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Reexamining the relation between the binding energy of finite nuclei
and the equation of state of infinite nuclear matter
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The energy density is calculated in coordinate space for 12C, 40Ca, 48Ca, and 208Pb using a dispersive optical
model constrained by all relevant data including the corresponding energy of the ground state. The energy density
of 8Be is also calculated using the Green’s-function Monte Carlo method employing the Argonne-Urbana two-
and three-body interactions. The nuclear interior minimally contributes to the total binding energy due to the
4πr2 phase-space factor. Thus, the volume contribution to the energy in the interior is not well constrained. The
dispersive-optical-model energy densities are in good agreement with ab initio self-consistent Green’s-function
calculations of infinite nuclear matter restricted to treat only short-range and tensor correlations. These results
call into question the degree to which the equation of state for nuclear matter is constrained by the empirical mass
formula. In particular, the results in this paper indicate that saturated nuclear matter does not require the canonical
value of 16-MeV binding per particle but only about 13–14 MeV when the interior of 208Pb is considered.
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I. INTRODUCTION

The investigation of the binding energy of atomic nu-
clei dates back to the origins of nuclear physics [1]. The
well-known empirical mass formula, developed by Bethe and
Bacher [2] and von Weizsäcker [3], accurately describes the
global aspects of nuclear binding for most of the nuclear
chart. Its success is largely due to the saturating nature of
the constituent nucleons in nuclei. The evidence for nuclear
saturation came from measurements of the root-mean-squared
(rms) charge radius of nuclei which revealed that the vol-
ume of a given nucleus scales linearly with A [1,4]. Elastic
electron-scattering experiments revealed that the density in
the interior of nuclei saturates at a value around ρ0 ≈ 0.16
fm−3 [4,5]. In order to understand the mechanism behind
nuclear saturation, infinite nuclear matter (NM) is an ideal
system that is often studied [6–8]. Depending on the method
and realistic nucleon-nucleon (NN) interaction used, the cal-
culated value of ρ0 in NM can stray from the experimental
value as discussed, e.g., in Ref. [9]. In addition to the density
at saturation, the associated binding energy, E0, plays a vital
role in the equation of state (EOS) of NM. The EOS does not
exhibit saturation in neutron-rich systems, but its character-
ization is nonetheless relevant for astrophysical research on
supernovae and neutron stars [10–12].

The traditional method used to estimate ρ0 is funda-
mentally different than that of E0. While the value of
ρ0 is determined experimentally, E0 is determined em-
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pirically from an extrapolation of the empirical mass
formula [4,13,14]

BE (A, Z ) = −aV A + aSA2/3 + aCZ (Z − 1)A−1/3

+ 1
2 aA(A − 2Z )2A−1, (1)

where aV , aS , aC , and aA are parameters fit to nuclear masses
[1]. Because the only link between Eq. (1) and NM is the
volume term, the canonical value of the saturation energy is
assumed to be E0/A = −aV ≈ −16 MeV [4,13]. However,
this involves a significant extrapolation that neglects proper
consideration of long-range correlations (LRC) in both finite
and infinite systems [6,15–17]. Contributions to the binding
energy from LRC are associated with collective phenomena.
In finite nuclei, these emerge as low-lying natural parity
surface vibrations and higher-lying giant resonances. These
excitations are associated with the presence of a surface and
therefore have no counterpart in NM. Conversely, LRC in NM
are characterized by their total momentum (and spin-isospin
quantum numbers) which have no direct counterpart in finite
nuclei as momentum is not a good quantum number of an
excited state in a nucleus. This is particularly problematic for
matter excitations with pionic quantum numbers as the related
soft mode in NM occurs at finite momentum and thereby
contributes substantially to binding, is strongly enhanced by
the coupling to the # isobar, and increases in importance
with density. For this reason, it was argued in Ref. [15] that
the link between finite nuclei and NM saturation properties
should be confined to the effect of short-range correlations
(SRC). Assumptions made about the role of LRC therefore
influence the link between finite nuclei and NM. As will be
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shown below, it is possible to establish such a link using the
ab initio method of self-consistent Green’s functions (SCGF).
We therefore propose to exercise caution when equating a
fundamental property of NM to a parameter that relies heavily
on the chosen functional form of the empirical mass formula.

The mass formula of Eq. (1) is built upon the liquid drop
model (LDM) of finite nuclei. The LDM has been studied
and modified several times. These modifications mainly in-
volved accounting for deformation, shell effects, and pairing.
A recent form of the LDM, known as the finite-range droplet
model, has improved agreement with experimental masses
[18]. Additionally, there have been many other macroscopic
mass models such as that of Duflo and Zuker [19], Koura et al.
[20], and others (see Ref. [18] for a review of mass models).
The parameters of Eq. (1) have also been analyzed using dif-
ferent methods of statistical analysis resulting in errors in the
range of 0.03–0.24 for aV [21]. Much work has been focused
on the parameters of Eq. (1), but not the connection between
aV and E0. While all nuclear mass models like Eq. (1) show
good agreement with experimental masses, none address the
issue of the contribution of LRC as discussed above.

To further explore the extrapolation from the LDM to
NM, consider the analogous infinite system of liquid helium.
Quantum Monte Carlo studies of drops of atomic helium, both
bosonic 4He [22] and fermionic 3He [23], using the HFDHE2
atom-atom interaction [24], are able to extract a reasonable
volume binding energy from finite drops in a liquid drop
mass formula only by including additional terms beyond the
standard volume and surface terms of Eq. (1). For the 3He
case, fitting the energies of drops containing up to 240 atoms
with only volume and surface terms predicts a volume binding
energy of −1.42 K while adding a curvature term ∝ A1/3

generates a much better fit with a volume term of −2.09 K.
This is much closer to the infinite liquid result of −2.36 K
and the experimental value of −2.47 K. The extrapolated en-
ergy of the infinite system is highly dependent on the chosen
functional form of the LDM. The discrepancy between the
experimental binding energy and the volume energy of the
LDM for liquid 3He indicates that the traditional extrapolation
to an infinite system is insufficient even for a system with only
a simple central interaction.

An alternative connection between the physics of finite
nuclei and that of NM is provided by energy density func-
tionals (EDFs) used in nuclear density-functional theories
(DFTs). The EDF provides a one-to-one correspondence be-
tween binding energy and density based on effective forces
such as Skyrme or Gogny. These EDFs are parametrized by
fits and used to self-consistently solve for the ground-state
density of nuclei with the Kohn-Sham (or Hartree-Fock) type
of equations [25]. A result of these calculations is a nucleus-
dependent energy density profile which is used to calculate
the total binding energy. These more microscopic approaches
are very successful in calculating binding energies and other
properties across the nuclear chart [25]. The value of E0 can
be calculated directly from the EDF parameters. However, in
the vast majority of Skyrme and Gogny EDFs, E0 is a param-
eter of the fit rather than a prediction (or extrapolation) from
properties of finite nuclei [26–28]. Alternatively, some EDFs,
such as the so-called SV-min, fit to aV in a χ2 minimization

procedure resulting in statistical uncertainties around 0.06
MeV for E0 [29]. Other systematic studies of Skyrme EDFs
reveal a similar range of E0 values that allow for an acceptable
reproduction of finite-nucleus data [29–31]. Despite the fact
that these EDFs can simultaneously reproduce nuclear masses
and E0 ≈ −16 MeV supports the canonical value, so far EDF
calculations have not provided an extraction of E0 from finite
nuclear data where systematics have been explored in detail.

In the present paper we discuss various ingredients that ad-
dress some of the issues related to determining the saturation
point of symmetric NM and reexamine the empirical value
of E0. This is done by comparing three different methods of
obtaining the value of E0: the canonical value obtained from
an empirical mass formula extrapolation (aV ), the minimum
energy in NM from ab initio SCGF simulations, and the
energy density in the interior of finite nuclei based on the
dispersive optical model (DOM). In Sec. II, we present results
from DOM calculations of several nuclei that are constrained,
in addition to scattering observables, by ground-state prop-
erties including the energy. By casting these results in terms
of an energy density, we show in Sec. III that it is possible
to make contact with ab initio SCGF calculations of sym-
metric and asymmetric NM [9,32]. The DOM ground-state
energy is calculated using the Migdal-Galitski sum rule, so it
does not explicitly include three-body forces [33]. We address
this issue by utilizing energy densities from Monte Carlo
calculations obtained using various chiral two- and three-
body interactions [34–36] as well as the phenomenological
Argonne-Urbana combination [37]. Further analysis of DOM
nuclear energy densities is presented in Sec. IV before the
conclusions in Sec. V.

II. DISPERSIVE OPTICAL MODEL APPROACH

Ideally, a sound determination of E0 would rely on a
NM theoretical calculation based on the true NN interaction,
i.e., obtained as a solution of the quantum chromodynamics
Lagrangian. In practice, calculations of the saturation point
of NM are hampered by approximations in the NN forces,
limited by the treatment of three-nucleon (NNN) interactions,
and display a substantial dependence on the employed many-
body method [9,38–40]. This scheme dependence ultimately
undermines a direct, reliable determination of E0. Even so,
recent works have explored the link between finite nuclei
and NM using coupled cluster and many-body perturbation
theory starting from chiral NN+NNN interactions [41–43].
By including the empirical saturation point in their fits, low-
energy constants (LECs) associated with the NNN interaction
can be adjusted to reproduce the empirical saturation point
[40,42,43]. However, this adjustment to the LECs leads to
underbinding in finite nuclei [43], demonstrating the difficulty
in simultaneously reproducing finite nuclear binding energies
and the empirical saturation point from chiral interactions.
Moreover, recent advances in quantifying theoretical uncer-
tainties in NM calculations can be found in Ref. [41]. While
the interactions used were tailored to reproduce the empirical
saturation point, the newly developed Bayesian machine-
learning method provides a step forward in NM calculations
from chiral interactions.
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Alternatively, we investigate the connection between the
empirical mass formula and the value of E0 through energy
densities calculated using the DOM. This method constrains
a complex self-energy %& j using both scattering and bound-
state data [44,45]. The self-energy is a complex, nonlocal,
energy-dependent potential that unites the nuclear structure
and reaction domains through dispersion relations [44–46].
The Dyson equation generates the single-particle propagator,
or Green’s function, G& j (r, r′; E ), from which bound-state and
scattering observables can be deduced [47] (see Appendix A
for more details). The energy dependence of the self-energy
ensures that many-body correlations manifest in G& j (r, r′; E ),
providing a description beyond that of a mean field. These cor-
relations can be understood through the hole spectral function,
defined as

Sh
& j (r, r′; E ) = 1

π
ImGh

& j (r, r′; E ).

The spectral function reveals that the strength of a given & j
shell can be fragmented over a wide range of energies, con-
trary to the mean-field picture of fully occupied shells located
at their respective mean-field energy levels (see Refs. [47–50]
for explicit examples). Results from DOM fits of 12C, 40Ca,
48Ca, and 208Pb are considered here.

Traditionally, DOM fits are constrained by quasihole en-
ergies, particle numbers, charge densities, and, because of
the dispersion relation, all relevant scattering data up to 200
MeV. Here, we extend the treatment to incorporate also the
total binding energy of each nucleus as obtained from the
Green’s function. A position-dependent energy density within
the nucleus can then be defined such that its volume integral
is the total binding energy. This approach provides a novel
determination of nuclear energy densities based entirely on
experimental data. Unlike mean-field or DFT energy densi-
ties, this approach is not constrained by prescribed analytics
on energy densities. DOM fits produce occupation numbers
that are not steplike, hence the corresponding kinetic-energy
densities are not of a free-Fermi gas nature. Moreover, these
energy densities can be used to relate the energy of these
nuclei to SCGF calculations in NM that only treat the con-
sequences of SRC while including full off-shell propagation
[9,32].

The binding energy of a nucleus can be expressed as the
expectation value of the Hamiltonian using the full A-body
wave function, EA

0 = 〈'A
0 |Ĥ |'A

0 〉. The energy density, EA(r),
of a nucleus can then be defined such that

EA
0 =

∫
d3rEA(r) = 4π

∫ ∞

0
drr2EA(r). (2)

The energy of the ground state can be recast into the
Migdal-Galitski sum rule [33] for both proton and neutron
contributions with EA

0 = EN
0 + EZ

0 [6]. Since the DOM is
calculated in a coordinate-space basis of Lagrange functions
[51], EA(r) can be calculated using

EA(r) = 1
2

∫ εF

0

∑

& j

(2 j + 1)
[

ESh
& j (r, r; E )

+
∫ ∞

0
dr′ r′2 〈r|T̂&|r′〉 Sh

& j (r
′, r; E )

]
dE , (3)

TABLE I. Comparison of the DOM calculated binding energies
of 12C, 40Ca, 48Ca, and 208Pb calculated using Eq. (3) to those
calculated using the empirical mass formula. We use the parameters
aV = 15.6, aS = 17.2, aC = 0.697, and aA = 46.6 (all in MeV) in
Eq. (1). The experimental binding energies are shown in the last
column. All listed energies are in MeV.

A DOM EA
0 /A Mass equation Expt. EA

0 /A

12C −7.85 −7.29 −7.68
40Ca −8.46 −8.50 −8.55
48Ca −8.66 −8.59 −8.66
208Pb −7.76 −7.81 −7.87

where T̂& is the kinetic-energy operator in the partial-wave
basis. The first term corresponds to a combination of the
kinetic- and potential-energy densities [6] while the second
term represents the kinetic-energy density:

T (r) =
∑

& j

(2 j + 1)T& j (r),

where

T& j (r) =
∫ εF

0
dE

∫ ∞

0
dr′r′2 〈r|T̂&|r′〉 Sh

& j (r
′, r; E ).

The volume integral of T (r) is the total kinetic energy of the
nucleus. The kinetic-energy operator in coordinate space,

〈r|T̂ |r′〉 = δ3(r − r′)
−h̄2∇2

r

2µ
,

is used to calculate T (r), resulting in the following expres-
sion:

r2T& j (r) = −h̄2

2µ

[
d2

dr2
− &(& + 1)

r2

]
[rn& j (r, r′)r′]

∣∣∣
r′=r

,

where n& j (r, r′) is the one-body density matrix defined as

n& j (r, r′) =
∫ εF

0
dESh

& j (r, r′; E ).

It is important to note that this derivation assumes there
are no three-body terms in the nuclear interaction [52]. The
presence and need of a nuclear three-body force is undisputed
[53], but the arguments below do not change in any essential
way by the assumption that Eq. (3) can be treated as exact (see
Sec. III for further discussion). In particular, we will show that
variational Monte Carlo (VMC) calculations leading to exact
Green’s-function Monte Carlo (GFMC) results [54] require
only a modest attractive three-body contribution to the binding
energy of light nuclei. With chiral interactions [55], the three-
body force is important to generate NM saturation, but the
many different versions hamper uniform conclusions and their
softness may yield interior densities that are too large [56].

With Eq. (2), the binding energies of nuclei are also in-
cluded in DOM fits with an accuracy of about 1.5% and
shown for 12C, 40Ca, 48Ca, and 208Pb in Table I. Details of
the 12C DOM fit are presented in Appendix B while details
for 40Ca, 48Ca, and 208Pb fits can be found in Refs. [47,49,50],
respectively. The agreement with experiment in Table I is of a
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FIG. 1. Energy densities in 40Ca calculated from the DOM using
Eq. (3). Each line corresponds to twice the contribution from neu-
trons (see text). The curves correspond to the binding-energy density
(dotted line), kinetic-energy density (dashed line), potential-energy
density (dot-dashed line), and nucleon point density (solid line). All
curves are weighted by a volume element 4πr2. The points are taken
from a SCGF calculation in NM for three different interactions based
on Ref. [32] at densities corresponding to 0.08, 0.12, and 0.16 fm−3.

similar quality to that obtained by an empirical mass-formula
fit. However, the DOM also reproduces the experimental
charge densities, indicating that the hole spectral functions are
well constrained.

The energy density of 40Ca, weighted by the volume ele-
ment 4πr2, and its separation in kinetic- and potential-energy
density are shown in Fig. 1. The weighting is chosen to
emphasize the parts of the energy density that contribute to
the integral in Eq. (2). The figure clearly illustrates that the
interior of the nucleus has a suppressed importance for the
total energy on account of the phase-space factor. The nucleon
point density is shown in addition to the energy densities in
Fig. 1 to demonstrate that the radial dependence of the energy
density, EA(r), and of the actual matter density, ρ(r), are very
similar. We explore this point further in the following section.

III. COMPARISON WITH AB INITIO CALCULATIONS

SCGF calculations in NM from Ref. [32] are represented
by symbols in Fig. 1. Each different symbol corresponds to
a different NN interaction in the SCGF calculation, where
the triangles correspond to the charge-dependent Bonn (CD-
Bonn) interaction [57], the circles correspond to the Argonne
v18 (AV18) interaction [58], and the squares correspond to the
Idaho next-to-next-to-next-to-leading order (N3LO) chiral in-
teraction [59]. The calculation in NM is for specific values of
the nuclear density which are mapped to radii using the DOM
matter density. These results cannot be directly compared to
the energy density in finite nuclei because there is no Coulomb
force included in NM. Since there is an equal number of
protons and neutrons in 40Ca, isospin symmetry implies that
their distributions would be the same if the Coulomb force
were ignored. Thus, using twice the neutron energy density
in 40Ca is an effective way of removing the influence of the

Coulomb force. This is how the lines in Fig. 1 are generated.
These isospin-corrected results provide energy densities that
are similar to those predicted by SCGF calculations with
very different NN interactions. The agreement with the NM
calculations is striking since the latter only include effects
of short-range (SRC) and tensor correlations as suggested
in Ref. [15]. This implies that the interior of 40Ca exhibits
NM-like properties.

The interaction with the best agreement with the DOM
energy density in Fig. 1 is AV18. It is interesting that, unlike
the other two interactions, the harder AV18 correctly repro-
duces the nuclear saturation density ρ0 ≈ 0.16 fm−3 [4,13]
in the SCGF calculation reported in Ref. [9], but saturates at
about −11.5 MeV. This is in disagreement with the canonical
value, aV ≈ −16 MeV, which comes from the empirical mass
formula. However, it is clear from Fig. 1 that the interior of
the nucleus does not determine the binding energy since it
minimally contributes to Eq. (1). Concurrently, it is apparent
that SCGF calculations in NM generate quantitatively correct
binding-energy densities as shown in Fig. 1. As discussed
above, the interior of the nucleus saturates around ρ0, im-
plying that this region corresponds to saturated NM. This is
further supported by the reproduction of the smooth interior
charge density in the DOM. We therefore draw three conclu-
sions. First, with the interpretation that NM is representative
of the core of finite nuclei, we infer that there is no strong
constraint that the binding energy of NM has to be aV . Second,
the agreement between the NM points and 40Ca in Fig. 1
is consistent with the fact that SRC are primarily what link
finite nuclei to NM [15–17]. Third, we conjecture that the
AV18 interaction not only reproduces the saturation density,
but produces a reasonable saturation energy (E0 ≈ −11.5
MeV) given that the AV18 points in Fig. 1 are consistent
with the DOM 40Ca energy density. This conjecture is em-
pirically supported by the fact that the AV18 + Urbana-IX
[37] (three-body interaction) was used to derive the Akmal,
Pandharipande, and Ravenhall (APR) EOS of NM [12]. It
is widely used in calculations of neutron star structure, all
of which are consistent with current observations of neutron
stars including the recent neutron star merger event [12,60].
The APR EOS correctly predicts the value of ρ0 but with a
minimum energy of E0 = −12.6 MeV. While the value of this
minimum energy has been seen as a defect of the APR EOS,
its success in describing nuclear systems further supports a
saturation energy different from aV .

The fact that the binding-energy density traces the matter
density in Fig. 1 is not surprising when considering the de-
composition of the binding energy using full A-body wave
functions:

EA
0 =

〈
'A

0

∣∣Ĥ
∣∣'A

0

〉
= EA

0

〈
'A

0

∣∣'A
0

〉

= EA
0

∫
d3r1

[∫
d3r2 . . . d3rA

∣∣'A
0 (r1, r2, . . . , rA)

∣∣2
]
,

(4)

where the complete set {|r1, r2, . . . , rA〉} has been inserted and
all other quantum numbers are suppressed for clarity. Noting
that the bracketed term in Eq. (4) is the one-body density
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FIG. 2. The binding-energy density of Eq. (3) (solid line) com-
pared to the scaled nucleon density of Eq. (5) (dashed line) in 40Ca.

distribution ρ(r), the binding energy can be written as

EA
0 = EA

0

A

∫
d3rρA(r) ⇒ EA(r) =

(
EA

0

A

)
ρA(r). (5)

Equation (5) is not a unique expression of the energy density
since only its integral (the binding energy) is an observable.
However, Eq. (5) is a natural choice because the energy densi-
ties in Fig. 1 roughly trace the matter density. While Eq. (5) is
exact, it cannot be used as a replacement for Eq. (3) because
there is no guarantee that the DOM propagator is equal to the
exact propagator, which would be built from the exact A-body
ground-state wave function [6]. This is demonstrated in Fig. 2,
which shows the energy density in 40Ca calculated using both
Eqs. (3) and (5). The general agreement of the curves in Fig. 2
is quantified by the similarity of the rms radii of the displayed
energy and scaled nucleon density of 3.477 and 3.480 fm,
respectively. This reveals that the DOM description of the
density is close to exact. It is not surprising that there are
deviations, since the DOM fit constrains the density, which
is only an indirect way of constraining the full A-body wave
function.

A method that is well suited to calculate the energy density
using Eq. (4) is GFMC. The results of a GFMC calculation
for the 8Be binding-energy density are shown in Fig. 3, gener-
ating a total kinetic energy of 239 MeV, a two-body potential
energy of −287 MeV, a three-body potential energy of −10.7
MeV, and a total energy of −56.1 MeV compared to the
experimental value of −56.5 MeV. In this calculation, the
AV18 + Urbana-X [61] (UX) interactions were employed to
generate the ground-state wave function. The results in Fig. 3
include the contribution of the three-body interaction to the
energy density. Comparing the two- and three-body potential
density clarifies that the latter contributes modestly to the total
energy density and certainly is not capable of changing its
shape. Consequently, we expect that ignoring the three-body
interaction by using Eqs. (2) and (3) in the DOM analysis will
not alter the shape of the binding-energy density.

In order to further assess the effects of the NNN interaction,
we also report VMC calculations of 12C using the three-
body components (NV3*) of the Norfolk chiral interactions
(NV2+3*) [34–36] as well as the UX NNN interaction. In
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FIG. 3. Results of a GFMC calculation of 8Be with E , T , V , and
U representing the total binding-energy density, the kinetic-energy
density, the two-body potential-energy density, and the three-body
potential-energy density, respectively.

Fig. 4, we show the three-body potential densities calculated
in 12C using these five different interactions. In particular,
NV3* models have been constrained by fitting the trinucleon
energies and the empirical value of the Gamow-Teller matrix
element in tritium β decay in combination with the corre-
sponding Norfolk two-body potential (NV2). There are two
classes (I and II) of NV2, differing only in the range of
laboratory energy over which they are fitted to the nucleon-
nucleon database: class I up to 125 MeV, and class II up
to 200 MeV. For each class, two combinations of short- and
long-range regulators have been used, namely, (RS , RL)=(0.8,
1.2) fm (models NV2-Ia and NV2-IIa) and (RS , RL)=(0.7, 1.0)
fm (models NV2-Ib and NV2-IIb). In Table II, we explicitly
report the potential-energy contributions to the binding energy
of 12C using the interactions displayed in Fig. 4. Again, we
find that the contributions from NNN forces (U ) to the total
energy (density) are small in comparison to the corresponding
NN ones (V ). As expected, there is some variation in the
NNN potential densities for the different interactions used.
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FIG. 4. Illustration of the three-body potential-energy densities
for different chiral interactions [34] and the UX [61] for 12C.
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TABLE II. Potential-energy contributions from the NNN interac-
tions (U ) and the corresponding NN interactions (V ) shown in Fig. 4
for 12C.

Interaction V U

AV18+UX −457 −10.5
NV2+3-Ib* −383 −15.9
NV2+3-Ia* −379 −10.3
NV2+3-IIb* −416 −10.4
NV2+3-IIa* −411 −8.91

However, the fact that these variations are small demonstrates
that, regardless of the NNN interaction used, the shape of the
binding-energy density is not altered in a significant way by
NNN forces. In all cases, the NNN potential-energy-density
contribution is small in comparison with the corresponding
NN one. We expect that the conclusions drawn for 8Be and
12C in terms of relative sizes of V and U will hold for the
heavier nuclei considered in the following section.

IV. ANALYSIS

The nuclear energy density can be further explored for
the heavier nuclei 48Ca and 208Pb. The agreement between
Eqs. (5) and (3) in 48Ca and 208Pb is comparable to that of
40Ca. The case of 208Pb is particularly interesting because the
interior is more extended than in 40Ca and 48Ca. This implies
that finite-size (surface) effects are reduced in this region of
208Pb, making it an even more suitable system to compare
with NM. Using isospin symmetry to remove the effect of
the Coulomb interaction on the energy density of 40Ca is not
valid in 208Pb, since N > Z . While removing the Coulomb
energy density from E (r) would provide a NM-like energy
density, the Coulomb potential is still reflected in the matter
density of 208Pb (see also Ref. [47]). One way to compare with
the NM calculations for asymmetric matter from Ref. [32] is
to completely remove the Coulomb potential from the DOM
self-energy. To preserve the proton number, the proton Fermi
energy must therefore be shifted such that it remains between
the particle-hole gap of the protons. The resulting Coulomb-
less matter density exactly confirms the expected 0.16 fm−3 in
the interior of 208Pb.

The energy in the interior can be approximately calculated
from the energy density using Eq. (5):

EA(r) ≈ EA(r)
(

A
ρA(r)

)
.

This approximation should be valid for small values of r,
where the nuclear density is relatively constant and saturated.
The binding energy with Coulomb removed as a function of
r in 208Pb is shown in Fig. 5. The ambiguity to determine the
Coulomb-less interior density is reflected in the wide band.
The thin band represents the interpolation of SCGF calcula-
tions from Ref. [32] using AV18 at densities corresponding
to 0.08, 0.12, and 0.16 fm−3 obtained in the same way.
These NM results require an additional 2–3 MeV per particle
attraction to reproduce the DOM result, which is not incon-
sistent with the trend obtained for the required contribution of

−18
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0 1 2 3 4 5 6

E
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FIG. 5. Binding energy as a function of radius in 208Pb. The thick
blue band covers the range of energies of 208Pb calculated using the
DOM matter density (top) and the use of the DOM proton density
scaled by 208/82 (bottom), both with Coulomb removed. The narrow
band is similarly obtained from the SCGF calculations for the AV18
[32] (see text). The dashed line is the expected energy from the
empirical mass formula.

the three-body interaction to accurately describe the energies
of light nuclei with many-body methods [53,62]. Additional
binding might result from LRC in heavier nuclei which are
not accounted for by the SRC results depicted in Fig. 5 for
AV18. The contribution of the symmetry energy per nucleon
from the empirical mass formula in 208Pb is Esym = 1.04 MeV,
leading to the expectation of the interior energy of 208Pb to be
E208

0 = −15.0 MeV based on the empirical mass formula (see
dashed line in Fig. 5). Our analysis therefore suggests that the
energy in the interior (and hence the saturation energy) is less
bound than what is expected from the empirical mass formula.
In 208Pb, we find EA/A ≈ −14 MeV.

A comparison of the DOM energy as a function of radius
for 12C, 40Ca, 48Ca, and 208Pb is shown in Fig. 6, where the
Coulomb contribution has been removed from each nucleus.
The energies in the core of each nucleus are all within a
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FIG. 6. Binding energy as a function of radius in 12C (dashed
line), 40Ca (solid line), 48Ca (dotted line), and 208Pb (dot-dashed
line). The latter reflects the middle of the band in Fig. 5. The canon-
ical −16 MeV/A binding is also shown.
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few MeV of each other. Near the origin, all of them are
significantly less bound than 16 MeV per particle. We expect
that this result holds across a wide range of isotopes. It also
appears to be robust to statistical uncertainties in the DOM fits
and, as discussed above, to the (relatively small) contribution
of NNN forces. We take this as a strong hint that the central
energy density departs significantly from the canonical value
obtained via the aV parameter of mass formulas.

V. CONCLUSIONS AND OUTLOOK

The interpretation that the interior of the nucleus is a close
approximation to NM implies that a macroscopic mass for-
mula, such as Eq. (1), is not a suitable way of determining
the binding energy of NM at saturation. Our results invalidate
this approach by shedding light on two different aspects. First,
Fig. 1 clearly shows that the interior of the nucleus does not
significantly contribute to the total binding energy. Nuclear
masses should thus only have small contributions from the
saturated, deep nuclear interior. In other words, mass formulas
are unlikely to capture the energy dynamics of the nuclear
interior, including its mass number dependence. Second, the
interior saturation energies, as shown by the DOM analysis
above, do not necessarily agree with the value of aV that
provides a good fit to nuclear masses. It has been noted in
the past [15–17] that LRC in finite nuclei and NM are not
commensurate, implying an uncertainty in the extrapolation
from Eq. (1) to NM. Taking our results into consideration
leads to the inevitable conclusion that the saturation energy of
symmetric NM is less than the canonical value of 16 MeV per
particle. Considering the interior of 208Pb indicates that E0 is
actually closer to 13–14 MeV. This is also closer to the value
generated by SCGF calculations of NM with the AV18 force.

These results can also be interpreted in terms of different
energy values that are traditionally expected to be similar. On
the one hand, aV quantifies the bulk mass-number dependence
of nuclear binding energies. On the other, the saturation en-
ergy of NM, E0, provides the minimum energy of an infinite
system. Mass-number fits are, however, performed on finite
nuclei data and thus extrapolations to the A → ∞ limit need
to be considered with care [63]. Experience with other many-
body systems like helium drops indicates that one may be able
to shift contributions of different A-dependent terms within
mass formulas, thus changing the value of aV . Our analysis in
fact suggests that the value of E0 may be about 10% smaller
than that obtained from aV . It remains to be seen whether mass
formulas with lower values of aV provide quantitative fits to
nuclear masses.

To our knowledge, the systematic uncertainty in the value
of E0 extrapolated from aV has not been investigated since the
construction of Eq. (1). With the development of more precise
NN+NNN interactions as well as the continued improvement
of many-body methods, it is important to have an accurate
value of the nuclear saturation point. This is often used in
benchmarking NN and NNN forces [40]. In fact, modern chi-
ral interactions already incorporate nuclear observables, such
as binding energies and charge radii of nuclei, to their fitting
protocols [64]. It has been suggested that the NM saturation
point should also be added to these fits [38,40,42]. In light of

this and the conclusions of this paper, it is imperative that new
methods of determining the value and uncertainty of E0 are
explored.

We suggest a way forward in connecting E0 to nuclear
observables. Rather than relying uniquely on bulk masses,
we use the energy density in the nuclear interior, EA(ρ), to
provide an estimate for E0. The energy density is accessible by
several contemporary many-body methods. Here, for instance,
we have used quantum Monte Carlo simulations in light nuclei
to validate the DOM predictions and gauge the importance of
different components to the energy density. This has helped
confirm that the contribution of NNN is relatively small.
A similar analysis could be performed with other ab initio
methods that can reach higher masses and even compute NM
within the same footing [38]. This would provide a theory-to-
theory connection between the saturation point of NM and the
properties of nuclei.

Our results also suggest that in addition to purely theo-
retical methods nuclear data can also provide an insight into
the energy density profile within nuclei. The unified view of
nuclear scattering data and bound properties obtained from the
DOM is in fact able to provide a quantitative description of the
nuclear energy density. In this first exploratory paper, we have
not dealt explicitly with NNN forces, but some steps in this
direction could be easily explored in conjunction with similar
many-body methods like the SCGF approach. Extending the
DOM fits to other isotopes across the nuclear chart (already
begun in Refs. [65,66]) will also provide a further quantitative,
nuclear-data-inspired understanding of the mass evolution of
nuclear energy densities.
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APPENDIX A: DOM

It was recognized long ago that the irreducible self-energy
represents the potential that describes elastic-scattering ob-
servables [67]. The link with the potential at negative energy
is then provided by the Green’s-function framework as was
realized by Mahaux and Sartor, who introduced the DOM as
reviewed in Ref. [44]. The analytic structure of the nucleon
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self-energy allows one to apply the dispersion relation, which
relates the real part of the self-energy at a given energy to
a dispersion integral of its imaginary part over all energies.
The energy-independent correlated Hartree-Fock (HF) contri-
bution [6] is removed by employing a subtracted dispersion
relation with the Fermi energy (εF ) used as the subtraction
point [44]. The subtracted form has the further advantage that
the emphasis is placed on energies closer to the Fermi energy
for which more experimental data are available. The real part
of the self-energy at the Fermi energy is then still referred to as
the HF term, but is sufficiently attractive to bind the relevant
levels. In practice, the imaginary part is assumed to extend
to the Fermi energy on both sides while being very small
in its vicinity. The subtracted form of the dispersion relation
employed in this paper is given by

Re %∗(α,β; E ) = Re %∗(α,β; εF ) − P
∫ ∞

εF

dE ′

π

× Im %∗(α,β; E ′)
[

1
E − E ′ − 1

εF − E ′

]

+ P
∫ εF

−∞

dE ′

π
Im %∗(α,β; E ′)

×
[

1
E − E ′ − 1

εF − E ′

]
, (A1)

where P is the principal value. The static term is denoted by
%HF from here on. Equation (A1) constrains the real part of the
self-energy through empirical information of the HF term and
empirical knowledge of the imaginary part, which is closely
tied to experimental data. Initially, standard functional forms
for these terms were introduced by Mahaux and Sartor, who
also cast the DOM potential in a local form by a standard
transformation which turns a nonlocal static HF potential into
an energy-dependent local potential [68]. Such an analysis
was extended in Refs. [69,70] to a sequence of Ca isotopes
and in Ref. [71] to semi-closed-shell nuclei heavier than Ca.
The transformation to the exclusive use of local potentials
precludes a proper calculation of nucleon particle number and
expectation values of the one-body operators, like the charge
density in the ground state. This obstacle was eliminated in
Ref. [72], but it was shown that the introduction of nonlocality
in the imaginary part was still necessary in order to accu-
rately account for particle number and charge density [45].
Theoretical work provided further support for this introduc-
tion of a nonlocal representation of the imaginary part of the
self-energy [73,74]. A recent review has been published in
Ref. [46].

We implement a nonlocal representation of the self-energy
following Ref. [45] where %HF(r, r′) and Im %(r, r′; E ) are
parametrized, using Eq. (A1) to generate the energy depen-
dence of the real part. The HF term consists of a volume term,
spin-orbit term, and wine-bottle-shaped term [75] to simulate
a surface contribution. The imaginary self-energy consists
of volume, surface, and spin-orbit terms (see Appendix B).
Nonlocality is represented using the Gaussian form

H (s,β ) = π−3/2β−3e−s2/β2
, (A2)

TABLE III. Fitted parameter values for proton and neutron po-
tentials in 12C.

Parameter Value
Hartree-Fock

V HF (MeV) 90.8
rHF (fm) 0.952
aHF (fm) 0.417
βvol1 (fm) 0.908
βvol2 (fm) 0.738
x 0.911
ρWB (fm) 1.01
βWB (fm) 0.0251

Spin-orbit

V SO (MeV) 26.6
rSO (fm) 0.540
aSO (fm) 0.755
βSO (fm) 1.23
ASO (MeV) −1.62
BSO (MeV) 66.4

Volume imaginary

avol
+ (fm) 0.536

rvol
+ (fm) 1.27

βvol
+ (fm) 0.340

avol
− (fm) 0.256

rvol
− (fm) 1.02

βvol
− (fm) 1.08

Avol
+ (MeV) 6.51

Bvol
+ (MeV) 25.3

Evol
+ (MeV) 2.31

Avol
− (MeV) 16.9

Bvol
− (MeV) 8.97

Evol
− (MeV) 1.61

E+ (MeV) 23.4
E− (MeV) 67.5
α 0.189

Surface imaginary

asur
+ (fm) 0.493

rsur
+ (fm) 1.40

βsur
+ (fm) 3.38

asur
− (fm) 0.316

rsur
− (fm) 0.631

βsur
− (fm) 1.72

Asur
+ (MeV) 13.0

Bsur1
+ (MeV) 26.3

Bsur2
+ (MeV) 198

Csur
+ (MeV) 199

Asur
− (MeV) 28.0

Bsur1
− (MeV) 23.11

Bsur2
− (MeV) 20.0

Csur
− (MeV) 94.9
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where s = r − r′, as proposed in Ref. [68]. As mentioned
previously, it was customary in the past to replace nonlocal
potentials by local, energy-dependent potentials [6,44,68,76].
The introduction of an energy dependence alters the dispersive
correction from Eq. (A1) and distorts the normalization, lead-
ing to incorrect spectral functions and related quantities [72].
Thus, a nonlocal implementation permits the self-energy to
accurately reproduce important observables such as the charge
density and particle number.

The potential is transformed from coordinate space to a
Lagrange basis using Legendre and Laguerre polynomials for
scattering and bound states, respectively [51]. The propagator
is found by inverting the Dyson equation,

G& j (α,β; E ) = G(0)
& (α,β; E )

+
∑

γ ,δ

G(0)
& (α, γ ; E )%∗

& j (γ , δ; E )G& j (δ,β; E ),

while all scattering calculations are done in the framework of
R-matrix theory [77]. Implementations of the nonlocal DOM
in 40Ca, 48Ca, and 208Pb have previously been published in
Refs. [45,47,49,78].

APPENDIX B: PARAMETRIZATION OF THE POTENTIALS

We provide a detailed description of the parametrization
of the proton and neutron self-energies in 12C used in the fits
to bound and scattering data. The parametrizations of 40Ca,
48Ca, and 208Pb can be found in Refs. [47,49,50], respectively.
The ± in superscripts and subscripts refer to above (+) and
below (−) the Fermi energy, εF .

We restrict the nonlocal contributions to the HF term and
to the volume and surface contributions to the imaginary part
of the potential. We write the HF self-energy term in the
following form with the local Coulomb contribution:

%HF(r, r′) = %NL
HF (r, r′) + V NL

SO (r, r′) + δ(r − r′)VC (r).

The nonlocal term is split into a volume and a narrower
Gaussian term of opposite sign to make the final potential have
a wine-bottle shape:

%NL
HF (r, r′) = −V vol

HF (r, r′) + V WB
HF (r, r′),

where the volume term is given by

V vol
HF (r, r′) = V HF f (r̃, rHF, aHF)

× [xH (s; βvol1 ) + (1 − x)H (s; βvol2 )],

allowing for two different nonlocalities with different weights
(0 ! x ! 1). With the notation r̃ = (r + r′)/2 and s = r − r′,
the wine-bottle (wb) shape is described by

V WB
HF (r, r′) = V WB exp [−r̃2/(ρWB)2]H (s; βWB),

where H (s,β ) is given in Eq. (A2). As usual, we employ a
Woods-Saxon shape:

f (r, ri, ai ) =
[

1 + exp
(

r − riA1/3

ai

)]−1

.

The Coulomb term is obtained from the charge-density distri-
bution in the standard way [79].

The spin-orbit potential has the following form:

V NL
SO (r, r′) =

(
h̄

mπc

)2

V SO 1
r̃

d
dr̃

f (r̃, rSO, aSO) ! · σ

× H (s; βSO), (B1)

where (h̄/mπ c)2=2.0 fm2 as in Ref. [71].
The introduction of nonlocality in the imaginary part of the

self-energy is well founded theoretically both for long-range
correlations [73] as well as for short-range ones [74]. Its
implied & dependence is essential in reproducing the correct
particle number for protons and neutrons. The fully nonlocal
imaginary part of the DOM self-energy has the following
form:

Im %NL(r, r′; E )

= −W vol
0± (E ) f (r̃; rvol

± ; avol
± )H (s; βvol

± )

+ 4asur
symW sur

± (E )H (s; βsur
± )

d
dr̃

f (r̃, rsur
± , asur

± )

+ Im%SO(r, r′; E ). (B2)

Note that the parameters relating to the shape of the imagi-
nary spin-orbit term are the same as those used for the real
spin-orbit term. At energies well removed from εF , the form
of the imaginary volume potential should not be symmetric
about εF as indicated by the ± notation in the subscripts and
superscripts [74]. While more symmetric about εF , we have
allowed a similar option for the surface absorption that is also
supported by theoretical work reported in Ref. [73].

Allowing for the aforementioned asymmetry around εF
the following form was assumed for the depth of the volume
potential [71]:

W vol
0± (E ) = #W ±

NM(E ) +
{

0 if |E − εF | < Evol

[Avol ± ηvol] (|E−εF |−Evol )4

(|E−εF |−Evol )4+(Bvol )4
if |E − εF | > Evol,

where #W ±
NM(E ) is the energy-asymmetric correction modeled after nuclear-matter calculations. The asymmetry above and

below εF is essential to accommodate the Jefferson Lab (e, e′ p) data at large missing energy. The energy-asymmetric correction
was taken as

#W ±
NM(E ) =






α[Avol
+ ± ηvol]

[√
E + (εF +E+ )3/2

2E − 3
2

√
εF + E+

]
for E − εF > E+

−[Avol
− ± ηvol] (εF −E−E− )2

(εF −E−E− )2+(E− )2 for E − εF < −E−
0 otherwise.
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FIG. 7. Calculated and experimental proton and neutron elastic-
scattering angular distributions of the differential cross section dσ

d/
at

energies ranging up to 200 MeV. The data at each energy are offset
by factors of 10 to help visualize all of the data at once. References
[80–98] contain the proton experimental data. References [99–105]
contain the neutron experimental data.

To describe the energy dependence of surface absorption
we employed the form of Ref. [70]:

W sur
± (E ) = ω4(E , Asur, Bsur1 , 0) − ω2(E , Asur, Bsur2 ,Csur ),

where

ωn(E , Asur, Bsur,Csur ) = Asur 1(X )
X n

X n + (Bsur)n ,

and 1(X ) is Heaviside’s step function and X = |E − εF | −
Csur. The imaginary spin-orbit term in Eq. (B2) has the same
form as the real spin-orbit term in Eq. (B1):

WSO(r, r′; E ) =
(

h̄
mπc

)2

W SO(E )
1
r̃

d
dr̃

f
(
r̃, rSO

(p,n), aSO)

× ! · σH (s; βSO),

where the radial parameters for the imaginary component are
the same as those used for the real part of the spin-orbit poten-
tial. It is important to note that Im%SO grows with increasing
&, and for large & this can lead to an inversion of the sign of
the self-energy, which results in negative occupation. While
the form of Eq. (B1) suppresses this behavior, it is still not
a proper solution. One must be careful that the magnitude
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FIG. 8. Calculated and experimental proton and neutron ana-
lyzing powers at energies ranging up to 200 MeV. References
[86,89,94,106–109] contain the proton experimental data. Refer-
ences [100,110,111] contain the neutron experimental data.

of WSO(E ) does not exceed that of the volume and surface
components. As the imaginary spin-orbit component is gen-
erally needed only at high energies, the form of Ref. [71] is
employed:

W SO(E ) = ASO
sym

(E − εF )4

(E − εF )4 +
(
BSO

sym

)4 .

All ingredients of the self-energy have now been identi-
fied and their functional form described. In addition to the
Hartree-Fock contribution and the absorptive potentials, we
also include the dispersive real part from all imaginary contri-
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FIG. 9. Proton reaction cross section generated from the DOM
self-energy. The experimental data can be found in Refs. [112–114].
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FIG. 10. Neutron total cross section (solid line) and reaction
cross section (dashed line) generated from the DOM self-energy.
The total cross-section data can be found in Ref. [115]. The reaction
cross-section data can be found in Ref. [116].

butions according to the corresponding subtracted dispersion
relation [see Eq. (A1)].

1. Parameters

Table III displays the parameters for the 12C self-energy.
The constraint of the number of particles was incorporated
to include contributions from & = 0 to 10. Such a range of &
values generates a sensible convergence with & when short-
range correlations are included as in Ref. [74]. We obtain 6.1
protons from all & = 0 to 10 partial wave terms including j =
& ± 1

2 and 6.1 for neutrons. The corresponding binding energy
can be found in the main text.
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3
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FIG. 11. Experimental and fitted 12C charge density. The solid
black line is calculated using the DOM self-energy and folding with
the proton charge distribution while the experimental band repre-
sents the 1% error associated with the extracted charge density from
elastic electron-scattering experiments using the sum of Gaussians
parametrization [117,118].

2. Fit results

We found the DOM self-energy by minimizing the χ2

using experimental data in the form of elastic-scattering cross
sections, total and reaction cross sections, charge density, and
particle number. The resulting elastic-scattering cross sections
are shown in Fig. 7, the proton analyzing powers are shown in
Fig. 8, the proton reaction cross section is shown in Fig. 9, and
the neutron total cross section is shown in Fig. 10. The charge
density is shown in Fig. 11.
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