Three-dimensional roof collapse analysis in circular tunnels in rock
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Abstract

Collapse of a roof in circular cross-section tunnels is analyzed. The kinematic approach of limit
analysis is utilized, with strength of the rock described by the Hoek-Brown failure criterion. The
parametric form of the Hoek-Brown function is used to avoid introduction of an alternative explicit
form of the shear strength criterion. Three measures of safety are considered: stability number, the
factor of safety, and the support pressure needed to assure roof stability. The shape of the rock
block in the failure mechanism consists of a right elliptic cone with a piece-wise linear generatrix
and a prismatic section inserted between the two halves of the cone. The complexity of the cross-
section of the block with the tunnel makes for an intricate integration of the rates of the dissipated
work and the work of external forces. All three measures of safety are strongly dependent on the
quality of rock described in the Geological Strength Index, whereas the dependence on the rock
type captured in coefficient m; is less distinct. The length of the roof failure mechanism is subject
to a constraint dependent on the spacing of the supporting ribs in the tunnel. All measures of safety
(or stability) are distinctly dependent on the length constraint; the shorter the spacing between the
ribs, the safer the tunnel against roof collapse. The 2D analysis yields the most conservative

outcome.
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1. Introduction

Construction and operation of tunnels are among the challenges in the development of
transportation infrastructure. Collapse of the tunnel roof is among the more common types of
failure, both during construction and during service. While available two-dimensional (2D)
analyses can provide conservative estimates of the roof safety!, more accurate three-dimensional
(3D) analyses pose a challenge, because of the complex geometry of the failure zone, exacerbated
by the nonlinear pressure dependency of the rock shear strength.

Among the first analyses of tunnel roof stability was that of Lippmann*, who applied limit
analysis to a flat-ceiling tunnel in a rock with strength governed by the Mohr-Coulomb failure
criterion. Since then, a number of analytical or numerical studies have been presented with 2D
analyses for flat-ceiling or circular cross-section roofs' >, Three-dimensional stability analyses
of tunnel roofs are not as common, because of their complexity, especially for tunnels with non-
flat ceiling.

Tunnels in good quality rock typically have a continuous lining, but in variable rock or
poor quality rock, periodic supports in the form of structural ribs may be installed. They may take
the form of rolled steel sections or lattice girders combined with sprayed concrete. The presence
of ribs will likely influence the potential failure mechanism by limiting its length to the rib spacing.
Such collapse mechanisms will have a 3D geometry and will necessitate a 3D analysis.
Consideration of such mechanisms in design is likely to have a beneficial effect on the economics
of tunnel construction.

Most contemporary tunnel construction procedures involve tunnel boring machines
(TBM), which open a circular cross-section cavity in the rock. A roof collapse is possible behind
the TBM during its operation, thus some TBMs are equipped with a roof shield protecting the crew
and the machine. Consideration of roof collapse during both the tunnel construction and service
requires a 3D analysis of the roof’s stability. Attempts at the 3D analyses are scarce, and those
available in the literature consider flat-ceiling tunnels. Yang and Huang’ extended Fraldi and
Guarracino! plane-strain variational solution for tunnels with rectangular cross-sections. Huang,
et al.!” presented a 3D axi-symmetric generalization of a 2D analytical solution for circular tunnels
suggested earlier by Fraldi and Guarracino’. This solution, however, is applicable to spherical

cavities, and not to tunnels with circular cross-sections, because the cross-section of the cylindrical



tunnel surface with a surface of a right circular cone is not axisymmetric. Besides, the expectation
that a 3D roof collapse of a long cavity (tunnel) should have axi-symmetric geometry is rather
arbitrary. It might also be of interest that previous attempts focused on the shape of the block
falling from the roof of a cavity, whereas this paper focuses on quantitative safety assessment
measures, with the block shape definition being an intermediate step in the analysis.

In order to account for a complex cross-section of the falling rock block and the cylindrical
surface of the tunnel, a semi-analytical method was devised. At the cost of an elaborate integration
scheme, the intricate geometry was accounted for. The kinematic approach of limit analysis for
rocks governed by the modified Hoek-Brown strength criterion!! was used. It might be of interest

1910 311 used an alternative form of the Hoek-

that the analytical approaches used in earlier attempts
Brown function with the shear strength being an explicit function of the normal stress. This is
because the original form of the Hoek-Brown criterion is a function of the principal stresses, not
convenient in variational limit analysis. To avoid this issue, a parametric form of the Hoek-Brown
criterion is used in the approach presented in this paper.

The modified Hoek-Brown failure criterion for rocks is briefly reviewed in the next section,
concluding with comments on applicability of limit analysis to rocks. The collapse mechanism is
described, and the analysis is outlined as to how to calculate the three measures of safety (stability):
the stability number, the factor of safety, and the minimum support pressure needed to render
tunnels in weak rock stable. Numerical results are presented in charts and tables. The authors are
not aware of any earlier studies reporting the quantitative safety measures for three-dimensional

roof collapse mechanisms in rock governed by the Hoek-Brown failure criterion, in tunnels with

circular cross-sections.

2. Hoek-Brown failure criterion for rocks

Various failure criteria have been suggested to describe the strength of rocks, e.g., Paul'?,
Bieniawski'®, Barton'¥, and Hoek and Brown'>. Among those, the Hoek-Brown failure criterion
became preferred by engineers over the alternatives, because of its empirical nature and its direct
link to the quality, type, and state of the rock. A serious of enhancements have been introduced

into that criterion over the years, and they were summarized in a paper by Hoek and Marinos'®.



2.1. Generalized Hoek-Brown strength criterion

The rock is considered isotropic, while the quality, the type of the rock, and its disturbance
are considered through a relatively small number of parameters. The most recent version of this
function!! is often referred to as the generalized Hoek-Brown criterion, and it takes the following

form
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where o and o are the major and minor effective principal stresses, o, is the uniaxial

compressive strength of intact rock, and GS7 is the Geological Strength Index (typically in a range
from 5 to 100). Parameter m; depends on the rock type (typically in a range of 5 to 30), and D is
the disturbance factor (in a range of 0 to 1). More detailed description of these properties and their
estimates can be found elsewhere (Marinos and Hoek'” and Hoek, et al.!'). The strength criterion

in Eq. (1) can be represented as the EFGE section of the failure surface in the Haigh-Westergaard

space in Fig. 1(a), where o] >0, >0; (all effective stresses). The function in Eq. (1) is
independent of intermediate principal stress o, ; therefore, axis o, must be parallel to surface
EFGE. Consequently, any plane from a pencil of planes through axis o, will form a straight-line

cross-section with surface EFGE, parallel to axis o, (for example, G'F").



Any point on surface EFGE represents a limit-state combination of stresses o, 0, and o,.

Transformed onto a 7,0, plane, such a stress state is represented by three stress circles, as
illustrated by the dashed semi-circles in Fig. 1(b). Defining a triaxial isotropic tensile strength as
o, , and setting all principal stresses to —o, , all three stress circles reduce to one point at E*. The

isotropic tensile strength is uniquely defined by the strength criterion in Eq. (1); substituting

o/ =03 =—0, in Eq. (1), one obtains

o, =—4 (5)

Isotropic tensile strength o, is not necessarily equal to the one-dimensional or biaxial tensile
strength, although, typically, it does not differ much (for minimally disturbed rocks, D =0, the
uniaxial tensile strength is smaller than o, , but the difference does not exceed 4%, and it is less

than 1% for a large range of GSI and m;).

2.2. Parametric form of the Hoek-Brown strength criterion

The Hoek-Brown criterion was developed as a function of the major and minor effective

principal stresses. Some of the methods in geotechnical engineering and geomechanics call for a
strength envelope expressed explicitly in terms of the traction components (7,0, ) on the failure
surface. For that reason, previous attempts at stability analysis of cavities and tunnels in rocks'~’
did not use the original Hoek-Brown criterion in Eq. (1), but rather its approximation 7 = f(o,)

in the form
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where 4 and B are the dimensionless parameters determined from a best fit into the H-B criterion
in the range of interest. A function similar to that in Eq. (6) was suggested by Hoek and Brown as
an alternative criterion form in their original paper!®. In this paper, we avoid using the approximate

form in Eq. (6); instead, we utilize a parametric form of the criterion in Eq. (1). For this, rupture



angle 6, shown in Fig. 1(b), is used as a parameter'®. Making use of the procedure in Balmer!® (see

also Kumar?’), the components of the traction vector on the failure surface can be expressed as
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The expressions in Egs. (7) and (8) can now be used for varying parameter o to find points on the

strength envelope on plane 7,0, identical to the envelope of all limit states expressed in terms of

major and minor principal stresses o] and o; in Eq. (1).

3. Problem statement and the method of solution

3.1. Measures of roof safety

Three measures of roof safety are considered in this paper, the first being the stability

v ”

where o, 1s the compressive strength of the intact rock, y is its unit weight, and R is the radius

cl

number, defined as

of the tunnel cross-section. Stability number N is a dimensionless combination of the rock
properties and the tunnel size for which the loss of stability can occur (critical combination). The
safety margin of the tunnel against roof instability is reflected in the difference between the
dimensionless group o.;/yR for an existing tunnel, referred to here also as the characteristic
strength number, and its critical value N. Tunnels with a characteristic strength number larger than
the stability number are safe against roof collapse, and the larger the difference, the larger the

safety margin.



The second measure of safety considered is the factor of safety, defined as a ratio of the

shear strength of the rock, 7, to the reduced value of the shear strength, 7,, which is needed for the

tunnel roof to maintain limit equilibrium (demand on shear strength)

F=— (10)

This definition of the factor of safety is not commonly used for rocks with strength defined by

non-linear envelopes in the 7,0, plane, because of some analytical intricacies. The factor of safety

so defined is, effectively, a strength reduction factor, and it is demonstrated in this paper that this
definition of the factor of safety can be used successfully for rocks with strength defined by the
Hoek-Brown failure criterion.

The third measure of safety considered is the critical supporting pressure, p (or its
dimensionless form p/yR). This supporting pressure is an induced reaction of the tunnel lining to
the potentially collapsing rock block, and it will be assumed in the analysis as a fictitious,
uniformly distributed pressure on the inside of the tunnel, necessary to prevent roof collapse in

tunnels deemed unstable (when characteristic strength number o, / ¥R 1s lower than the stability

number in Eq. (9)).

3.2. Problem description

Roof stability in tunnels with a circular cross-section is considered. The tunnels considered
are deep enough, so that the collapse mechanism does not propagate to the ground surface. This
restriction can be easily removed as shown by Fraldi, et al., to make the method applicable to both
deep and shallow tunnels. The strength of the rock is described by the Hoek-Brown failure criterion
and the initial irreversible deformation is governed by the normality plastic flow rule. The tunnel
lining is characterized by a ribbed structure, with a potential failure limited to sections between
two neighboring ribs.

When calculating the stability number or the factor of safety, a stress-free boundary
condition will be defined on the interior surface of the tunnel. When calculating the supporting

pressure, the boundary condition on the collapsing (or falling) block surface will be defined as
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uniform vertical velocity, and zero velocity elsewhere on the surface of the tunnel. The kinematic
approach of limit analysis will be used, which does not require calculation of the true stress field,
but it needs the construction of a collapse mechanism that will assure the best bound to the
calculated safety measure. Collapse mechanisms considered are shown schematically in Fig. 2.
The first of the two examples illustrates a block in the shape of a right elliptical cone with a piece-
wise linear generatrix. During incipient failure, the block moves downward with uniform vertical
velocity. The block in the second example includes a prismatic segment of length / inserted
between two halves of the block in Fig. 2(a). Length L defines the maximum length of the collapse

mechanism determined by the spacing of the ribs in the tunnel.
3.3. Kinematic approach of limit analysis

A fundamental premise of Limit Analysis is plastic (ductile) behavior of the material.
Therefore, application of Limit Analysis to rocks requires a comment, as rocks at low confining
stresses exhibit brittle behavior. Chen?! argued that the assumption of rock ductility may be
questionable, but if the strain of geomaterial is small, and does not reach a brittle drop in stress on
the stress-strain deformation curve, then the deformability “may be sufficient to permit the
consideration of limit theorems...” The support for this argument comes from classical experiments
indicating some ductility in irreversible behavior prior to collapse of rock specimens??. Therefore,
applications of limit analysis to rocks and concrete can be found in the earlier subject literature:
24,25

Application of Limit Analysis theorems requires plastic deformation to be governed by a
convex failure criterion and the normality plastic flow rule. The kinematic theorem states that the
rate of work dissipation in any kinematically admissible collapse mechanism is not less than the

work rate of the true external forces

Jo,&0'dV +[on[v],dL > [Tv,dS+]Xyv,dV (11)
vV L N Vv

V, S and L are the volume of the mechanism, its boundary surface and the area of the kinematic

discontinuities (rupture surfaces), respectively. 7; is the boundary traction vector, o is the stress



tensor associated with admissible kinematics, and »n, is the unit vector perpendicular to
discontinuity surface L. Vector v, and &/' are the velocity vector in the mechanism and the
associated tensor of plastic strain rate, respectively, and [v]; denotes the velocity discontinuity

vector. X, is the vector of distributed forces, e.g., weight. The theorem in Eq. (11) allows one to

calculate an upper bound to a load causing failure of a structure, or a bound to some other measure

of stability.

4. Analysis of 3D tunnel roof collapse

4.1. Mechanism with piece-wise linear right elliptical cone block

The first mechanism suggested is the one schematically illustrated in Fig. 2(a). The rock
block in this mechanism is generated by a series of n right elliptical cones, each with a different

inclination of the generatrix, and with the height defined by co-ordinate #,, as shown in Fig. 3

(7 = 1,2...n). The failure surface separating this block from the stationary rock mass above is then
determined by a series of n frustums of right elliptical cones. Consequently, the block has the shape
of a right elliptical cone with a piece-wise linear generatrix. In general, an elliptical cone is

described by the following equation (origin of the coordinate system in the center of the cone base)

2 2 2
¥y _(z-h)
P (12
where a and b are the half-axes of the base in the x and y directions, respectively, and / is the cone

height. For convenience, Eq. (12) can be transformed for the j cone into a function of inclination
angle « ;of the generatrix defined as tan"'(a/ h)

2 z—h)?
x2+y_2:¥
A tan” o

(13)

where 4 is ratio b/a, equal for all cones generating the rock block, Fig. 3. It can assume values
either smaller or larger than one. When 4 = 1, Eq. (13) defines the right circular cone. Coordinate

h; (Fig. 3(b)) describing the locus of the j cone apex is

h; =x; tana; +z, (14)
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with z, being the coordinate of the base of the J™ frustum. Ratio A is not predetermined in the

mechanism; rather, it will be found in an optimization effort to find the best bound to the stability
measure sought.

Associativity of the plastic flow rule used in limit analysis requires the vertical velocity of
the block to be inclined at rupture angle J (see Fig. 1(b)) to the rupture surface. For a right circular
cone surface, this angle is equal to half of the cone apex angle and it is independent of the position
on the cone (or frustum). For a right elliptic cone, however, this angle depends on the location on
the cone described by angular coordinate € (Figs. 3(a) and 4). Because the failure surface in the
mechanism consists of a series of frustums derived from a series of elliptic cones, each with
different generatrix, the rupture angle on the failure surface is a function of angular coordinate 6,
and it also will vary from frustum to frustum. Distribution of' angle ¢ on the rupture surface needs
to be known in order to calculate the rate of work dissipation during incipient failure. Angle 6 at
any point M on an elliptical cone failure surface can be calculated as a complementary angle to the
angle between the vertical velocity vector and an inward vector perpendicular to the cone surface
at point M. Making use of Eq. (A15) in the Appendix and Eq. (13), the rupture angle on frustum

Jj of the mechanism can be written as a function of the locus defined by angular coordinate &

5,(6)==—cos™ (15)
E 2 2 2
cosd sin@
+ +1
cota, /1c0taj

For a right circular cone (4 = 1), this equation reduces to

é‘:z——a‘ (16)

In order to integrate the rate of work dissipation and the rate of external work, the contour of the
cross-section of the circular tunnel and the right elliptic cone block needs to be determined. The
circular tunnel cross-section is defined by

X' +z° =R’ (17)
where R is the tunnel radius. The shape of the cross-section of the two surfaces follows directly

from Eqgs. (13) and (17)
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This contour forms a 3D curve, which complicates integration of both the rate of work dissipation
and the rate of work of the rock weight. The rock block consists of n frustums, fully defined by »
angles 77, and n angles a, (Fig. 3(b)). While the number of frustums » forming the block will be

predetermined, specific angles 7, and «, will be independent variables in the optimization

procedure to determine the best bound to the problem solution. The complex shape of the block

requires a different integration procedure of work rates for frustums with vertical coordinate z < R,

a transition frustum, which includes point C (Figs. 3 and 4), and frustums where z > R. The
transition frustum is denoted with index j = k, and integration procedures are different for 1 < j <k,

j=k,and k<j < n.

Because the blocks shown in Fig. 2 move downward as rigid bodies, the entire effort of the
rock is dissipated within a narrow material band separating the blocks from the stationary rock. In
calculations, this band will be idealized as a surface, and will be referred to as a failure or rupture
surface (or kinematic discontinuity), with the work dissipation rate described in the second term
in Eq. (11). The rate of work dissipation per unit area of the rupture surface can be written more

specifically as

d=v(rcosd-o,sind) (19)

where o, and 7 are determined in Eqs. (7) and (8), and J'1s given in Eq. (15).
Utilizing Eqgs. (A3) through (A6) in the Appendix, infinitesimal area element dS of the

rupture surface in Fig. 4 can be written as

dS=\JE H,~G} dod (20)

where Ej, Gj, H; are defined in the Appendix, Egs. (A7) — (A9) and angular coordinate & is shown
in Fig. 4. Integrating Eq. (19) over surface S, and utilizing Eq. (15), the following expression was

obtained for the total rate of dissipated work
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and

f(2,0)=| 7,(0)cos5,(0)~0,,(0)sin5,(0) | JE].HJ. -G} (23)
and o0, and7; are determined from Egs. (7) and (8) with appropriate angle &, . For a given
elliptical base frustum j, rupture angle o'is a function of angular coordinate &, but not z; however,
for given 6, angle 5 does change from frustum to frustum. When z > R, 6/ is equal to /2, as the

cross-section of the block becomes a full ellipse.
The shaded areas of the horizontal cross-sections in Fig. 3(a) (and in Fig. 4) show portions
intersecting the rock (not the tunnel space). Based on the geometrical relationships in Fig. 3, they

can be calculated forz <R (1 <j<k)as

Acot> o (h. —z)*

A(2)= = {07 (2)-
1 (A1-1 cota (h —z)sin 29’””(2) B x(z) y(z) @4
B (A+Dcota,(h, —z)+(A-1)cota,(h; —z)cos 207 (2) 2

This equation is based on Eq.(All) in the Appendix. Infinitesimal volume element dV for

calculating the work of the block weight is

dV =A4,(z) dz (25)
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Using Eqgs. (24) and (25) forz <R, and (A1) for z > R, the rate of work ¥, done by the rock weight

was determined as

kel
W, =yv {4;1[2/_’“ A,(2)dz +

4" A (2)dz + %ﬂcotz o, [(hk ~RY —(h, ~z,, )3} + (26)
noJ 3 3
j§+l 3 Acot’ a, [(h} - zj) - (hj —Z,, ) }}

Stability number. The theorem in Eq. (11) can be written as a balance of work rates during incipient

failure

D=Ww, (27)
from which a lower bound to the stability number, Eq. (9), can be calculated. Upon substitution of
Egs. (21) and (26) into Eq. (27), the stability number can be evaluated. An explicit equation for
stability number N is elaborate, and it was found more practical to use a computerized procedure
to evaluate N. Computations and results are discussed later in the paper.

Factor of safety. Evaluating safety factor F, as defined in Eq. (10), requires constructing a

failure mechanism in the rock with the shear strength reduced by a factor equal to the factor of
safety, as illustrated in Fig. 5. The reduced-strength Hoek-Brown criterion has the same general

parametric form as that in Eqgs. (7) and (8)

1
sind. )| m.all-sino, 1-a
O-ndzo-nzo-ci L+ ! ’ ( . J) _i (28)
m, mya 2sin g, m,
|cosd. | mall—sino, 1-a
szizﬂ J b ( - J) (29)
F F 2 251n5j

with the exception that the shear strength is now reduced by factor of safety /" and the rupture
angle o, in Egs. (28) and (29) is replaced with

0, =arctan (F tanod, ; ) (30)
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Angle o 4 1s calculated from Eq. (15) with & equal to ¢; for the J™ frustum in the rock block. The

rate of work dissipation during incipient failure is calculated from Eq. (21), with the exception that

function f,(60) needs to be replaced with £,,(0)

7,(6) . 2
14(2,0) ={ 7 cos5dj(6’)—am(6’)smédj(@)}/E_/.Hj -G, (1)

with Ej, G;, and H; defined in Egs. (A7) through (A9).

Substituting the respective terms into Eq. (27), an implicit equation with an unknown factor
of safety results. Solution details will be presented in the penultimate section.

Minimum supporting pressure. For tunnels with lining capable of resisting roof collapse,

the reaction pressure of the lining needed to prevent collapse can be evaluated. This is done by
amending the right-hand side of Eq. (27) with work rate W, of the lining pressure resisting
anticipated collapse (see also the second last term in Eq. (11)). It is assumed that the resisting
pressure p is distributed uniformly on the surface of the potentially falling block. Integrating the

work rate of pressure p over the block surface with cross-section B,C in Fig. 3, the following

expression results

2
w1z [eot’ a.(k. —z) v leot’ @y (b, —z)
W,==4pvi X | ﬂ,z\/ Rj ! -1ldz+ I/IZ\/ -1 dz (32)

2 2 2 2
Az — R —z

2k

Note that integration of this work rate takes place only over the frustums 1 through £, because the
frustums k+1 through » do not interface with the tunnel surface. This work rate is negative as it is
the work of the tunnel lining reaction on the downward collapse velocity of the block. Including
the expression in Eq. (32) on the right-hand side of Eq. (27), the lower bound to the dimensionless

pressure p/yR needed to maintain stability was calculated (details in the penultimate section).
4.2. Mechanism with right elliptical cone and prismatic insert

The mechanism with a block consisting of a series of the right-elliptic frustums can be

improved by inserting a prismatic portion between two halves of the potentially unstable block,
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Fig. 2(b). 2D stability analysis based on a prismatic mechanism was carried out earlier by Park
and Michalowski® 3 for rocks with strength governed by the Mohr-Coulomb failure criterion with
tension cut-off and for the Hoek-Brown criterion. The same procedure is followed in this paper;
therefore, the mathematical details of the analysis are not repeated here, but some general
comments are offered below.

Shown in Fig. 6 are the view of a symmetrical half of the combined block, the cross-section
of its central portion, and the projection of the block on a vertical yOz plane. When combining the

prismatic section with the elliptic cone sections, point Bi and all angles «; and 7, (and,

consequently, all points B;) need to match those on the central cross-section in the elliptic cone
block in Fig. 3. The two halves of the elliptical cone block now form the “caps” of the prismatic
portion. In calculating the three measures of stability, the work rate terms for the internal
(dissipated) work, work of the rock weight and the work of the resisting pressure from the tunnel
lining were included in Eq. (27), in addition to the respective terms for the elliptical cone with the

piece-wise linear generatrix.

5. Results and discussion

5.1. Optimization

The analysis approach taken yields an upper bound to factor of safety F, and lower bounds
to stability number N and required support pressure p/yR. The specific geometry of the falling
block is not pre-determined in calculations. An optimization process is used to arrive at the
geometry that yields the best bound to the required stability measure. The independent variables
in the optimization of the piece-wise linear right elliptical block mechanism are: » angles o; and n
angles 7, where 7 is the number of frustums in the block (the number of linear sections in the block
generatrix, Fig. 3). In addition, ratio A of the half-axes in the elliptical base of the conical surfaces
is a variable (1 =1 for a circular base conical block). Calculations were performed in the Matlab
environment. In the process of optimization, all angles were varied with minimum increments of
0.01° (starting at 1°), and ratio A was varied with a minimum step of 0.001. The process is subject
to a constraint on the total length of the mechanism, given by ratio L/R (mechanism length/tunnel

radius). The length limitation is governed by the spacing of the ribs in the tunnel. The process of
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optimization was carried out until the difference in the calculated measure of stability in the two
consecutive loops was less than 10°. The number of frustums in the block shape description was
15 (an improvement in the results due to an increase in the number of frustums beyond 15 was less
than 0.1%). The length of the prismatic insert (if used) was not an independent variable. The
length of the critical mechanism with a prismatic insert always reached the length constraint ratio
L/R; the length of the insert was then calculated as a complementary length to the length of the

elliptic cone portion of the mechanism.

5.2. Results of calculations

Stability numbers from analyses with four different mechanisms (block shapes) are shown
in Fig. 7 as functions of rock type coefficient m;, for GSI = 100 and a disturbance factor of 1. The
constraint for the length of the mechanism is L/R =5 (except in the 2D analysis). The higher the
stability number, the more conservative the assessment of safety. Not surprisingly, the most
conservative is the 2D analysis, followed by the mechanism with the elliptic base block with a
prismatic insert. The latter mechanism reaches a length constraint of L/R = 5 for every coefficient
m;. The optimized mechanisms with either the right circular or the right elliptic block mechanism
did not reach the length constraint, and length (L/R)cit for which the stability number was attained
was part of the solution, marked as circular bullets on the chart. The elliptic cone block with the
plane insert will be used to produce the computational data for the remaining charts and tables. A
block without a plane insert is a special case of this mechanism, and only in rare cases, for very
small constraint L/R, the critical mechanism included no insert.

The impact of the 3D analysis on the stability number is illustrated in Fig. 8 for a length
constraint of L/R = 0.5. Even with this very stringent length constraint, the critical mechanisms
contained a plane insert for most of the parametric range used. The plane strain analysis shows the
results very much dependent on GS7 but almost independent of coefficient m; describing the type
of rock. The 3D analysis shows a more distinct dependence on the type of rock, but this dependence
is counterintuitive; the roof in the rock with lower m; appears to be more stable (lower N) than
roofs in the rocks with higher m;. This trend changes, however, with an increase in the mechanism
length constraint. With an increase in L/R, the curves for all coefficients m; come closer together,

and the trend becomes opposite for 2D analysis (see insert in Fig. 8(a)). The plausible reason for
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this change in the trend can be deduced from Fig. 8(b), where the Hoek-Brown strength envelope
is plotted for different coefficients m;. The rocks with low coefficient m; have generally lower shear
strength in the compressive regime, but they have higher tensile strength and higher shear strength
at low normal stresses than rocks with larger m;. The limit stress back-calculated from the analyses
is indicated as filled bullets for the 2D analysis and open bullets for the 3D analysis. It appears
that the stress in the 3D analysis spans the range where rocks with lower coefficient m; have higher
shear strength than rocks with larger m;, causing the unexpected effect. The trend is reversed in the
2D analysis. Limit analysis is an approximate method, thus stresses back-calculated from the
critical mechanism are not the true stresses, but they can be used to explain the trends in limit
analysis solutions.

The influence of the length constraint on the stability number is illustrated in Fig. 9(a). The
stability number increases (the tunnel roof becomes less stable) with an increase in the mechanism
length; this is consistent with expectations (the smaller the spacing of ribs in the tunnel, the more
stable the roof). For rocks with GSI =50 and D = 0, and mechanism length constraint L/R < 3, the
increase in coefficient m; has a destabilizing effect, but for larger lengths, this trend is reversed.
The dependence of the stability number on GSI is illustrated in Fig. 9(b) in the semi-log scale.
Both Figs. 9(a) and 9(b) clearly indicate that constraining the length of the failure mechanism has
an effect of increased safety (stabilizing effect). It was interesting to notice that critical
mechanisms for most of the combination of the rock parameters and mechanism length constraint
contained the plane insert. The open bullets on the curves in the charts indicate points where for
smaller constraint L/R, the optimized mechanism did not have a plane insert. For comparative
purposes, selected numerical results are presented in Table 1.

Calculated factors of safety are illustrated in Fig. 10 in semi-log scale, as functions of the
characteristic strength number oc/yR. The graph includes F-functions for various GSI/ and
mechanism length constraint L/R (m; = 15, D = 0). If the characteristic strength number for a given
tunnel is equal to the stability number, the factor of safety becomes equal to one. The balance of
work rate in Eq. (27) leads to an implicit equation with respect to F, and an iterative process was
used to arrive at the solution (Matlab built-in procedure was used for this purpose). As expected,
the factor of safety increases with an increase of the rock characteristic strength number and with

a decreasing length constraint L/R. Selected results are presented in Table. 2.
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The outcome of calculations of the roof supporting pressure required to maintain
equilibrium (prevent collapse) is shown in Fig. 11 in log-log scale, as a function of the
characteristic strength number o /yR. Supporting pressure is needed always when the
characteristic strength number is lower than the stability number. The lower the characteristic
strength number, the larger the support pressure needed. For a given rock, the required support
pressure increases with an increase of the mechanism length described by the length constraint L/R.
As expected, the larger the GSI the lower the support pressure needed. The charts are given for
m; =15, but the same trend is found for other types of rock. For comparative purposes, selected
numerical results are presented in Table. 3.

To the best of the author’s knowledge, the results presented are the first of its kind for
three-dimensional roof collapse mechanisms in tunnels with a circular cross-section. For that

reason, the authors were unable to compare the outcome to other results.

6. Conclusions

Roof collapse is a common failure mode in tunnels. The kinematic approach of limit
analysis was used in order to calculate three measures of safety: the stability number, the factor
of safety, and the support pressure required to maintain stability. The rock strength is described by
the Hoek-Brown failure criterion, and the rock block considered in the failure mechanism consists
of a right elliptical cone with a piece-wise linear generatrix, and a prismatic section inserted
between the two halves of the cone. Deep tunnels were considered, with the failure mechanism
not propagating to the ground surface. An intersection of this rock block with the circular cross-
section tunnels makes a complex shape and leads to an intricate integration of the rates of work
dissipation and the work of external forces in the mechanism during incipient collapse.

Because the original form of the Hoek-Brown criterion is a function of principal stresses,
an alternative form of the criterion is often used in geomechanics analyses that call for an explicit
dependence of the shear strength on the normal stress. This issue was circumvented in this paper
by using a parametric form of the original Hoek-Brown function.

Not surprisingly, the outcome of the analysis is strongly dependent on the quality of the
rock, described by the Geologic Strength Index in the Hoek-Brown failure criterion. Dependence

on the rock type represented by coefficient m; is less distinct, with a trend that is not necessarily
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unique. A restriction on the length of the collapse mechanism (falling block) was introduced in the
analysis to account for the presence of the strong ribs supporting the tunnel; the mechanism was
restrained to the length between the neighboring ribs. All measures of safety strongly depend on
the rib spacing; the safety of the tunnel against roof collapse increases with a decrease in the

spacing between the ribs.
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Appendix
A.1. Right elliptic cone

The right elliptic cone is described in Eq. (12). The volume of the elliptic cone is
determined by

v =2 abh (A1)
3
The lateral surface area of the right elliptic cone is calculated by introducing the form

h_ucosv, yzbh_u

sinv, z=u (A2)

X=a

where 0<u <A and 0<v<2x. The lateral surface area of the right elliptic cone is obtained as
S=["sNEH -G dudv (A3)
where E, G, and H are defined as

h* +a* cos® v+b*sin’ v

E= 2 (A4)
(a® =b*)(h—u)cosvsinv
G= P (AS)
CN20 42 i 2 2 .2
H:(h u) (a sm2v+b cos” V) (A6)
h
Above coefficients now can be specified for the j” frustum of the mechanism as
E (0)=1+cot’ a;(cos’ @+ A* sin” 0) (A7)
G, (2,6)= (hj —z)cot2 a, (l—lz)cos @sin 6 (A8)
H,(2,0)=(h,~z) cot’ a,(sin* 6+ cos’ 0) (A9)
Sector area A of an ellipse, Fig. Al, between two angles 6; and 6>, is defined as
A=F(0,)-F(6) (A10)
where
F(6)="2| 6 tan"| —(L-@sin20 (All)
2 (b+a)+(b—a)cos26
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A.2. Angle between a vertical and a plane tangent to an elliptic cone

The direction of block velocity is given by the unit vector
m=(0,0,-1) (A12)

A tangent plane to a right elliptic cone along a generatrix containing point M (x,,,V,,,2,,) 1S

(Fig. A1)
2x 2y 2(h—z,,)
M (x—xy )+ =2 (y—yy ) ———52(z-2,)=0 (A13)
a b h
and a vector normal to that plane at point M is determined as
S (2% 2y 2(h—zy) — Yu h-z,
n= s , — or n=|x,, =/, ——* Al4
( a b W’ M7 tanta (A19)

Angle y between vectors n and m , Fig. (A1), is thus given by the following expression

- h-z,

‘nxm 2 1
cos 7 = H” l_ tan o _

)| z+()/,w)2+(_h—zMj2 (cos&)z_{ sin 0 T” (A15)
. A tan’ o cota Acota

Consistent with the normality flow rule, rupture angle ¢ is the angle between the velocity of the

block and the elliptic cone failure surface, and is the complementary angle to angle y

(0=nm/2-y).
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Table Headings

Table 1. Stability numbers for roofs in circular tunnels from 3D analysis (D = 0)

Table 2. Factors of safety for roofs in circular tunnel from 3D analysis (D = 0)

Table 3. Required roof supporting pressure (p/yR X10?) for circular tunnels from 3D analysis
(D=0)
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Figure Captions

Figure 1. The Hoek-Brown failure criterion: (a) failure surface in Haigh-Westergaard space, and

(b) strength envelope in 7,0, plane, with three stress circles mapping a point from the

failure surface in o},0,,0; space.

Figure 2. A schematic of 3D roof failure surfaces: (a) right elliptic cone block intersecting the

circular cross-section tunnel, and (b) right elliptic cone with a prismatic insert.

Figure 3. A mechanism with piece-wise linear right elliptic cone block: (a) horizontal cross-
sections of the block, (b) vertical cross-section xOz, and (c) projection of the block

contour on the longitudinal yOz plane.

Figure 4. Right elliptic cone rupture surface and illustration of rupture angle ¢, infinitesimal

surface element dS, maximum integration angle 91'."“ (Eq. (22)), and area Aj (Eq. (24)).

Figure 5. Hoek-Brown strength criterion 7(o,) and the reduced strength envelope, 7(c,)/ F .

Figure 6. Right elliptic cone failure block with a prismatic insert: (a) view of a symmetric half of
the combined block, (b) cross-section through the insert, and (c¢) projection of the
block contour on vertical plane yOz.

Figure 7. Stability number N =(o,,/yR),,, as a function of m;, for roof failures in circular

crit

tunnels from four analyses with different collapse blocks (D =0, GSI = 100).
Figure 8. (a) Stability number as function of GSI (D = 0) from 2D analysis and the right elliptic
cone block with prismatic insert and constraint L/R = 0.5, and (b) back-calculated

stress range on the rupture surface from 2D and 3D analyses.

Figure 9. Stability number for circular tunnel roofs as a function of collapse block length
ratio L/R: (a) the influence of coefficient m;, and (b) the influence of GSI.
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Figure 10. The factor of safety as a function of characteristic strength number o, / ¥R and

collapse block length ratio L/R.

Figure 11. Required supporting pressure (dimensionless) for tunnel with different length-to-

radius ratios L/R as function of the characteristic strength number.

Figure A1l. Angle y between velocity direction m and normal to the rupture surface 7 at point

M(x,,vy524) -
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