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Abstract 

Collapse of a roof in circular cross-section tunnels is analyzed. The kinematic approach of limit 

analysis is utilized, with strength of the rock described by the Hoek-Brown failure criterion. The 

parametric form of the Hoek-Brown function is used to avoid introduction of an alternative explicit 

form of the shear strength criterion. Three measures of safety are considered: stability number, the 

factor of safety, and the support pressure needed to assure roof stability. The shape of the rock 

block in the failure mechanism consists of a right elliptic cone with a piece-wise linear generatrix 

and a prismatic section inserted between the two halves of the cone. The complexity of the cross-

section of the block with the tunnel makes for an intricate integration of the rates of the dissipated 

work and the work of external forces. All three measures of safety are strongly dependent on the 

quality of rock described in the Geological Strength Index, whereas the dependence on the rock 

type captured in coefficient mi is less distinct. The length of the roof failure mechanism is subject 

to a constraint dependent on the spacing of the supporting ribs in the tunnel.  All measures of safety 

(or stability) are distinctly dependent on the length constraint; the shorter the spacing between the 

ribs, the safer the tunnel against roof collapse. The 2D analysis yields the most conservative 

outcome.   
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1. Introduction 

 

Construction and operation of tunnels are among the challenges in the development of 

transportation infrastructure. Collapse of the tunnel roof is among the more common types of 

failure, both during construction and during service. While available two-dimensional (2D) 

analyses can provide conservative estimates of the roof safety1-3, more accurate three-dimensional 

(3D) analyses pose a challenge, because of the complex geometry of the failure zone, exacerbated 

by the nonlinear pressure dependency of the rock shear strength.    

Among the first analyses of tunnel roof stability was that of  Lippmann4, who applied limit 

analysis to a flat-ceiling tunnel in a rock with strength governed by the Mohr-Coulomb failure 

criterion.  Since then, a number of analytical or numerical studies have been presented with 2D 

analyses for flat-ceiling or circular cross-section roofs1-3, 5-8. Three-dimensional stability analyses 

of tunnel roofs are not as common, because of their complexity, especially for tunnels with non-

flat ceiling.  

 Tunnels in good quality rock typically have a continuous lining, but in variable rock or 

poor quality rock, periodic supports in the form of structural ribs may be installed. They may take 

the form of rolled steel sections or lattice girders combined with sprayed concrete. The presence 

of ribs will likely influence the potential failure mechanism by limiting its length to the rib spacing. 

Such collapse mechanisms will have a 3D geometry and will necessitate a 3D analysis. 

Consideration of such mechanisms in design is likely to have a beneficial effect on the economics 

of tunnel construction.  

Most contemporary tunnel construction procedures involve tunnel boring machines 

(TBM), which open a circular cross-section cavity in the rock. A roof collapse is possible behind 

the TBM during its operation, thus some TBMs are equipped with a roof shield protecting the crew 

and the machine.  Consideration of roof collapse during both the tunnel construction and service 

requires a 3D analysis of the roof’s stability. Attempts at the 3D analyses are scarce, and those 

available in the literature consider flat-ceiling tunnels. Yang and Huang9 extended Fraldi and 

Guarracino1 plane-strain variational solution for tunnels with rectangular cross-sections. Huang, 

et al.10 presented a 3D axi-symmetric generalization of a 2D analytical solution for circular tunnels 

suggested earlier by Fraldi and Guarracino7. This solution, however, is applicable to spherical 

cavities, and not to tunnels with circular cross-sections, because the cross-section of the cylindrical 
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tunnel surface with a surface of a right circular cone is not axisymmetric. Besides, the expectation 

that a 3D roof collapse of a long cavity (tunnel) should have axi-symmetric geometry is rather 

arbitrary.  It might also be of interest that previous attempts focused on the shape of the block 

falling from the roof of a cavity, whereas this paper focuses on quantitative safety assessment 

measures, with the block shape definition being an intermediate step in the analysis.  

In order to account for a complex cross-section of the falling rock block and the cylindrical 

surface of the tunnel, a semi-analytical method was devised. At the cost of an elaborate integration 

scheme, the intricate geometry was accounted for.  The kinematic approach of limit analysis for 

rocks governed by the modified Hoek-Brown strength criterion11 was used.  It might be of interest 

that the analytical approaches used in earlier attempts 1,9,10 all used an alternative form of the Hoek-

Brown function with the shear strength being an explicit function of the normal stress. This is 

because the original form of the Hoek-Brown criterion is a function of the principal stresses, not 

convenient in variational limit analysis. To avoid this issue, a parametric form of the Hoek-Brown 

criterion is used in the approach presented in this paper.  

The modified Hoek-Brown failure criterion for rocks is briefly reviewed in the next section, 

concluding with comments on applicability of limit analysis to rocks.  The collapse mechanism is 

described, and the analysis is outlined as to how to calculate the three measures of safety (stability): 

the stability number, the factor of safety, and the minimum support pressure needed to render 

tunnels in weak rock stable. Numerical results are presented in charts and tables.  The authors are 

not aware of any earlier studies reporting the quantitative safety measures for three-dimensional 

roof collapse mechanisms in rock governed by the Hoek-Brown failure criterion, in tunnels with 

circular cross-sections.  

 

2. Hoek-Brown failure criterion for rocks 

 

Various failure criteria have been suggested to describe the strength of rocks, e.g., Paul12, 

Bieniawski13, Barton14, and Hoek and Brown15. Among those, the Hoek-Brown failure criterion 

became preferred by engineers over the alternatives, because of its empirical nature and its direct 

link to the quality, type, and state of the rock.  A serious of enhancements have been introduced 

into that criterion over the years, and they were summarized in a paper by Hoek and Marinos16.   
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2.1. Generalized Hoek-Brown strength criterion  

 

The rock is considered isotropic, while the quality, the type of the rock, and its disturbance 

are considered through a relatively small number of parameters. The most recent version of this 

function11 is often referred to as the generalized Hoek-Brown criterion, and it takes the following 

form 

 3
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where 1   and 3  are the major and minor effective principal stresses, ci  is the uniaxial 

compressive strength of intact rock, and GSI is the Geological Strength Index (typically in a range 

from 5 to 100). Parameter mi depends on the rock type (typically in a range of 5 to 30), and D is 

the disturbance factor (in a range of 0 to 1).  More detailed description of these properties and their 

estimates can be found elsewhere (Marinos and Hoek17 and Hoek, et al.11). The strength criterion 

in Eq. (1) can be represented as the EFGE section of the failure surface in the Haigh-Westergaard 

space in Fig. 1(a), where 1 2 3       (all effective stresses). The function in Eq. (1) is 

independent of intermediate principal stress 2  ; therefore, axis 2   must be parallel to surface 

EFGE. Consequently, any plane from a pencil of planes through axis 2   will form a straight-line 

cross-section with surface EFGE, parallel to axis 2   (for example, G F  ).   
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 Any point on surface EFGE represents a limit-state combination of stresses 1 2 3, and .    

Transformed onto a , n   plane, such a stress state is represented by three stress circles, as 

illustrated by the dashed semi-circles in Fig. 1(b).  Defining a triaxial isotropic tensile strength as 

t , and setting all principal stresses to t , all three stress circles reduce to one point at E*.  The 

isotropic tensile strength is uniquely defined by the strength criterion in Eq. (1); substituting 

1 3 t       in Eq. (1), one obtains 

 ci
t

b

s
m


    (5) 

Isotropic tensile strength t  is not necessarily equal to the one-dimensional or biaxial tensile 

strength, although, typically, it does not differ much (for minimally disturbed rocks, D = 0, the 

uniaxial tensile strength is smaller than t , but the difference does not exceed 4%, and it is less 

than 1% for a large range of GSI and mi). 

 

2.2. Parametric form of the Hoek-Brown strength criterion 

 

The Hoek-Brown criterion was developed as a function of the major and minor effective 

principal stresses. Some of the methods in geotechnical engineering and geomechanics call for a 

strength envelope expressed explicitly in terms of the traction components ( , )n  on the failure 

surface. For that reason, previous attempts at stability analysis of cavities and tunnels in rocks1,9 

did not use the original Hoek-Brown criterion in Eq. (1), but rather its approximation ( )nf   

in the form    
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where A and B are the dimensionless parameters determined from a best fit into the H-B criterion 

in the range of interest. A function similar to that in Eq. (6) was suggested by Hoek and Brown as 

an alternative criterion form in their original paper15.  In this paper, we avoid using the approximate 

form in Eq. (6); instead, we utilize a parametric form of the criterion in Eq. (1). For this, rupture 
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angle , shown in Fig. 1(b), is used as a parameter18. Making use of the procedure in Balmer19 (see 

also Kumar20), the components of the traction vector on the failure surface can be expressed as 
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The expressions in Eqs. (7) and (8) can now be used for varying parameter  to find points on the 

strength envelope on plane , n  , identical to the envelope of all limit states expressed in terms of 

major and minor principal stresses 1 3and   in Eq. (1).  

 

3. Problem statement and the method of solution 

 
3.1. Measures of roof safety  

 

Three measures of roof safety are considered in this paper, the first being the stability 

number, defined as 

 ci

crit

N
R





 
  
 

  (9) 

where ci  is the compressive strength of the intact rock,   is its unit weight, and R is the radius 

of the tunnel cross-section. Stability number N is a dimensionless combination of the rock 

properties and the tunnel size for which the loss of stability can occur (critical combination).  The 

safety margin of the tunnel against roof instability is reflected in the difference between the 

dimensionless group σci /γR for an existing tunnel, referred to here also as the characteristic 

strength number, and its critical value N.  Tunnels with a characteristic strength number larger than 

the stability number are safe against roof collapse, and the larger the difference, the larger the 

safety margin.  
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 The second measure of safety considered is the factor of safety, defined as a ratio of the 

shear strength of the rock, ,  to the reduced value of the shear strength, ,d  which is needed for the 

tunnel roof to maintain limit equilibrium (demand on shear strength) 

 

 
d

F 


   (10) 

 

This definition of the factor of safety is not commonly used for rocks with strength defined by 

non-linear envelopes in the , n   plane, because of some analytical intricacies. The factor of safety 

so defined is, effectively, a strength reduction factor, and it is demonstrated in this paper that this 

definition of the factor of safety can be used successfully for rocks with strength defined by the 

Hoek-Brown failure criterion.   

 The third measure of safety considered is the critical supporting pressure, p (or its 

dimensionless form p/R). This supporting pressure is an induced reaction of the tunnel lining to 

the potentially collapsing rock block, and it will be assumed in the analysis as a fictitious, 

uniformly distributed pressure on the inside of the tunnel, necessary to prevent roof collapse in 

tunnels deemed unstable (when characteristic strength number /ci R   is lower than the stability 

number in Eq. (9)).   

 

3.2. Problem description  

 

Roof stability in tunnels with a circular cross-section is considered. The tunnels considered 

are deep enough, so that the collapse mechanism does not propagate to the ground surface. This 

restriction can be easily removed as shown by Fraldi, et al.8, to make the method applicable to both 

deep and shallow tunnels. The strength of the rock is described by the Hoek-Brown failure criterion 

and the initial irreversible deformation is governed by the normality plastic flow rule. The tunnel 

lining is characterized by a ribbed structure, with a potential failure limited to sections between 

two neighboring ribs.   

When calculating the stability number or the factor of safety, a stress-free boundary 

condition will be defined on the interior surface of the tunnel. When calculating the supporting 

pressure, the boundary condition on the collapsing (or falling) block surface will be defined as 
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uniform vertical velocity, and zero velocity elsewhere on the surface of the tunnel. The kinematic 

approach of limit analysis will be used, which does not require calculation of the true stress field, 

but it needs the construction of a collapse mechanism that will assure the best bound to the 

calculated safety measure. Collapse mechanisms considered are shown schematically in Fig. 2. 

The first of the two examples illustrates a block in the shape of a right elliptical cone with a piece-

wise linear generatrix. During incipient failure, the block moves downward with uniform vertical 

velocity. The block in the second example includes a prismatic segment of length l inserted 

between two halves of the block in Fig. 2(a).  Length L defines the maximum length of the collapse 

mechanism determined by the spacing of the ribs in the tunnel. 

 

3.3. Kinematic approach of limit analysis 

 

A fundamental premise of Limit Analysis is plastic (ductile) behavior of the material. 

Therefore, application of Limit Analysis to rocks requires a comment, as rocks at low confining 

stresses exhibit brittle behavior. Chen21 argued that the assumption of rock ductility may be 

questionable, but if the strain of geomaterial is small, and does not reach a brittle drop in stress on 

the stress-strain deformation curve, then the deformability “may be sufficient to permit the 

consideration of limit theorems...” The support for this argument comes from classical experiments 

indicating some ductility in irreversible behavior prior to collapse of rock specimens22.  Therefore, 

applications of limit analysis to rocks and concrete can be found in the earlier subject literature23, 
24, 25.   

Application of Limit Analysis theorems requires plastic deformation to be governed by a 

convex failure criterion and the normality plastic flow rule.  The kinematic theorem states that the 

rate of work dissipation in any kinematically admissible collapse mechanism is not less than the 

work rate of the true external forces  

 

 [ ]pl
ij ij ij i j i i i i

V L S V
dV n v dL Tv dS X v dV          (11) 

 

V, S and L are the volume of the mechanism, its boundary surface and the area of the kinematic 

discontinuities (rupture surfaces), respectively. iT  is the boundary traction vector, ij is the stress 
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tensor associated with admissible kinematics, and in  is the unit vector perpendicular to 

discontinuity surface L.  Vector iv  and pl
ij  are the velocity vector in the mechanism and the 

associated tensor of plastic strain rate, respectively, and [ ] jv  denotes the velocity discontinuity 

vector. iX  is the vector of distributed forces, e.g., weight. The theorem in Eq. (11) allows one to 

calculate an upper bound to a load causing failure of a structure, or a bound to some other measure 

of stability.  

 

4. Analysis of 3D tunnel roof collapse 

 
4.1. Mechanism with piece-wise linear right elliptical cone block  
 

The first mechanism suggested is the one schematically illustrated in Fig. 2(a). The rock 

block in this mechanism is generated by a series of n right elliptical cones, each with a different 

inclination of the generatrix, and with the height defined by co-ordinate jh , as shown in Fig. 3 

(j = 1,2...n).  The failure surface separating this block from the stationary rock mass above is then 

determined by a series of n frustums of right elliptical cones. Consequently, the block has the shape 

of a right elliptical cone with a piece-wise linear generatrix.  In general, an elliptical cone is 

described by the following equation (origin of the coordinate system in the center of the cone base) 

  
22 2

2 2 2

z hx y
a b h


    (12) 

where a and b are the half-axes of the base in the x and y directions, respectively, and h is the cone 

height. For convenience, Eq. (12) can be transformed for the jth cone into a function of inclination 

angle j of the generatrix defined as 1tan ( / )a h   

 
22

2
2 2

( )
tan

j

j

z hyx
 


    (13) 

where λ is ratio b/a, equal for all cones generating the rock block, Fig. 3. It can assume values 

either smaller or larger than one. When λ = 1, Eq. (13) defines the right circular cone. Coordinate 

hj  (Fig. 3(b)) describing the locus of the jth cone apex is 

 
 tanj j j jh x z    (14) 
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with jz  being the coordinate of the base of the jth frustum.  Ratio λ is not predetermined in the 

mechanism; rather, it will be found in an optimization effort to find the best bound to the stability 

measure sought.  

Associativity of the plastic flow rule used in limit analysis requires the vertical velocity of 

the block to be inclined at rupture angle   (see Fig. 1(b)) to the rupture surface. For a right circular 

cone surface, this angle is equal to half of the cone apex angle and it is independent of the position 

on the cone (or frustum). For a right elliptic cone, however, this angle depends on the location on 

the cone described by angular coordinate   (Figs. 3(a) and 4). Because the failure surface in the 

mechanism consists of a series of frustums derived from a series of elliptic cones, each with 

different generatrix, the rupture angle on the failure surface is a function of angular coordinate , 

and it also will vary from frustum to frustum.  Distribution of angle   on the rupture surface needs 

to be known in order to calculate the rate of work dissipation during incipient failure. Angle   at 

any point M on an elliptical cone failure surface can be calculated as a complementary angle to the 

angle between the vertical velocity vector and an inward vector perpendicular to the cone surface 

at point M.  Making use of Eq. (A15) in the Appendix and Eq. (13), the rupture angle on frustum 

j of the mechanism can be written as a function of the locus defined by angular coordinate   

 

 1

2 2

1( ) cos
2 cos sin 1

cot cot

j

j j


 

 

  

 

   
       

   

  (15) 

 

For a right circular cone ( = 1), this equation reduces to  

 
2j j


     (16) 

In order to integrate the rate of work dissipation and the rate of external work, the contour of the 

cross-section of the circular tunnel and the right elliptic cone block needs to be determined. The 

circular tunnel cross-section is defined by 

 2 2 2x z R    (17) 

where R is the tunnel radius.  The shape of the cross-section of the two surfaces follows directly 

from Eqs. (13) and (17) 
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( ) cot j j

x z R z

y z z h R z 
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   
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This contour forms a 3D curve, which complicates integration of both the rate of work dissipation 

and the rate of work of the rock weight. The rock block consists of n frustums, fully defined by n 

angles j  and n angles j (Fig. 3(b)). While the number of frustums n forming the block will be 

predetermined, specific angles j  and j  will be independent variables in the optimization 

procedure to determine the best bound to the problem solution. The complex shape of the block 

requires a different integration procedure of work rates for frustums with vertical coordinate z < R, 

a transition frustum, which includes point C (Figs. 3 and 4), and frustums where z ≥ R. The 

transition frustum is denoted with index j = k, and integration procedures are different for 1 ≤ j < k,  

j = k, and k < j ≤ n. 

 Because the blocks shown in Fig. 2 move downward as rigid bodies, the entire effort of the 

rock is dissipated within a narrow material band separating the blocks from the stationary rock.  In 

calculations, this band will be idealized as a surface, and will be referred to as a failure or rupture 

surface (or kinematic discontinuity), with the work dissipation rate described in the second term 

in Eq. (11).  The rate of work dissipation per unit area of the rupture surface can be written more 

specifically as 

  cos sinnd v        (19) 

 
where n  and   are determined in Eqs. (7) and (8), and  is given in Eq. (15).  
 Utilizing Eqs. (A3) through (A6) in the Appendix, infinitesimal area element dS of the 

rupture surface in Fig. 4 can be written as 

 

 2
j j jdS E H G d dz    (20) 

 

where Ej, Gj, Hj are defined in the Appendix, Eqs. (A7) – (A9) and angular coordinate   is shown 

in Fig. 4. Integrating Eq. (19) over surface S, and utilizing Eq. (15), the following expression was 

obtained for the total rate of dissipated work 
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where  
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and 

 2( , ) ( )cos ( ) ( )sin ( )j j j nj j j j jf z E H G               (23) 

and nj  and j are determined from Eqs. (7) and (8) with appropriate angle j . For a given 

elliptical base frustum j, rupture angle  is a function of angular coordinate , but not z; however, 

for given , angle  does change from frustum to frustum. When z ≥ R, max
j is equal to π/2, as the 

cross-section of the block becomes a full ellipse.  

 The shaded areas of the horizontal cross-sections in Fig. 3(a) (and in Fig. 4) show portions 

intersecting the rock (not the tunnel space). Based on the geometrical relationships in Fig. 3, they 

can be calculated for z < R  (1 ≤ j ≤ k) as  
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  (24) 

 

This equation is based on Eq. (A11) in the Appendix. Infinitesimal volume element dV for 

calculating the work of the block weight is  

 

 ( )jdV A z dz   (25) 
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Using Eqs. (24) and (25) for z < R, and (A1) for z ≥ R, the rate of work W
 done by the rock weight 

was determined as  
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Stability number. The theorem in Eq. (11) can be written as a balance of work rates during incipient 

failure  

 D W   (27) 

from which a lower bound to the stability number, Eq. (9), can be calculated. Upon substitution of 

Eqs. (21) and (26) into Eq. (27), the stability number can be evaluated. An explicit equation for 

stability number N is elaborate, and it was found more practical to use a computerized procedure 

to evaluate N.  Computations and results are discussed later in the paper.  

 Factor of safety. Evaluating safety factor F, as defined in Eq. (10), requires constructing a 

failure mechanism in the rock with the shear strength reduced by a factor equal to the factor of 

safety, as illustrated in Fig. 5. The reduced-strength Hoek-Brown criterion has the same general 

parametric form as that in Eqs. (7) and (8) 

 
 

1
11 sinsin1

2sin

a
b jj

nd n ci
b b j b

m a s
m m a m


  




 

   
      

    
 

  (28) 

 
  11 sincos

2 2sin

a
a

b jjci
d

j

m a
F F







 

  
    

   
 

  (29) 

 

with the exception that the shear strength is now reduced by factor of safety F and the rupture 

angle j  in Eqs. (28) and (29) is replaced with 

  arctan tanj d jF    (30) 
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Angle dj  is calculated from Eq. (15) with  equal to j for the jth frustum in the rock block. The 

rate of work dissipation during incipient failure is calculated from Eq. (21), with the exception that 

function ( )jf   needs to be replaced with ( )djf   

 2( )
( , ) cos ( ) ( )sin ( )j

dj dj nj dj j j jf z E H G
F

 
      

 
   
 

  (31) 

with  Ej, Gj, and Hj defined in Eqs. (A7) through (A9).  

 Substituting the respective terms into Eq. (27), an implicit equation with an unknown factor 

of safety results. Solution details will be presented in the penultimate section.   

 Minimum supporting pressure. For tunnels with lining capable of resisting roof collapse, 

the reaction pressure of the lining needed to prevent collapse can be evaluated. This is done by 

amending the right-hand side of Eq. (27) with work rate Wp of the lining pressure resisting 

anticipated collapse (see also the second last term in Eq. (11)). It is assumed that the resisting 

pressure p is distributed uniformly on the surface of the potentially falling block. Integrating the 

work rate of pressure p over the block surface with cross-section 1B C in Fig. 3, the following 

expression results 

 

 
   1

2 22 21

2 2 2 2
1

cot cot
4 1 1

j

j k

z Rk j j k k
p

j z z

h z h z
W pv z dz z dz

R z R z
 

 




 
  

       
  

 

  (32) 

 

Note that integration of this work rate takes place only over the frustums 1 through k, because the 

frustums k+1 through n do not interface with the tunnel surface. This work rate is negative as it is 

the work of the tunnel lining reaction on the downward collapse velocity of the block. Including 

the expression in Eq. (32) on the right-hand side of Eq. (27), the lower bound to the dimensionless 

pressure p/R needed to maintain stability was calculated (details in the penultimate section).    

 

4.2. Mechanism with right elliptical cone and prismatic insert  

 

The mechanism with a block consisting of a series of the right-elliptic frustums can be 

improved by inserting a prismatic portion between two halves of the potentially unstable block, 
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Fig. 2(b).  2D stability analysis based on a prismatic mechanism was carried out earlier by Park 

and Michalowski2, 3 for rocks with strength governed by the Mohr-Coulomb failure criterion with 

tension cut-off and for the Hoek-Brown criterion. The same procedure is followed in this paper; 

therefore, the mathematical details of the analysis are not repeated here, but some general 

comments are offered below.  

 Shown in Fig. 6 are the view of a symmetrical half of the combined block, the cross-section 

of its central portion, and the projection of the block on a vertical yOz plane. When combining the 

prismatic section with the elliptic cone sections, point B1 and all angles j and j (and, 

consequently, all points Bj) need to match those on the central cross-section in the elliptic cone 

block in Fig. 3. The two halves of the elliptical cone block now form the “caps” of the prismatic 

portion. In calculating the three measures of stability, the work rate terms for the internal 

(dissipated) work, work of the rock weight and the work of the resisting pressure from the tunnel 

lining were included in Eq. (27), in addition to the respective terms for the elliptical cone with the 

piece-wise linear generatrix.   

 

5. Results and discussion 

 
5.1. Optimization 

 

The analysis approach taken yields an upper bound to factor of safety F, and lower bounds 

to stability number N and required support pressure p/γR. The specific geometry of the falling 

block is not pre-determined in calculations.  An optimization process is used to arrive at the 

geometry that yields the best bound to the required stability measure. The independent variables 

in the optimization of the piece-wise linear right elliptical block mechanism are: n angles αj and n 

angles ηj, where n is the number of frustums in the block (the number of linear sections in the block 

generatrix, Fig. 3). In addition, ratio  of the half-axes in the elliptical base of the conical surfaces 

is a variable ( = 1 for a circular base conical block). Calculations were performed in the Matlab 

environment. In the process of optimization, all angles were varied with minimum increments of 

0.01° (starting at 1°), and ratio  was varied with a minimum step of 0.001. The process is subject 

to a constraint on the total length of the mechanism, given by ratio L/R (mechanism length/tunnel 

radius).  The length limitation is governed by the spacing of the ribs in the tunnel. The process of 
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optimization was carried out until the difference in the calculated measure of stability in the two 

consecutive loops was less than 10-6. The number of frustums in the block shape description was 

15 (an improvement in the results due to an increase in the number of frustums beyond 15 was less 

than 0.1%).  The length of the prismatic insert (if used) was not an independent variable. The 

length of the critical mechanism with a prismatic insert always reached the length constraint ratio 

L/R; the length of the insert was then calculated as a complementary length to the length of the 

elliptic cone portion of the mechanism.   

 

5.2. Results of calculations 

 

Stability numbers from analyses with four different mechanisms (block shapes) are shown 

in Fig. 7 as functions of rock type coefficient mi, for GSI = 100 and a disturbance factor of 1. The 

constraint for the length of the mechanism is L/R = 5 (except in the 2D analysis). The higher the 

stability number, the more conservative the assessment of safety. Not surprisingly, the most 

conservative is the 2D analysis, followed by the mechanism with the elliptic base block with a 

prismatic insert. The latter mechanism reaches a length constraint of L/R = 5 for every coefficient 

mi. The optimized mechanisms with either the right circular or the right elliptic block mechanism 

did not reach the length constraint, and length (L/R)crit for which the stability number was attained 

was part of the solution, marked as circular bullets on the chart. The elliptic cone block with the 

plane insert will be used to produce the computational data for the remaining charts and tables.  A 

block without a plane insert is a special case of this mechanism, and only in rare cases, for very 

small constraint L/R, the critical mechanism included no insert.  

 The impact of the 3D analysis on the stability number is illustrated in Fig. 8 for a length 

constraint of L/R = 0.5. Even with this very stringent length constraint, the critical mechanisms 

contained a plane insert for most of the parametric range used. The plane strain analysis shows the 

results very much dependent on GSI but almost independent of coefficient mi describing the type 

of rock. The 3D analysis shows a more distinct dependence on the type of rock, but this dependence 

is counterintuitive; the roof in the rock with lower mi appears to be more stable (lower N) than 

roofs in the rocks with higher mi. This trend changes, however, with an increase in the mechanism 

length constraint. With an increase in L/R, the curves for all coefficients mi come closer together, 

and the trend becomes opposite for 2D analysis (see insert in Fig. 8(a)). The plausible reason for 
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this change in the trend can be deduced from Fig. 8(b), where the Hoek-Brown strength envelope 

is plotted for different coefficients mi. The rocks with low coefficient mi have generally lower shear 

strength in the compressive regime, but they have higher tensile strength and higher shear strength 

at low normal stresses than rocks with larger mi. The limit stress back-calculated from the analyses 

is indicated as filled bullets for the 2D analysis and open bullets for the 3D analysis.  It appears 

that the stress in the 3D analysis spans the range where rocks with lower coefficient mi have higher 

shear strength than rocks with larger mi, causing the unexpected effect. The trend is reversed in the 

2D analysis.  Limit analysis is an approximate method, thus stresses back-calculated from the 

critical mechanism are not the true stresses, but they can be used to explain the trends in limit 

analysis solutions.  

 The influence of the length constraint on the stability number is illustrated in Fig. 9(a).  The 

stability number increases (the tunnel roof becomes less stable) with an increase in the mechanism 

length; this is consistent with expectations (the smaller the spacing of ribs in the tunnel, the more 

stable the roof).  For rocks with GSI = 50 and D = 0, and mechanism length constraint L/R < 3, the 

increase in coefficient mi has a destabilizing effect, but for larger lengths, this trend is reversed. 

The dependence of the stability number on GSI is illustrated in Fig. 9(b) in the semi-log scale. 

Both Figs. 9(a) and 9(b) clearly indicate that constraining the length of the failure mechanism has 

an effect of increased safety (stabilizing effect). It was interesting to notice that critical 

mechanisms for most of the combination of the rock parameters and mechanism length constraint 

contained the plane insert. The open bullets on the curves in the charts indicate points where for 

smaller constraint L/R, the optimized mechanism did not have a plane insert. For comparative 

purposes, selected numerical results are presented in Table 1.  

 Calculated factors of safety are illustrated in Fig. 10 in semi-log scale, as functions of the 

characteristic strength number σci/γR. The graph includes F-functions for various GSI and 

mechanism length constraint L/R (mi = 15, D = 0). If the characteristic strength number for a given 

tunnel is equal to the stability number, the factor of safety becomes equal to one. The balance of 

work rate in Eq. (27) leads to an implicit equation with respect to F, and an iterative process was 

used to arrive at the solution (Matlab built-in procedure was used for this purpose).  As expected, 

the factor of safety increases with an increase of the rock characteristic strength number and with 

a decreasing length constraint L/R.  Selected results are presented in Table. 2.   
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The outcome of calculations of the roof supporting pressure required to maintain 

equilibrium (prevent collapse) is shown in Fig. 11 in log-log scale, as a function of the 

characteristic strength number σci /γR. Supporting pressure is needed always when the 

characteristic strength number is lower than the stability number. The lower the characteristic 

strength number, the larger the support pressure needed. For a given rock, the required support 

pressure increases with an increase of the mechanism length described by the length constraint L/R.  

As expected, the larger the GSI the lower the support pressure needed. The charts are given for 

mi = 15, but the same trend is found for other types of rock.  For comparative purposes, selected 

numerical results are presented in Table. 3.   

 To the best of the author’s knowledge, the results presented are the first of its kind for 

three-dimensional roof collapse mechanisms in tunnels with a circular cross-section.  For that 

reason, the authors were unable to compare the outcome to other results.   

 

6. Conclusions 

 

Roof collapse is a common failure mode in tunnels. The kinematic approach of limit 

analysis was used in order to calculate three measures of safety:  the stability number, the factor 

of safety, and the support pressure required to maintain stability. The rock strength is described by 

the Hoek-Brown failure criterion, and the rock block considered in the failure mechanism consists 

of a right elliptical cone with a piece-wise linear generatrix, and a prismatic section inserted 

between the two halves of the cone.  Deep tunnels were considered, with the failure mechanism 

not propagating to the ground surface. An intersection of this rock block with the circular cross-

section tunnels makes a complex shape and leads to an intricate integration of the rates of work 

dissipation and the work of external forces in the mechanism during incipient collapse.  

 Because the original form of the Hoek-Brown criterion is a function of principal stresses, 

an alternative form of the criterion is often used in geomechanics analyses that call for an explicit 

dependence of the shear strength on the normal stress. This issue was circumvented in this paper 

by using a parametric form of the original Hoek-Brown function.  

 Not surprisingly, the outcome of the analysis is strongly dependent on the quality of the 

rock, described by the Geologic Strength Index in the Hoek-Brown failure criterion. Dependence 

on the rock type represented by coefficient mi is less distinct, with a trend that is not necessarily 
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unique. A restriction on the length of the collapse mechanism (falling block) was introduced in the 

analysis to account for the presence of the strong ribs supporting the tunnel; the mechanism was 

restrained to the length between the neighboring ribs. All measures of safety strongly depend on 

the rib spacing; the safety of the tunnel against roof collapse increases with a decrease in the 

spacing between the ribs.   
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Appendix 

A.1. Right elliptic cone  

 

The right elliptic cone is described in Eq. (12). The volume of the elliptic cone is 

determined by 

 
3

V abh
   (A1) 

The lateral surface area of the right elliptic cone is calculated by introducing the form 26  

 cos , sin ,h u h ux a v y b v z u
h h
 

     (A2) 

where 0 u h    and 0 2v   . The lateral surface area of the right elliptic cone is obtained as 

 2 2
0 0

hS EH G dudv
     (A3) 

where E, G, and H are defined as 

 
2 2 2 2 2

2

cos sinh a v b vE
h

 
   (A4) 

 
2 2

2

( )( )cos sina b h u v vG
h

 
   (A5) 

 
2 2 2 2 2

2

( ) ( sin cos )h u a v b vH
h

 
   (A6) 

Above coefficients now can be specified for the jth frustum of the mechanism as 

 2 2 2 2( ) 1 cot (cos sin )j jE          (A7) 

    2 2( , ) cot 1 cos sinj j jG z h z         (A8) 

    
2 2 2 2 2( , ) cot sin cosj j jH z h z         (A9) 

 

Sector area A of an ellipse, Fig. A1, between two angles θ1 and θ2, is defined as 

   

 2 1( ) ( )A F F     (A10) 

where 

 1 ( )sin 2( ) tan
2 ( ) ( )cos2
ab b aF

b a b a


 



  

   
    

  (A11) 
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A.2. Angle between a vertical and a plane tangent to an elliptic cone 

 

The direction of block velocity is given by the unit vector 

  0, 0, 1m     (A12) 

A tangent plane to a right elliptic cone along a generatrix containing point M ( , ,M M Mx y z ) is 

(Fig. A1)  

      2 2 2

2 2 2( ) 0M M M
M M M

x y h zx x y y z z
a b h


        (A13) 

and a vector normal to that plane at point M is determined as 

 2 2 2 2 2

2 2 2( ), , or , ,
tan

M M M M M
M

x y h z y h zn n x
a b h  

    
      
   

  (A14) 

Angle χ between vectors n  and m , Fig. (A1), is thus given by the following expression 

 

 

2
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2
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1tancos
cos sin 1
cot cottan
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M

h z
n m

n m y h zx


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   




  
       

          
      

  (A15) 

Consistent with the normality flow rule, rupture angle  is the angle between the velocity of the 

block and the elliptic cone failure surface, and is the complementary angle to angle  

( / 2 )    . 
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Table Headings 

 

Table 1. Stability numbers for roofs in circular tunnels from 3D analysis (D = 0) 

 

Table 2. Factors of safety for roofs in circular tunnel from 3D analysis (D = 0) 

 

Table 3. Required roof supporting pressure (p/γR ×103) for circular tunnels from 3D analysis 

(D = 0) 
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Figure Captions 
 
Figure 1. The Hoek-Brown failure criterion: (a) failure surface in Haigh-Westergaard space, and 

(b) strength envelope in , n   plane, with three stress circles mapping a point from the 

failure surface in 1 2 3, ,      space. 

 
Figure 2. A schematic of 3D roof failure surfaces: (a) right elliptic cone block intersecting the 

circular cross-section tunnel, and (b) right elliptic cone with a prismatic insert.  
 
Figure 3. A mechanism with piece-wise linear right elliptic cone block: (a) horizontal cross-

sections of the block, (b) vertical cross-section xOz, and (c) projection of the block 
contour on the longitudinal yOz plane.  

 
Figure 4. Right elliptic cone rupture surface and illustration of rupture angle j, infinitesimal 

surface element dS, maximum integration angle max
j  (Eq. (22)), and area jA (Eq. (24)). 

 
Figure 5. Hoek-Brown strength criterion ( )n   and the reduced strength envelope, ( ) /n F  . 

 
Figure 6. Right elliptic cone failure block with a prismatic insert: (a) view of a symmetric half of 

the combined block, (b) cross-section through the insert, and (c) projection of the 
block contour on vertical plane yOz.   

 
Figure 7.  Stability number ( / )ci critN R   as a function of mi, for roof failures in circular 

tunnels from four analyses with different collapse blocks (D = 0, GSI = 100).  
 
Figure 8. (a) Stability number as function of GSI (D = 0) from 2D analysis and the right elliptic 

cone block with prismatic insert and constraint L/R = 0.5, and (b) back-calculated 
stress range on the rupture surface from 2D and 3D analyses. 

 
Figure 9. Stability number for circular tunnel roofs as a function of collapse block length 

ratio L/R: (a) the influence of coefficient mi, and (b) the influence of GSI. 
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Figure 10. The factor of safety as a function of characteristic strength number /ci R   and 

collapse block length ratio L/R. 
 
Figure 11. Required supporting pressure (dimensionless) for tunnel with different length-to-

radius ratios L/R as function of the characteristic strength number. 
 
Figure A1. Angle χ between velocity direction m  and normal to the rupture surface n  at point 

( , , )M M MM x y z . 
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