as extreme downsampling, image
masking, etc. A recent paper proposes to learn a face anonymizer that mod-
ifies the identity of a face while preserving activity relevant information [24].
However, none of these techniques consider the fact that the video/image owner
(and his/her friends, family, law enforcement, etc.) may want to see the original
identities and not the anonymized ones. For example, people may not want their
real faces to be saved directly on home security cameras due to privacy concerns;
however, remote family members may want to see the real faces from time to
time. Or when crimes arise, to catch criminals, police need to see their real faces.
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Fig.1: Our system never stores users’ faces on disk, and instead only stores the
anonymized faces. When a user provides a correct recovery password, s/he will get
the deanonymized face back. If a hacker invading their privacy inputs a wrong pass-
word, s/he will get a face whose identity is different from the original as well as the
anonymized face. The photo-realism of the modified faces is meant to fool the hacker
by providing no clues as to whether the real face was recovered.

This problem poses an interesting tradeoff between privacy and accessibility.
On the one hand, we would like a system that can anonymize sensitive regions
(face identity) so that even if a hacker were to gain access to such data, they
would not be able to know who the person is (without additional identity re-
vealing meta-data). On the other hand, the owner of the visual data inherently
wants to see the original data, not the anonymized one.

To address this issue, we introduce a novel face identity transformer that
can both anonymize and deanonymize (recover) the original image, while main-
taining privacy. We design a discrete password space, in which the password
conditions the identity change. Specifically, given an original face, our face iden-
tity transformer outputs different anonymized face images with different pass-
words (Fig. 1 Anonymization). Then, given an anonymized face, the original face
is recovered only if the correct password is provided (Fig. 1 Deanonymization,
‘Password 1/2’). We further increase security as follows: Given an anonymized
face, if a wrong password is provided, then it changes to a new identity, which is
still different from the original identity (Fig. 1 Deanonymization, ‘Wrong Pass-
word’). Moreover, each wrong password maps to a unique identity. In this way,
we provide security via ambiguity: even if a hacker guesses the correct password,
it is extremely difficult to know that without having access to any other identity
revealing meta-data, since each password—regardless of whether it is correct or
not—always leads to a different realistic identity.

To enforce the face identity transformer to output different anonymized face

identities with different passwords, we optimize a multi-task learning objec-
tive, which includes maximizing the feature-level dissimilarity between pairs of
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anonymized faces that have different passwords and fooling a face classifier. To
enforce it to recover the original face with the correct password, we train it to
anonymize and then recover the correct identity only when given the correct
password, and to produce a new identity otherwise. Lastly, we maximize the fea-
ture dissimilarity between an anonymized face and its deanonymized face with a
wrong password so that the identity always changes. Moreover, considering the
limited memory space on devices, we propose to use the same single transformer
to serve both anonymization and deanonymization purposes.

We note that our approach is related to cryptosystems like RSA [25]. The
key difference is that cryptosystems do not produce encryptions that are visu-
ally recognizable to human eyes. However, in various scenarios, users may want
to understand what is happening in anonymized visual data. For example, peo-
ple may share photos/videos over public social media with anonymized faces,
but only their real-life friends have the passwords and can see their real faces
to protect identity information. Moreover, with photorealistic anonymizations,
one can easily apply existing computer vision based recognition algorithms on the
anonymized images as we demonstrate in Sec. 5.5. In this way, it could work
with e.g., smart cameras that use CV algorithms to analyze content but in a
privacy-preserving way, unlike other schemes (e.g., homomorphic encryption)
that require developing new ad-hoc recognition methods specific to nonphotore-
alistic modifications, in which accuracy may suffer.

In our approach, only the anonymized data is saved to disk (:.e., conceptually,
the anonymization would happen at the hardware-level via an embedded chipset
— the actual implementation of which is outside the scope of this work). The
advantage of this concept is that the hacker could never have direct access to the
original data. Finally, although there may be other identity-revealing information
such as gait, clothing, background, etc., our work entirely focuses on improving
privacy of face identity information, but would be complementary to systems
that focus on those other aspects.

Our experiments on CASIA [32], LFW [11], and FFHQ [13] show that the
proposed method enables multimodal face anonymization as well as recovery of
original face images, without sacrificing privacy compared to existing advanced
anonymization [24] and classical image processing techniques including mask-
ing, noising, and blurring, etc. Please see https://youtu.be/FrYmf-CL4yk and
Fig. 6 in the supp for image/video in the wild results.

2 Related work

Privacy-preserving visual recognition. This is the problem of detecting humans,
their actions, and objects without accessing user-sensitive information in im-
ages/videos. Some methods employ extreme low-resolution downsampling to
hide sensitive details [30, 6,27, 26] but suffer from lower recognition performance
in downstream tasks. More recent work propose a head inpainting obfuscation
technique [29], a four-stage pipeline that first obfuscates facial attributes and
then synthesizes faces [15], and a video anonymizer that performs pixel-level
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Fig. 2: Privacy-preserving properties that our face identity transformer T learns. (a)
Anonymization stage. (b) Deanonymization stage with correct recovery password. (c)
Deanonymization stage with incorrect recovery password.

modifications to remove people’s identity while preserving motion and object in-
formation for activity detection [24]. Unlike our approach, none of these existing
work employ a password scheme to condition the anonymization, and also do
not perform deanonymization to recover the original face. Moreover, even if one
could brute-forcely train a deanonymizer for these methods, there is no way to
provide wrong recoveries upon wrong passwords, as our method does.

Security /cryptography research on privacy-preserving recognition is also re-
lated e.g., [8, 9]. The key difference is that these methods encrypt data in a secure
but visually- umnterpretable way, whereas our goal is to anonymize the data in a
way that is still interpretable to humans and existing computer vision techniques
can still be applied. Differential privacy [1, 33] is also related but its focus is on
protecting privacy in the training data whereas ours is on anonymizing visual
data during the inference stage.

Face image manipulation and conditional GANs. Our work builds upon advances
in pixel-level synthesis and editing of realistic human faces [14,20, 28,13, 21, 2]
and conditional GANs [19,22,12, 34,39, 5, 7, 23], but we differ significantly in our
goal, which is to completely change the identity of a face (and also recover the
original) for privacy-preserving visual recognition.

3 Desiderata

Our face identity transformer T takes as input a face image I € @ and a user-
defined password p € P, where ¢ and P denote the face image domain and
password domain. We use the notation T, to denote the transformed image
with input image I and password p. Before diving into the details, we first
outline desired properties of a privacy-preserving face identity transformer.

Minimal memory consumption. Considering the limited memory space on most
camera systems, a single face identity transformer that can both anonymize and
deanonymize faces is desirable.
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Photo-realism. We would like the transformer to maintain photo-realism for any
transformed face image:

T,I€®, YpecPNIcd. (1)

Photo-realism has three benefits: 1) a human who views the transformed im-
ages will still be able to interpret them; 2) one can easily apply existing computer
vision algorithms on the transformed images; and 3) it’s possible to confuse a
hacker, since photo-realism can no longer be used as a cue to differentiate the
original face from an anonymized one.

Compatibility with background. The background B(:) of the transformed face
should be the same as the original:

B(T,I)=B(I), YpePVIecd. @)

This will ensure that there are no artifacts between the face region and the
rest of the image (i.e., it will not be obvious that the image has been altered).

Anonymization with passwords. Let f : @ — I' denote the function mapping
face images to people’s identities. We would like to condition anonymization via
a password p:

F(T,I) # f(I), YpePNVIed. 3)

Deanonymization with inverse passwords. We should recover the original identity
only when the correct password is provided. To achieve our goal of minimal
memory consumption, we can model the additive inverse of the password used
for anonymization as the correct password for deanonymization. In this way, we
can use the same transformer for deanonymization, i.e. we model T_, =T~ 1,

F(TpTpI) = f(T, ' TpI) = f(I), ¥p € PVI € . (@)

Wrong deanonymization with wrong inverse passwords. We would like the trans-
former to change the anonymized identity into a different identity that is differ-
ent from both the original as well as the anonymized image when given a wrong
inverse password:

f(TyTI) # f(I), Yp,p' € Pp' #—p VI €2, (5)
F(TpTyl) # f(TpI), ¥p,p' € P,p' # —p,VI € D. (6)

In this way, whether the password is correct or not, the identity is always
changed so as to confuse the hacker.

Diversity. The image I should be transformed to different identities with differ-
ent passwords, to increase security in both anonymization and deanonymization.
Otherwise, if multiple passwords produce the same identity, a hacker could real-
ize that the photo is anonymized or his attempts have failed in deanonymization:

f(Tp, D) # f(Tp,I), Vp1,p2 € P,p1 # p2,VI € &. (M

Fig. 2 summarizes our desiderata for anonymization and deanonymization.
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Fig.3: (a) Face identity transformer network architecture. (b) Objectives we apply to
synthesized images during training (not included in (a) for clarity). I: Input image,
A12: Anonymized faces, R: Recovered face, WR1 2: Wrongly Recovered faces. Lyeq: is
the sum of the three Lg;s’s.

4 Approach: Face Identity Transformer

Our face identity transformer T is a conditional GAN trained with a multi-task
learning objective. It is conditioned on both the input image I and an input
password p. Importantly, the function of p is different from the usual random
noise vector z in GANs: z simply tries to model the distribution of the input data,
while p in our case makes the transformer hold the desired privacy-preserving
properties (Eq. 3-7). We next explain our password scheme, multimodal identity
generation, and multi-task learning objective.

4.1 Password scheme

We use an N-bit string p € {0,1}" as our password format, which consists
of 2V unique passwords. Given image I € RT*W>*3 we form the input to the
transformer as a depthwise concatenation (I,p) € RE*W>G+N) where p is
replicated in every pixel location. To make the transformer condition its identity
change on the input password, we design an auxiliary network Q(I,T,I) = p. It
learns to predict the embedded password from the input and transformed image
pair, and thus maximizes the mutual information between the injected password
and the identity change in the image domain, similar to InfoGAN [7]. We use
cross entropy loss for the classifier @, and denote it as Lgy(T, Q). See supp
Sec. 1 for the detailed formula.

4.2 Multimodal identity change

Conditional GANs with random noise do not produce highly stochastic out-
puts [18,12]. To overcome this, BicycleGAN [38] uses an explicitly-encoded mul-
timodality strategy similar to our auxiliary network Q. However, even with Q,



Password-conditioned Face Identity Transformers 7

we only observe multimodality on colors and textures as in [38], but not on
high-level face identity.

Thus, to induce diverse high-level identity changes, we propose an explicit
feature dissimilarity loss. Specifically, we use a face recognition model F' to ex-
tract deep embeddings of the faces, and minimize their cosine similarity when
they are associated with different passwords:

L is (M, My) = max (0,08 (Fempea(M1), Fempea( M) ) (®)

where cos is cosine similarity, and M; and M, are two transformed face images
with two different passwords. We do not penalize pairs whose cosine similarity
is less than 0; i.e., it is enough for the faces to be different up to a certain point.
We apply the dissimilarly loss between (1) two anonymized faces with dif-
ferent passwords, (2) two incorrectly deanonymized faces given different wrong
passwords, and (3) the anonymized face and wrongly recovered face:

Efeat(T) = E(fspl?épz)‘clﬁs (Tpl I: Tp2 I)
+ ]E(f,Pi#PE:Pi#—P:P’z#—P)’Cdis(TP'lTPI! Tp;TpI)
+ ]E(f,pr#_p)ﬁdgg(TpI, TprpI). (9)

This loss can be easily satisfied when the model outputs extremely differ-
ent content that do not necessarily look like a face, and thus can adversely
affect other desideratum (e.g., photo-realism) of a privacy-preserving face iden-
tity transformer. We next introduce a multi-task learning objective to restrict
the outputs to lie on the face manifold, as a form of regularization.

4.3 Multi-task learning objective

We describe our multi-task objective that further aids identity change, identity
recovery, and photo-realism.

Fuace classification adversarial loss. We apply the face classification adversarial
loss from [24], which helps change the input face’s identity. We apply it on both
the transformed face T,,I as well as the reconstructed face with wrong recovery
password TpTpI:

Loay(T,F) =—E;Lcg (F(I): yf) - ]E(Lp)ﬁc:‘E (F(Tpf): yf)
—Eupr-pLler (F(TP'TPI)?yI)’ (10)
where F is the face classifier, y; is face identity label, and L-g denotes cross
entropy loss.
Similar to the dissimilarity loss (L 4;,), this loss pushes the transformed face to
have a different identity. The key difference is that this loss requires face identity
labels so cannot be used to push Ty, I and 73,1 to have different identities, but

has the advantage of utilizing supervised learning so that it can change the
identity more directly.
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Reconstruction losses. We use L reconstruction loss for deanonymization:
Lree(T) = T—pTpl — 1|1 (11)

With the L loss alone, we find the reconstruction to be often blurry. Hence,
we also introduce a face classification loss Lyec o1s on the reconstructed face to
enforce the transformer to recover the high-frequency identity information:

Lreces(T,F) = ]E(f,p)’CCE (F(T—prI) s yf) - (12)

This loss enforces the reconstructed face T_,T,I to be predicted as having
the same identity as I by face classifier F'.

Background preservation loss. For any transformed face, we try to preserve its
original background. To this end, we apply another L loss (with lower weight):
Lo(T) = TpI = 1|y + [Ty Tpl — 11 (13)

Although employing a face segmentation algorithm is an option, we find that
applying £; on the whole image works well to preserve the background.

Photo-realism loss. We use a photo-realism adversarial loss Lgan [10] on gen-
erated images to help model the distribution of real faces. Specifically, we use
PatchGAN [12] to restrict the discriminator D’s attention to the structure in
local image patches. To stabilize training, we use LSGAN [17]:

max Loan (D) =~ Er[(D(1) = 1)) = 3Eq DTN (14)

min Lcan (T) = Bt [(D(T]) - 1)7 (15)

4.4 Full objective

Overall, our full objective is:

L= )\auI'CGEI(T'I Q) + Afeatﬁfeat (T)
+ )\adv fcadv (Tu F) + )‘Tec_cis‘cre,c_ds (T: F)
+ ArecLrec(T) + AL, L1(T') + Lean (T, D). (16)
We optimize the following minimax problem to obtain our face identity trans-
former:

T :a;rgrqg,lélrgf]ﬁ)‘(ﬂ (17)

Training. Fig. 3 shows our network for training. For each input I, we randomly
sample two different passwords for anonymization and two incorrect passwords
for wrong recoveries, and then impose L4;; on the generated pairs and enforce
L4is between the anonymization and wrong reconstruction. We obhserve that
during training, the auxiliary networks and backprop can consume a lot of GPU
memory, which limits batch size. We propose a strategy based on symmetry:
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except for the feature dissimilarity loss, we apply all other losses only to the first
anonymization and first wrong recovery, which empirically works well.

We adopt a two-stage training strategy for the minimax problem [10]. In the
discriminator’s stage, we fix the parameters of T, (), and update D, F; in the
generator’s stage, we fix D, F', and update T, Q.

Inference. During testing, the transformer T takes as input a user-defined pass-
word and a face image, anonymizes the face, and saves it to disk. When the
user/hacker wants to see the original image, the transformer takes the recovery
password and the anonymized image, and either outputs the identity-recovered
image or a hacker-fooling image depending on password correctness. Throughout
the whole process, the original images and passwords are never saved on disk for
privacy reasons.

5 Experiments

In this section, we demonstrate that our face identity transformer achieves pass-
word conditioned anonymization and deanonymization with photo-realism and
multimodality. We also conduct ablation studies to analyze each module/loss.

Implementation details. Our identity transformer T is built upon the network
from [37]. We use size 128x128 for both inputs and outputs. We subtract 0.5
from p before inputting it to the transformer to make the password channels
have zero mean. We set N=16. We use the pretrained SphereFace [16] as our
face recognition network F' for both deep embedding extraction in the feature
dissimilarity loss and face classification adversarial training. For each stage, we
use two PatchGAN discriminators [12] that have identical structure but operate
at different image scales to improve photo-realism. The coarser discriminator is
shared among all stages, while three separate finer discriminators are used for
anonymization, reconstruction, and wrong recovery. To improve stability, we use
a buffer of 500 generated images when updating D. We set Aque=1, Afear=2,
Aadv=2, Areccis=1, AL, =10 and A..,=100, based on qualitative observations.

Datasets. 1) CASIA [32] has 454,590 face images belonging to 10,574 identi-
ties. We split the dataset into training/validation/testing subsets made up of
80%/10%/10% identities. We use the validation set to select our model. All re-
ported results are on the test set. 2) LFW [11] has 13,233 face images belonging
to 5,749 identities. As our network is never trained on LFW, we evaluate on the
entire LFW to test generalization ability. 3) FFHQ [13] is a high-quality face
dataset for benchmarking GANs. It is not a face recognition dataset, so we use
it to only test generalization. We directly test our model on its validation set at
128x128 resolution, which contains 10,000 images.

Evaluation metrics. Face verification accuracy: We measure our transformer’s
identity changing ability with a standard binary face verification test, which
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Method Anonymize? Deanonymize? Password-conditioned?
Ren et al. [24] v v X
Super-pixel v v X
Edge v v X
Blur v X X
Noise v v X
Masked v } 4 } 4
Ours v v v

Table 1: Privacy-preserving ability comparison. Our method is the only one that sup-
ports password-conditioned face (de)anonymization without sacrificing privacy.

scores whether a pair of images have the same identity or not. Since different
face recognition models may have different biases, we use two popular pretrained
face recognition models: SphereFace [16] and VGGFace2 [4].

Face recovery quality: We measure face recovery quality using LPIPS dis-
tance [36], which measures perceptual similarity between two images based on
deep features, and DSSIM [31], which is a commonly-used low-level perceptual
metric. We also use pixel-level L, and Ly distance.

AMT perceptual studies: We use Amazon Mechanical Turk (AMT) to test
how well our method 1) changes and recovers identities, 2) achieves photo-
realism, and 3) attains multimodal anonymizations, as judged by human raters.
Runtime: On a single Titan V, averaged over CASIA testset, runtime is 0.0266
sec/batch with 12 images per batch. Though we use multiple auxiliary networks
to help achieve our desiderata, they are all discarded during inference time.

5.1 Anonymization and deanonymization

To our knowledge, no prior work achieves password-conditioned anonymization
and deanonymization on visual data like ours, see Table 1. Hence, we cannot di-
rectly compare with any existing method on generating multimodal anonymiza-
tions and deanonymizations.

Despite this, we want to ensure that our method does no worse than exist-
ing methods in terms of anonymization and deanonymization (setting aside the
password conditioning capability). To demonstrate this, following [24], we com-
pare to the following baselines: Ren et al. [24]: a learned face anonymizer that
maintains action detection accuracy; Superpixel [3]: each pixel’s RGB value
is replaced with its superpixel’s mean RGB value; Edge [3]: face regions are
replaced with corresponding edge maps; Blur [27]: images are downsampled to
extreme low-resolution (8 x 8) and then upsampled back; Noise: strong Gaus-
sian noise (02 = 0.5) is added to the image; Masked: face areas (0.6x of the
face image) are masked out.

We also train deanonymizers for each baseline (i.e., to recover the original
face), by using the same generator architecture with our reconstruction and
photo-realism losses. Please refer to supp Fig. 1 for a qualitative example of the
baselines and their anonymizations/deanonymizations.

Fig. 4 shows anonymization vs. deanonymization (recovery) quality on CA-
SIA and LFW using SphereFace and VGGFace2 as our face recognizers. Our ap-
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Fig.4: Anonymization vs. deanonymization quality, measured by face verification er-
ror/accuracy on CASIA and LFW. Top-left corner is ideal. This result shows that we
don’t sacrifice (de)anonymization ability by introducing password conditioning.

| CASIA | LFW
Method |LPIPS DSSIM L, L, |[LPIPS DSSIM L, L,

Ren et al | 0.08 0.07 0.06 0.009| 0.08 0.07 0.06 0.010
Superpixel] 0.09 010 0.06 0.01 | 0.10 0.11 0.07 0.02

Edge 0.25 024 0.25 0.24 | 0.28 0.26 0.29 0.18
Blur 0.30 0.21 0.12 0.04 | 0.3¢4 0.24 0.14 0.05
Noise 0.12 0.2 0.07 0.01 | 013 0.12 0.08 0.01
Masked 0.10 0.09 0.07 0.02 | 0.16 0.13 0.10 0.05
Ours 0.03 0.03 0.04 0.004| 0.04 0.03 0.04 0.004

Table 2: CASIA and LF'W reconstruction error. Ours produces best deanonymizations.

proach performs competitively to Ren et al. [24], “Superpixel”, “Edge”, “Blur” ,
“Noise”, and “Masked” when considering both anonymization and deanonymiza-
tion quality together. This result confirms that we do not sacrifice the ability to
anonymize/deanonymize by introducing password-conditioning. In fact, in terms
of reconstruction (deanonymization) quality (Table 2), our method outperforms
the baselines by a large margin because we train our identity transformer to do
anonymization and deanonymization in conjunction in an end-to-end way.

Lastly, we perform AMT perceptual studies to rate our anonymizations and
deanonymizations. Specifically, we randomly sample 150 testing images ([), and
generate for each image: an anonymized face with a random password (A), a
recovered face with correct inverse password (R), and a recovered face with
wrong password ( WR). We then distribute 600 I vs A, I vs R, I vs WR, and
A vs WR pairs to turkers and ask “Are they the same person?”. For each pair,
we collect responses from 3 different turkers and take the majority as the answer
to reduce noise.

The turkers reported 4.7% / 100% / 0.7% / 1.3% on IvsA / IvsR [ IvsWR
JAvsWR. (low, high, low, low is ideal.) This further shows our method ob-
tains the desired password-conditioned anonymization/deanonymization goals.
We show all failure pairs for JvsA in supp Sec. 5 and analyze the error there.

5.2 Photo-realism

To evaluate whether our (de)anonymization affects photo-realism, we conduct
AMT user studies. We follow the same perceptual study protocol from [37] and
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(b) Anonymization results conditioned on different passwords

Fig. 5: Multimodality results on CASIA. We observe a wide range of identity changes
with different passwords.

test on both anonymizations and wrong recoveries. For each test, we randomly
generate 100 “real vs. fake” pairs. For each pair, we average responses from 10
unique turkers. Turkers label our anonymizations as being more real than a real
face 28.9% of the time, and label our wrong reconstructions as more real than
a real face 15.4% of the time. (Chance performace is 50%.) This shows that our
generated images are quite photo-realistic.

5.3 Multimodality

We next evaluate our model’s ability to create different faces given different
passwords. Fig. 5 shows qualitative results. Our transformer successfully changes
the identity into a broad spectrum of different identities, from women to men,
from young to old, etc.

We quantitatively evaluate multimodality through an AMT perceptual study.
We ask AMT workers to compare 150 A; vs Ay and 150 WR; vs WR, pairs
(pairs of anonymized / wrong-recovered faces with different passwords generated
from the same input image) and ask “are they the same person?”. The turkers
reported “yes” only 12.2% and 2.7% of the time, respectively (lower is better).
The results show that our transformer does quite well in generating different
identities given different passwords.

5.4 Generalization and difficult cases

Fig. 6 shows generalization results on FFHQ and LFW using our model trained
on CASIA. Without any fine-tuning, our model achieves good generalization
performance on both the high quality FFHQ dataset and the LFW dataset
where resolution is usually lower.
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Fig. 6: FFHQ and LFW generalization results. I': original image, A1 2: anonymized faces
using different passwords, R/ WR1 2: recovered faces with correct/wrong passwords.
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Fig.7: Hard cases on CASIA. See Fig. 6 Fig.8: Typical failures of each ablation.
caption for key. See Fig. 6 caption for key.

Fig. 7 shows hard-case qualitative results on CASIA. Our method works well
even if the faces are with occlusions (sunglasses), with extreme poses, vague,
under dim light, etc. We provide more qualitative results in supp.

5.5 Applying CV algorithms on transformed faces

Unlike most traditional anonymization algorithms [3, 27], our choice of achieving
photo-realism on the (de)anonymizations makes it possible to apply existing
computer vision algorithms directly on the transformed faces. To demonstrate
this, we apply an off-the-shelf MTCNN [35] face bounding box and keypoint
detector on the transformed faces. Qualitative detection results (see supp Fig. 5)
are good. Quantitatively, although we do not have the ground truth annotations
for transformed faces, we observe that our (de)anonymizations mostly do not
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Avg spatial coordinate difference CASIA LFW FFHQ
Bounding boxes 1.81 1.62 1.91
Keypoints 094 0.76 0.89

Table 3: Average pixel difference in detected coordinates of face bounding boxes and 5
keypoints between transformed faces (A, R, WR) and input face (I).

change the head/keypoints’ positions from the input faces so we can compare
the detection results between the input faces and the transformed faces. Results
are shown in Table 3, which shows that a face detection algorithm trained on
real images performs accurately on our transformed faces.

5.6 Ablation studies

Finally, we evaluate the contribution of each component and loss in our model.
Here, original image (J), anonymized face with two different passwords (Ay2),
recovered face with correct inverse password (R), and recovered faces with wrong
passwords (WR 2):

w/0 Lais: We remove feature dissimilarity loss on (A1, A2) and (WR;, WR>).
w/0o WR: We do not explicitly train to produce wrong reconstructions.

W/0 Laux: We remove the password-predicting auxiliary network @, but still
embed the passwords.

W/0 Lrec_cis: We remove the face classification loss on the reconstruction.

Fig. 8 shows the typical drawbacks of each ablation model. w/o Lg4;. shows
that L£g;¢ is necessary to achieve semantic-level multimodality on both anonymiza-
tion and wrong reconstruction. w/o WR shows that without training for wrong
reconstructions, the transformer fails to conceal identities when given incorrect
passwords. w/o Lgyy verifies the importance of the auxiliary network, which
helps improve photo-realism and we also observe it helps with multimodality.
Without Lyep ¢, the reconstruction quality suffers because of unbalanced losses.

6 Discussion

We presented a novel privacy-preserving face identity transformer with a pass-
word embedding scheme, multimodal identity change, and a multi-task learning
objective. We feel that this paper has shown the promise of password-conditioned
face anonymization and deanonymization to address the privacy versus accessi-
bility tradeoff. Although relatively rare, we sometimes notice artifacts that look
similar to general GAN artifacts. They tend to arise due to the difficulty of image
generation itself — we believe they can be greatly reduced with more advances in
image synthesis research, which can be (orthogonally) plugged into our system.
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