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Dispersive optical model analysis of 208Pb generating a neutron-skin prediction
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A nonlocal dispersive optical model analysis is carried out for neutrons and protons in 208Pb. Elastic-scattering
angular distributions, total and reaction cross sections, single-particle energies, neutron and proton numbers,
the charge distribution, and the binding energy are fitted to extract the neutron and proton self-energies both
above and below the Fermi energy. From the single-particle propagator derived from these self-energies, we
determine the charge and matter distributions in 208Pb. The predicted spectroscopic factors are consistent with
results from the (e, e′ p) reaction and inelastic-electron-scattering data to very high-spin states. Sensible results
for the high-momentum content of neutrons and protons are obtained, with protons appearing more correlated,
in agreement with experiment and ab initio calculations of asymmetric matter. A neutron skin of 0.25 ± 0.05 fm
is deduced. An analysis of several nuclei leads to the conclusion that finite-size effects play a nonnegligible role
in the formation of the neutron skin in finite nuclei.
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I. INTRODUCTION

The description of the properties of heavy nuclei is at
present restricted to mean-field approaches. For a nucleus
like 208Pb, a large number of data exist that are completely
outside the scope of these methods. In particular, elastic-
nucleon-scattering data cannot be adequately accounted for
with a real mean-field potential, as it does not account for
inelastic processes that remove flux from the elastic channel.
Properties of the ground state such as the charge density can
be directly probed through elastic electron scattering [1,2].
Mean-field methods do not account for all the details of the
deduced proton distribution, in particular, in the interior of the
nucleus, and are only fitted to the experimental root-mean-
squared (rms) radius. Of related interest is the single-particle
structure in the ground state of 208Pb, most delicately probed
with the (e, e′ p) reaction [3–5]. Another insight is provided
by inelastic electron scattering to very high spin states [6],
which was interpreted, based on results from ab initio cal-
culations of nuclear matter, in terms of partial occupation of
single-particle orbits in 208Pb [7]. Short-range properties of
nuclei [8], as demonstrated by high-momentum components
of nucleons in the ground state and their isospin dependence
[9], provide complementary information on the ground state.
Their presence documents that mean-field orbits are depleted
and need to be compensated by the occupation of nucleon
states that are empty in the mean-field picture [10].
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A framework to encompass both ground-state proper-
ties and elastic-nucleon-scattering data is provided by the
dispersive optical model (DOM) originally developed by
Mahaux and Sartor [11] and more recently reviewed in Refs.
[12,13]. The underlying formal framework of this approach
is provided by the Green’s function formulation of the many-
body problem in which the nucleon propagator receives both
particle and hole contributions, thereby inextricably linking
these domains [14]. The usual local implementation of the
DOM [11] was extended to include fully nonlocal potentials
in Ref. [15], with a complete analysis of all available 40Ca
data including the charge density. The subsequent results of
the particle spectral density in Ref. [16] demonstrated that
the constraint of elastic-scattering data directly provides infor-
mation on the depletion of orbits which are mostly occupied
in the ground state, confirming the relevance of the method
to quantify single-particle properties. This was conclusively
confirmed in Ref. [17], where the DOM ingredients pertaining
to both the overlap functions and the distorted waves provided
an accurate description of 40Ca(e, e′ p) 39K cross sections in
the relevant kinematic domain. The latter results increased the
canonical values of proton spectroscopic factors for double
closed-shell nuclei [18] by about 0.05 due to the use of
nonlocal potentials to describe the proton distorted waves.
The coincidence cross sections of the valence transitions in
the 48Ca(e, e′ p) 47K reaction are also accurately described,
provided proper care is taken of the proton reaction cross
sections in the DOM analysis [19]. The resulting N − Z
trend of the spectroscopic strength near the Fermi energy
demonstrates an increased reduction of the proton removal
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strength, with a slope that is not as large as in Ref. [20] but
larger than obtained for transfer reactions [13] and in (p, 2p)
reactions [21,22].

While addressing all features of single-particle properties
of 208Pb in the present work, special emphasis is placed
on the neutron distribution in the ground state. A critical
question was addressed in Ref. [23], where it was shown that
when sufficient data are available for neutron scattering, in
particular, total cross sections, it is possible to deduce sensible
predictions for the neutron distribution of 48Ca employing a
nonlocal DOM analysis. The neutron distribution of nuclei is
only vaguely understood. In particular, for a nucleus which
has a large excess of neutrons over protons, are the extra
neutrons distributed evenly over the nuclear volume or is this
excess localized in the periphery of the nucleus? A quantita-
tive measure is provided by the neutron skin, defined as the
difference between neutron and proton rms radii,

!rnp = rn − rp,

where

r2
n,p = 1

Nn,p

∫ ∞

0
drr4ρn,p(r) (1)

and Nn,p is the normalization of the particle point distributions
ρn,p(r). Note that the standard convention is to define the neu-
tron skin with respect to the nucleon point distributions, thus
the size of the nucleons is not taken into account in theoretical
calculations (the size of the nucleons is also factored out from
experimental form factors [24]). Accurate knowledge of the
distribution of neutrons in nuclei is important for calculations
of the nuclear matrix elements relevant to β-decay processes
[25,26]. Furthermore, the nuclear symmetry energy, which
characterizes the variation of the binding energy as a function
of the neutron-proton asymmetry, opposes the creation of
nuclear matter with excesses of either type of nucleon. The ex-
tent of the neutron skin is determined by the relative strengths
of the symmetry energy between the near-saturation central
and the less dense peripheral regions. Therefore, !rnp is a
measure of the density dependence of the symmetry energy
around saturation [27–30]. This dependence is very important
for determining many nuclear properties, including masses,
radii, fission properties, and locations of the drip lines in the
chart of nuclides. Its importance extends to astrophysics for
understanding supernovas and neutron stars [31,32] and to
heavy-ion reactions [33].

Given the importance of the neutron skin in these various
areas of research, a large number of studies (both experimental
and theoretical) have been devoted to it [34]. While the value
of rp can be determined quite accurately from electron scatter-
ing [35], the experimental determinations of rn are typically
model dependent [34]. However, the use of parity-violating
electron scattering does allow for a nearly model-independent
extraction of this quantity [36]. The present value for 208Pb
extracted with this method from the PREX Collaboration at
Jefferson Lab yields a skin thickness of !rnp = 0.33+0.16

−0.18 fm
[24]. The present DOM analysis of 208Pb leads to a connection
with current experimental data on the neutron skin. Unfortu-
nately, the uncertainty from PREX is too large to constrain
the majority of the theoretical predictions of the neutron skin

from mean-field calculations [37]. Another measurement of
the neutron weak form factor of 208Pb was conducted in the
summer of 2019 at Jefferson Lab under the title PREX2.
This is an updated version of the original PREX experiment
which is intended to provide a much narrower error bar for the
neutron skin in 208Pb. Thus, it is timely to make a prediction
of the neutron skin now. Our analysis of 208Pb is similar to
that in our previous work on 48Ca in Ref. [23], reporting a
neutron skin of !rnp = 0.249 ± 0.023 fm in 48Ca. A detailed
comparison of the neutron skins of 208Pb and 48Ca is presented
in this article.

In Sec. II a summary of the relevant theory is presented
by providing concepts of the Green’s function method in
Sec. II A and the DOM in Sec. II B. The results of the nonlocal
DOM analysis are provided in Sec. III. The neutron skin is
discussed in Sec. IV, with conclusions given in Sec. V.

II. THEORY

This section is organized to provide a brief introduction
into the underlying theory of the method used.

A. Single-particle propagator

The single-particle propagator describes the probability
amplitude for adding (removing) a particle in state α at one
time to the ground state and propagating on top of that state
until a later time at which it is removed (added) in state β
[14]. In addition to the conserved orbital and total angular
momentum (% and j, respectively), the labels α and β in
Eq. (2) refer to a suitably chosen single-particle basis. In this
work the Lagrange basis [38] was employed. It is convenient
to work with the Fourier-transformed propagator in the energy
domain,

G% j (α,β; E ) =
〈
&A

0

∣∣ aα% j
1

E −
(
Ĥ − EA

0

)
+ iη

a†
β% j

∣∣&A
0

〉

+
〈
&A

0

∣∣ a†
β% j

1

E −
(
EA

0 − Ĥ
)
− iη

aα% j
∣∣&A

0

〉
,

(2)

with EA
0 representing the energy of the nondegenerate ground

state |&A
0 〉. Many interactions can occur between the addition

and the removal of the particle (or vice versa), all of which
need to be considered to calculate the propagator. No assump-
tions about the detailed form of the Hamiltonian Ĥ need to
be made for the present discussion, but it is assumed that
a meaningful Hamiltonian exists that contains two-body and
three-body contributions. Application of perturbation theory
then leads to the Dyson equation [14], given by

G% j (α,β; E ) = G(0)
% (α,β; E )

+
∑

γ ,δ

G(0)
% (α, γ ; E )*∗

% j (γ , δ; E )G% j (δ,β; E ),

(3)

where G(0)
% (α,β; E ) corresponds to the free propagator (which

only includes a kinetic contribution) and *∗
% j (γ , δ; E ) is the

irreducible self-energy [14]. The hole spectral density for
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FIG. 1. Neutron spectral functions of a representative set of % j shells in 208Pb. The particle states are differentiated from the hole states by
the dotted line representing the Fermi energy.

energies below εF is obtained from

Sh
% j (α,β; E ) = 1

π
Im G% j (α,β; E ). (4)

The diagonal element of Eq. (4) is known as the (hole) spectral
function, identifying the probability density for the removal of
a single-particle state with quantum numbers α% j at energy E .
The single-particle density distribution can be calculated from
the hole spectral function in the following way:

ρ(r) =
∑

% j

(2 j + 1)
∫ εF

−∞
dE S% j (r, r; E ). (5)

The spectral strength for a given % j combination can be found
by summing (integrating) the spectral function according to

S% j (E ) =
∑

α

S% j (α,α; E ).

The spectral strength S% j (E ) is the contribution at energy
E to the occupation from all orbitals with % j. It reveals
that the strength for a shell can be fragmented, rather than
concentrated at the independent-particle model (IPM) energy
levels. Figure 1 shows the spectral strength for a representative
set of neutron shells in 208Pb that would be considered bound
in the IPM. The peaks in Fig. 1 correspond to the binding
energy of the appropriate IPM orbital. For example, the s 1

2
spectral function in Fig. 1 has four peaks: three below εF ,
corresponding to the 0s 1

2 , 1s 1
2 , and 2s 1

2 quasihole states; and
one above εF , corresponding to the 3s 1

2 quasiparticle state.
Comparing the neutron spectral functions in Fig. 1 with the
proton spectral functions in Fig. 2 reveals that the proton
peaks are broader than those of the neutrons. The broadening
of these peaks is a consequence of the protons being more
correlated than the neutrons as determined by the fit to all
relevant experimental data.

The occupation of specific orbitals characterized by n with
wave functions that are normalized can be obtained from

Eq. (4) by folding in the corresponding wave functions [16]:

Sn−
% j (E ) =

∑

α,β

[
φn

% j (α)
]∗Sh

% j (α,β; E )φn
% j (β ). (6)

Note that this representation of the spectral strength involves
off-diagonal elements of the propagator. The wave functions
used in Eq. (6) are the solutions of the Dyson equation that
correspond to discrete bound states with one proton removed.
Such quasihole wave functions can be obtained from the non-
local Schrödinger-like equation disregarding the imaginary
part,

∑

γ

〈α| T% + Re *∗
% j (ε

−
n ) |γ 〉ψn

% j (γ ) = ε−
n ψn

% j (α), (7)

where 〈α| T% |γ 〉 is the kinetic energy matrix element, includ-
ing the centrifugal term. These wave functions correspond to
overlap functions

ψn
% j (α) =

〈
&A−1

n

∣∣ aα% j
∣∣&A

0

〉
, ε−

n = EA
0 − EA−1

n . (8)

Such discrete solutions to Eq. (8) exist near the Fermi energy
where there is no imaginary part of the self-energy. The
normalization for these wave functions is the spectroscopic
factor, which is given by [14]

Zn
% j =

(
1 −

∂*∗
% j (αqh,αqh; E )

∂E

∣∣∣∣
ε−

n

)−1

, (9)

where αqh corresponds to the quasihole state that solves
Eq. (7). This corresponds to the spectral strength at the quasi-
hole energy ε−

n , represented by a delta function. The quasihole
peaks in Fig. 2 get narrower as the levels approach εF , which
is a consequence of the imaginary part of the irreducible
self-energy decreasing when approaching εF . In fact, the last
mostly occupied proton level in Fig. 2 (2s 1

2 ) has a spectral
function that is essentially a delta function peaked at its energy
level, where the imaginary part of the self-energy vanishes.
For these orbitals, the strength of the spectral function at the
peak corresponds to the spectroscopic factor in Eq. (9). This
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FIG. 2. Proton spectral functions for a representative set of % j shells in 208Pb. The particle states are differentiated from the hole states by
the dotted line representing the Fermi energy.

factor can be probed using the exclusive (e, e′ p) reaction as
discussed in Ref. [17]. Note that because of the presence of
imaginary parts of the self-energy at other energies, there is
also strength located there, thus the spectroscopic factor will
be less than 1 and also less than the occupation probability.

Indeed as shown in Ref. [16], an equivalent spectral density
Sp

% j (α,β; E ) for energies above εF can be obtained which
allows for the calculation of the presence of orbits that
describe localized (and therefore normalized) single-particle
states according to

Sn+
% j (E ) =

∑

α,β

[
φn

% j (α)
]∗Sp

% j (α,β; E )φn
% j (β ).

Neutron spectral functions for a representative set of orbitals
at positive energies are shown in Fig. 3. The curve with the
least strength at positive energies in Fig. 3 corresponds to
the most deeply bound orbital of the 3 shown in 208Pb. With
increasing principal quantum number n, the orbital becomes
less bound and the particle spectral function gains more
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FIG. 3. Neutron particle spectral functions for a representative
set of IPM orbitals in 208Pb that are mostly occupied but exhibit
strength at a positive energy which is constrained by elastic-nucleon-
scattering data [16].

strength at positive energies. This behavior is caused by the
dispersion relation, Eq. (12), which pushes more strength to
positive energies as the peak of the spectral function gets
closer to 0 MeV. We note that the distribution at positive
energies is constrained by elastic-scattering data, making the
conclusion of the relevance of correlations beyond the IPM
inevitable [16]. The spectral strength distribution below εF is
constrained by the charge density and particle number, which
also receive contributions from other % j quantum numbers
[14].

It is appropriate to introduce the Fermi energies for re-
moval and addition, given by

ε−
F = EA

0 − EA−1
0

and

ε+
F = EA+1

0 − EA
0 ,

referring to the ground states in the A ± 1 systems, respec-
tively. It is also convenient to employ the average Fermi
energy

εF ≡ 1
2 [ε+

F − ε−
F ].

In practical work, we adhere to the average Fermi energy to
separate the particle and hole domains and their corresponding
imaginary parts of the self-energy. For specific questions
related to valence holes, the imaginary part of the self-energy
can be neglected and Eqs. (7) and (9) can be applied. The
occupation probability of each orbital is calculated by inte-
grating all contributions from the spectral strength up to the
Fermi energy

nn
% j =

∫ εF

−∞
dE Sn−

% j (E ),

whereas the depletion of the orbit is obtained from

dn
% j =

∫ ∞

εF

dE Sn+
% j (E ).
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Since the DOM has so far been limited to 200 MeV positive
energy, a few percent of the sum rule

nn
% j + dn

% j = 1,

which reflects the anticommutator relation of the correspond-
ing fermion addition and removal operators, has been found
above this energy [16]. The particle number of the nucleus is
found by summing over each % j combination while integrat-
ing the spectral strength up to the Fermi energy,

Z, N =
∑

% j

(2 j + 1)
∫ εF

−∞
dE Sp,n

% j (E ), (10)

where Z and N are the total numbers of protons and neutrons,
respectively. In addition to the particle number, the total bind-
ing energy can be calculated from the hole spectral function
using the Migdal-Galitski sum rule [14],

EN,Z
0 = 1

2

∑

αβ

∫ εF

0
dE [〈α|T̂ |β〉 Sh(α,β; E )

+ δαβESh(α,α; E )]. (11)

B. Dispersive optical model

It was recognized long ago that the irreducible self-energy
represents the potential that describes elastic-scattering ob-
servables [39]. The link with the potential at negative energy is
then provided by the Green’s function framework as realized
by Mahaux and Sartor, who introduced the DOM as reviewed
in Ref. [11]. The analytic structure of the nucleon self-energy
allows one to apply the dispersion relation, which relates the
real part of the self-energy at a given energy to a dispersion
integral of its imaginary part over all energies. The energy-
independent correlated HF contribution [14] is removed by
employing a subtracted dispersion relation with the Fermi
energy used as the subtraction point [11]. The subtracted form
has the further advantage that the emphasis is placed on ener-
gies closer to the Fermi energy, for which more experimental
data are available. The real part of the self-energy at the Fermi
energy is then still referred to as the HF term but is sufficiently
attractive to bind the relevant levels. In practice, the imaginary
part is assumed to extend to the Fermi energy on both sides
while being very small in its vicinity. The subtracted form of
the dispersion relation employed in this work is given by

Re *∗(α,β; E )

= Re *∗(α,β; εF )

− P
∫ ∞

εF

dE ′

π
Im *∗(α,β; E ′)

[
1

E − E ′ − 1
εF − E ′

]

+ P
∫ εF

−∞

dE ′

π
Im *∗(α,β; E ′)

[
1

E − E ′ − 1
εF − E ′

]
,

(12)

where P is the principal value. The static term is denoted
*HF henceforth. Equation (12) constrains the real part of the
self-energy through empirical information on the HF term and
empirical knowledge of the imaginary part, which is closely
tied to experimental data. Initially, standard functional forms

for these terms were introduced by Mahaux and Sartor, who
also cast the DOM potential in a local form by a standard
transformation which turns a nonlocal static HF potential into
an energy-dependent local potential [40]. Such an analysis
was extended in Refs. [41,42] to a sequence of Ca isotopes
and in Ref. [43] to semi-closed-shell nuclei heavier than Ca.
The transformation to the exclusive use of local potentials
precludes a proper calculation of the nucleon particle number
and expectation values of the one-body operators, like the
charge density in the ground state. This obstacle was elimi-
nated in Ref. [44], but it was shown that the introduction of
nonlocality in the imaginary part was still necessary in order
to accurately account for the particle number and the charge
density [15]. Theoretical work provided further support for
this introduction of a nonlocal representation of the imaginary
part of the self-energy [45,46]. A recent review has been
published in Ref. [12].

We implement a nonlocal representation of the self-energy
following Ref. [15], where *HF(r, r′) and Im *(r, r′; E ) are
parametrized using Eq. (12) to generate the energy depen-
dence of the real part. The HF term consists of a volume
term, a spin-orbit term, and a wine-bottle-shaped term [47]
to simulate a surface contribution. The imaginary self-energy
consists of volume, surface, and spin-orbit terms. Details are
given in the Appendix. Nonlocality is represented using the
Gaussian form

H (s,β ) = π−3/2β−3e−s2/β2
,

where s = r − r′, as proposed in Ref. [40]. As mentioned pre-
viously, it was customary in the past to replace nonlocal po-
tentials by local, energy-dependent potentials [11,14,40,48].
The introduction of energy dependence alters the dispersive
correction from Eq. (12) and distorts the normalization, lead-
ing to incorrect spectral functions and related quantities [44].
Thus, a nonlocal implementation permits the self-energy to
accurately reproduce important observables such as the charge
density and particle number.

In order to use the DOM self-energy for predictions, the
parameters are fit through a weighted χ2 minimization of
available elastic differential cross section data ( dσ

d2
), analyzing

power data (Aθ ), reaction cross sections (σr), total cross sec-
tions (σt ), charge density (ρch), energy levels (εn% j), particle
number, separation energies, and root-mean-square charge
radius (rrms). While it has been suggested in Refs. [49–51]
that (p, n) cross sections to isobaric analog states provide
additional information on the isovector potential, our current
implementation of the DOM does not include these data. We
checked that reasonable cross sections are obtained with our
DOM potential, suggesting that these data, while important,
are not sufficient to alter the conclusions of our work sig-
nificantly. This may be due to the use of nonlocal potentials
as opposed to the local ones used in Refs. [50,51] based on
Ref. [52]. We plan in future applications to include these data
for additional nuclei in a more consistent manner.

The potential is transformed from coordinate space to a
Lagrange basis using Legendre and Laguerre polynomials for
scattering and bound states, respectively. The bound states
are found by diagonalizing the Hamiltonian in Eq. (7), the
propagator is found by inverting the Dyson equation, Eq. (3),
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FIG. 4. Proton reaction cross section for 208Pb. References to
experimental data points can be found in Ref. [43].

and all scattering calculations are done in the framework of
R-matrix theory [38]. Implementations of the nonlocal DOM
in 40Ca and 48Ca have been published in Refs. [15,17,23].

III. DOM FIT OF 208Pb

The functional form of the 208Pb self-energy is equivalent
to that of 48Ca used in Ref. [23]. Starting from the parameters
for 48Ca, the χ2 was minimized for a similar set of experi-
mental data for 208Pb (see the Appendix for specific values
of parameters). In the analysis presented here, minimization
was performed using an implementation of the Powell method
[53]. Due to computational challenges of parameter fitting
with this method and to cross-validate our approach, we
also conducted a parallel DOM analysis of 208Pb using the
Markov chain Monte Carlo method to optimize the potential
parameters, using the same experimental data and a very
similar functional form for the self-energy. The preliminary
spectroscopic factor, neutron skin, and spectral function re-
sults of this parallel analysis are in excellent agreement (e.g.,
all within 1 standard deviation) with those detailed in the
following sections and will be the subject of a subsequent
publication by our group.

Proton reaction cross sections together with the DOM
result are displayed in Fig. 4. The neutron total cross sections
are shown in Fig. 5. Both aggregate cross sections play an
important role in determining the volume integrals of the
imaginary part of the self-energy, thereby providing strong
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FIG. 5. Neutron total cross section (solid line) generated from
the DOM self-energy for 208Pb. Circles represent measured total
cross sections. References to the data are given in Ref. [43].
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FIG. 6. Calculated and experimental proton and neutron elastic-
scattering angular distributions of the differential cross section dσ

d2
for

208Pb ranging from 10 to 200 MeV. The data at each energy are offset
by factors of 10 to help visualize all of the data at once. References
to the data are given in Ref. [43].

constraints on the depletion of IPM orbits. The elastic differ-
ential cross sections at energies up to 200 MeV for protons
and neutrons are shown in Fig. 6. The analyzing powers for
neutrons and protons are shown in Fig. 7.

The charge density of 208Pb is shown in Fig. 8. The exper-
imental band is extrapolated from elastic-electron-scattering
differential cross sections [2]. These data are well reproduced
after using the DOM charge density from Fig. 8 as the in-
gredient in a relativistic elastic-electron-scattering code [55].
The corresponding elastic-electron-scattering cross section is
shown in Fig. 9 and compared to experiment with all available
data transformed to an electron energy of 502 MeV [1].

In Figs. 10 and 11, single-particle levels calculated using
Eq. (7) are compared to the experimental values for protons
and neutrons, respectively. The middle column consists of
levels calculated using the full DOM and the right column
contains the experimental levels. The first column of figures
represents a calculation using only the static part of the self-
energy, corresponding to the Hartree-Fock (mean-field) con-
tribution. It is clear from these level diagrams that the mean
field overestimates the particle-hole gap (see also Ref. [56]).
The inclusion of the dynamic part of the self-energy is neces-
sary to reduce this gap and properly describe the energy levels.
Furthermore, the effect of including the dynamic part of the
self-energy on the proton levels is stronger than the effect on
the neutron levels. This is another manifestation of the fact

044303-6



DISPERSIVE OPTICAL MODEL ANALYSIS OF 208Pb … PHYSICAL REVIEW C 101, 044303 (2020)

0

5

10

15

20

25

30

35

0 60 120 180

p+ 208Pb

0

5

10

15

20

25

0 60 120 180

n+ 208Pb

A

θc.m. [deg] θc.m. [deg]

FIG. 7. Results for proton and neutron analyzing power gener-
ated from the DOM self-energy for 208Pb compared with experimen-
tal data ranging from 10 to 200 MeV. References to the data are given
in Ref. [43].

that the proton properties deviate more from the IPM than the
neutrons in 208Pb.

For levels close to εF , the spectroscopic factor can be
calculated using Eq. (9). These spectroscopic factors are listed
in Table I while in Table II occupation and depletion numbers
are presented. Indeed, the fact that the spectroscopic factors
for protons are smaller than those of the neutrons is consistent
with the protons being more correlated than the neutrons. The
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FIG. 8. Experimental and fitted 208Pb charge density. The solid
black line is calculated using Eq. (5) and folding with the pro-
ton charge distribution, while the experimental band represents
the 1% error associated with the extracted charge density from
elastic-electron-scattering experiments using the sum of Gaussians
parametrization [2,54]. Also shown is the deduced weak charge dis-
tribution, ρw (long-dashed red line), and neutron matter distribution,
ρn (short-dashed blue line).
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FIG. 9. Experimental and fitted 208Pb(e, e) differential cross sec-
tions. All available data have been transformed to an electron energy
of 502 MeV [1].

present values of the valence spectroscopic factors are consis-
tent with the observations in Ref. [6] and the interpretation
in Ref. [7]. It is important to note that these spectroscopic
factors are indirectly determined by the fit to all the available
data similarly to the case reported in Ref. [17] for 48Ca. The
extraction of spectroscopic factors using the (e, e′ p) reaction
has yielded a value around 0.65 for the valence 2s1/2 orbit
[57] based on the results in Refs. [3,4]. While the use of
nonlocal optical potentials may slightly increase this value as
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FIG. 10. Proton energy levels in 208Pb. The energies on the left
are calculated using only the static part of the DOM self-energy,
corresponding to a Hartree-Fock calculation. The middle energies
are those calculated using the full DOM self-energy. The energies
on the right correspond to the experimental values. The change from
the left energies to the middle energies is the result of including the
dynamic part of the self-energy.
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FIG. 11. Neutron energy levels in 208Pb. The energies on the left
are calculated using only the static part of the DOM self-energy,
corresponding to a Hartree-Fock calculation. The middle energies
are those calculated using the full DOM self-energy. The energies
on the right correspond to the experimental values. The change from
the left energies to the middle energies is the result of including the
dynamic part of the self-energy.

shown in Ref. [17], it may be concluded that the value of 0.69
obtained from the present analysis is completely consistent
with this result. Nikhef data obtained in a large missing
energy and momentum domain [58] can therefore now be
consistently analyzed employing the complete DOM spectral
functions.

The numbers of neutrons and protons in the DOM fit of
208Pb, calculated using Eq. (10) with shells up to % ! 20, are
listed in Table III. As there are 82 protons and 126 neutrons
in 208Pb, the reported values are accurate to within a fraction
of a percent. The binding energy of 208Pb was fit to the exper-
imental value using Eq. (12). As there is no way at present to
assess the value of three-body interactions to the ground-state
energy, we employ the present approximation, which applies
when only two-body interactions occur in the Hamiltonian, to
ensure that enough spectral strength occurs at negative energy,
which has implications for the presence of high-momentum
components. The comparison to the experimental value is also
shown in Table III.

TABLE I. DOM calculated spectroscopic factors for orbitals
with energy levels near εF .

Proton Zn
% j Neutron Zn

% j

1 f7/2 0.67 0i11/2 0.77
0h9/2 0.60 1g9/2 0.77
2s1/2 0.69 2p1/2 0.81
1d3/2 0.66 1 f5/2 0.81
0h11/2 0.61 2p3/2 0.82
1d5/2 0.68 0i13/2 0.80

TABLE II. Calculated DOM occupation and depletion for the
orbitals shown in Figs. 10 and 11. The sum rule for occupation and
depletion numbers for protons is not accurately fulfilled due to the
difficulty of accounting for the effect of the large Coulomb potential.

Proton nn
% j dn

% j Neutron nn
% j dn

% j

2s 1
2 0.76 0.088 2p 1

2 0.85 0.11

1d 3
2 0.77 0.015 2d 3

2 0.020 0.96

1d 5
2 0.78 0.014 2d 5

2 0.020 0.95

1 f 7
2 0.051 0.68 1 f 7

2 0.88 0.080

0g7
2 0.80 0.0065 1g9

2 0.025 0.94

0g9
2 0.81 0.0054 0i 11

2 0.040 0.92

0h 9
2 0.082 0.66 0i 13

2 0.87 0.070

0h 11
2 0.73 0.0066

0i 13
2 0.054 0.75

Consider the momentum distribution, n(k), which is the
double Fourier transform of the single-particle density matrix,

n(k) = 2
π

∑

% j

(2 j + 1)
∫ ∞

0
drr2

∫ ∞

0
dr′r′2

× j%(kr)ρ% j (r, r′) j%(kr′).

The calculated DOM momentum distribution of 208Pb is
shown in Fig. 12. The high-momentum tail of the momen-
tum distribution arises from short-range correlations (SRCs),
which are another manifestation of many-body correlations
beyond the IPM description of the nucleus [8]. This high-
momentum content can be quantified by integrating the mo-
mentum distribution above the Fermi momentum. Using kF =
270 MeV/c, 13.4% of protons and 10.7% of neutrons have
momenta greater than kF . If instead a cutof of 330 MeV/c is
used, the proton content is 8.4%, whereas only 4.5% neutrons
are obtained. These numbers are in qualitative agreement with
what is observed in the high-momentum knockout experi-
ments done by the CLAS Collaboration at Jefferson Lab [59].
Furthermore, the fraction of high-momentum protons is larger
than the fraction of high-momentum neutrons. These observa-
tions were predicted by ab initio calculations of asymmetric
nuclear matter reported in Refs. [60–62], which demonstrated
unambiguously that the inclusion of the nucleon-nucleon ten-
sor force when it is constrained by nucleon-nucleon scatter-
ing data is responsible for making protons more correlated
with increasing nucleon asymmetry at normal density. These
results should come as no surprise, since Figs. 1, 2, 10, and

TABLE III. Comparison of the calculated DOM particle numbers
and binding energy of 208Pb and the corresponding experimental
values. The experimental binding energy can be found in Ref. [64].

EA
0 /A

N Z DOM Expt.

208Pb 126.2 82.08 −7.82 −7.87
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FIG. 12. Comparison of calculated DOM momentum distribu-
tions of protons (dashed blue line) and neutrons (solid red line) in
208Pb. The dotted line marks the location of kF .

11 and Table I all reveal that the protons are more correlated
than the neutrons in 208Pb. This supports the np-dominance
picture in which the dominant contribution to SRC pairs
comes from np SRC pairs which arise from the tensor force
in the nucleon-nucleon interaction [9,63]. Due to the neutron
excess in 208Pb, there are more neutrons available to make
np SRC pairs, which leads to an increase in the fraction of
high-momentum protons.

In the DOM, this high-momentum content is determined
by how much strength exists in the hole spectral function
at large negative energies. The hole spectral function is
constrained in the fit by the particle number, binding energy,
and charge density. While the particle number and charge
density can only constrain the total strength of the hole
spectral function, the binding energy constrains how the
strength of the spectral function is distributed in energy. This
arises from the energy-weighted integral in Eq. (12), which
will push some of the strength of the spectral function to more
negative energies in order to achieve more binding. This, in
turn, alters the momentum distribution, thus constraining the
high-momentum content.

The reproduction of all available experimental data indi-
cates that a suitable self-energy of 208Pb has been found. With
this self-energy we can therefore make predictions of other
observables, such as the neutron skin.

IV. NEUTRON SKIN

The neutron and proton point distributions in 208Pb,
weighted by r4 and normalized by the particle number, are
shown in Fig. 13. It is clear that the neutrons are more ex-
tended than the protons, giving rise to a positive neutron skin
of !rnp = 0.25 ± 0.05 fm. The associated error is obtained
in the same manner as in Ref. [23] for 48Ca (in the ongoing
Markov chain Monte Carlo–enabled analysis mentioned in
Sec. III, we recover a compatible, somewhat smaller neutron
skin of 0.195, with a similar uncertainty but employing a more
restricted set of parameters). It is no surprise that the value
of the skin falls within the range of allowed values from the
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FIG. 13. Neutron (solid red line) and proton (dashed blue line)
point distributions in 208Pb and 48Ca weighted by r4 and normalized
according to Eq. (1).

PREX experiment, but it will be interesting to compare this
prediction to the updated experimental value from PREX2
in the near-future as well as new results from the Mainz
facility [65]. This is also within the range of skin values
(0.12–0.28 fm) of the 48 nuclear energy density functionals
used in Ref. [37]. Currently, ab initio calculations cannot be
applied to heavy systems such as 208Pb, so these mean-field
results are the only other theoretical predictions of the neutron
skin in 208Pb.

The DOM predictions of the neutron skin of 40Ca, 48Ca,
and 208Pb are listed in Table IV, where it is evident that the
neutron skins of 48Ca and 208Pb are very similar. Since 208Pb
and 48Ca have similar asymmetry parameters, indicated by
αasy = (A − Z )/A in Table IV, it may seem reasonable that
they have similar neutron skins. However, consider Fig. 13,
which is a comparison of the neutron and proton distributions
in 48Ca and 208Pb. Even normalized by the particle number,
the particle distributions in 208Pb and 48Ca are quite distinct
due to the size difference of the nuclei. In light of this, the
neutron skin of 208Pb is biased to be larger by the increase

TABLE IV. DOM predicted neutron skins for 40Ca, 48Ca, and
208Pb. Also listed are the neutron skins normalized by rp, denoted
!r̃np, as well as the neutron skins with the Coulomb potential
removed from the self-energy, denoted !rno C

np . The last entry is
the normalized neutron skin with the Coulomb potential removed,
!r̃no C

np .

Nucleus 40Ca 48Ca 208Pb

αasy 0 0.167 0.211

rp [fm] 3.39 3.38 5.45

rn [fm] 3.33 3.63 5.70

!rnp [fm] −0.06 0.25 ± 0.023 0.25 ± 0.05

!r̃np −0.017 0.070 ± 0.0067 0.046 ± 0.0092

!rno C
np [fm] 0 0.309 ± 0.023 0.380 ± 0.05

!r̃no C
np 0 0.089 ± 0.0067 0.070 ± 0.0092
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in the rms radii of the proton and neutron distributions. Thus,
a more interesting comparison can be made by normalizing
!rnp by rp,

!r̃np = 1
rp

!rnp = rn

rp
− 1,

where !r̃np is the normalized neutron-skin thickness. This
normalization serves to remove size dependence when com-
paring neutron skins of different nuclei. The result of this
normalization is reported in Table IV. The difference in the
normalized skins of 208Pb vs 48Ca in Table IV reveals that the
rms radius of the neutron distribution does not simply scale
by the size of the nucleus for nuclei with similar asymmetries.
While it is true that the nuclear charge radius scales roughly
by A1/3 (and by extension so does rp), the same cannot be said
about rn.

If one is to scale by the size of the nucleus, then the
extension of the proton distribution due to Coulomb repulsion
(which scales with the number of protons) should also be
considered. Since 208Pb has four times as many protons as
48Ca, the effect of Coulomb repulsion on the neutron skin
of 208Pb could be up to four times more than its effect on
the 48Ca neutron skin, which can reasonably be taken from
the predicted skin of −0.06 fm in 40Ca. In order to further
investigate the effects of the Coulomb force on the neutron
skin, we removed the Coulomb potential from the DOM
self-energy. In doing this, the quasihole energy levels become
much more bound, which increases the number of protons. To
account for this, we shifted εF such that it remains between
the particle-hole gap of the protons in 208Pb, corresponding
to a shift of 19 MeV. Removing the effects of the Coulomb
potential leads to an increased neutron skin of 0.38 fm.
The results of the normalized neutron skins with Coulomb
removed are listed in Table IV for each nucleus, where it is
clear that the Coulomb potential has a strong effect on the
neutron skin. This points to the fact that the formation of a
neutron skin cannot be explained by the asymmetry alone.
Whereas the asymmetry in 48Ca is primarily caused by the
additional neutrons in the f 7

2 shell, there are several different
additional shell fillings between the neutrons and the protons
in 208Pb. It is evident that these shell effects make it more
difficult to predict the formation of the neutron skin based on
macroscopic properties alone.

In Fig. 14 we present both the DOM results for 48Ca
[23] and the current one for 208Pb, represented by the shaded
rectangle. The figure is adapted from Ref. [66] and includes
the coupled-cluster result from Ref. [67] as a horizontal band.
Relativistic and nonrelativistic mean-field calculations cited in
Ref. [66] are represented by squares and circles, respectively.
The dashed rectangle is arbitrarily centered on the DOM 48Ca
result, but with the expected error of the CREX experiment
[68], and the original PREX result (0.33), but with updated
errors expected for PREX-II [69].

V. CONCLUSIONS

We have performed a nonlocal dispersive optical model
analysis of 208Pb in which we fit the elastic-scattering angu-
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FIG. 14. Figure adapted from Ref. [66], with the result from
Ref. [67] for 48Ca represented by the horizontal bar. The shaded
rectangle includes the DOM results for 208Pb and 48Ca [23]. Smaller
squares and circles refer to relativistic and nonrelativistic mean-field
calculations cited in Ref. [66]. The dashed rectangle is arbitrarily
centered on the DOM 48Ca result and the original PREX result
(0.33), but with updated errors of PREX-II.

lar distributions, absorption and total cross sections, single-
particle energies, charge density, total binding energy, and
particle number. With our well-constrained self-energy we
derive a nonnegliglible high-momentum content, which is
consistent with the experimental observations at Jefferson Lab
[8,9,59]. Spectroscopic factors are automatically generated
and appear consistent with the most up-to-date analysis of
the (e, e′ p) reaction for the last valence proton orbit [57].
Furthermore, these spectroscopic factors explain the reduction
of the form factors of high-spin states obtained in inelastic
electron scattering [6], lending support to the interpretation in
Ref. [7].

The present analysis uses a large set of data that allow the
prediction of a neutron skin of 0.25 ± 0.05 fm. While this
is consistent with the PREX experiment [24], other methods
have been used to determine the neutron skin experimentally.
These experiments have recently been critically reviewed in
Ref. [70] (see also Refs. [13,50]). The main conclusion is
that these other experiments involving hadronic probes, while
valuable, continue to involve implicit model dependence that
hinders the clean determination of the neutron skin. Our
current analysis furthermore provides an alternative approach
to the multitude of mean-field calculations that provide a large
variety of results for the neutron skins of 48Ca and 208Pb [66]
while also contrasting with the ab initio result in Ref. [67] for
48Ca. The new experiments employing parity-violating elastic
electron scattering on these nuclei [68,69] therefore remain
currently the most unambiguous approach to determine the
neutron skin. A systematic study of more nuclei with a similar
asymmetry, αasy, to 208Pb and 48Ca would help in determining
the details of the formation of the neutron skin. This will
lead to a better understanding of the nuclear equation of state,
which is vital for proceeding in the current multimessenger
era onset by the first direct detection of a neutron star merger
[71].
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APPENDIX: PARAMETRIZATION OF THE 208Pb DOM
SELF-ENERGY

We provide a detailed description of the parametrization
of the proton and neutron self-energies in 208Pb used in the
fits to bound and scattering data. The functional forms are
equivalent to those used for the 48Ca potential, detailed in
Ref. [19]. Parameters which are allowed to be different for
protons and neutrons will contain (n, p) terms. Asymmetry

terms have been added to the amplitudes of many of the
components in the form ±V(p,n)

N−Z
A , where here only, the

+ refers to protons and the − to neutrons. Elsewhere, ± in
superscripts and subscripts refers to above (+) and below (−)
the Fermi energy, εF .

We use a simple Gaussian nonlocality in all instances [40]
and restrict the nonlocal contributions to the HF term and to
the volume and surface contributions to the imaginary part of
the potential. We write the HF self-energy term in the follow-
ing form with spin orbit and a local Coulomb contribution:

*HF(r, r′) = *nl
HF(r, r′) + V nl

so (r, r′) + δ(r − r′)VC (r).

The nonlocal term is split into a volume and a narrower
Gaussian term of opposite sign to make the final potential have
a wine-bottle (wb) shape.

*nl
HF(r, r′) = −V vol

HF (r, r′) + V wb
HF (r, r′),

where the volume term is given by

V vol
HF (r, r′) = V HF

sym, f
(
r̃, rHF

(p,n), aHF
(p,n)

)[ 1
1 + xsym

H
(
s; βvol1

sym

)
+

xsym

1 + xsym
H

(
s; βvol2

sym

)]

± V HF
(p,n)

N − Z
A

f
(
r̃, rHFaym

(p,n) , aHFasy
(p,n)

)[ 1
1 + xsym

H
(
s; βvol1asy

(p,n)

)
+

xsym

1 + xsym
H

(
s; βvol2asy

sym

)]
, (A1)

allowing for two different nonlocalities with different weights [0 ! xsym ! 1 in Eq. (A1)]. With the notation r̃ = (r + r′)/2 and
s = r − r′, the wine-bottle shape is described by

V wb
HF (r, r′) = V wb

(p,n) exp
(
−r̃2/

(
ρwb

sym

)2)H
(
s; βwb

sym

)
, (A2)

where the nonlocality in Eq. (A2) is represented by a Gaussian form,

H (s; β ) = exp(−s2/β2)/(π3/2β3).

As usual, we employ Woods-Saxon form factors:

f (r, ri, ai ) =
[

1 + exp
(

r − riA1/3

ai

)]−1

.

The Coulomb term is obtained from the experimental charge density distribution for 208Pb [2].
The local spin-orbit interaction is given by

Vso(r, r′) =
(

h̄
mπc

)2

V so
(p,n)

1
r̃

d
dr̃

f
(
r̃, rso

(p,n), aso)! · σH (s; βso), (A3)

where (h̄/mπc)2 = 2.0 fm2 as in Ref. [43].
The fully nonlocal imaginary part of the DOM self-energy has the following form:

Im *nl(r, r′; E ) = −W vol
0± (E ) f

(
r̃; rvol

±(p,n); avol
±

)
H

(
s; βvol

±(p,n)

)
+ 4asur

symW sur0
± (E )H

(
s; βsur0

±
) d

dr̃
f
(
r̃, rsur0

±(p,n)), asur
sym

)

+ 4asur
symW sur

± (E )H
(
s; βsur

±(p,n)

) d
dr̃

f
(
r̃, rsur

±(p,n), asur
±(p,n)

)
+ Im*so(r, r′; E ). (A4)

Note that the parameters relating to the shape of the imaginary spin-orbit term are the same as those used for the real spin-orbit
term. At energies well removed from εF , the form of the imaginary volume potential should not be symmetric about εF as
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indicated by the ± notation in the subscripts and superscripts [46]. While more symmetric about εF , we have allowed a similar
option for the surface absorption that is also supported by theoretical work reported in Ref. [45]. Allowing for the aforementioned
asymmetry around εF the following form was assumed for the depth of the volume potential [43]:

W vol
0± (E ) = !W ±

NM(E ) +
{

0 if |E − εF | < Evol
± ,

Avol
±(p,n)

(|E−εF |−Evol
± )4

(|E−εF |−Evol
± )4+(Bvol

± )4 if |E − εF | > Evol
± ,

(A5)

where !W ±
NM(E ) in Eq. (A5) is the energy-asymmetric correction modeled after nuclear-matter calculations. The asymmetry

above and below εF is essential to accommodate the Jefferson Lab (e, e′ p) data at large missing energy. The energy-asymmetric
correction was taken as

!W ±
NM(E ) =






αsymAvol
+(p,n)

[√
E + (εF +E+ )3/2

2E − 3
2

√
εF + E+

]
for E − εF > E+,

−Avol
−(p,n)

(εF −E−E− )2

(εF −E−E− )2+(E− )2 for E − εF < −E−,

0 otherwise,

(A6)

where E in Eq. (A2) corresponds to the center-of-mass energy.
To describe the energy dependence of surface absorption we employ the form in Ref. [42] but include two components, one

with symmetric parameters and the other with asymmetric parameters,

W sur0
± (E ) = ω4(E , Asur0

± , Bsur01
± , 0) − ω2(E , Asur0

± , Bsur02
± ,Csur0

± ), (A7)

W sur
±(p,n))(E ) = ω4

(
E , Asur

±(p,n), Bsur1
±(p,n), 0

)
− ω2

(
E , Asur

±(p,n), Bsur2
±(p,n),Csur

±(p,n)

)
, (A8)

where the ω functions in Eqs. (A3) and (A4) are defined as

ωn(E , Asur, Bsur,Csur ) = Asur 5(X )
X n

X n + (Bsur )n ,

5(X ) is Heaviside’s step function, and X = |E − εF | − Csur.
The imaginary spin-orbit term in Eq. (A4) has the same form as the real spin-orbit term in Eq. (A3),

Wso(r, r′; E ) =
(

h̄
mπc

)2

W so(E )
1
r̃

d
dr̃

f
(
r̃, rso

(p,n), aso)! · σH (s; βso),

where the radial parameters for the imaginary component are the same as those used for the real part of the spin-orbit potential. It
is important to note that Im*so grows with increasing %, and for large % this can lead to an inversion of the sign of the self-energy,
which results in negative occupation. While the form of Eq. (A3) suppresses this behavior, it is still not a proper solution. One
must be careful that the magnitude of Wso(E ) does not exceed that of the volume and surface components. As the imaginary
spin-orbit component is generally needed only at high energies, the form in Ref. [43] is employed:

W so(E ) = Aso
sym

(E − εF )4

(E − εF )4 +
(
Bso

sym

)4 . (A9)

With Eq. (A5), all ingredients of the self-energy have now been identified and their functional form described. In addition
to the Hartree-Fock contribution and the absorptive potentials we also include the dispersive real part from all imaginary
contributions according to Eq. (12).

Parameters

The parameters used for the symmetric part of the self-energy are listed in Table V. All asymmetric parameters are listed in
Table VI. There are 30 Lagrange-Legendre and Lagrange-Laguerre grid points used in the 208Pb calculations [38,72]. For 208Pb,
the scaling parameter for the Lagrange-Laguerre mesh points is aL = 0.15. The matching radius used for scattering calculations
is a = 12 fm.
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TABLE V. Parameter values for the isoscalar part of the potential.
The table also lists the number of the equation that defines each
individual parameter.

Parameter Value Eq. No.

Hartree-Fock

V HF
sym (MeV) 94.0 (A1)

aHF
sym [fm] 0.730 (A1)

βvol1
sym [fm] 1.52 (A1)

βvol2
sym [fm] 0.760 (A1)

xsym 0.730 (A1)

βwb
sym [fm] 0.640 (A2)

Spin orbit

aso
sym [fm] 0.700 (A3)

βso
sym [fm] 0.830 (A3)

Aso
sym (MeV) −3.65 (A9)

Bso
sym (MeV) 208 (A9)

Volume imaginary

avol
+ [fm] 0.470 (A4)

avol
− [fm] 0.430 (A4)

βvol
− [fm] 1.05 (A4)

Bvol
+ (MeV) 14.4 (A5)

Evol
+ (MeV) 16.4 (A5)

Bvol
− (MeV) 84.5 (A5)

Evol
− (MeV) 5.50 (A5)

E+ (MeV) 21.8 (A6)

E− (MeV) 81.1 (A6)

Surface imaginary

asur
+sym [fm] 0.430 (A4)

βsur0
+ [fm] 1.26 (A4)

asur
−sym [fm] 0.550 (A4)

βsur0
− [fm] 1.50 (A4)

Asur0
+ (MeV) 44.2 (A7)

Bsur01
+ (MeV) 17.4 (A7)

Bsur02
+ (MeV) 24.8 (A7)

Csur0
+ (MeV) 14.0 (A7)

Asur0
− (MeV) 12.6 (A7)

Bsur01
− (MeV) 15.0 (A7)

Bsur02
− (MeV) 80.2 (A7)

Csur0
− (MeV) 0.950 (A7)

TABLE VI. Fitted parameter values for proton and neutron po-
tentials in 208Pb. The table also lists the number of the equation that
defines each individual parameter.

Parameter p value n value Eq. No.

Hartree-Fock

V HF
(p,n) (MeV) 22.7 71.1 (A1)

rHF
(p,n) [fm] 1.18 1.20 (A1)

rHFasy
(p,n) [fm] 1.40 1.20 (A1)

aHFasy
(p,n) [fm] 0.390 0.800 (A1)

β
vol1asy
(p,n) [fm] 0.180 1.86 (A1)

β
vol2asy
(p,n) [fm] 1.52 1.52 (A1)

V wb
(p,n) (MeV) 7.15 2.11 (A2)

ρwb
(p,n) (MeV) 0.750 4.00 (A2)

Spin orbit

V so
(p,n) (MeV) 11.6 8.47 (A3)

rso
(p,n) [fm] 1.65 0.970 (A3)

Volume imaginary

Avol
+(p,n) (MeV) 6.93 3.01 (A5)

Avol
−(p,n) (MeV) 57.0 60.4 (A5)

Bvol
+(p,n) (MeV) 14.4 14.4 (A5)

Bvol
−(p,n) (MeV) 84.5 84.5 (A5)

βvol
+(p,n) [fm] 0.320 0.275 (A4)

rvol
+(p,n) [fm] 1.35 1.26 (A4)

rvol
−(p,n) [fm] 1.35 1.00 (A4)

α(p,n) [fm] 0.0800 0.360 (A4)

Surface imaginary

βsur
−(p,n) [fm] 0.210 2.22 (A4)

βsur
+(p,n) [fm] 1.44 2.03 (A4)

Asur
+(p,n) (MeV) 50.0 −6.49 (A8)

Asur
−(p,n) (MeV) 0.760 −13.0 (A8)

Bsur1
+(p,n) (MeV) 27.7 18.1 (A8)

Bsur2
+(p,n) (MeV) 60.5 2.40 (A8)

Csur
+(p,n) (MeV) 200 25.1 (A8)

Bsur1
−(p,n) (MeV) 6.18 20.2 (A8)

Bsur2
−(p,n) (MeV) 34.3 40.0 (A8)

Csur
−(p,n) (MeV) 22.9 1.00 (A8)

rsur0
−(p,n) [fm] 0.970 0.950 (A4)

rsur0
+(p,n) [fm] 1.09 1.35 (A4)

rsur
−(p,n) [fm] 0.860 0.860 (A4)

rsur
+(p,n) [fm] 1.20 1.630 (A4)

asur
−(p,n) [fm] 0.600 0.600 (A4)

asur
+(p,n) [fm] 0.530 0.470 (A4)
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