YOLACT++
Better Real-time Instance Segmentation
Daniel Bolya*, Chong Zhou*, Fanyi Xiao, and Yong Jae Lee

Abstract—We present a simple, fully-convolutional model for real-time (> 30 fps) instance segmentation that achieves competitive
results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach.
Moreover, we obtain this result after training on only one GPU. We accomplish this by breaking instance segmentation into two parallel
subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients. Then we produce instance masks
by linearly combining the prototypes with the mask coefficients. We find that because this process doesn’t depend on repooling, this
approach produces very high-quality masks and exhibits temporal stability for free. Furthermore, we analyze the emergent behavior of
our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional.
We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty.
Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales
and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5

fps, which is fairly close to the state-of-the-art approaches while still running at real-time.

Index Terms—Instance Segmentation, Real Time

1 INTRODUCTION

“Boxes are stupid anyway though, I'm probably a true believer
in masks except I can’t get YOLO to learn them.”

— Joseph Redmon, YOLOV3 [1]

HAT would it take to create a real-time instance seg-

mentation algorithm? Over the past few years, the vision
community has made great strides in instance segmentation, in
part by drawing on powerful parallels from the well-established
domain of object detection. State-of-the-art approaches to instance
segmentation like Mask R-CNN [2] and FCIS [3] directly build
off of advances in object detection like Faster R-CNN [4] and R-
FCN [5]. Yet, these methods focus primarily on performance over
speed, leaving the scene devoid of instance segmentation parallels
to real-time object detectors like SSD [6] and YOLO [1], [7]. In
this work, our goal is to fill that gap with a fast, one-stage instance
segmentation model in the same way that SSD and YOLO fill that
gap for object detection.

However, instance segmentation is hard—much harder than
object detection. One-stage object detectors like SSD and YOLO
are able to speed up existing two-stage detectors like Faster R-
CNN by simply removing the second stage and making up for
the lost performance in other ways. The same approach is not
easily extendable, however, to instance segmentation. State-of-
the-art two-stage instance segmentation methods depend heavily
on feature localization to produce masks. That is, these methods
“re-pool” features in some bounding box region (e.g., via Rol-
pool/align), and then feed these now localized features to their
mask predictor. This approach is inherently sequential and is there-
fore difficult to accelerate. One-stage methods that perform these
steps in parallel like FCIS do exist, but they require significant

o *The first two authors contributed equally to this work.

o This work was performed at the Computer Vision Lab, Department of
Computer Science, University of California, Davis, CA 95616 USA.
E-mail: {dbolya, cczhou, fyxiao, yongjaelee} @ucdavis.edu.

40 4

® Fas
38| L] Y% Mask-RCNN
RetinaMask
36 5 PA-Net
34 & | o @ MS-RCNN
a & YOLACT
532_ & YOLACT++
¥ &
530— ® &
28 1 "'4-
26
24 |
22 ; . . ,
0 10 20 30 40 50

FPS

Fig. 1: Speed-performance trade-off for various instance segmen-
tation methods on COCO. To our knowledge, ours is the first
real-time (above 30 FPS) approach with around 30 mask mAP on
COCO test-dev.

amounts of post-processing after localization, and thus are still far
from real-time.

To address these issues, we propose YOLACT!, a real-time
instance segmentation framework that forgoes an explicit local-
ization step. Instead, YOLACT breaks up instance segmentation
into two parallel tasks: (1) generating a dictionary of non-local
prototype masks over the entire image, and (2) predicting a set
of linear combination coefficients per instance. Then producing a
full-image instance segmentation from these two components is
simple: for each instance, linearly combine the prototypes using

1. You Only Look At CoefficienTs

the corresponding predicted coefficients and then crop with a
predicted bounding box. We show that by segmenting in this
manner, the network learns how to localize instance masks on its
own, where visually, spatially, and semantically similar instances
appear different in the prototypes.

Moreover, since the number of prototype masks is independent
of the number of categories (e.g., there can be more categories than
prototypes), YOLACT learns a distributed representation in which
each instance is segmented with a combination of prototypes that
are shared across categories. This distributed representation leads
to interesting emergent behavior in the prototype space: some
prototypes spatially partition the image, some localize instances,
some detect instance contours, some encode position-sensitive
directional maps (similar to those obtained by hard-coding a
position-sensitive module in FCIS [3]), and most do a combination
of these tasks (see Figure 5).

This approach also has several practical advantages. First and
foremost, it’s fast: because of its parallel structure and extremely
lightweight assembly process, YOLACT adds only a marginal
amount of computational overhead to a one-stage backbone detec-
tor, making it easy to reach 30 fps even when using ResNet-101
[8]; in fact, the entire mask branch takes only ~5 ms to evaluate.
Second, masks are high-quality: since the masks use the full extent
of the image space without any loss of quality from repooling, our
masks for large objects are significantly higher quality than those
of other methods (see Figure 9). Finally, it’s general: the idea of
generating prototypes and mask coefficients could be added to
almost any modern object detector.

Interestingly, breaking up instance segmentation in this way
is loosely related to the ventral (“what”) and dorsal (“where”)
streams hypothesized to play a prominent role in human vision
[9]. The linear coefficients and corresponding detection branch
can be thought of as recognizing individual instances (‘“what”),
while the prototype masks can be seen as localizing instances
in space (“where”). This is closer to, albeit still far away from,
human vision than the two-stage ‘“localize-then-segment” type
approaches.

Our main contribution is the first real-time (> 30 fps) in-
stance segmentation algorithm with competitive results on the
challenging MS COCO dataset [10] (see Figure 1). In addition,
we analyze the emergent behavior of YOLACT’s prototypes and
provide experiments to study the speed vs. performance trade-
offs obtained with different backbone architectures, numbers of
prototypes, and image resolutions. We also provide a novel Fast
NMS approach that is 12ms faster than traditional NMS with a
negligible performance penalty. To further improve the perfor-
mance of our model over our conference paper version [11], in
Section 6, we propose YOLACT++. Specifically, we incorporate
deformable convolutions [12], [13] into the backbone network,
which provide more flexible feature sampling and strengthening its
capability of handling instances with different scales, aspect ratios,
and rotations. Furthermore, we optimize the prediction heads with
better anchor scale and aspect ratio choices for larger object recall.
Finally, we also introduce a novel fast mask re-scoring branch,
which results in a decent performance boost with only marginal
speed overhead. These improvements are validated in Tables 5,
6, and 7. Apart from these algorithm improvements over our
conference paper [11], we also provide more qualitative results
(Figure 8) and real-time bounding box detection results (Table 4).

The code for YOLACT/YOLACT++ is available at https:
//github.com/dbolya/yolact.

2 RELATED WORK

Instance Segmentation Given its importance, a lot of research
effort has been made to push instance segmentation accuracy.
Mask-RCNN [2] is a representative two-stage instance segmen-
tation approach that first generates candidate region-of-interests
(ROIs) and then classifies and segments those ROIs in the second
stage. Follow-up works try to improve its accuracy by e.g.,
enriching the FPN features [14] or addressing the incompatibility
between a mask’s confidence score and its localization accu-
racy [15]. These two-stage methods require re-pooling features
for each ROI and processing them with subsequent computations,
which make them unable to obtain real-time speeds (30 fps) even
when decreasing image size (see Table 2c¢).

One-stage instance segmentation methods generate position
sensitive maps that are assembled into final masks with position-
sensitive pooling [3], [16] or combine semantic segmentation
logits and direction prediction logits [17]. Though conceptually
faster than two-stage methods, they still require repooling or other
non-trivial computations (e.g., mask voting). This severely limits
their speed, placing them far from real-time. In contrast, our as-
sembly step is much more lightweight (only a linear combination)
and can be implemented as one GPU-accelerated matrix-matrix
multiplication, making our approach very fast.

Finally, some methods first perform semantic segmentation
followed by boundary detection [18], pixel clustering [19], [20],
or learn an embedding to form instance masks [21], [22], [23],
[24]. Again, these methods have multiple stages and/or involve
expensive clustering procedures, which limits their viability for
real-time applications.

Real-time Instance Segmentation While real-time object detec-
tion [1], [6], [7], [26], and semantic segmentation [27], [28], [29],
[30], [31] methods exist, few works have focused on real-time
instance segmentation. Straight to Shapes [32] and Box2Pix [33]
can perform instance segmentation in real-time (30 fps on Pascal
SBD 2012 [34], [35] for Straight to Shapes, and 10.9 fps on
Cityscapes [36] and 35 fps on KITTI [37] for Box2Pix), but
their accuracies are far from that of modern baselines. While
[38] substantially improves instance segmentation accuracy over
these prior methods, it runs only at 11 fps on Cityscapes. In fact,
Mask R-CNN [2] remains one of the fastest instance segmentation
methods on semantically challenging datasets like COCO [10]
(13.5 fps on 5502 px images; see Table 2¢).

Prototypes Learning prototypes (aka vocabulary/codebook) has
been extensively explored in computer vision. Classical represen-
tations include textons [39] and visual words [40], with advances
made via sparsity and locality priors [41], [42], [43]. Others have
designed prototypes for object detection [44], [45], [46]. Though
related, these works use prototypes to represent features, whereas
we use them to assemble masks for instance segmentation. More-
over, we learn prototypes that are specific to each image, rather
than global prototypes shared across the entire dataset.

3 YOLACT

Our goal is to add a mask branch to an existing one-stage object
detection model in the same vein as Mask R-CNN [2] does to
Faster R-CNN [4], but without an explicit feature localization step
(e.g., feature repooling). To do this, we break up the complex
task of instance segmentation into two simpler, parallel tasks that

https://github.com/dbolya/yolact
https://github.com/dbolya/yolact

4

Class, Box

{ Detection 1

L Person

Assembly

L Detemor\

Mask Coefficients

Detection2
¥

Racket
De(emon E

1

Prototypes

Fig. 2: YOLACT Architecture Blue/yellow indicates low/high values in the prototypes, gray nodes indicate functions that are not
trained, and k£ = 4 in this example. We base this architecture off of RetinaNet [25] using ResNet-101 + FPN.

can be assembled to form the final masks. The first branch uses
an FCN [47] to produce a set of image-sized “prototype masks”
that do not depend on any one instance. The second adds an
extra head to the object detection branch to predict a vector of
“mask coefficients” for each anchor that encode an instance’s
representation in the prototype space. Finally, for each instance
that survives NMS, we construct a mask for that instance by
linearly combining the work of these two branches.

Rationale We perform instance segmentation in this way pri-
marily because masks are spatially coherent; i.e., pixels close
to each other are likely to be part of the same instance. While
a convolutional (conv) layer naturally takes advantage of this
coherence, a fully-connected (fc) layer does not. That poses a
problem, since one-stage object detectors produce class and box
coefficients for each anchor as an output of an fc layer.” Two stage
approaches like Mask R-CNN get around this problem by using
a localization step (e.g., Rol-Align), which preserves the spatial
coherence of the features while also allowing the mask to be a
cony layer output. However, doing so requires a significant portion
of the model to wait for a first-stage RPN to propose localization
candidates, inducing a significant speed penalty.

Thus, we break the problem into two parallel parts, making
use of fc layers, which are good at producing semantic vectors,
and conv layers, which are good at producing spatially coherent
masks, to produce the “mask coefficients” and “prototype masks”,
respectively. Then, because prototypes and mask coefficients can
be computed independently, the computational overhead over that
of the backbone detector comes mostly from the assembly step,
which can be implemented as a single matrix multiplication. In
this way, we can maintain spatial coherence in the feature space
while still being one-stage and fast.

3.1

The prototype generation branch (protonet) predicts a set of k
prototype masks for the entire image. We implement protonet as

Prototype Generation

2. To show that this is an issue, we develop an “fc-mask” model that
produces masks for each anchor as the reshaped output of an fc layer. As
our experiments in Table 2¢ show, simply adding masks to a one-stage model
as fc outputs only obtains 20.7 mAP and is thus very much insufficient.

v

69%x69| __ _
Ps || %256 | x3

138x138 138x138

xk

Fig. 3: Protonet Architecture The labels denote feature size and
channels for an image size of 550 x 550. Arrows indicate 3 X 3
cony layers, except for the final conv which is 1 x 1. The increase
in size is an upsample followed by a conv. Inspired by the mask
branch in [2].

an FCN whose last layer has k channels (one for each prototype)
and attach it to a backbone feature layer (see Figure 3 for an
illustration). While this formulation is similar to standard semantic
segmentation, it differs in that we exhibit no explicit loss on the
prototypes. Instead, all supervision for these prototypes comes
from the final mask loss after assembly.

We note two important design choices: taking protonet from
deeper backbone features produces more robust masks, and higher
resolution prototypes result in both higher quality masks and better
performance on smaller objects. Thus, we use FPN [48] because
its largest feature layers (P5 in our case; see Figure 2) are the
deepest. Then, we upsample it to one fourth the dimensions of the
input image to increase performance on small objects.

Finally, we find it important for the protonet’s output to be
unbounded, as this allows the network to produce large, over-
powering activations for prototypes it is very confident about
(e.g., obvious background). Thus, we have the option of following
protonet with either a ReLU or no nonlinearity. We choose ReLU
for more interpretable prototypes.

3.2 Mask Coefficients

Typical anchor-based object detectors have two branches in their
prediction heads: one branch to predict c class confidences, and the
other to predict 4 bounding box regressors. For mask coefficient
prediction, we simply add a third branch in parallel that predicts

444 @
7

Class || WxH R WxH N WxH
X256 |x4|| X256 | xca

Box || WXH
Pi = = = Pi 7| x4a
A p 4

WxH WxH WxH L /

Box || X296 Jxa|| x256) || x4a 0
WxH
Mask| | Xka

RetinaNet [25] Ours

Fig. 4: Head Architecture We use a shallower prediction head
than RetinaNet [25] and add a mask coefficient branch. This is for
c classes, a anchors for feature layer P;, and k prototypes. See
Figure 3 for a key.

k mask coefficients, one corresponding to each prototype. Thus,
instead of producing 4 + ¢ coefficients per anchor, we produce
44+ c+k.

Then for nonlinearity, we find it important to be able to
subtract out prototypes from the final mask. Thus, we apply
tanh to the k mask coefficients, which produces more stable
outputs over no nonlinearity. The relevance of this design choice
is apparent in Figure 2, as neither mask would be constructable
without allowing for subtraction.

3.3 Mask Assembly

To produce instance masks, we combine the work of the prototype
branch and mask coefficient branch, using a linear combination of
the former with the latter as coefficients. We then follow this by a
sigmoid nonlinearity to produce the final masks. These operations
can be implemented efficiently using a single matrix multiplication
and sigmoid:

M = o(PCT) (D

where P is an A X w X k matrix of prototype masks and C'isanxk
matrix of mask coefficients for n instances surviving NMS and
score thresholding. Other, more complicated combination steps
are possible; however, we keep it simple (and fast) with a basic
linear combination.

Losses We use three losses to train our model: classification
loss L.;s, box regression loss Ly, and mask 1oss Lj,qsx With
the weights 1, 1.5, and 6.125 respectively. Both L. and Lpoy
are defined in the same way as in [6]. Then to compute mask
loss, we simply take the pixel-wise binary cross entropy be-
tween assembled masks M and the ground truth masks Mg;:
Lynask = BCE(M, My,).

Cropping Masks We crop the final masks with the predicted
bounding box during evaluation. Specifically, we assign zero to
pixels outside of the box region. During training, we instead crop
with the ground truth bounding box, and divide L5z by the
ground truth box area to preserve small objects in the prototypes.

3.4 Emergent Behavior

Our approach might seem surprising, as the general consensus
around instance segmentation is that because FCNs are translation

4

invariant, the task needs translation variance added back in [3].
Thus methods like FCIS [3] and Mask R-CNN [2] try to explicitly
add translation variance, whether it be by directional maps and
position-sensitive repooling, or by putting the mask branch in the
second stage so it does not have to deal with localizing instances.
In our method, the only translation variance we add is to crop
the final mask with the predicted bounding box. However, we find
that our method also works without cropping for medium and
large objects, so this is not a result of cropping. Instead, YOLACT
learns how to localize instances on its own via different activations
in its prototypes.

To see how this is possible, first note that the prototype
activations for the solid red image (image a) in Figure 5 are
actually not possible in an FCN without padding. Because a
convolution outputs to a single pixel, if its input everywhere in
the image is the same, the result everywhere in the conv output
will be the same. On the other hand, the consistent rim of padding
in modern FCNs like ResNet gives the network the ability to tell
how far away from the image’s edge a pixel is. Conceptually,
one way it could accomplish this is to have multiple layers in
sequence spread the padded 0’s out from the edge toward the
center (e.g., with a kernel like [1,0]). This means ResNet, for
instance, is inherently translation variant, and our method makes
heavy use of that property (images b and c exhibit clear translation
variance).

We observe many prototypes to activate on certain “partitions”
of the image. That is, they only activate on objects on one side
of an implicitly learned boundary. In Figure 5, prototypes 1-3 are
such examples. By combining these partition maps, the network
can distinguish between different (even overlapping) instances of
the same semantic class; e.g., in image d, the green umbrella can
be separated from the red one by subtracting prototype 3 from
prototype 2.

Furthermore, being learned objects, prototypes are compress-
ible. That is, if protonet combines the functionality of multiple
prototypes into one, the mask coefficient branch can learn which
situations call for which functionality. For instance, in Figure 5,
prototype 2 is a partitioning prototype but also fires most strongly
on instances in the bottom-left corner. Prototype 3 is similar but
for instances on the right. This explains why in practice, the model
does not degrade in performance even with as low as k = 32
prototypes (see Table 2b).

On the other hand, increasing k is ineffective most likely
because predicting coefficients is difficult. If the network makes
a large error in even one coefficient, due to the nature of linear
combinations, the produced mask can vanish or include leakage
from other objects. Thus, the network has to play a balancing
act to produce the right coefficients, and adding more prototypes
makes this harder. In fact, we find that for higher values of k, the
network simply adds redundant prototypes with small edge-level
variations that slightly increase A Pys, but not much else.

4 BACKBONE DETECTOR

For our backbone detector we prioritize speed as well as feature
richness, since predicting these prototypes and coefficients is a
difficult task that requires good features to do well. Thus, the
design of our backbone detector closely follows RetinaNet [25]
with an emphasis on speed.

YOLACT Detector We use ResNet-101 [8] with FPN [48] as
our default feature backbone and a base image size of 550 x 550.

|

o
(@]

Ho

*

=

)
.

N

w
5 P—

.

Fig. 5: Prototype Behavior The activations of the same six
prototypes (y axis) across different images (x axis). Prototypes 1-3
respond to objects to one side of a soft, implicit boundary (marked
with a dotted line). Prototype 4 activates on the bottom-left of
objects (for instance, the bottom left of the umbrellas in image d);
prototype 5 activates on the background and on the edges between
objects; and prototype 6 segments what the network perceives to
be the ground in the image. These last 3 patterns are most clear in
images d-f.

We do not preserve aspect ratio in order to get consistent eval-
uation times per image. Like RetinaNet, we modify FPN by not
producing P and producing Ps and P as successive 3 x 3 stride
2 cony layers starting from Ps (not C'5) and place 3 anchors with
aspect ratios [1,1/2, 2] on each. The anchors of P5 have areas of
24 pixels squared, and every subsequent layer has double the scale
of the previous (resulting in the scales [24,48, 96, 192, 384]). For
the prediction head attached to each P;, we have one 3 X 3 conv
shared by all three branches, and then each branch gets its own
3 X 3 conv in parallel. Compared to RetinaNet, our prediction
head design (see Figure 4) is more lightweight and much faster.
We apply smooth-L; loss to train box regressors and encode box
regression coordinates in the same way as SSD [6]. To train class
prediction, we use softmax cross entropy with ¢ positive labels
and 1 background label, selecting training examples using OHEM
[49] with a 3:1 neg:pos ratio. Thus, unlike RetinaNet we do not
use focal loss, which we found not to be viable in our situation.

With these design choices, we find that this backbone performs
better and faster than SSD [6] modified to use ResNet-101 [8],
with the same image size.

5 OTHER IMPROVEMENTS

We also discuss other improvements that either increase speed
with little effect on performance or increase performance with no
speed penalty.

5.1 Fast NMS

After producing bounding box regression coefficients and class
confidences for each anchor, like most object detectors we perform
NMS to suppress duplicate detections. In many previous works
[1], [2], [4], [6], [7], [25], NMS is performed sequentially. That
is, for each of the c classes in the dataset, sort the detected boxes
descending by confidence, and then for each detection remove
all those with lower confidence than it that have an IoU overlap
greater than some threshold. While this sequential approach is
fast enough at speeds of around 5 fps, it becomes a large barrier
for obtaining 30 fps (for instance, a 10 ms improvement at 5 fps
results in a 0.26 fps boost, while a 10 ms improvement at 30 fps
results in a 12.9 fps boost).

To fix the sequential nature of traditional NMS, we introduce
Fast NMS, a version of NMS where every instance can be decided
to be kept or discarded in parallel. To do this, we simply allow
already-removed detections to suppress other detections, which
is not possible in traditional NMS. This relaxation allows us to
implement Fast NMS entirely in standard GPU-accelerated matrix
operations.

To perform Fast NMS, we first compute a ¢ X n X n pairwise
ToU matrix X for the top n detections sorted descending by score
for each of c classes. Batched sorting on the GPU is readily
available and computing IoU can be easily vectorized. Then, we
remove detections if there are any higher-scoring detections with
a corresponding IoU greater than some threshold ¢. We efficiently
implement this by first setting the lower triangle and diagonal of
X to0: sz'j =0, Vk,j,i > j,

which can be performed in one batched triu call, and then
taking the column-wise max:

Ky = HliaX(inj) Vk,j 2

to compute a matrix K of maximum IoU values for each detection.
Finally, thresholding this matrix with ¢ (KX < ?) will indicate
which detections to keep for each class.

Because of the relaxation, Fast NMS has the effect of removing
slightly too many boxes. However, the performance hit caused by
this is negligible compared to the stark increase in speed (see
Table 2a). In our code base, Fast NMS is 11.8 ms faster than a
Cython implementation of traditional NMS while only reducing
performance by 0.1 mAP. In the Mask R-CNN benchmark suite
[2], Fast NMS is 15.0 ms faster than their CUDA implementation
of traditional NMS with a performance loss of only 0.3 mAP.

5.2 Semantic Segmentation Loss

While Fast NMS trades a small amount of performance for speed,
there are ways to increase performance with no speed penalty. One
of those ways is to apply extra losses to the model during training
using modules not executed at test time. This effectively increases
feature richness while at no speed penalty.

Thus, we apply a semantic segmentation loss on our feature
space using layers that are only evaluated during training. Note
that because we construct the ground truth for this loss from
instance annotations, this does not strictly capture semantic seg-
mentation (i.e., we do not enforce the standard one class per pixel).
To create predictions during training, we simply attach a 1x1 conv
layer with ¢ output channels directly to the largest feature map
(Ps) in our backbone. Since each pixel can be assigned to more
than one class, we use sigmoid and ¢ channels instead of softmax
and ¢ + 1. This loss is given a weight of 1 and results in a +0.4
mAP boost.

Ix1

5x5 5%5 e

9%x9
18x18 w64 *x128 Xc

%32

35%35
69x69 x16

138x138 <&

x1

Fig. 6: Fast Mask Re-scoring Network Architecture Our mask
scoring branch consists of 6 conv layers with ReLLU non-linearity
and 1 global pooling layer. Since there is no feature concatenation
nor any fc layers, the speed overhead is only ~1 ms.

6 YOLACT++

YOLACT, as introduced thus far, is viable for real-time appli-
cations and only consumes ~1500 MB of VRAM even with a
ResNet-101 backbone. We believe these properties make it an
attractive model that could be deployed in low-capacity embedded
systems.

We next explore several performance improvements to the
original framework, while keeping the real-time demand in mind.
Specifically, we first introduce an efficient and fast mask re-
scoring network, which re-ranks the mask predictions according
to their mask quality. We then identify ways to improve the back-
bone network with deformable convolutions so that our feature
sampling aligns better with instances, which results in a better
backbone detector and more precise mask prototypes. We finally
discuss better choices for the detection anchors to increase recall.

6.1 Fast Mask Re-Scoring Network

As indicated by Mask Scoring R-CNN [15], there is a discrepancy
in the model’s classification confidence and the quality of the
predicted mask (i.e., higher quality mask segmentations don’t nec-
essarily have higher class confidences). Thus, to better correlate
the class confidence with mask quality, Mask Scoring R-CNN
adds a new module to Mask R-CNN that learns to regress the
predicted mask to its mask IoU with ground-truth.

Inspired by [15], we introduce a fast mask re-scoring branch,
which rescores the predicted masks based on their mask IoU with
ground-truth. Specifically, our Fast Mask Re-Scoring Network is
a 6-layer FCN with ReLU non-linearity per conv layer and a final
global pooling layer. It takes as input YOLACT’s cropped mask
prediction (before thresholding) and outputs the mask IoU for
each object category. We rescore each mask by taking the product
between the predicted mask IoU for the category predicted by our
classification head and the corresponding classification confidence
(see Figure 6).

Our method differs from Mask Scoring R-CNN [15] in the
following important ways: (1) Our input is only the mask at the full
image size (with zeros outside the predicted box region) whereas
their input is the ROI repooled mask concatenated with the feature
from the mask prediction branch, and (2) we don’t have any fc
layers. These make our method significantly faster. Specifically,
the speed overhead of adding the Fast Mask Re-Scoring branch to
YOLACT is 1.2 ms, which changes the fps from 34.4 to 33 for

6

our ResNet-101 model, while the overhead of incorporating Mask
Scoring R-CNN’s module into YOLACT is 28 ms, which would
change the fps from 34.4 to 17.5. The speed difference mainly
comes from MS R-CNN’s usage of the ROI align operation, its fc
layers, and the feature concatenation in the input.

6.2 Deformable Convolution with Intervals

Deformable Convolution Networks (DCNSs) [12], [13] have proven
to be effective for object detection, semantic segmentation, and
instance segmentation due to its replacement of the rigid grid
sampling used in conventional convnets with free-form sampling.
We follow the design choice made by DCNv2 [13] and replace
the 3x3 convolution layer in each ResNet block with a 3x3
deformable convolution layer for C3 to C'5. Note that we do not
use the modulated deformable modules because we can’t afford
the inference time overhead that they introduce.

Adding deformable convolution layers into the backbone of
YOLACT, leads to a +1.8 mask mAP gain with a speed overhead
of 8 ms. We believe the boost is due to: (1) DCN can strengthen the
network’s capability of handling instances with different scales,
rotations, and aspect ratios by aligning to the target instances. (2)
YOLACT, as a single-shot method, does not have a re-sampling
process. Thus, a better and more flexible sampling strategy is more
critical to YOLACT than two-stage methods, such as Mask R-
CNN because there is no way to recover sub-optimal samplings in
our network. In contrast, the ROI align operation in Mask R-CNN
can address this problem to some extent by aligning all objects to
a canonical reference region.

Even though the performance boost is fairly decent when
directly plugging in the deformable convolution layers following
the design choice in [13], the speed overhead is quite significant
as well (see Table 7). This is because there are 30 layers with
deformable convolutions when using ResNet-101. To speed up our
ResNet-101 model while maintaining its performance boost, we
explore using less deformable convolutions. Specifically, we try
having deformable convolutions in four different configurations:
(1) in the last 10 ResNet blocks, (2) in the last 13 ResNet blocks,
(3) in the last 3 ResNet stages with an interval of 3 (i.e., skipping
two ResNet blocks in between; total 11 deformable layers), and (4)
in the last 3 ResNet stages with an interval of 4 (total 8 deformable
layers). Given the results, the DCN (interval=3) setting is chosen
as the final configuration in YOLACT++, which cuts down the
speed overhead by 5.2 ms to 2.8 ms and only has a 0.2 mAP drop
compared to not having an interval.

6.3 Optimized Prediction Head

Finally, as YOLACT is based off of an anchor-based backbone
detector, choosing the right hyper-parameters for the anchors, such
as their scales and aspect ratios, is very important. We therefore
revisit our anchor choice and compare with the anchor design of
RetinaNet [25] and RetinaMask [50]. We try two variations: (1)
keeping the scales unchanged while increasing the anchor aspect
ratios from [1,1/2,2] to [1,1/2,2,1/3,3], and (2) keeping the
aspect ratios unchangled w112ile increasing the scales per FPN level
by threefold ([1x, 23x, 23x]). The former and latter increases
the number of anchors compared to the original configuration of
YOLACT by gx and 3x, respectively. As shown in Table 6, using
multi-scale anchors per FPN level (config 2) produces the best
speed vs. performance trade off.

potted plant: 0.54

chair: 0.44

sports bl 0.99
fennis rackel: 0.99

Fig. 7: YOLACT evaluation results on COCO’s test—dev set. This base model achieves 29.8 mAP at 33.0 fps. All images have the

confidence threshold set to 0.3.

7 RESULTS

We report instance segmentation results on MS COCO [10]
and Pascal 2012 SBD [35] using the standard metrics. For MS
COCO, we train on train2017 and evaluate on val2017 and
test—-dev. We also report box detection results on MS COCO.

7.1 Implementation Details

We train all models with batch size 8 on one GPU using ImageNet
[51] pretrained weights. We find that this is a sufficient batch size
to use batch norm, so we leave the pretrained batch norm unfrozen
but do not add any extra bn layers. We train with SGD for 800k
iterations starting at an initial learning rate of 10~3 and divide by
10 at iterations 280k, 600k, 700k, and 750k, using a weight decay
of 5x10~%, a momentum of 0.9, and all data augmentations used
in SSD [6]. For Pascal, we train for 120k iterations and divide
the learning rate at 60k and 100k. We also multiply the anchor
scales by 4/3, as objects tend to be larger. Training takes 4-6 days
(depending on config) on one Titan Xp for COCO and less than 1
day on Pascal.

7.2 Mask Results

We first compare YOLACT to state-of-the art methods on COCO’s
test-dev set in Table 1. Because our main goal is speed,
we compare against other single model results with no test-time
augmentations. We report all speeds computed on a single Titan
Xp, so some listed speeds may be faster than in the original paper.

YOLACT-550 offers competitive instance segmentation per-
formance while at 3.8x the speed of the previous fastest instance
segmentation method on COCO. We also note an interesting

difference in where the performance of our method lies compared
to others. Supporting our qualitative findings in Figure 9, the gap
between YOLACT-550 and Mask R-CNN at the 50% overlap
threshold is 9.5 AP, while it’s 6.6 at the 75% IoU threshold. This
is different from the performance of FCIS, for instance, compared
to Mask R-CNN where the gap is consistent (AP values of 7.5 and
7.6 respectively). Furthermore, at the highest (95%) IoU threshold,
we outperform Mask R-CNN with 1.6 vs. 1.3 AP.

We also report numbers for alternate model configurations
in Table 1. In addition to our base 550 x 550 image size
model, we train 400 x 400 (YOLACT-400) and 700 x 700
(YOLACT-700) models, adjusting the anchor scales accordingly
(8z = S550/550 * x). Lowering the image size results in a large
decrease in performance, demonstrating that instance segmenta-
tion naturally demands larger images. Then, raising the image size
decreases speed significantly but also increases performance, as
expected. In addition to our base backbone of ResNet-101 [8],
we also test ResNet-50 and DarkNet-53 [1] to obtain even faster
results. If higher speeds are preferable we suggest using ResNet-
50 or DarkNet-53 instead of lowering the image size, as these
configurations perform much better than YOLACT-400, while
only being slightly slower.

The bottom two rows in Table 1 show the results of our
YOLACT++ model with ResNet-50 and ResNet-101 backbones.
With the proposed enhancements, YOLACT++ obtains a huge
performance boost over YOLACT (5.9 mAP for the ResNet-50
model and 4.8 mAP for the ResNet-101 model) while maintaining
high speed. In particular, our YOLACT++-ResNet-50 model runs
at a real-time speed of 33.5 fps, which is 3.9x faster than Mask R-
CNN, while its instance segmentation accuracy only falls behind

Method Backbone FPS Time AP APso APrs APg AP,; APp
PA-Net [14] R-50-FPN 4.7 212.8 366 58.0 39.3 16.3 38.1 53.1
RetinaMask [50] R-101-FPN 6.0 166.7 347 554 36.9 14.3 36.7 50.5
ECIS [3] R-101-C5 6.6 151.5 295 515 30.2 8.0 31.0 49.7
Mask R-CNN [2] R-101-FPN 8.6 116.3 357 58.0 37.8 15.5 38.1 524
MS R-CNN [15] R-101-FPN 8.6 116.3 383 588 41.5 17.8 40.4 54.4
YOLACT-550 R-101-FPN 335 298 29.8 485 31.2 9.9 31.3 47.7
YOLACT-400 R-101-FPN 453 22.1 249 420 254 5.0 253 45.0
YOLACT-550 R-50-FPN 450 222 28.2 46.6 29.2 9.2 29.3 44.8
YOLACT-550 D-53-FPN 40.7 24.6 28.7 468 30.0 9.5 29.6 45.5
YOLACT-700 R-101-FPN 234 427 312 50.6 32.8 12.1 333 47.1
YOLACT-550++ R-50-FPN 335 299 34.1 533 36.2 11.7 36.1 53.6
YOLACT-550++ R-101-FPN 27.3 36.7 346 538 36.9 11.9 36.8 55.1

TABLE 1: MS COCO [10] Results We compare to state-of-the-art methods for mask mAP and speed on COCO test-dev
and include several ablations of our base model, varying backbone network and image size. We denote the backbone architecture with
network—depth-features, where R and D refer to ResNet [8] and DarkNet [1], respectively. Our base model, YOLACT-550 with
ResNet-101, is 3.9x faster than the previous fastest approach with competitive mask mAP. Our YOLACT++-550 model with ResNet-50
has the same speed while improving the performance of the base model by 4.3 mAP. Compared to Mask R-CNN, YOLACT++-R-50 is

3.9x faster and falls behind by only 1.6 mAP.

Method NMS AP FPS Time kAP FPS Time Method AP FPS Time
VoLacr Sandad 300 240 416 8 268 330 304 FCIS w/o Mask Voting 278 95 1053
Fast 299 335 298 16 271 328 305 Mask R-CNN (550 x 550) 322 135 739
Mask R-CNN Standard - 36.1 8.6 1160 2421 %; 3?471 g?'g Jfemask 0727 89
Fast 358 9.9 1010 o8 e 3e 3 YOLACT-550 (Ours) 299 335 298

256 277 298 336

(a) Fast NMS Fast NMS performs only slightly

(c) Accelerated Baselines We compare to other

worse than standard NMS, while being around
12 ms faster. We also observe a similar trade-off
implementing Fast NMS in Mask R-CNN.

(b) Prototypes
k. We choose 32 for its mix
of performance and speed.

baseline methods by tuning their speed-accuracy
trade-offs. fc-mask is our model but with 16 x 16
masks produced from an fc layer.

Choices for

TABLE 2: Ablations All models evaluated on COCO val2017 using our servers. Models in Table 2b were trained for 400k iterations

instead of 800k. Time in milliseconds reported for convenience.

Method Backbone FPS Time mAP;, mAP7,
MNC [52] VGG-16 2.8 360 63.5 41.5
FCIS [3] R-101-C5 9.6 104 65.7 52.1
YOLACT-550 R-50-FPN 47.6 21.0 72.3 56.2

TABLE 3: Pascal 2012 SBD [35] Results Timing for FCIS
redone on a Titan Xp for fairness. Since Pascal has fewer and
easier detections than COCO, YOLACT does much better than
previous methods. Note that COCO and Pascal FPS are not
comparable because Pascal has fewer classes.

by 1.6 mAP.

Finally, we also train and evaluate our YOLACT ResNet-
50 model on Pascal 2012 SBD in Table 3. YOLACT clearly
outperforms popular approaches that report SBD performance,
while also being significantly faster.

7.3 Mask Quality

Because we produce a final mask of size 138 x 138, and because
we create masks directly from the original features (with no
repooling to transform and potentially misalign the features), our
masks for large objects are noticeably higher quality than those
of Mask R-CNN [2] and FCIS [3]. For instance, in Figure 9,
YOLACT produces a mask that cleanly follows the boundary
of the arm, whereas both FCIS and Mask R-CNN have more
noise. Moreover, despite being 5.9 mAP worse overall, at the 95%

IoU threshold, our base model achieves 1.6 AP while Mask R-
CNN obtains 1.3. This indicates that repooling does result in a
quantifiable decrease in mask quality.

7.4 Temporal Stability

Although we only train using static images and do not apply
any temporal smoothing, we find that our model produces more
temporally stable masks on videos than Mask R-CNN, whose
masks jitter across frames even when objects are stationary. We
believe our masks are more stable in part because they are higher
quality (thus there is less room for error between frames), but
mostly because our model is one-stage. Masks produced in two-
stage methods are highly dependent on their region proposals
in the first stage. In contrast for our method, even if the model
predicts different boxes across frames, the prototypes are not
affected, yielding much more temporally stable masks.

7.5 More Qualitative Results

Figure 7 shows many examples of adjacent people and vehicles,
but not many for other classes. To further support that YOLACT
is not just doing semantic segmentation, we include many more
qualitative results for images with adjacent instances of the same
class in Figure 8.

For instance, in an image with two elephants (Figure 8 row
2, col 2), despite the fact that two instance boxes are overlapping
with each other, their masks are clearly separating the instances.

elephont: 0.88

‘gabraz 1:0zebra; 1.00

microwave: 0.99

-

oven: 0.85

Zebras 1.00

e zebro: 1.00

Fig. 8: More YOLACT evaluation results on COCO’s test-dev set with the same parameters as before. To further support that
YOLACT implicitly localizes instances, we select examples with adjacent instances of the same class.

FCIS

Ours

Fig. 9: Mask Quality Our masks are typically higher quality than those of Mask R-CNN [2] and FCIS [3] because of the larger mask

size and lack of feature repooling.

This is also clearly manifested in the examples of zebras (row 4,
col 2) and birds (row 5, col 1).

Note that for some of these images, the box doesn’t exactly
crop off the mask. This is because for speed reasons (and because
the model was trained in this way), we crop the mask at the
prototype resolution (so one fourth the image resolution) with 1px
of padding in each direction. On the other hand, the corresponding
box is displayed at the original image resolution with no padding.

7.6 Box Results

Since YOLACT produces boxes in addition to masks, we can also
compare its object detection performance to other real-time object
detection methods. Moreover, while our mask performance is real-
time, we don’t need to produce masks to run YOLACT as an object
detector. Thus, YOLACT is faster when run to produce boxes than
when run to produce instance segmentations.

In Table 4, we compare our performance and speed to various
skews of YOLOV3 [1]. We are able to achieve similar detection

10

Method Backbone FPS Time AP APso APrs APs APp; AP
YOLOV3-320 [1] D-53 71.17 14.05 282 515

YOLACT-400 R-101-FPN 5543 18.04 284 48.6 29.5 10.7 28.9 43.1
YOLACT-550 R-50-FPN 59.30 16.86 303 508 31.9 14.0 31.2 43.0
YOLOvV3-416 [1] D-53 54.47 18.36 31.0 553

YOLACT-550 D-53-FPN 5299 18.87 31.0 511 329 14.4 31.8 43.7
YOLACT-550 R-101-FPN 41.14 2431 323 53.0 343 14.9 33.8 45.6
YOLOV3-608 [1] D-53 30.54 3274 33.0 579 34.4 18.3 35.4 419
YOLACT-700 R-101-FPN 29.61 33.77 33.7 543 359 16.8 35.6 45.7

TABLE 4: Box Performance on COCO’s test~-dev set. For our method, timing is done without evaluating the mask branch. Both
methods were timed on the same machine (using one Titan Xp). In each subgroup, we compare similar performing versions of our
model to a corresponding YOLOvV3 model. YOLOvV3 doesn’t report all metrics for the 320 and 416 versions.

zebra: 0.81

zebra: (.75

YOLACT

zebra: 1.00

zebra: 1.00

YOLACT++

YOLACT YOLACT++

qeac: 0.9,‘Suibcalse: B

| suitcas
suitcase: 1.00

suitcase: 0.99

(©

Fig. 10: YOLACT vs. YOLACT++ (a) shows the rank of each detection in the image. As YOLACT++ has a fast mask re-scoring
branch, its detections with better masks are ranked higher than those of YOLACT (see the leftmost giraffe). Since YOLACT++ is
equipped with deformable convolutions in the backbone and has a better anchor design, the box recall, mask quality, and classification
confidence are all increased. Specifically, (b) shows that both the box prediction and instance segmentation mask of the left zebra is
more precise. (¢) shows increased detection recall and improved class confidence scores.

results to YOLOv3 at similar speeds, while not employing any
of the additional improvements in YOLOv2 and YOLOV3 like
multi-scale training, optimized anchor boxes, cell-based regression
encoding, and objectness score. Because the improvements to our
detection performance in our observation come mostly from using
FPN and training with masks (both of which are orthogonal to the
improvements that YOLO makes), it is likely that we can combine
YOLO and YOLACT to create an even better detector.

Moreover, these detection results show that our mask branch
takes only 6 ms in total to evaluate, which demonstrates how
minimal our mask computation is.

7.7 YOLACT++ Improvements

Table 5 shows the contribution of each new component in our
YOLACT++ model. The optimized anchor choice directly im-
proves the recall of box prediction and boosts our backbone
detector. The deformable convolutions help with better feature
sampling by aligning the sampling positions with the instances
of interest and better handles changes in scale, rotation, and
aspect ratio. Importantly, with our exploration of using less
deformable convolution layers, we can cut down their speed
overhead significantly (from 8 ms to 2.8 ms) while keeping the
performance almost the same (only 0.2 mAP drop) as compared

to the original configuration proposed in [13]; see Table 7. With
these two upgrades for object detection, YOLACT++ suffers less
from localization failure and has finer mask predictions, as shown
in Figure 10b, ¢, which together result in 3.4 mAP and 4.2 mAP
boost for ResNet-101 and ResNet-50, respectively. In addition, the
proposed fast mask re-scoring network re-ranks the mask predic-
tions with the IoU based mask scores instead of solely relying on
classification confidence. As a result, the under-estimated masks
(masks with good quality but with low classification confidence)
and over-estimated masks (masks with bad quality but with high
classification confidence) are put into a more proper ranking as
shown in Figure 10a. Our mask re-scoring method is also fast.
Compared to incorporating MS R-CNN into YOLACT, it is 26.8
ms faster yet can still improve YOLACT by 1 mAP.

8 DISCUSSION

Despite our masks being higher quality and having nice properties
like temporal stability, we fall a bit behind state-of-the-art instance
segmentation methods in overall performance, albeit while being
much faster. Most errors are caused by mistakes in the detector:
misclassification, box misalignment, etc. However, we have iden-
tified two typical errors caused by YOLACT’s mask generation
algorithm.

Method FPS Time AP
YOLACT-550 (R-101-FPN) 33.5 29.8 29.9
+ more anchors 30.8 325 31.7
+ deform convs (interval=3) 28.3 35.3 333
+ fast mask re-scoring 273 36.7 34.4
YOLACT-550 (R-50-FPN) 45.0 222 28.5
+ more anchors 40.2 249 29.9
+ deform convs 347 28.8 32.7
+ fast mask re-scoring 335 299 33.7

TABLE 5: YOLACT++ Improvements Contribution to instance
segmentation accuracy and speed overhead of each component of
YOLACT++. Results on MS COCO val2017.

Method AP, ask APppor FPS Time
YOLACT-550 27.7 29.8 324 309
w/ 5 Aspect Ratios 28.0 30.1 332 301
w/ 3 Scales 30.2 32.5 312 321

TABLE 6: Different Anchor Choices of Prediction Head We
compare different anchor aspect ratios and scales. All models were
trained for 400k iterations. Results on MS COCO val2017.

Localization Failure If there are too many objects in one spot in
a scene, the network can fail to localize each object in its own
prototype. In these cases, it will output something closer to a
foreground mask than an instance segmentation for some objects
in the group; e.g., in the first image in Figure 7 (row 1 column 1),
the blue truck under the red airplane is not properly localized.

Our YOLACT++ model addresses this problem to some degree
by introducing more anchors covering more scales and applying
deformable convolutions in the backbone for better feature sam-
pling. For example, there are higher confidence and more accurate
box detections in Figure 10c using YOLACT++.

Leakage Our network leverages the fact that masks are cropped
after assembly, and makes no attempt to suppress noise outside
of the cropped region. This works fine when the bounding box is
accurate, but when it is not, that noise can creep into the instance
mask, creating some “leakage” from outside the cropped region.
This can also happen when two instances are far away from each
other, because the network has learned that it doesn’t need to
localize far away instances—the cropping will take care of it.
However, if the predicted bounding box is too big, the mask will
include some of the far away instance’s mask as well. For instance,
Figure 7 (row 2 column 4) exhibits this leakage because the mask
branch deems the three skiers to be far enough away to not have
to separate them.

Our YOLACT++ model partially mitigates these issues with
a light-weight mask error down-weighting scheme, where masks
exhibiting these errors will be ignored or ranked lower than higher
quality masks. In Figure 10a, the leftmost giraffe’s mask has the
best quality and with mask re-scoring, it is ranked highest with
YOLACT++ whereas with YOLACT it is ranked 3rd among all
detections in the image.

Understanding the AP Gap However, localization failure and
leakage alone are not enough to explain the almost 6 mAP gap
between YOLACT’s base model and, say, Mask R-CNN. Indeed,
our base model on COCO has just a 2.5 mAP difference between
its test-dev mask and box mAP (29.8 mask, 32.3 box), meaning
our base model would only gain a few points of mAP even

11

Method FPS Time AP
w/o DCN 308 325 31.7
w/ DCN 247 405 335
w/ DCN (interval=3) 28.3 353 333
w/ DCN (interval=4) 29.2 343 33.0
w/ DCN (last 10 layers) 29.0 34.5 33.0
w/ DCN (last 13 layers) 28.0 35.8 33.0

TABLE 7: Different Choices of Using Deformable Convolution
Layers The speed vs. performance trade off of different design
choices when applying deformable convolutions [13] in YOLACT.
Results on MS COCO val2017. Note that in these results, the
backbone is ResNet-101 with the 3-scale anchor choice in the
prediction head.

with perfect masks. Moreover, Mask R-CNN has this same mAP
difference (35.7 mask, 38.2 box), which suggests that the gap
between the two methods lies in the relatively poor performance
of our detector and not in our approach to generating masks.

We further corroborate this hypothesis by upgrading our back-
bone detector in YOLACT++, where the mAP difference is still
only 1.5 (34.6 mask, 36.1 box).

9 CONCLUSION

We presented the first competitive single-stage real-time instance
segmentation method. The key idea is to predict mask prototypes
and per-instance mask coefficients in parallel, and linearly com-
bine them to form the final instance masks. Extensive experiments
on MS COCO and Pascal VOC demonstrated the effectiveness
of our approach and contribution of each component. We also
analyzed the emergent behavior of our prototypes to explain how
YOLACT, even as an FCN, introduces translation variance for
instance segmentation. Finally, with improvements to the back-
bone network, a better anchor design, and a fast mask re-scoring
network, our YOLACT++ showed a significant boost compared to
the original framework while still running at real-time.

ACKNOWLEDGMENTS

This work was supported in part by ARO YIP W911NF17-1-0410,
NSF CAREER 1IS-1751206, AWS ML Research Award, Google
Cloud Platform research credits, and XSEDE IRI180001.

REFERENCES

[1] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv:1804.02767, 2018.

[2] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in ICCV,
2017.

[3] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-
aware semantic segmentation,” in CVPR, 2017.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in NeurIPS, 2015.

[5] J.Dai,Y.Li, K. He, and J. Sun, “R-fcn: Object detection via region-based
fully convolutional networks,” in NeurIPS, 2016.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. Berg, “Ssd: Single shot multibox detector,” in ECCV, 2016.

[7]1 J.Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in CVPR,
2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[91 M. Goodale and D. Milner, “Separate visual pathways for perception and
action,” Trends in Neurosciences, 1992.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollér, and L. Zitnick, “Microsoft coco: Common objects in context,”
in ECCV, 2014.

[11]

[12]

[13]

[14]
[15]
[16]

(17]

[18]
[19]
[20]
(21]
[22]

[23]

(24]

[25]
[26]

(27]

[28]

[29]

[30]
[31]
(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]
[40]

[41]

D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance
segmentation,” in The [EEE International Conference on Computer
Vision (ICCV), October 2019.

J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in Proceedings of the IEEE international con-
ference on computer vision, 2017, pp. 764-773.

X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2: More
deformable, better results,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9308-9316.

S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for
instance segmentation,” in CVPR, 2018.

Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, “Mask scoring
r-cnn,” in CVPR, 2019.

J. Dai, K. He, Y. Li, S. Ren, and J. Sun, “Instance-sensitive fully
convolutional networks,” in ECCV, 2016.

L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and
H. Adam, “Masklab: Instance segmentation by refining object detection
with semantic and direction features,” in CVPR, 2018.

A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother,
“Instancecut: from edges to instances with multicut,” in CVPR, 2017.
M. Bai and R. Urtasun, “Deep watershed transform for instance segmen-
tation,” in CVPR, 2017.

X. Liang, L. Lin, Y. Wei, X. Shen, J. Yang, and S. Yan, “Proposal-free
network for instance-level object segmentation,” TPAMI, 2018.

A. Newell, Z. Huang, and J. Deng, “Associative embedding: End-to-end
learning for joint detection and grouping,” in NeurIPS, 2017.

A. Harley, K. Derpanis, and I. Kokkinos, “Segmentation-aware convolu-
tional networks using local attention masks,” in ICCV, 2017.

B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance
segmentation with a discriminative loss function,” arXiv preprint
arXiv:1708.02551, 2017.

A. Fathi, Z. Wojna, V. Rathod, P. Wang, H. O. Song, S. Guadarrama, and
K. Murphy, “Semantic instance segmentation via deep metric learning,”
arXiv preprint arXiv:1703.10277, 2017.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolldr, “Focal loss for
dense object detection,” in CVPR, 2017.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in CVPR, 2016.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” CoRR,
2015.

M. Treml, J. Arjona-Medina, T. Unterthiner, R. Durgesh, F. Fried-
mann, P. Schuberth, A. Mayr, M. Heusel, M. Hofmarcher, M. Widrich
et al., “Speeding up semantic segmentation for autonomous driving,” in
NeurIPS Workshops, 2016.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep
neural network architecture for real-time semantic segmentation,” CoRR,
2016.

N. Dvornik, K. Shmelkov, J. Mairal, and C. Schmid, “Blitznet: A real-
time deep network for scene understanding,” in /CCV, 2017.

H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time semantic
segmentation on high-resolution images,” in ECCV, 2018.

S. Jetley, M. Sapienza, S. Golodetz, and P. Torr, “Straight to shapes:
real-time detection of encoded shapes,” in CVPR, 2017.

J. Uhrig, E. Rehder, B. Frohlich, U. Franke, and T. Brox, “Box2pix:
Single-shot instance segmentation by assigning pixels to object boxes,”
in IEEE Intelligent Vehicles Symposium, 2018.

M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International Journal
of Computer Vision, vol. 88, no. 2, pp. 303-338, Jun. 2010.

B. Hariharan, P. Arbeldez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in ICCV, 2011.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” in CVPR, 2016.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR, 2012.

D. Neven, B. D. Brabandere, M. Proesmans, and L. V. Gool, “Instance
segmentation by jointly optimizing spatial embeddings and clustering
bandwidth,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 8837-8845.

T. Leung and J. Malik, “Representing and recognizing the visual appear-
ance of materials using three-dimensional textons,” IJCV, 2001.

J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in ICCV, 2003.

J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Transactions on Image Processing, 2010.

[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]

[52]

12

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in CVPR, 2010.

T. Zhang, B. Ghanem, S. Liu, C. Xu, and N. Ahuja, “Low-rank sparse
coding for image classification,” in /CCV, 2013.

S. Agarwal and D. Roth, “Learning a sparse representation for object
detection,” in ECCV, 2002.

X. Yu, L. Yi, C. Fermiiller, and D. Doermann, “Object detection using
shape codebook.” in BMVC, 2007.

X. Ren and D. Ramanan, “Histograms of sparse codes for object
detection,” in CVPR, 2013.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in CVPR, 2015.

T.-Y. Lin, P. Dollér, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in CVPR, 2017.

A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object
detectors with online hard example mining,” in CVPR, 2016.

C.-Y. Fu, M. Shvets, and A. C. Berg, “Retinamask: Learning to predict
masks improves state-of-the-art single-shot detection for free,” arXiv
preprint arXiv:1901.03353, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A Large-Scale Hierarchical Image Database,” in CVPR, 2009.

J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via
multi-task network cascades,” in CVPR, 2016.

Daniel Bolya graduated with a Bachelors of
Science with Honors in 2019 from University of
California, Davis. Daniel did most of his work
for YOLACT while as an undergraduate and is
currently pursuing a Ph.D. in Machine Learning
at Georgia Institute of Technology. His interests
lie broadly in the space of addressing core de-
ficiencies in Machine Learning and Computer
Vision, including speed, data usage, and gener-
alizability.

Chong Zhou is a Master’s student from the De-
partment of Computer Science at the University
of California, Davis. Prior to that, he completed
his Bachelor’s degree in Software Engineering
from Nankai University, Tianjin, China. Chong is
interested in Computer Vision and related prob-
lems in Machine Learning.

Fanyi Xiao is a PhD candidate working in the
Computer Vision Lab at the University of Cali-
fornia, Davis. Before this, he obtained his Mas-
ter's degree in Robotics from Carnegie Mellon
University (Pittsburgh, USA) and his Bachelor’s
degree in Computer Science from Central South
University (Changsha, China). He is broadly in-
terested in deep learning for computer vision,
and video understanding in particular.

Yong Jae Lee is an Assistant Professor in the
Department of Computer Science at the Univer-
sity of California, Davis. He received his Ph.D.
from the University of Texas at Austin in 2012,
and was a post-doc at Carnegie Mellon Uni-
versity (2012-2013) and UC Berkeley (2013-
2014). He received his B.S. in Electrical Engi-
neering from the University of lllinois at Urbana-
Champaign in 2006. He is a recipient of the
Army Research Office (ARO) Young Investigator
Program (YIP) award, National Science Foun-

dation (NSF) CAREER award, and UC Davis College of Engineering
Outstanding Junior Faculty award. His main research interests are in
computer vision and machine learning.

	Introduction
	Related Work
	YOLACT
	Prototype Generation
	Mask Coefficients
	Mask Assembly
	Emergent Behavior

	Backbone Detector
	Other Improvements
	Fast NMS
	Semantic Segmentation Loss

	YOLACT++
	Fast Mask Re-Scoring Network
	Deformable Convolution with Intervals
	Optimized Prediction Head

	Results
	Implementation Details
	Mask Results
	Mask Quality
	Temporal Stability
	More Qualitative Results
	Box Results
	YOLACT++ Improvements

	Discussion
	Conclusion
	References
	Biographies
	Daniel Bolya
	Chong Zhou
	Fanyi Xiao
	Yong Jae Lee

