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Abstract. The Pleistocene sand sea on the Arctic Coastal Plain (ACP) of northern Alaska is underlain by an
ancient sand dune field, a geological feature that affects regional lake characteristics. Many of these lakes, which
cover approximately 20 % of the Pleistocene sand sea, are relatively deep (up to 25 m). In addition to the nat-
ural importance of ACP sand sea lakes for water storage, energy balance, and ecological habitat, the need for
winter water for industrial development and exploration activities makes lakes in this region a valuable resource.
However, ACP sand sea lakes have received little prior study. Here, we collect in situ bathymetric data to test
12 model variants for predicting sand sea lake depth based on analysis of Landsat-8 Operational Land Imager
(OLI) images. Lake depth gradients were measured at 17 lakes in midsummer 2017 using a Humminbird 798ci
HD SI Combo automatic sonar system. The field-measured data points were compared to red—green—blue (RGB)
bands of a Landsat-8 OLI image acquired on 8 August 2016 to select and calibrate the most accurate spectral-
depth model for each study lake and map bathymetry. Exponential functions using a simple band ratio (with
bands selected based on lake turbidity and bed substrate) yielded the most successful model variants. For each
lake, the most accurate model explained 81.8 % of the variation in depth, on average. Modeled lake bathymetries
were integrated with remotely sensed lake surface area to quantify lake water storage volumes, which ranged
from 1.056 x 1073 to 57.416 x 1072 km>. Due to variations in depth maxima, substrate, and turbidity between
lakes, a regional model is currently infeasible, rendering necessary the acquisition of additional in situ data
with which to develop a regional model solution. Estimating lake water volumes using remote sensing will fa-
cilitate better management of expanding development activities and serve as a baseline by which to evaluate
future responses to ongoing and rapid climate change in the Arctic. All sonar depth data and modeled lake
bathymetry rasters can be freely accessed at https://doi.org/10.18739/A2SN01440 (Simpson and Arp, 2018) and
https://doi.org/10.18739/A2HT2GC6G (Simpson, 2019), respectively.
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1 Introduction

The Arctic Coastal Plain (ACP) of Alaska is distinguished
by the presence of thousands of lakes, many of which
are the product of thermokarst processes (Hopkins, 1949).
Thermokarst is the melting of ice in permafrost, result-
ing in thaw settlement and land surface subsidence (van
Everdingen, 1998); such activity may lead to the develop-
ment of thermokarst lakes (Hopkins, 1949; Jorgenson and
Shur, 2007). While thermokarst lakes on the ACP typically
reach maximum depths between 1 and 3 m (Hinkel et al.,
2012), an anomalous group of lakes on the ACP approach
depths up to approximately 25 m.

We collected depth measurements and mapped bathymetry
at a group of deep lakes located on the Pleistocene sand
sea (Fig. 1), a distinctive region of the ACP named for its
foundational Pleistocene-aged sand sheet and sand dunes
(Carter, 1981; Williams, 1983; Williams et al., 1978). Lo-
cated west of the Colville River, this region spans approxi-
mately 15000km? and contains over 16000 lakes (Jorgen-
son et al., 2014). The underlying dune field impacts the re-
gional lithology and lake morphology. Lakes here are nestled
between the crests of sand dunes and display a form distinct
from that of lakes across the rest of Alaska’s North Slope
(Hinkel et al., 2005; Jorgenson and Shur, 2007). Deep cen-
tral basins and wide, shallow littoral shelves surrounded by
bluffs distinguish sand sea lakes from lakes that have formed
in ice-rich permafrost terrain. Studies by Livingstone (1954),
Rex (2019), Carson and Hussey (1962), and Carson (1968)
assert that the bluffs around lakes erode by winds which carry
sand from the bluff faces into the lakes, forming characteris-
tic sandy littoral shelves. These shelves only reach depths of
up to 3 m, whereas the central basins of such lakes can reach
depths over 7 times that. Due to this striking depth contrast,
the distinction between littoral shelves and central basins is
apparent in satellite imagery of most lakes in the area (given
low-wind and ice-free conditions). Understanding the geo-
logical context and morphology of sand sea lakes is impor-
tant when interpreting their spectral signatures in remotely
sensed imagery.

We present a dataset to help fill the gap concerning lake
depth — particularly deep lake depth — measurements in Arc-
tic regions. By leveraging the in situ dataset to tune linear
spectral-depth models at individual lakes, we produce lake-
wide bathymetry maps and integrate these modeled depths
across each lake to quantify water volumes. Finally, we as-
sess spectral-depth similarity in lakes across the sand sea to
evaluate the prospects of regional water volume modeling.
Bathymetry measurements and associated estimates of water
volume such as those provided in our datasets are important
when evaluating aquatic habitats, conducting industrial ac-
tivities that require local freshwater supplies (e.g., ice road
construction), and understanding regional water and energy
balance. Compared with lakes in surrounding regions of the
ACP, sand sea lakes tend to be deeper and thus less likely to
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Figure 1. The lake-rich area of interest on Alaska’s Arctic Coastal
Plain (ACP) southeast of Utqiagvik (Barrow). The imagery used in
our models is a Landsat-8 tile (Path 077, Row 011) acquired on 5
August 2016. The Pleistocene sand sea, a geologically unique re-
gion of the ACP, is delineated based on a classification of eolian
sand by Jorgenson et al. (2014). Landsat-8 image is courtesy of the
US Geological Survey.

freeze to the bottom during the winter. Their notable depth
means that sand sea lakes tend to have lower evaporative
losses and are more likely to have basins characterized by
floating (rather than bedfast) ice in the winter (Arp et al.,
2015; Engram et al., 2018). These unfrozen lake basins pro-
vide crucial overwintering habitat for fish and other aquatic
life (Jones et al., 2009; Sibley et al., 2008). Furthermore, lig-
uid water is essential for industry during winter, primarily
for ice road construction but also for ice airstrip and ice pad
construction, exploratory oil-well drilling, and withdrawal of
water for drillers’ and researchers’ in-camp use (Jones et al.,
2009). Unfrozen winter lakes can also store more heat, affect-
ing the regional energy balance (Jeffries et al., 1999). There-
fore, depth and volume quantifications of deep sand sea lakes
can help monitor fish habitat and direct locations of water
extraction for wintertime infrastructure and consumption for
other purposes.

Previous studies have evaluated water depth and
bathymetry of lakes in nearby regions using various
methods but are limited either to shallow lakes or by coarse
depth resolution (e.g., Hinkel et al., 2012; Jeffries et al.,
1996; Jones et al., 2017; Kozlenko and lJeffries, 2000;
Sellman et al., 1975). Such limitations make deep lake
depth and volumetric estimation unfeasible. For example,
Jeffries et al. (1996) used satellite imagery and radar data to
determine which lakes in regions near Utqiagvik (Barrow)
and Atqasuk, Alaska (including lakes in this paper’s study
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area), froze to the bottom during the winter, extrapolating
from their results a classification of lakes as being less than
or greater than 2.2m deep. When used in concert with an
ice-growth model, this provided a proxy for coarse lake
volume estimation but was limited to shallow lakes. Hinkel
et al. (2012) measured in situ bathymetry for 28 lakes.
However, the maximum lake depth of this study on the
inner ACP was 2.3-5.2m. Thus, our dataset is unique in
its consideration of deep lakes. Furthermore, while optical
remote-sensing-based retrieval of bathymetry (applied to
create our bathymetry maps) is a well-documented approach
(e.g., Clark et al., 1987; Hodul et al., 2018; Pacheco et al.,
2015; Pope et al., 2016; Yunus et al., 2019), in part due to
limited data acquisition, such methods have historically been
challenging to apply in our study area. One of the model
variants we employ was successfully used to extrapolate
bathymetry in tropical and subtropical coastal marine
environments (Jagalingam et al., 2015; Stumpf et al., 2003);
however, to our best knowledge, the model has never been
applied to high-Arctic lakes. Volumetric estimates with the
resolution provided here (30 m horizontal, 0.03 m vertical)
have never been attempted for Pleistocene sand sea lakes,
and the method of depth derivation used in this paper has not
been employed in the Arctic.

2 Data and methods

2.1 Depth data acquisition

Depth points were sampled across 19 lakes during a field
expedition between 22 and 27 July 2017. The method of
data collection required landing on each target lake in a float
plane. A Humminbird 798ci HD SI Combo automatic sonar
unit was attached to the back of a float and sampled depth as
the plane taxied or drifted across the lake. Depth points were
each measured discretely as part of a depth-gradient transect
and were sampled at a frequency of one point per second with
an accuracy of 0.03 m (due to intrinsic machine error). The
number of points collected per lake is specified in Table 1.
Lakes were targeted that were large enough for a float
plane to land on in windy conditions (i.e., > ~ 1 km? lake
surface area) and that showed the presence of a distinct lit-
toral shelf and a deep basin in 2.5 m color-infrared aerial pho-
tography (US Geological Survey digital orthophoto quad-
rangles, DOQs). A single straight transect line was mapped
across each target lake prior to field visits to encompass a
wide depth range; however, due to windy conditions, such
lines were not always followed (Fig. 2). Nevertheless, in all
but two lakes, a depth range from the littoral shelf to the deep
central basin was captured (Table 1). It should be noted that,
as transects were comprised of individual points whose rela-
tionship to one another was unimportant to the modeling, the
direction, angle, and other qualities of the transect are signif-
icantly less important than the range of depths captured.
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2.2 Depth data processing

Depth data points from 17 of the 19 sampled lakes were com-
piled into a single file to facilitate initial processing, with the
lake IDs maintained in the database for lake-specific anal-
ysis. Two lakes where sampling occurred contained an in-
sufficient number of measurements to justify modeling their
bathymetry (models produced for these two lakes would have
been strongly overfitted). The dataset was then filtered to
13735 depth points; for each transect collected with the
Humminbird sonar, discrete points were evaluated relative to
the depths of their neighbors, and anomalous and zero-depth
points were manually removed from the dataset. This step
mitigated sonar errors and improved the smoothness of the
bathymetric profiles that were generated from each transect.
Subsequently, depths collected at the margins of two lakes at
the Pik Dunes (70.234° N, 153.183° W) were removed from
the dataset after manual inspection due to their anomalous
spectral signatures. The unique, white color of the sandy sub-
strate at this group of lakes and the extreme shallow nature
of the littoral shelves (~ 0.5 m deep) produce a spectral sig-
nature near the margins of lakes in the Pik Dunes area that
is easily confused with that of the surrounding land and thus
should not be used to analyze lake depth. These Pik Dunes
depth points represent outliers and had they been included,
our models would have had to reconcile associating strik-
ingly different spectral values with similar depth values. This
likely would have decreased overall model performance with
the only potential benefit of modeling a limited number of
marginal pixels more accurately.

2.3 Landsat image selection

Landsat-8 Operational Land Imager (OLI) imagery was cho-
sen for comparison with measured depth data due to its large
swath, 30 m spatial resolution, and quality (as assured by
US Geological Survey preprocessing). A cloud-free Landsat
image (LCO8_L1TP_077011_20160805_20170222_01_TT)
was selected that both covered the study area and was ac-
quired on 5 August 2016, which is to say, at a similar time of
year to that of field data collection from the following year
(suitable imagery was not available for 2017). The late sum-
mer was chosen to provide data for a time when lakes are at
an intermediate level, which is to say, lakes are free of ice
but have not yet reached their lake level minimums (deter-
mined when evaporation exceeds precipitation; Jones et al.,
2009). It should be noted that water volume varies season-
ally and interannually in accordance with precipitation of the
preceding 12 months, and therefore the estimated depth data
may not be representative of the lake levels year round or
from year to year. Nevertheless, these variations in lake level
are relatively small with surface area changes often around
0.6 % of total surface area (Jones et al., 2009). Furthermore,
of these area changes, the majority of change occurs at the
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Table 1. Sampling specifications for each study lake. The number of sample points and measured depth range were calculated after the points
were processed for quality assurance (e.g., anomalous depth pixels removed) but before resampling to the single point per pixel dataset.

Lake ID  Centroid latitude = Centroid longitude Number of Measured

(decimal degree) (decimal degree)  points sampled  depth range (m)
2964 70.3616 —153.6750 703 1.5-11.8
3442 70.3168 —153.8160 1065 0.8-2.4
3839 70.2875 —153.8620 1401 1.6-6.1
4199 70.2457 —154.4680 645 1.2-12.8
4222 70.2484 —153.1460 1216 0.2-11.7
4291 70.2386 —153.2030 479 0.2-6.2
4365 70.2304 —153.2500 287 0.2-4.9
4782 70.1983 —153.3150 870 0.2-2.6
5211 70.1581 —153.9300 762 0.7-5.0
5242 70.1585 —154.2260 745 1.9-8.3
5326 70.1349 —154.1280 656 0.64.4
5570 70.0948 —153.7480 392 0.8-10.4
5893 70.0577 —153.5010 1113 0.3-21.3
6058 70.0285 —153.3670 284 0.6-17.0
6167 70.0122 —153.0930 1715 0.8-14.6
6199 70.0110 —153.4720 991 2.1-10.7
6274 69.9967 —153.0690 280 0.3-13.2

shallow littoral shelves and therefore results in little volume
change (Jones et al., 2009).

As no ice-free, cloud-free Landsat images exist that cover
all study lakes for late summer 2017, we selected a Landsat
image from 2016 in order to maximize the number of lakes
included for which field data exist, i.e., the number of lakes
for which we could model volume. One potentially promis-
ing Landsat image exists that covers our study area; however,
(a) it was acquired at the end of June just after ice-out when
the lake levels are at a seasonal high, and (b) slight cloudiness
over some study lakes produced models that predicted depths
up to 48 % less accurately. The use of 2016 imagery is fur-
ther justified as the interannual depth and volume changes are
smaller than our error metrics. When considering one repre-
sentative lake (located at 70.147° N, 151.765° W), a contin-
uous depth logger recorded a depth difference of 0.03 m (or
1 % of the annual average depth at that point) between the im-
agery acquisition date (5 August 2016) and the time of data
collection (26 July 2017). This represents a smaller depth
difference than the 0.05 m difference measured between 30
June 2017 and 26 July 2017. The maximum observed depth
change at this location between 1 January 2016 and 26 July
2017 was on the order of 1 m. The observation of an im-
agery time series of a different group of lakes that are typ-
ically highly responsive to water level changes (located at
70.539° N, 152.733° W) similarly revealed lake level condi-
tions to be more comparable between 5 August 2016 and 21—
27 July 2017 than between these latter dates and 1 July 2017.
Overlaying lake surface area changes on an airborne-lidar-
derived digital surface model showed a change in water level
of ~0.10m between 5 August 2016 and 1 July 2017, indi-
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cating a depth change well within our error margins (Alaska
North Slope LiDAR Data — Project Code ALCC2012-05,
2018).

2.4 Landsat image processing and analysis

Study lakes were visually assessed in ArcGIS to provide a
Boolean turbidity rating for the purpose of analyzing the
success of different models. Lake clarity was determined by
comparing the selected Landsat image (as an RGB true color
composite) with a Landsat image acquired on 13 July 2016
(23 d prior to the acquisition date of the selected Landsat
image), as well as color-infrared aerial photographs (DOQs)
with a 2.5 m horizontal resolution (Fig. 3). Lakes that showed
the presence of sediment plumes or water cloudiness near the
site of in situ data collection on the selected Landsat image
were designated as turbid. Lakes which displayed minimal
suspended sediment distant from the area where depths were
recorded were designated as turbid as well; however, they
were analyzed as if they were clear as the impacts of sedi-
ment would not be seen in the depth-point-derived spectral
signatures. Lakes that did not have sediment plumes were
designated as clear.

We validated our qualitative visual turbidity assessment
using the ACOLITE (software developed at the Royal Bel-
gian Institute of Natural Sciences for aquatic applications
of Landsat and Sentinel-2) implementation of the total sus-
pended matter (TSM) algorithm (Nechad et al., 2010). This
algorithm provided quantitative support, agreeing with the
visual assessment in 14 out of 17 lakes. However, this algo-
rithm proved highly sensitive to depth (Spearman rank or-
der correlation = —0.774; p-value < 0.001) and did not de-
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tect sediment in deeper waters to the same extent as shal-
low waters, effectively ignoring the sediment plumes iden-
tified visually. Furthermore, the majority of shallow waters
were assigned high TSM values by the algorithm, making
the differentiation by turbidity at the lake-wide level irrele-
vant. Considering the points in our transects, 91 % of high-
sediment (i.e., TSM values in or above the 75th percentile)
points had measured depths <2 m, and only five outlier high
sediment values were detected in points with depths >4.6 m.
To directly address the sediment content in deeper waters,
the mean TSM value was calculated at each lake from sam-
ple points with depths >2m. Seven out of eight lakes with
the highest average TSM values had been designated as tur-
bid by our qualitative assessment (note that one of these lakes
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was designated as turbid away from the sampling site — this
is counted as an error). In addition, all but one of the nine
lakes with the lowest mean TSM values were designated as
clear at the sampling site.

The chosen Landsat image was clipped to the study area,
and a normalized difference water index (NDWI) water mask
was created using ArcGIS tools to subset our study lakes
from the surrounding land pixels (McFeeters, 1996). Each
of our study lakes were then extracted to individual geoTIFF
files for use in bathymetry map production.

2.5 Spectral-depth point extraction

Top-of-atmosphere (TOA) reflectance values from the blue
band (band 2; 452-512nm), green band (band 3; 533-—
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590 nm), and red band (band 4; 636-673 nm) of the Land-
sat image were extracted to each point. Although surface re-
flectance (SR) imagery was available, we elected to use TOA
reflectance initially because SR algorithms are often subopti-
mal when looking at water bodies due to the low-level water-
leaving radiance, and furthermore, we are working at high
altitudes where SR corrections are unreliable. Upon compar-
ison, the SR and TOA reflectance values in our selected RGB
imagery (discussed below) were very similar (R%>0.99) at
our sample locations. The coastal band (band 1;435-451 nm)
was not included here as there was no basis for its examina-
tion in prior similar studies (e.g., Jagalingam et al., 2015) at
the time this analysis was conducted, and unexpectedly, pre-

Earth Syst. Sci. Data, 13, 1135-1150, 2021

C. E. Simpson et al.: Landsat-derived bathymetry of lakes

15433°W  1543°W 15427°W 15423°W 1542°W 154.17°W 154.13°W

154.17° W 154.13° W

153.73° W

153.77° W

liminary results were not greatly improved by the inclusion
of the coastal band.

To minimize error caused by associating a single pixel’s
spectral signature with multiple depth points (i.e., to reduce
compatibility issues between the spatial resolution of the
sonar transects and the Landsat imagery with which the depth
points were compared), the dataset was resampled to include
only one depth per pixel. This depth was calculated by aver-
aging the sonar depths of all measurements within the pixel,
removing depths greater than 1 standard deviation from this
average, and recalculating the depth mean of the pixel. Ag-
gregating per-pixel measurements allowed us to identify the
dominant depth represented by the pixel’s lake color and im-
prove the precision of training data (i.e., reduce the range of
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input depths associated with a given band ratio). This pixel-
representative depth point provides the final depth value used
in analysis. All data visualization and manual data editing
were undertaken using ArcMap; automated data editing was
done with the aid of ArcGIS and python.

2.6 Model application for lake bathymetry mapping

A total of 12 variations of a spectral-depth algorithm were
examined to model bathymetry, each characterized by a spe-
cific band ratio, adjustment factor, and growth factor (Ta-
ble 2). More specifically, the blue to green, blue to red, and
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Figure 2. Transects were measured across 17 study lakes. Although the transects follow irregular paths (due in part to wind conditions and
sonar error), all but two of the transects capture a range of depths from the deep central basins to the shallow outer shelves. These are the full
transects before resampling to a single point per pixel. Where the form of a transect is unclear, inset maps are provided. Landsat-8 image is
courtesy of the US Geological Survey.
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153.47° W
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green to red band ratios were considered. Such ratios were
either simple (e.g., blue band/green band) or transformed ac-
cording to Stumpf et al. (2003):

In(nR;)
In(nR;)’

ey

where R; and R; represent the TOA reflectances for bands i
and j, respectively. A constant n is included to effect a posi-
tive output (Stumpf et al., 2003). We set n to 500 as it ensured
that the logarithm would be positive given any feasible band
value input, R, from our image.
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Figure 3. Sediment is detected in RGB Landsat imagery (acquired 5 August 2016) of a representative study lake (a, b). This is confirmed
as a temporary sediment plume by comparing the image of the lake used in modeling to 2.5 m color-infrared photography acquired on 18
July 2002 (¢) and a Landsat image acquired on 13 July 2016 (d) in which no sediment plumes are visible. Landsat-8 images and digital
orthophoto quadrangles (DOQs) are courtesy of the US Geological Survey.

Table 2. Equations for modeling depth. Modeled depth (Z) is calculated with each of four equations that are tuned with each of three input
band pairs. R; and R; represent the top-of-atmosphere reflectances of bands i and j, respectively. Band pairs (band i and band j) include
the blue and red bands, the blue and green bands, and the green and red bands. Tunable parameters m and m( are derived by comparing
spectral signatures with depth (as in Fig. 4a—c).

Ratio adjustment type

Transform Simple

_ (R \ _ _ (R _
Z""‘(m(m,)) 0 Z_ml(Rj) o

Linear

Growth factor

(%)
mi\ g
Z =mge J

m ( In(nR;) )
. iR,
Exponential Z =mge nonkp)

The band ratio and the depth measurement of the point
at which the spectral signature was extracted were corre-
lated using either a linear regression or an exponential func-
tion (Fig. 4a—c). The constants obtained from each of these
models became the parameters with which to tune the lin-
ear or exponential equations for the validation data. The root
mean squared error (RMSE) of each regression between in-
put depths and input band ratios provided error statistics for
modeled depths. In summary, the 12 model variations were

Earth Syst. Sci. Data, 13, 1135-1150, 2021

each characterized by (1) one of three band ratios, (2) one
of two transformation methods, and (3) one of two growth
relationships (Table 2).

For each lake, half of the depth points were semi-randomly
selected as input data, while the remaining data were used for
validation purposes. To ensure that the model was trained and
validated with data spanning the full range of input depths,
however, the maximum and minimum depths were assigned
to the group of data to be input into the model, while the
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Figure 4. Coefficients of the trend lines between band ratios and measured depths (a—c) are used to tune the depth models for each lake.
Different models (specified for each lake in Table 3) predicted lake depth best at each of these three lakes. The correlation between measured
and modeled lake depths at three representative lakes (d—f) reveals an underestimation of deeper depths and overestimation of shallow depths.

Error bars represent root mean squared error (RMSE).

second deepest and second shallowest depth points were re-
tained in the list of validation data. To obtain the best regional
model, this same process was undertaken (i.e., selection of
half of the data to train the models; application of each of
the 12 models); however, a sufficient number of depth points
exist in the full dataset such that the explicit assignment of
extreme depth values as input and validation data was unnec-
essary (i.e., the selection was fully random).

Each of the 12 models was tested at each of the 17 lakes
and on a regional scale. To account for the slight variations
in each model’s capacity for depth prediction given differ-
ent random sets of training data, 1000 trials were performed.
This allowed us to assert that the model designated as the
most accurate model for a given lake (as determined from
one trial) was the same model that most frequently produced
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the best results for that lake. The best model for each lake, as
evaluated by the coefficient of determination between target
and predicted data, was used to calculate depths at each pixel
in that lake and produce bathymetry raster maps. Depths
were multiplied by 900 m? (the area of one Landsat pixel)
and integrated to quantify the lake’s water volume. A sum-
mary of the data acquisition, processing, and analysis steps
is provided in Fig. 5.

The most accurate models (i.e., the models that were best
able to determine lake depth for the greatest number of lakes)
were models with an exponential growth factor with input
band ratios of blue/green or blue/red (Table 3). In all but three
of the study lakes, an exponential relationship was found be-
tween spectral signature and depth. At only two lakes did the
green to red band ratios provide the best results. The trans-
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Figure 5. Sequence of processing, analysis, and production steps
used to map bathymetry and derive lake water volumes with depth
points and Landsat imagery.

form ratio provided the best results in 4 out of the 17 lakes,
while the simple ratio was used to best model depths in the
remainder of the lakes. The difference between the modeled
results of the pure versus transform ratios was marginal, how-
ever, with an average difference between R? values generated
by the respective models of 0.016.

Unsurprisingly, the blue band proved to be the most useful
in determining depth overall, while the red band was useful
in the presence of turbidity. The blue band was used to tune
depths at all but two lakes. Blue light has a shorter wave-
length and consequential higher energy which allows it to be
absorbed less in water than either green or red light. Thus,
the reflectance of the blue band decreases less than either
the green or red bands in proportion to increasing depth. In
contrast, red light is able to penetrate only several meters
into most types of water before it becomes absorbed. The
red band proved useful in distinguishing depths at both the
sandy littoral shelves, where water is typically 0.5-3m in
depth, and where suspended sediment was present in the wa-
ter. As sand reflects red light more than blue or green light
and suspended sediment can reduce penetration of blue or
green wavelengths in deeper water, this is expected. All of
the eight lakes where the blue to green band ratios provided
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the best result were free of sediment where measurements
were taken. Furthermore, all of the seven lakes designated as
turbid at the data collection site required the incorporation of
the red band to achieve the best depth prediction. One anoma-
lous lake where no sediment was detected required the incor-
poration of the red band to predict depth most accurately.

The two lakes where the green/red band ratio best tuned
the model were unique in terms of physical factors or sam-
pling locations. One of these lakes showed the presence of
an unusual purple-red patch on a shelf between the littoral
shelf and deep zone. Underwater vegetation likely accounts
for this unusual spectral signature, and thus it is unsurpris-
ing that this lake required a unique band ratio to accurately
tune the model. Measurements at the second lake accounted
for the shallowest range of depths of any lake (0.2-2.1 m),
which may have led to stronger reflectance in the red band as
the sand was more prominent.

In addition, an exponential relationship was able to bet-
ter model depth ranges that include shallow depths of around
0.8 m, an outcome that is likely the result of incomplete tran-
sect sampling rather than physical significance. Of the three
lakes where a linear function provided the best model, two
were the lakes where depths on the littoral shelf were not
measured; the third lake contained only a single measure-
ment of the littoral shelf. Therefore, the lakes best modeled
with a linear growth relationship are associated with mea-
sured bathymetry profiles that do not contain sufficiently
shallow littoral shelf depths. This is evidenced by the pre-
diction of negative depths at littoral shelves when applying
linear models, the product of the strongly negative y inter-
cepts that render low spectral signature ratios negative. This
leads us to conclude that the linear relationship between band
ratios and depths at these lakes is more likely the product of
the locations where data were gathered rather than a result of
physical significance. It is thus important to tune models to
all regions (and all depths) of the lake.

3 Results

We produced bathymetry maps for 17 lakes on the ACP
(Fig. 6); however, the accuracy of these maps varies by lake
and by depth. The best model variants for individual lakes
where depth data were collected were able to account for
58.5 %-97.6 % of depth variability (median R? = 0.86, mean
R2 =0.82; Table 3). Regional-scale models, however, were
able to accurately explain less than half of the regional depth
variability. Median uncertainty of single lake depth models
(based on RMSE) was 1.23 m, while the average RMSE of
the models was 1.44 m. However, error was not distributed
equally across depths, and bathymetry rasters tend to rep-
resent a more limited range in depth than the measured
depth points (Tables 1, 3). In general, models tended to over-
estimate shallower depths and underestimate deep depths
(Fig. 4d—f). When considering model-predicted depths at all
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Table 3. The best spectral-depth model for each lake (based on Rz). A simple ratio exponential function provided the best model for the
greatest number of lakes, while the blue/green and blue/red band ratios both provided good inputs for models at different lakes, accounting
for the best spectral-depth models at eight and seven lakes, respectively. The average R? of the best model at each lake is 0.818 with an

average root mean squared error (RMSE) of 1.439 m.

Lake ID  Modeled depth  Turbid? Best method R? RMSE
range (m) Ratio type = Bandratio =~ Growth type

2964 1.6-11.7 No Transform  Blue/green  Linear 0.802 1.973

3442 0.9-1.8 Yes Simple Green/red  Exponential  0.916 0.270

3839 14-5.1 Yes Simple Blue/red Exponential ~ 0.871 0.600

4199 0.6-8.2 No Simple Blue/green  Exponential ~ 0.632 2.132

4222 04-89 Yes Simple Blue/red Exponential ~ 0.689 2.307

4291 0.8-4.5 Yes Simple Blue/red Exponential ~ 0.585 0.835

4365 0.2-3.7 No Simple Blue/green  Linear 0.784 0.478

4782 04-22 Yes Transform  Green/red  Exponential ~ 0.893 0.138

5211 0.8-4.7 Yes Simple Blue/red Exponential ~ 0.804 0.563

5242 2.1-72  Yes* Simple Blue/green  Exponential  0.976 0.684

5326 0.8-4.4 No Simple Blue/red Exponential ~ 0.862 0.425

5570 1.1-64 No Simple Blue/green  Exponential — 0.654 1.957

5893 0.5-21.1  Yes* Transform  Blue/green  Exponential  0.954 1.931

6058 0.6-9.9 No Simple Blue/green  Exponential  0.866 3.568

6167 0.3-11.1  Yes* Transform  Blue/green  Exponential  0.848 2.604

6199 1.0-9.5 Yes Simple Blue/red Linear 0.907 1.227

6274 0.3-8.8  Yes* Simple Blue/red Exponential ~ 0.867 2.765

* Some suspended sediment is visible; however, it does not overlap the area where depths were measured.

study lakes, depth points less than 2.95 m were overestimated 5¢w 53w
by an average of 0.21 m (or 17.2 % of their true depth), with Ssa l
61.3 % of depths in this shallow-water group experiencing o
some model overprediction. Meanwhile, 66.9 % of depths 0 3442 F703°N
greater than 2.95 m were underestimated with an average dif-
ference between measured and modeled depths of 0.97 m. On “g 383g 4222
average, points deeper than 2.95 m were underestimated by 284 4291

5 %. The threshold of 2.95 m represents the intersection be-
tween the 1:1 line and the correlation between measured
and predicted depths.To address the underestimation of deep
depths and overestimation of shallow depths in our models,
additional transformations must be made, a goal that is out-
side the scope of this work.

Bathymetry accuracy variability by depth is at least par-
tially explained by the fact that lake depth points are skewed
heavily towards shallow depths, with approximately half of
the data points representing depths less than 2.95m. Only
about 15 % of the data points represented depths above 10 m.
This is a function of the generally shallow nature of lakes on
the Arctic Coastal Plain and the large area covered by littoral
shelves within most study lakes (as seen in satellite imagery).
Because of the relatively small number of deep water depth
points, models were able to map bathymetry less accurately
at deep central basins, and therefore the bathymetry maps
contain underpredicted deep water depths. In contrast to the
skew in depth points, lakes were evenly divided into shallow
and deep classes. A total of 9 out of 17 lakes had some mea-
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Figure 6. Bathymetry was modeled individually for each study lake
and all bathymetry rasters were ultimately mosaicked together. The
color bar indicates the depths predicted by the model variants at
each lake; gray represents the pixels at which negative depths were
modeled (these negative depths have been reclassified to —1 in the
published bathymetry raster dataset; Simpson, 2019).

sured depths >10m, and all of the study lakes had measured
depths <2.2m (Table 1).
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Figure 7. A strong correlation exists between surface area and mod-
eled volume for the 17 lakes we analyzed.

Lake volumes ranged from 1.056x 103km?® at
the smallest lake (total surface area = 1.089km2) to
57.416 x 1073 km?> at the largest lake (total surface area
= 18.998km?) with a median volume of 7.20 x 1073 km?
(Table 4). Volume and surface area were strongly correlated
(R2 =0.90) for the 14 lakes for which complete volumes
could be modeled (Fig. 7). Linear models predicted negative
depths across much of the lakes’ shallow littoral shelves;
thus, the modeled volumes of the three lakes for which
linear models produced the most accurate results are an
incomplete representation of the lake’s water storage. Pixels
for which models predicted negative depths were reclassified
to a secondary NoData value of —1 and ignored when
calculating water volume (i.e., water volume was calculated
for the surface area with predicted depths greater than zero;
Fig. 8). Ground truth lake volume data do not exist for the
study lakes at a similar scale of analysis, rendering error
metrics unfeasible (aside from those implicitly contained in
the depth model error).

4 Discussion

4.1 Depth analysis

Our measured depth points capture the deep water depths
on the ACP that many other studies neglect. Furthermore,
depth was accurately derived from Landsat OLI imagery for
individual lakes (the average R* value of the selected mod-
els for each lake was 0.82). Our R? values are consistent
with those found in the literature (e.g., Jagalingam et al.,
2015; Stumpf et al., 2003), and thus our selected models and
derived maps can be considered successful. The regional-
scale model, however, was unsuccessful, and regional vol-
ume analysis and mapping were rejected. This lack of model
portability between lakes may be due to the fact that the blue

Earth Syst. Sci. Data, 13, 1135-1150, 2021

C. E. Simpson et al.: Landsat-derived bathymetry of lakes

Table 4. Modeled lake volumes. Individual lake volumes were esti-
mated by multiplying the modeled depth for each pixel by a constant
factor of 900 m? (Landsat spatial resolution). Depths were modeled
by applying the best spectral-depth model for the lake (Table 3).
Linear depth models predicted negative depths for some pixels; vol-
ume estimates derived from such models (namely the models ap-
plied at lakes 2964, 4365, and 6199) include only those pixels with
modeled depths greater than zero. The percent of the surface area
for which depth estimates at a lake were positive (in contrast to the
total surface area of a given lake derived using the NDWI mask) is
quantified.

Lake ID Total Surface area Modeled
surface  with depths modeled volume

area (km?) (% total area) (1073 km?3)

2964 4.631 25.78 11.113
3442 1.089 100 1.056
3839 5.419 100 10.367
4199 1.953 100 3.454
4222 1.533 100 8.371
4291 0.637 100 2.229
4365 1.046 61.66 2.102
4782 6.455 100 7.202
5211 9.865 100 19.280
5242 18.998 100 57.416
5326 4.846 100 10.545
5570 0.913 100 2.464
5893 10.552 100 37.949
6058 1.559 100 6.336
6167 2.778 100 10.343
6199 2.038 37.24 4.943
6274 0.662 100 2.484

band, most useful in determining depth, is the most suscepti-
ble to contamination from atmospheric aerosols. This finding
is consistent with Smith and Pavelsky (2009) who found sur-
prisingly high variability in a collection of remotely sensed
lake storage volumes on the Peace—Athabasca Delta, Canada,
despite their having a similar physiographic setting and mor-
phology.

4.2 Limitations

The depth estimates are only tuned to the extrema of depths
measured at each lake. Although gathering data across a
lake’s full bathymetric profile was attempted, it is likely that
the depth minima and maxima were not captured at all lakes.
Collecting data with sonar attached to a float plane limited
the measurement of depths approaching 0 m. Few pixels were
sampled at the minimum depth that was able to be measured
(0.2m), and thus there is insufficient tuning to accurately
model the littoral shelves of lakes. Furthermore, while we
attempted to gather depths across the deep central basins, it
is impossible at present to know whether we sampled the
deepest point without measuring the entirety of the basin.
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Figure 8. Modeled lake bathymetry at a representative lake (a) reveals the tendency of linear depth models to drastically underestimate
the depths of the littoral shelves when not calibrated to shallow depths. Conversely, the exponential depth models applied to other lakes are
promising across both littoral shelves and central basins (b, ¢). The products of three different spectral-depth model variations are overlain on
the Landsat imagery from which the products were derived. Adjacent to each depth product is the original Landsat imagery of the lake. Color
bars indicate the depths predicted by the model variants at each lake, while the gray area (a) represents the pixels at which negative depths
were modeled (these negative depths have been reclassified to —1 in the published bathymetry raster dataset; Simpson, 2019). Landsat-8

image is courtesy of the US Geological Survey.

Thus, depth maps may not accurately depict a lake’s maxi-
mum depth.

The limited spatial resolution of Landsat imagery, in com-
parison with sonar depth data, constitutes the primary limi-
tation to this work. As depths had to be averaged to conform
to the assumption that each spectral signature corresponded
to a discrete depth, the spatial resolution and depth preci-
sion of the sonar depths were greatly degraded, potentially
accounting for some of the inaccuracies in the model vari-
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ants. Modeling bathymetry with satellite imagery of a higher
spatial resolution would allow for the use of more training
points and thus likely improve the accuracy of depth and
volume predictions. Furthermore, samples were taken from
a small fraction (in terms of surface area) of the lake (i.e., the
entire lake’s bathymetry was not mapped, rather data points
were collected along discrete and irregular transects). Thus,
a mismatch exists regarding the validation data and the natu-
ral phenomenon being modeled. Data at such a small spatial
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scale can never confirm with total accuracy the detailed na-
ture of lake bed bathymetry. Constrained by cost and time,
however, collecting data at 17 remote lakes is an important
step towards understanding sand sea lake bathymetries on
Alaska’s Arctic Coastal Plain.

4.3 Implications and future directions

Lakes on the Pleistocene sand sea may be categorized based
on depth, littoral substrate, and water clarity, as seen in the
study lakes, with such categories providing candidates for
different model variations. Future projects may use this work
to semiautomatically derive depths across the region, first
manually classifying target lakes and then applying differ-
ent model variations to each class. Furthermore, subregions
of each lake (e.g., deep basins, shallow shelves) may be clas-
sified in future studies and a different model variant applied
to each subregion (e.g., variants that incorporate the red band
applied to littoral shelves). Methods of lake subregion dif-
ferentiation may include either (1) manual delineation based
on spectral signatures or (2) automatic delineation with the
aid of synthetic aperture radar (SAR) to determine regions
of floating versus bedfast ice (which correspond with deep
and shallow water, respectively; demonstrated by Engram et
al., 2018; Jeffries et al., 1996). Additional future work may
include validation of lake water volumes as additional bathy-
metric datasets become available.

5 Data availability

We present a dataset to greatly increase the number of
in situ measurements of lake depth on the little-studied
inner Arctic Coastal Plain of Alaska. The dataset con-
tains 13 735 point measurements of bathymetric depth mea-
sured across 19 lakes and is freely available through
the National Science Foundation Arctic Data Center:
https://doi.org/10.18739/A2SN01440 (Simpson and Arp,
2018). The second dataset created for this project is com-
prised of 17 bathymetry rasters, one for each lake for which
a sufficient number of depth points were collected. These
rasters represent the depth predictions of the best performing
model for each individual lake and are also freely available
through the National Science Foundation Arctic Data Center:
https://doi.org/10.18739/A2HT2GC6G (Simpson, 2019).

6 Conclusions

This work provides a unique in situ depth dataset for lakes on
the ACP and leverages these data alongside satellite remote
sensing to map lake bathymetries and estimate volume. Lake
volumes can be monitored using remote sensing; however,
at least one field visit must be made in order to select the
best model for a given lake. As of yet, it is still challenging
to universally model the bathymetry of lakes across northern
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Alaska. Instead, field data continue to be necessary to train
and calibrate models on a per-lake basis.

Furthermore, lake morphology may evolve in glaciated re-
gions such as northern Alaska in response to hydroclimatic
changes and permafrost degradation (Arp et al., 2011; Lil-
jedahl et al., 2011; Nitze et al., 2017). This implies that indi-
vidual field surveys and static modeling efforts such as this
one may not accurately represent ground conditions ad infini-
tum, particularly in the presence of a rapidly warming Arc-
tic climate (Nitze et al., 2017). In addition to the persistent
need for field data to address modeling limitations to spatial
scale, field data collection and/or dynamic models will be im-
portant components if we are to model bathymetry across a
longer temporal scale.

Despite these limitations, the simplicity of the depth mod-
eling and bathymetry mapping approach has important ben-
efits. The models can be tuned very rapidly and require rela-
tively few data points for training in comparison to machine
learning models (e.g., Sagawa et al., 2019), a useful feature
when training data must be collected in a relatively inaccessi-
ble region such as northern Alaska. In addition, the compar-
ative nature of the demonstrated modeling facilitates analy-
sis of individual lake characteristics. Overall, this work pro-
vides an effective dataset and methodology for mapping the
bathymetry of individual lakes in a unique geologic setting
on the ACP.
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