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We present the first systematic nonlocal dispersive optical model analysis using both bound-state and
scattering data of 16;18O, 40;48Ca, 58;64Ni, 112;124Sn, and 208Pb. In all systems, roughly half the total nuclear
binding energy is associated with the most-bound 10% of the total nucleon density. The extracted neutron
skins reveal the interplay of asymmetry, Coulomb, and shell effects on the skin thickness. Our results
indicate that simultaneous optical model fits of inelastic scattering and structural data on isotopic pairs are
effective for constraining asymmetry-dependent nuclear structural quantities otherwise difficult to observe
experimentally.
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Introduction.—Despite much investigation, the detailed
behavior of individual nucleons in the nuclear ground state
remains poorly understood. While many models can repro-
duce nuclear masses and charge radii across the nuclear
chart, none can fully account for the distribution—in radial,
energy, momentum, and angular-momentum space—of
nucleons within the nuclear volume. For example, the
precise location of excess neutrons in neutron-rich systems
like 48Ca and 208Pb remains an open question, one that has
received immense theoretical and experimental interest in
recent years (thoroughly reviewed in [1]). The existence of
“neutron skins,” Δrnp, on the surface of these and other
stable nuclei is expected to correlate strongly with the
density dependence of the nuclear symmetry energy, a major
uncertainty in the neutron star equation of state [2–4].
Experimental difficulties in direct neutron skin measure-
ments and uncertainty about the sensitivity of mean-field
models to isovector quantities [5] make alternative
approaches desirable. Ideally, a comprehensive model
should not only reproduce integrated quantities (like the
charge radius or total binding energy) but also specify how
nucleons share momentum and energy, all while being
realistic about the model uncertainty of its predictions [6].
A step toward these goals was the establishment of the

dispersive optical model (DOM) [7], which formally
extended traditional optical potentials to negative energies
so that both reaction and structural information could be
used to probe the nuclear potential (see the reviews of
[8,9]). Previous DOM case studies have shown promise for
exploring the systematics of nucleon behavior: for instance,
generating trends in valence-shell spectroscopic factors as a
function of asymmetry [10,11] and momentum [12], as
well as extracting neutron skins [13–15]. However, each of
these studies was narrow in scope: [12–14] examined only

a single Ca isotope each, while [10] included almost no
bound-state information and thus was mute about matter
and energy distributions. Cognizant of these challenges, we
have completed a joint DOM analysis of the double and
single closed-shell nuclei 16;18O, 40;48Ca, 58;64Ni, 112;124Sn,
and 208Pb, the first multinucleus treatment of nucleon
matter and binding energy distributions in an optical model
framework. For parameter optimization and uncertainty
characterization, we relied on Markov Chain Monte Carlo
(MCMC) sampling, an important improvement over tech-
niques used for previous state-of-the-art optical potentials
[16,17]. In all nine isotopes we examined, the small fraction
of nucleon density far below the deepest single-particle
energies (e.g., below −100 MeV) was found to play a
critical role for reproducing experimental binding energies.
Before presenting these results, we first review salient
elements of the DOM formalism.
Relevant DOM formalism.—Classical optical models

describe nucleon-nucleus scattering with various forms
of local phenomenological potentials defined only at
positive energies [16–18]. In contrast, the DOM defines
the complex, nucleon self-energy (or effective interaction),
Σ!ðα; β;EÞ, both above and below the Fermi energy. This
potential-like object dictates nucleon behavior as it moves
from state α to state β in the nuclear medium at energy E,
where α, β denote complete sets of quantum numbers
sufficient to specify the single-particle state. As in past
DOM treatments [11–13,15], the self-energy domain was
restricted to −300 to 200 MeV with respect to the Fermi
energy, a first-order relativistic correction was included,
and only two-body forces were considered. The self-energy
comprised three subcomponents:

Σ!ðα; β;EÞ ¼ Σstðα; βÞ þ Σimðα; β;EÞ þ Σdyðα; β;EÞ: ð1Þ
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The “static” part of the self-energy Σstðα; βÞ includes all
real energy-independent contributions, taken here as a
Hartree-Fock term evaluated at the Fermi energy, plus a
spin-orbit term. The Fermi energy is defined via the
ground-state energies for the A& 1 systems:

ϵF ≡ 1

2
½EAþ1

0 þ EA−1
0 (: ð2Þ

Each of the real subterms is parameterized with a Woods-
Saxon form (or its derivative) coupled to a Gaussian non-
locality. The energy-dependent imaginary component
Σimðα; β;EÞ consists of energy-dependent surface- and
volume-associated terms at both positive and negative
energies, again with nonlocal Woods-Saxons or their deriv-
atives for radial dependence. Physically, these terms account
for inelastic processes that require the most computational
effort to recover in ab initio and shell-model treatments. To
constrain these terms, the DOM instead relies on fitting
flexible potential forms to experimental data. The “dynamic”
(energy-dependent) real term Σdyðα; β;EÞ is completely
determined by integrating the imaginary term over the entire
energy domain. It ensures that the self-energy obeys the
required subtracted dispersion relation. The parameterization
used is available in the companion article [19]; additional
detail can be found in [20].
Following [21], the single-nucleon propagator is gen-

erated from the self-energy via the Dyson equation and the
hole spectral function extracted from the propagator:

Shljðα;EÞ ¼
1

π
Im½Gljðα; α;EÞ( for E ≤ ϵF: ð3Þ

Here G and S are labeled with the (conserved) angular
momentum l and total angular momentum j. Intuitively, the
hole spectral function is the probability for removal of a
particle with quantum numbers α from an initial A-body
system with ground-state energy EA

0 , leaving the residual
(A − 1)-body system with remaining energy EA

0 − E.
Taking an explicit r-space basis for α, the nucleon point
density can be directly calculated from the hole spectral
function:

ρljðrÞ ¼
1

4πr2

Z
ϵF

−∞
ð2jþ 1ÞShljðr;EÞdE: ð4Þ

The total binding energy can be calculated per the
Migdal-Galitsky rule, which is exact when only two-body
interactions are included:

EA
0 ¼ 1

2

!X

αβ

hαjT̂jβinα;β þ
X

α

Z
ϵF

−∞
Shljðα;EÞEdE

"
; ð5Þ

where T̂ is the kinetic energy operator appropriate for the
single-particle basis and nα;β is the one-body density

matrix. Three-body terms do not induce important correc-
tions when energy densities are considered, supporting the
use of Eq. (5) in DOM applications [22].
To constrain the self-energy, we applied nine sectors of

experimental data for each nucleus: differential elastic-
scattering cross sections, analyzing powers, reaction cross
sections, total cross sections, binding energies, charge radii,
charge densities, single-nucleon separation energies, and
particle numbers. For fits on 16;18O, 40;48Ca, 58;64Ni, and
112;124Sn, all available data for each isotope pair were
simultaneously fit using the same asymmetry-dependent
potential; for 208Pb, only the 208Pb data were used. The new
experimental isotopically resolved neutron total cross
sections that motivated this work are reported in the
companion experimental paper [19], which also includes
a detailed comparison of DOM calculations to all exper-
imental data, specifics of the MCMC implementation, and
parameter estimates with uncertainties.
Binding energies.—Figure 1 shows the breakdown of

particle density and binding energy for optimized fits of
16;18O and 40;48Ca. As in an independent-particle model, the
vast majority of both proton and neutron density rests in the
shells below the Fermi level. However, due to the imagi-
nary potentials, a significant fraction, around 10%, appears
in higher shells that would be fully unoccupied in a naive
mean-field picture.
For both protons and neutrons, an outsized fraction of the

binding energies comes from the most-bound levels. For
example, the s1=2 states in 16O possess roughly 20% of the
total nucleon density but almost 60% of the total binding
energy. This is a consequence of the long tail of the hole
spectral functions extending to extremely negative energies
(more than 100 MeV below ϵF), far below the mean-field
expectation. In both systems, the protons’ fraction of the
total binding energy is slightly reduced (less bound)
compared to that from the neutrons, a consequence of
the Coulomb interaction. Overall, the substantial depletion
of mean-field occupancies even in light systems (and the
associated broadening of the bound nucleon spectral
functions, as illustrated in [15]), is critical for achieving
an average binding energy of 8 MeV=nucleon. We note
that the binding energy distribution among shells that we
recover for 16O agrees with that from the Brueckner-
Hartree-Fock treatment of [23] and with general features
of ab initiomany-body calculations for nuclear matter [24].
Finally, we turn to the binding energy distributions for

asymmetric 18O and 48Ca in Fig. 1. In these systems, the
minority species (protons) experiences a deeper mean-field
potential and a larger imaginary potential, increasing each
proton’s relative share of the binding energy. For the
majority species (neutrons), the effect is reversed: binding
is reduced (less bound) for each shell compared to the
symmetric system. For the valence d5=2 neutrons in 18O (in
blue) and f7=2 neutrons in 48Ca (in orange), the contribution
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to the total binding is negative, that is, unbinding, because
the bulk of their spectral density resides in quasiholes at or
near the Fermi surface. This effect is more than compen-
sated by the extra binding energy these valence neutrons
induce in the protons compared to the symmetric case, such
that the net effect is increased overall binding. These results
are consistent with enhancement of short-range correlations
among minority nucleons as identified by [25] in their
investigation of nucleon high-momentum content as a
function of asymmetry.
Figure 2 gives an lj-independent illustration of system-

atic behavior of the binding energy distribution. For each

system, the fraction of the total binding energy possessed
by the most-bound 10% of the total nucleon density
(BF10%), regardless of quantum number, is plotted. The
error bars indicate the 16th and 84th percentiles from
the MCMC posterior distributions (the 1σ region, if the
posteriors are assumed to be Gaussian). For all systems
analyzed here, BF10% exceeds 40%. To put this percentage
in context, we performed an analogous “single-particle”
calculation on 40Ca by artificially placing all spectral
density for the s1=2 nucleons at their lowest single-particle
eigenvalue. This scenario yields a BF10% of 31% for 40Ca,
much lower than the median value of 48% from Fig. 2,
demonstrating that the tiny nucleon density at extremely
negative (deeply bound) energies makes an outsized con-
tribution to overall binding.
To determine the relative effect of nuclear size and

asymmetry on this quantity, we applied a linear model to
the data,

BF10% ¼ x0 þ A1=3xA þ N − Z
A

xα; ð6Þ

with N, Z, and A the neutron, proton, and total nucleon
numbers. MCMC sampling of this model gives parameter
posterior values of x0 ¼ 364430, xA ¼ 4.16.11.5, and xα ¼ 331−26,
where the 16th, 50th, and 84th percentile values are
reported as 508416. Thus, the BF10% depends only weakly
on the size of the system and is independent of asymmetry,
indicating that, even in light nuclei, the bulk of the total
binding comes from the few most-bound nucleons.

FIG. 2. Fraction of the total binding energy possessed by the
most deeply bound 10% of the nucleon density for the isotopes
studied in this work. The shaded regions indicate parametric
uncertainty from fitting Eq. (6) to these data.

FIG. 1. DOM calculations of nucleon occupation and binding energy contributions as a function of angular momenta lj in 16;18O and
40;48Ca. The results shown are using the median posterior parameter values from MCMC sampling.
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Neutron skins.—The neutron skin

Δrnp ≡ rrmsðnÞ − rrmsðpÞ ð7Þ

was first identified as an important observable by
Wilkinson over fifty years ago [26]. Neutron skins on
neutron-rich nuclei are connected to other nuclear structural
quantities, including the electric dipole polarizability, the
location of the pygmy and giant dipole resonances, the
density dependence of the symmetry energy, and the size of
neutron stars [2,4,27–29].
The neutron skins extracted from the present work are

shown in Fig. 3 and median values and uncertainties in
Table I. We find that the degree of asymmetry,
α≡ ðN − ZÞ=A, correlates strongly (r ¼ 0.89) with the
median skin thicknesses. If a simple linear dependence
in α is assumed, extrapolation from the 58;64Ni skins gives
a 56Ni skin thickness of −0.04& 0.03 fm. A similar
calculation with 112;124Sn yields a 100Sn skin thickness
of −0.07&0.06 fm. In the symmetric systems 16O and 40Ca,
Coulomb repulsion nudges proton density outward from
the core, resulting in a small negative neutron skin (that
is, a proton skin). Again assuming the linear dependence
of this Coulomb effect, extrapolation from 16O and 40Ca
gives neutron skins of −0.07& 0.02 fm for 56Ni and
−0.12& 0.04 fm for 100Sn, slightly more negative than,
but in keeping with, the linear extrapolation from 58;64Ni

and 112;124Sn. Besides Coulomb and asymmetry-dependent
effects, the large 48Ca median skin of 0.22 fm and near-zero
median 64Ni skin of −0.01 fm show the importance of shell
effects for certain systems (cf. with 208Pb results of [15]). To
wit, most of the excess neutrons in 48Ca and 64Ni enter the
neutron f7=2 and neutron p3=2 shells, respectively, as seen in
Fig. 1 for 48Ca. The mean radius of the f7=2 shell is larger
than the deeper shells; thus, when neutron density is added,
the size grows rapidly. In 64Ni, the neutron 1p3=2 rms radius
is closer to the overall rrmsðnÞ of 58Ni, so the additional
neutrons of 64Ni do little to grow the skin thickness.
For 18O, the mirror-nuclei logic of [30] can be applied to

cross-check our skin value. Assuming isospin symmetry,
the difference between the 18Ne and 18O charge radii is a
good proxy for the 18O neutron skin thickness. Per [31],
the charge radius difference between 18Ne and 18O is
0.20& 0.01 fm. Before comparing this proxy value with
the neutron skin of 18O, Coulomb and deformation cor-
rections must be applied. First, due to the Coulomb force,
the proton density of 18Ne extends further than the neutron
density of 18O. We estimate the magnitude of this proton
density extension in 18Ne as 0.03 fm, or 25% larger than the
difference between the proton and neutron distributions
of 16O, due to the 25% larger proton number of 18Ne.
Subtracting 0.03 fm from the 18Ne-18O radius difference
yields 0.17 fm. Second, because 18Ne is more deformed

FIG. 3. Neutron skin probabilities via MCMC sampling for 16;18O, 40;48Ca, 58;64Ni, 112;124Sn, and 208Pb. Each axis shows a single
element. For elements with two isotopes histogrammed, the lighter isotope is shown using light bars, and the heavier isotope is shown
with dark bars. The heights of each distribution have been arbitrarily rescaled to facilitate comparison.

TABLE I. Neutron skins (Δrnp), in fm, from this work. The 16th, 50th, and 84th percentile values of the skin distribution are
reported as 508416.

16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

−0.025−0.023−0.027 0.060.110.02 −0.051−0.048−0.055 0.220.240.19 −0.03−0.02−0.05 −0.010.03−0.04 0.050.080.02 0.170.230.12 0.180.250.12
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(β2 ¼ 0.68) than 18O (β2 ¼ 0.37) [32], any deformation
correction will further reduce this proxy value. Absent a
clean way to generate this correction, the proxy can only be
taken as an upper limit on the 18O neutron skin. Our skin
prediction for 18O of 0.060.110.02 fm is compatible with the
upper limit of 0.17 fm provided by this heuristic symmetry
argument.
Our median results for 48Ca (0.22 fm) and 208Pb

(0.18 fm) are somewhat smaller than those from previously
mentioned DOM case studies but with significant uncer-
tainty range overlap [14,15]. We attribute the variation to
differences in the potential parameterization, our joint
fitting of isotope pairs, and our MCMC optimization
approach. The values reported here for 48Ca and 208Pb
are quite close to those from recent experimental studies
[33–35] and from the relativistic density functional model
FSUGold as reported in [1]. However, our predicted skin
range for 48Ca differs significantly from the recent coupled-
cluster-based prediction of 0.12–0.15 fm from [36], a
discrepancy we hope the proposed Calcium Radius
Experiment will resolve. Lastly, the median skins we
recover for 112;124Sn (0.05 and 0.17 fm, respectively) are
almost identical to those extracted by [37] (0.06 and
0.18 fm, respectively) from analysis of 295 MeV proton
elastic scattering on Sn isotopes.
Conclusions.—Using a newly generalized version of the

DOM, we performed the first systematic DOM analysis
across nine isotopes from A ¼ 16 to A ¼ 208 to extract
matter and binding-energy distributions. Using MCMC with
model discrepancy terms and joint fitting ofmultiple isotopes,
we generated realistic uncertainties for all potential para-
meters and extracted quantities. Our results quantitatively
indicate how asymmetry, Coulomb, and shell effects con-
tribute to neutron skin generation and drive a disproportionate
share of the total binding energy to the deepest nucleons.
Using simple trends in 16O, 40Ca, 58;64Ni, and 112;124Sn, we
estimate the 56Ni neutron skin as between −0.04 and
−0.07 fm and between −0.07 and −0.12 fm for 100Sn. Our
skin thickness for 18O agrees with the mirror-nucleus upper
bound expectation, and the agreement of our 48Ca, 112;124Sn,
208Pb skin thicknesses with recent external predictions augers
well for a future truly global DOM treatment.
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