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1. Introduction

1.1. Weak turbulence

Weak turbulence refers to the theory describing nonequilibrium statistical mechanics 
of weakly nonlinear Hamiltonian systems; it is a universal phenomenon arising in a 
number of physical systems. For these systems, it is expected that the nonlinear effects 
lead to the stochastization of waves phases and a slow modulation of the amplitudes, and 
that a kinetic equation of quantum Boltzmann type for the mean square amplitudes can 
be written. There are two common types of such kinetic equations: the 3-wave and the 
4-wave ones. The first derivation of a kinetic model of weak turbulence, which is a 3-wave 
one, was obtained, to our knowledge, in [53,54] in the study of phonon interactions in 
anharmonic crystal lattices. We refer to [68,45,66,21,46,47] for detailed discussions on 
the topics.

4-wave kinetic equations play an important role in the theory of weak turbulence and 
appear in several contexts: gravity and capillary waves on the surface of a finite-depth 
fluid [67,27–29,13], Alfven wave turbulence in astrophysical plasmas [48], optical waves of 
diffraction in nonlinear media [12,41,42], quantum fluids [34], water waves [19], Langmuir 
waves [65] to name only a few.

1.2. The kinetic wave equation and its first properties

The present article investigates the local well-posedness theory for the space-
homogeneous 4-wave kinetic equation

∂tf(t, p) = Q[f ](t, p), on R+ ×R3,

f(0, p) =f0(p) on R3.
(1.1)

The trilinear operator Q is given by

Q[f ](p) =
˚

δ(p+p1−p2−p3)δ(ω+ω1−ω2−ω3)[f2f3(f1+f)−ff1(f2+f3)] dp1 dp2 dp3,
R3×3
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where we denoted

ω = ω(p), ωi = ω(pi), f = f(p), fi = f(pi).

In the above, p �→ ω(p) is the dispersive relation of the underlying dispersive problem, 
to which we will come back shortly.

Notice that the nonlinear term can also be written

Q[f ](p) =
˚

R3×3

δ(p + p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)

× ff1f2f3

[ 1
f

+ 1
f1

− 1
f2

− 1
f3

]
dp1 dp2 dp3.

Writing the nonlinear term in this way makes it clear that the mass, momentum, and 
energy are formally conserved; they are defined respectively as

ˆ

R3

f(p) dp,
ˆ

R3

pf(p) dp,
ˆ

R3

ω(p)f(p) dp.

Furthermore, the entropy, defined by

ˆ

R3

log f(p) dp,

is formally decreasing. Finally, the above form of the nonlinear term leads to the sta-
tionary solutions

1
μ + ν · p + ξω(p) , (1.2)

where (μ, ν, ξ) ∈ R ×R3 ×R are such that μ + ν · p + ξω(p) > 0 for any p.
The equation (1.1) does not admit invariant scalings for general dispersion relations 

ω(p). However, for ω(p) = |p|2, a number of scalings arises, which leave the set of solutions 
invariant. The most relevant one leaves the time variable untouched: it is given by the 
transformation

f(t, p) �→ λ2f(t, λp). (1.3)

1.3. The dispersion relation

One of our aims is to allow more general dispersion relations which enjoy similar 
bounds to ω(p) = |p|2. This is motivated by the following instances of physical interest:



4 P. Germain et al. / Journal of Functional Analysis 279 (2020) 108570
• The basic example is the Schrödinger case

ω(p) = |p|2. (1.4)

• The Bogoliubov dispersion law [14,47]

ϑ(p) =
√

θ1|p|2 + θ2|p|4, (1.5)

where θ1, θ2 are strictly positive constants.
• The modified Bogoliubov dispersion law [14] and the Bohm-Pines dispersion law [5]

ϑ(p) =
√
θ0 + θ1|p|2 + θ2|p|4, (1.6)

where θ0, θ1, θ2 are strictly positive constants. In the very low temperature regime 
[15,30,5], ϑ can be replaced by the following approximated dispersion relation

ω(p) = λ0 + λ1|p|2 + λ2|p|4, (1.7)

with λ0, λ1, λ2 being strictly positive constants depending on θ0, θ1, θ2.

These examples are captured by the following general assumption.

Assumption 1.1. The dispersion relation is of the form

ω(p) = Ω(|p|), (1.8)

and satisfies:

(i) Ω(0) = 0 (this is simply a convenient normalization).

(ii) Ω ∈ C1(R+) and Ω(x) ≥ 0 for all x in R+.

(iii) There exists a constant c1 > 0 such that Ω′(x) ≥ c1x, for all x in R+.

(iv) There exists a constant c2 > 0 such that Ω(x) ≤ 1
2Ω(c2x), for all x in R+.

(1.9)

1.4. Rigorous results on the isotropic 4-wave kinetic equation and related models

The first question is that of the derivation of this kinetic equation from Hamilto-
nian dynamics: it should arise in the weakly nonlinear, big box limit under the random 
phase approximation. This is not the subject of this paper, but we refer to the classi-
cal textbooks [66,45] for a heuristic discussion, as well as to [40] for the latest rigorous 
results.

The question of the local existence and uniqueness of solutions to (1.1) was first 
studied in [18], where the dispersion relation is of classical type ω(p) = |p|2, and the 
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solution f is radial (velocity-isotropic). Abusing notations by denoting p for |p| and f(p)
for f(|p|), the equation (1.1) reduces to a one-dimensional Boltzmann equation

∂tf =
ˆ

R2
+

p2p3 min{p, p1, p2, p3}
p

[f2f3(f + f1) − ff1(f2 + f3)] dp3 dp4, (1.10)

where p2
1 = p2

2 + p2
3 − p2.

It is proved in [18] that the above equation admits global, measure valued, weak 
solutions. This functional framework allows in particular for condensation, namely the 
development of a point mass at the origin. It is furthermore showed that condensation 
can occur, and that, as t → ∞, most of the energy is transfered to high frequencies. The 
articles [33,32] are dedicated to a quadratic equation arising from (1.1) in the regime 
where a Dirac mass has formed, and contains most of the mass. Note that the existence 
and uniqueness of radial weak solutions to a slightly simplified version of the 4-wave 
kinetic equation for general power-law dispersion has been proved in [43].

The reduction to the radial model (1.10) is restricted to the case ω(p) = |p|2. It is 
therefore one of the goal of this paper to construct a local existence and uniqueness 
theory which would be valid in greater generality.

Besides the 4-wave kinetic equation, the 3-wave kinetic equation also plays an impor-
tant role in the theory of weak turbulence, and has been studied in [16,2,24,11,15] for 
the phonon interactions in anharmonic crystal lattices, in [24] for stratified flows in the 
ocean, and in [49] for capillary waves.

Finally, let us mention the (CR) equation, which is derived in [20,8] and studied 
in [25,7,26], which is a Hamiltonian equation whose nonlinearity is given by the trilinear 
term T1 (defined below).

1.5. Technical difficulties and novelty of the current work

In the theory of the classical Boltzmann equation, the conservation laws

p + p1 = p2 + p3, |p|2 + |p1|2 = |p2|2 + |p3|2 (1.11)

play a very important role. Since (1.11) implies that p, p1, p2, p3 are on the sphere 
centered at p+p1

2 with radius |p−p1|
2 , the Boltzmann collision operators can be considered 

as integrals on spheres (see, for instance [64,10]) and the Carleman representation [9] can 
be used. This is not the case for more general dispersion relations, for which the resonant 
manifolds do not admit such simple parameterizations. This is the so-called resonance 
manifold problem.

Let us mention that (1.1) is very similar to the Boltzmann-Nordheim (Uehling-
Ulenbeck) equation (cf. [51,63]), which describes the evolution of the density function of 
a dilute Bose gas at high temperature (above the Bose-Einstein condensate transition 
temperature)
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∂tf(t, p) = Q[f ](t, p) + Q0[f ](t, p),

Q0[f ](t, p) =
˚

R3×3

δ(p + p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)[f2f3 − ff1]dp1dp2dp3,

f(0, p) =f0(p).
(1.12)

Notice that Q0 is the classical Boltzmann collision operator. The study of (1.12) is also 
a subject of rapidly growing interest in the kinetic community (cf. [3,18,17,59,58,50,35,
37–39,6,31,56,36,55,62] and the references therein).

Local existence and uniqueness results for (1.12) in the intersection between weighted 
L1 and L∞ spaces, where ωp = p2, have been done in [6,36] using the classical method 
of moment production developed for the classical Boltzmann equation thanks to the 
stabilization effect of the classical Boltzmann collision operator Q0. However, this method 
cannot be used for the 4-wave kinetic equation since Q0 is missing. Moreover, for the 
4-wave kinetic equation with general ωp, physically speaking, the energy

ˆ

R3

ωpf(t, p)dp

is not necessarily conserved. Therefore, weighted L1 spaces are not suitable for the exis-
tence theory and moment estimate techniques, like the one used in [6,36], are inadequate.

When the dispersive relation is of classical type ω(p) = |p|2, and f(p) = f(|p|) is 
radial, one get the one-dimensional Boltzmann equation

∂tf =
ˆ

R2
+

K[f2f3(f + f1 + 1) − ff1(f2 + f3 + 1)] dp2 dp3, (1.13)

where p2
1 = p2

2+p2
3−p2 and K = p2p3 min{p, p1, p2, p3}/p. Local existence and uniqueness 

results for mild solutions of (1.13) in weighted L∞ spaces has been studied in [17] by 
carefully estimating the domains of integration of the one-dimensional integrals, following 
[9]. The resonance manifold problem has been then avoided.

A satisfactory theory for (1.12) in the full 3-dimensional case, with general dispersion 
relations and without relying on the L1-norms is completely open. In the current work, 
such a theory is constructed based on the following approaches:

• An observation that the Boltzmann collision operators can be rewritten as the com-
bination of several Schrödinger operators. That leads to Strichartz estimates on 
Boltzmann collision operators.

• An observation that the Boltzmann collision operators are indeed Radon transform. 
Therefore, TT ∗ argument can be applied for the first time to Boltzmann collision 
operators.
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• A new parametrization techniques on the 4-wave collision operator.

These techniques can be the base to study the regularity and the qualitative be-
havior of the solutions the 4-wave kinetic equation, for instance the uniformly in time 
Maxwellian lower bound [50]. Such techniques could also be used to improve regularity 
estimates of the classical Boltzmann, like the ones in [44]. They will be the subjects of 
our future studies.

2. Main results

For the sake of simplicity, we impose the abbreviation f = f(t, p), f1 = f1(t, p), 
f2 = f2(t, p), f3 = f3(t, p) and ω = ω(p), ω1 = ω(p1), ω2 = ω(p2), ω3 = ω(p3).

We consider the initial-value problems in R3 × [0, T ] of the 4-wave kinetic equation

∂tf = Q[f ] := T1(f, f, f) + T2(f, f, f) − 2T3(f, f, f),

f(0) = f0,
(2.1)

where

T1(f, g, h) :=
ˆ

R9

δ(p + p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)×

× f(p1)g(p2)h(p3) dp1dp2dp3,

T2(f, g, h) :=
ˆ

R9

δ(p + p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)×

× f(p)g(p2)h(p3) dp1dp2dp3,

T3(f, g, h) :=
ˆ

R9

δ(p + p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)×

× f(p)g(p1)h(p2) dp1dp2dp3.

(2.2)

We define the function spaces Lr
s, r ∈ [1, ∞], s ≥ 0 by the norms

‖f‖Lr
s

:= ‖〈x〉sf‖Lr , 〈x〉 := (1 + |x|2)1/2. (2.3)

In the case r = ∞ we require also that f is continuous, so we define

L∞
s := {f ∈ C0(R3) : ‖f‖L∞

s
< ∞}.

Our first main theorem concerns local well-posedness of the initial-value problem (2.1)
in L∞

s , s > 2. More precisely:
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Theorem 2.1.

(i) Assume that ω satisfies Assumption 1.1 and s > 2. Then the initial-value problem 
(2.1) is locally well-posed in L∞

s for s > 2, in the sense that for any R > 0 there 
is T �s R−2 such that for any initial-data f0 ∈ L∞

s with ‖f0‖L∞
s

≤ R, there is a 
unique solution f in C1([0, T ] : L∞

s ) of the initial-value problem (2.1). Furthermore, 
‖f(t)‖L∞

s
≤ 2R for any t ∈ [0, T ] and the map f0 �→ f is continuous from L∞

s to 
C1([0, T ] : L∞

s ).
(ii) If furthermore f0 ≥ 0, then f(t) is non-negative for any t ∈ [0, T ].

In the special Schrödinger case, we prove also a stronger local-wellposedness theorem 
in L2

s, s > 1/2. More precisely:

Theorem 2.2.

(i) Assume that ω(p) = |p|2 and s > 1/2. Then the initial-value problem (2.1) is locally 
well-posed in L2

s for s > 1/2: for any R > 0 there is T �s R−2 such that for any 
initial-data f0 ∈ L2

s with ‖f0‖L2
s
≤ R, there is a unique solution f in C1([0, T ] : L2

s)
of the initial-value problem (2.1). Furthermore, ‖f(t)‖L2

s
≤ 2R for any t ∈ [0, T ] and 

the map f0 �→ f is continuous from L2
s to C1([0, T ] : L2

s).
(ii) If f0 ≥ 0 then f(t) is non-negative for any t ∈ [0, T ].

Theorems 2.1 and 2.2 follow by fixed point arguments from the following propositions:

Proposition 2.3. Assume that ω satisfies Assumption 1.1, s > 2, and 0 ≤ γ < min(s −
2, 1). Then the operators Tj, j ∈ {1, 2, 3}, defined in (2.2) are bounded from (L∞

s )3 to 
L∞
s+γ , i.e.

‖Tj(f, g, h)‖L∞
s

�s ‖f‖L∞
s
‖g‖L∞

s
‖h‖L∞

s
.

Proposition 2.4. Assume that ω(p) = |p|2 and s > 1/2. Then the operators Tj, j ∈
{1, 2, 3}, defined in (2.2) are bounded from (L2

s)3 to L2
s, i.e.

‖Tj(f, g, h)‖L2
s

�s ‖f‖L2
s
‖g‖L2

s
‖h‖L2

s
.

Propositions 2.3 and 2.4 and Theorems 2.1 and 2.2 are proved in the next three 
sections. We conclude this section with several remarks:

Remark 2.5. The above theorems are optimal in terms of the exponent s since it is not 
possible to define the operators Tj if ω(p) = |p|2 and the input functions have general 
tails decaying like |p|−2. The two theorems are also nearly critical since the spaces L∞

s , 
s > 2, and L2

s, s > 1/2, are nearly critical with respect to the scaling (1.3) of the 
equation.
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Remark 2.6. We are working in dimension d = 3 mostly for the sake of concreteness. 
Similar theorems hold in any dimension d ≥ 2, with the corresponding ranges of expo-
nents s > d − 1 for the L∞

s local well-posedness theory, and s > (d − 2)/2 for the L2
s

local well-posedness theory.

Remark 2.7. As long as ω(p) ∼ |p|2 for |p| → ∞, the stationary solutions (1.2) are on 
the borderline of the local well-posedness theory, since they belong to the scale-invariant 
space L∞

2 . Notice that this only occurs in dimension 3.

Remark 2.8. It is probably possible to prove nearly critical L2
s local well-posedness the-

orems for more general radial dispersion relations ω. However, one would likely have to 
assume some additional curvature assumptions on ω, expressed in terms of bounds on the 
second derivative Ω′′, in order to be able to run TT ∗ arguments for Radon transforms, 
as in section 4. For simplicity, we consider here only the Schrödinger case ω(p) = |p|2.

Remark 2.9. It would be possible to prove identical local well-posedness results for the 
more general equation ∂tf = a1T1(f, f, f) + a2T2(f, f, f) + a3T3(f, f, f), but the conser-
vation law and the positivity of the solution would be lost.

Remark 2.10. The solution given by Theorem 2.1 has the property that

f(t, p) − f0(p) ∈ C1([0, T ), L∞
s+γ)

for some γ > 0 (as a consequence of Proposition 2.3). This means that the decay at ∞
of f(t) is exactly the same as that of the data f0. This should of course be contrasted 
with the cases of the classical Boltzmann equation [1,4,22,23] and the quantum Boltz-
mann equation for bosons at very low temperature [2] (this is also the weak turbulence 
kinetic equation for anharmonic crystal lattices), for which the decay of the solution is 
immediately improved.

Remark 2.11. For some data one can prove additional properties of the solution, such as 
conservation laws. See section 6.

3. Proof of Proposition 2.3: L∞
s (s > 2) boundedness of Tj

Notice that, in the case ω(p) = |p|2, the desired bound follows easily from the formu-
lation (1.10). The aim of this section is to explore the case of more general dispersion 
relations ω, for which no such simple representation of the collision operator is available.

3.1. Boundedness of T1

Proposition 3.1. For s > 2 and 0 ≤ γ < min(s − 2, 1), and under Assumption 1.1, the 
operator T1 is bounded from (L∞

s )3 to L∞
s+γ.
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Proof. Step 1: first reduction. It suffices to prove that the following integral is bounded:

J := sup
p

˚

R9

〈p〉s+γ

〈p1〉s〈p2〉s〈p3〉s
δ(p+p1−p2−p3)δ(ω+ω1−ω2−ω3) dp1 dp2 dp3. (3.1)

Since in the above integral ω(p) ≤ ω(p2) + ω(p3), then either ω(p) ≤ 2ω(p2) or 
ω(p) ≤ 2ω(p3). Suppose that ω(p) ≤ 2ω(p3), which implies, by Assumption 1.1, that 
〈p〉 � 〈p3〉. We then infer that

J � sup
p

˚

R9

〈p〉γ
〈p1〉s〈p2〉s

δ(p + p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3) dp1 dp2 dp3.

Integrating out the p3 variable results in

J � sup
p

¨

R6

〈p〉γ
〈p1〉s〈p2〉s

δ(ω + ω1 − ω2 − ω(p + p1 − p2)) dp1 dp2. (3.2)

Let us now set z = p2 and define the resonant manifold Sp,p1 to be the zero set of

G(z) := ω(p + p1 − z) + ω(z) − ω(p) − ω(p1) = 0, (3.3)

which leads to the following representation of the right hand side of (3.2), (see [52], 
section 1.5)

J � sup
p

ˆ

R3

⎛
⎜⎝ ˆ

Sp,p1

〈p〉γ
〈p1〉s〈z〉s|∇zG(z)|dμ(z)

⎞
⎟⎠ dp1, (3.4)

where μ is the surface measure on Sp,p1 .

Step 2: parameterizing the resonant manifold. Setting p + p1 = ρ, we now parameterize 
the resonant manifold Sp,p1 , following [50]. In order to do this, we compute the derivative 
of G

∇zG = z − ρ

|z − ρ|Ω
′(|ρ− z|) + z

|z|Ω
′(|z|).

In particular, let q be any vector orthogonal to ρ i.e. ρ · q = 0. The directional derivative 
of G in the direction of q, with z = αρ + q, α ∈ R, satisfies

q · ∇zG = |q|2
[Ω′(|ρ− z|)

|ρ− z| + Ω′(|z|)
|z|

]
> 0,

which means that G(z) is strictly increasing in any direction that is orthogonal to ρ. 
This proves that the intersection between the surface Sp,p1 and the plane
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Pα =
{
αρ + q, ρ · q = 0

}
is either empty or the circle centered at αρ and of a finite radius rα, for α ∈ R.

As a consequence, we can parametrize Sp,p1 as follows. Let ρ⊥ be the vector orthogonal 
to both ρ and a fixed vector e of R3 and let eθ be the unit vector in P0 = {ρ · q = 0}
such that the angle between ρ⊥ and eθ is θ. We parameterize Sp,p1 by

{
z = αρ + rαeθ : θ ∈ [0, 2π], α ∈ Ap,p1

}
, (3.5)

where Ap,p1 is the set of α for which a solution to G(z) = 0 exists.
We can think of G as a function of α and r: G = G(r, α). We just saw that ∂rG > 0 for 

r > 0. Therefore, by the implicit function theorem, the zero set of G can be parameterized 
as

{(α, r = rα), α ∈ Ap,p1},

where α �→ rα is a smooth function on Ap,p1 vanishing on its boundary.
Next, we have by definition that G(zα) = 0 for all α and therefore, keeping θ fixed,

0 = ∂αzα · ∇zG = ∂αzα ·
(

zα − ρ

|zα − ρ|Ω
′(|zα − ρ|) + zα

|zα|
Ω′(|zα|)

)

= ∂αzα ·
(

zα
|zα − ρ|Ω

′(|zα − ρ|) + zα
|zα|

Ω′(|zα|)
)
− ∂αzα · ρ

|zα − ρ|Ω
′(|zα − ρ|)

= 1
2∂α|zα|

2
[Ω′(|ρ− zα|)

|ρ− zα|
+ Ω′(|zα|)

|zα|
]
− |ρ|2 Ω′(|ρ− zα|)

|ρ− zα|
.

(3.6)

Therefore,

∂α|zα|2 = 2
Ω′(|ρ−zα|)

|ρ−zα| |ρ|2
Ω′(|ρ−zα|)

|ρ−zα| + Ω′(|zα|)
|zα|

. (3.7)

This implies in particular that α �→ |zα| is increasing on Ap,p1 . Defining r to be zero on 
the complement of Ap,p1 , we get that α �→ |zα| is an increasing function on R; therefore, 
the change of coordinates α → |zα| is well-defined.

Step 3: the surface measure on the resonant manifold. Since ∂θeθ is orthogonal to both 
ρ and eθ, we compute the surface area

dμ(z) = |∂αz × ∂θz|dαdθ =
∣∣∣(ρ + ∂αrαeθ) × rα∂θeθ

∣∣∣dαdθ
=

√
|ρ|2r2

α + 1 |∂α(r2
α)|2dαdθ.

(3.8)
4
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Using |z|2 = α2|ρ|2 + r2
α, we learn from the last line of (3.6) that

∂αr
2
α= 2|ρ|2

αΩ′(|zα|)
|zα| + (α− 1)Ω′(|ρ−zα|)

|ρ−zα|
Ω′(|ρ−zα|)

|ρ−zα| + Ω′(zα)
|zα|

. (3.9)

Now, let us compute |∇zG| under the new parameterization:

|∇zG|2 =
∣∣∣∣ zα|zα|

Ω′(|zα|) + zα − ρ

|zα − ρ|Ω
′(|zα − ρ|)

∣∣∣∣
2

=
∣∣∣∣αρ + q

|zα|
Ω′(|zα|) + (α− 1)ρ + q

|zα − ρ| Ω′(|zα − ρ|)
∣∣∣∣
2

= |ρ|2
[
α

Ω′(|zα|)
|zα|

+ (α− 1)Ω′(|ρ− zα|)
|ρ− zα|

]2

+ r2
α

[
Ω′(|ρ− zα|)
|ρ− zα|

+ Ω′(|zα|)
|zα|

]2

.

In addition to (3.9), this implies that

|∇zG|2 =
∣∣∂αr2

α

∣∣2
4|ρ|2

[
Ω′(|ρ− zα|)
|ρ− zα|

+ Ω′(|zα|)
|zα|

]2

+ r2
α

[
Ω′(|ρ− zα|)
|ρ− zα|

+ Ω′(|zα|)
|zα|

]2

.

(3.10)

Therefore

dμ(z)
|∇zG| = |ρ|

Ω′(|ρ−zα|)
|ρ−zα| + Ω′(|zα|)

|zα|
dα dθ. (3.11)

Introduce the variable u = |zα| =
√

α2|ρ|2 + r2
α as explained in Step 2; by (3.7) we get

dμ(z)
|∇zG| = |ρ− zα|

Ω′(|ρ− zα|)|ρ|
u du dθ.

By Assumption 1.1, |ρ−zα|
Ω′(|ρ−zα|) � 1, and therefore

dμ(z)
|∇zG| � u

|ρ|dudθ. (3.12)

Step 4: finiteness of the integral. Adopting the coordinates defined above and using 
(3.12) yields

J � sup
p

ˆ 〈p〉γ
〈p1〉s

∞̂ 2πˆ
〈u〉−s |u|

|ρ| dθ du dp1.
R3 0 0
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Changing variables p1 → ρ = p + p1, this becomes

J � sup
p

ˆ

R3

〈p〉γ
〈ρ− p〉s

∞̂

0

2πˆ

0

〈u〉−s |u|
|ρ| dθ du dρ.

Performing the integrations in z and θ, this leads to

J � sup
p

ˆ

R3

〈p〉γ
〈ρ− p〉s

1
|ρ|dρ.

Writing ρ = |ρ|σ where σ ∈ S2 and using the inequality1

ˆ

S2

1
〈A + rσ〉s dσ � 〈|A| − r〉2−s〈r〉−2 ∀A ∈ R3, r > 0, s > 2, (3.13)

we get

J � sup
p

∞̂

0

|ρ|〈p〉γ
〈|ρ| − |p|〉s−2〈ρ〉2 d|ρ|,

which is bounded when s > 2 and 0 ≤ γ < min(s − 2, 1). �
3.2. Boundedness of T2

Proposition 3.2. For s > 2 and 0 ≤ γ < s −2, and under Assumption 1.1, the operator T2
is bounded from (L∞

s )3 to L∞
s+γ.

Proof. Step 1: reduction to the boundedness of Q1. Defining

Q1(g, h)(p) =
¨

R6

δ(ω +ω1 −ω2 −ω(p+ p1 − p2))g(p2)h(p+ p1 − p2) dp1 dp2, (3.14)

1 In order to prove this inequality, simply observe that

ˆ

S2

1
〈A + rσ〉s

dσ =
π̂

0

sinφ

(|A|2 + r2 − 2|A|r cosφ + 1)s/2 dφ.

The main contribution is

π/2ˆ

0

sinφ

(|A|2 + r2 − 2|A|r cosφ + 1)s/2 dφ =
1ˆ

0

dt

(〈|A| − r〉2 + 2|A|rt)s/2 .



14 P. Germain et al. / Journal of Functional Analysis 279 (2020) 108570
it suffices to prove that

‖Q1(g, h)‖L∞
γ

� ‖g‖L∞
s
‖h‖L∞

s
.

Taking the L∞ norm of Q1(g, h), we obtain

‖Q1(g, h)‖L∞
γ

≤ sup
p∈R3

‖g‖L∞
s
‖h‖L∞

s
×

×
¨

R6

δ(ω + ω1 − ω2 − ω(p + p1 − p2))〈p2〉−s〈p + p1 − p2〉−s〈p〉γ dp1 dp2.

(3.15)

Step 2: upper bound on |p|. Keeping the notations of Section 3.1, we deduce from the 
inequalities ω(p) + ω(p1) = ω(p2) + ω(p3) and p + p1 = p2 + p3 that

ω(p) ≤ ω(z) + ω(ρ− z).

We now use Assumption 1.1 to bound

ω(p) ≤ ω(z) + ω(ρ− z) ≤ 2Ω (max(|ρ|, |ρ− z|)) ≤ Ω(c2 max(|ρ|, |ρ− z|)).

Since Ω is increasing, this implies that

|p| � |ρ| + |ρ− z|.

Step 3: parameterizing the integral. Adopting the same parameterization as in Sec-
tion 3.1, it appears that (3.15) would follow from a bound on

sup
p∈R3

ˆ

R3

⎛
⎜⎝ ˆ

Sp,p1

〈p〉γ〈z〉−s〈p + p1 − z〉−s

|∇zG(z)| dμ(z)

⎞
⎟⎠ dp1. (3.16)

By the parametrization (3.5) and Step 2, matters reduce to bounding

sup
p∈R3

ˆ

R3

∞̂

0

2πˆ

0

1|p|�|ρ|+|ρ−z|
〈p〉γ |z|

〈z〉s〈ρ− z〉s|ρ| dθ d|z| dp1,

where 1|p|�|ρ|+|ρ−z| is the characteristic function of {|p| � |ρ| + |ρ − z|}. On the one 
hand, integrating in θ is harmless; and on the other hand, in the above integral, either 
|p| � |z| or |p| � |ρ − z|. Therefore, it suffices to bound

sup
p∈R3

ˆ ∞̂
|z|

〈z〉s1〈ρ− z〉s2 |ρ| d|z| dp1,
R3 0
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where s1, s2 > 2. Changing variables from p1 to ρ, this becomes

sup
p∈R3

ˆ

R3

∞̂

0

|z|
〈z〉s1〈ρ− z〉s2 |ρ|d|z|dρ.

Writing ρ as |ρ|ω and using (3.13), we obtain that the above is bounded by

sup
p∈R3

∞̂

0

∞̂

0

|z||ρ|
〈z〉s1〈|ρ| − |z|〉s2−2〈ρ〉2 d|z|d|ρ|, (3.17)

which is finite for s1, s2 > 2. This is the desired result! �
3.3. Boundedness of T3

Proposition 3.3. For s > 2 and 0 ≤ γ < s −2, and under Assumption 1.1, the operator T3

is bounded from (L∞
s )3 to L∞

s+γ.

Proof. Defining

Q2(g, h) =
ˆ

R6

δ(ω + ω1 − ω2 − ω(p + p1 − p2))g(p1)h(p2) dp1 dp2, (3.18)

it suffices to show that

‖Q2(g, h)‖L∞
γ

� ‖g‖L∞
s
‖h‖L∞

s
.

Similarly to Section 3.2, we set ρ = p + p1, and define G and Sp,p1 . Proceeding as in the 
proof of Proposition 3.1, it suffices to prove the boundedness of

J = sup
p∈R3

ˆ

R3

〈p1〉−s〈p〉γ
∞̂

0

2πˆ

0

〈z〉−s |z|
|ρ| dθ d|z| dp1. (3.19)

Setting ρ = p + p1, this becomes

J = sup
p∈R3

ˆ

R3

〈ρ− p〉−s〈p〉γ
∞̂

0

2πˆ

0

〈z〉−s |z|
|ρ| dθ d|z| dρ

� sup
p∈R3

ˆ ∞̂

〈ρ− p〉−s〈p〉γ〈z〉−s |z|
|ρ| d|z| dρ (3.20)
R3 0



16 P. Germain et al. / Journal of Functional Analysis 279 (2020) 108570
� sup
p∈R3

ˆ

R3

〈ρ− p〉−s〈p〉γ 1
|ρ| dρ,

where the last inequality is due to the fact that s > 2.
Writing ρ as |ρ|ω and using (3.13), we obtain

J � sup
p∈R3

∞̂

0

〈p〉γ |ρ|
〈ρ〉2〈|ρ| − |p|〉s−2 d|ρ|, (3.21)

which is bounded when s > 2 and 0 ≤ γ < s − 2. �
4. Proof of Proposition 2.4: L2

s(s > 1/2) boundedness of Tj

In this section we assume that ω(p) = |p|2 and prove the L2
s bounds in Proposition 2.4. 

One can think of the operators Tj as bilinear and trilinear operators defined by integrating 
along moving surfaces in Euclidean spaces. Such operators are called Radon transforms, 
and their boundedness properties have been studied extensively in Harmonic Analysis 
(see for example the classical papers [57,60,61]).

One of the main ideas in the study of Radon transforms on Euclidean spaces is the 
use of TT ∗ arguments. We adapt this technique in our setting to bound the trilinear 
operators Tj . We remark that TT ∗ arguments are usually optimal if one uses L2 based 
spaces; this is the main reason for choosing the spaces L2

s as the local well-posedness 
spaces in Theorem 2.2.

4.1. The operator T1

We consider first the trilinear operator T1 and we prove the following:

Lemma 4.1. If s > 1/2 and T1 is defined as in (2.2) then

‖T1‖L2
s×L2

s×L2
s→L2

s
�s 1. (4.1)

Proof. We adapt an argument from [7]. We start from the identity

δ(q) = 1
2π

ˆ

R

eiqξ dξ.

For simplicity of notation, let Q := T1[f, g, h]. We have
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Q(p) = C

ˆ

(Rd)3×R×R

eiy·(p+p1−p2−p3)

× eit(ω(p)+ω(p1)−ω(p2)−ω(p3))f(p1)g(p2)h(p3) dp1dp2dp3dtdy

= C

ˆ

R×R

eiy·peitω(p)Lf(y, t)Lg(y, t)Lh(y, t) dtdy,

where

La(x, t) :=
ˆ

Rd

a(q)e−iq·xe−iω(q)t dq. (4.2)

Therefore, with G(y, t) := Lf(y, t)Lg(y, t)Lh(y, t),

‖〈p〉sQ(p)‖L2 �
∥∥∥ˆ
R

F−1(G)(p, t)eitω(p)〈p〉s dt
∥∥∥
L2

�
ˆ

R

‖G(., t)‖Hs dt,

where Hs denote the usual Sobolev spaces on R3. Notice that, for any t ∈ R,

‖G(., t)‖Hs �
∑

{a,b,c}={f,g,h}
‖La(., t)‖Hs‖Lb(., t)‖L∞‖Lc(., t)‖L∞ .

Moreover, for any a ∈ {f, g, h},

sup
t∈R

‖La(., t)‖Hs � ‖a‖L2
s
.

In view of the last three inequalities, for (4.1) it suffices to prove the linear estimates

[ ˆ
R

‖Lb(., t)‖2
L∞ dt

]1/2
�s ‖b‖L2

s
(4.3)

for any s > 1/2 and b ∈ L2
s.

The estimates (4.3) are Strichartz-type linear estimates. To prove them we use a TT ∗-
type argument. We may assume that ‖b‖L2

s
= 1 and b(p) = h(p)〈p〉−s, ‖h‖L2 = 1. For 

(4.3) it suffices to show that

∣∣∣ ˆ

R3×R

Lb(x, t)F (x, t) dxdt
∣∣∣ �s 1

provided that 
[ ´

R ‖F (., t)‖2
L1 dt

]1/2 � 1. Using (4.2), this is equivalent to proving that

∥∥∥〈p〉−s

ˆ
3

F (x, t)e−ip·xe−itω(p) dxdt
∥∥∥
L2

�s 1,

R ×R
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where the L2 norm is taken in the p variable. Expanding the L2 norm in p, this is 
equivalent to showing that

∣∣∣ ˆ
R3

ˆ

R3×R

ˆ

R3×R

〈p〉−2sF (x, t)e−ip·xe−itω(p)F (x′, t′)eip·x
′
eit

′ω(p) dxdtdx′dt′dp
∣∣∣ �s 1. (4.4)

Let

K(y, t) :=
ˆ

R3

〈p〉−2se−ip·ye−itω(p) dp, (4.5)

so the left-hand side of (4.4) is bounded by

C

ˆ

R3×R

ˆ

R3×R

|F (x, t)||F (x′, t′)||K(x− x′, t− t′)| dxdtdx′dt′.

Since 
[ ´

R ‖F (., t)‖2
L1 dt

]1/2 � 1, and recalling that s > 1/2, for (4.3) it suffices to prove 
that there is δ = δ(s) > 0 such that

|K(y, t)| �δ |t|−1+δ〈t〉−2δ, (4.6)

for any (y, t) ∈ R3 × R. Recalling that ω(p) = |p|2, this is a standard dispersive bound 
on the kernel of the Schrödinger evolution and can be proved by oscillatory integral 
estimates. �
4.2. The operator T2

Notice that T2(f, g, h) = f ·Q2(g, h) where, by definition,

Q2(F,G)(p) :=
ˆ

R3×R3×R3

δ(p + p1 − x− y)

× δ(ω(p) + ω(p1) − ω(x) − ω(y))F (x)G(y) dxdydp1

=
ˆ

R3×R3

δ(ω(p) + ω(x + y − p) − ω(x) − ω(y))F (x)G(y) dxdy.

(4.7)

The boundedness of the operator T2 follows from the following lemma:

Lemma 4.2. If ω(x) = |x|2 and s > 1/2 then

‖Q2(F,G)‖L∞ �s ‖F‖L2‖G‖L2 . (4.8)

s s
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Proof. We replace the δ0 function with a smooth version. More precisely, we fix a smooth 
even function ψ : R → [0, ∞) supported in the interval [−1, 1] with 

´
R ψ(t) dt = 1. For 

any ε ∈ (0, 1] let ψε(t) := (1/ε)ψ(t/ε). Since

ω(p) + ω(x + y − p) − ω(x) − ω(y) = 2(x− p) · (y − p),

for (4.8) it suffices to prove that

∣∣∣ ˆ

R3×R3

ψε((x− p) · (y − p))F (x)G(y) dxdy
∣∣∣ �s ‖F‖L2

s
‖G‖L2

s
(4.9)

for any p ∈ R3 and ε ∈ (0, 1]. We let

f(x) := 〈x + p〉sF (x + p), g(y) := 〈y + p〉sG(y + p).

After changes of variables, for (4.9) it suffices to prove that

∣∣∣ ˆ

R3×R3

ψε(x · y) f(x)
〈x + p〉s

g(y)
〈y + p〉s dxdy

∣∣∣ �s ‖f‖L2‖g‖L2 . (4.10)

This is equivalent to proving L2 boundedness of a linear operator, i.e.

‖L2g‖L2 �s ‖g‖L2 where L2g(x) :=
ˆ

R3

ψε(x · y) 1
〈x + p〉s

g(y)
〈y + p〉s dy, (4.11)

uniformly for any p ∈ R3 and ε ∈ (0, 1].
To prove (4.11) we use a TT ∗-type argument. We may assume g ≥ 0 and write

‖L2g‖2
L2 =

ˆ

R3×R3×R3

ψε(x · y)ψε(x · y′) 1
〈x + p〉2s

g(y)
〈y + p〉s

g(y′)
〈y′ + p〉s dydy′dx

=
ˆ

R3×R3

Ks(y, y′)
g(y)

〈y + p〉s
g(y′)

〈y′ + p〉s dydy
′,

where

Ks(y, y′) = Ks,ε,p(y, y′) :=
ˆ

R3

ψε(x · y)ψε(x · y′) 1
〈x + p〉2s dx.

Using Lemma 4.3 (ii) below, we have

|Ks(y, y′)| �s
1

|y||y′|
( 1

′̂
+ 1

′̂

)
,

|ŷ − y | |ŷ + y |
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where x̂ := x/|x| for any x ∈ R3. For (4.11) it suffices to prove that

∣∣∣ ˆ

R3×R3

1
|y||y′|

1
|ŷ − ŷ′|

· g(y)
〈y + p〉s

h(y′)
〈y′ + p′〉s dydy′

∣∣∣ �s ‖g‖L2‖h‖L2 , (4.12)

for any g, h ∈ L2(R3) and any p, p′ ∈ R3.
For θ, θ′ ∈ S2 let

g̃(θ) :=
[ ∞̂

0

|g(rθ)|2r2 dr
]1/2

, h̃(θ′) :=
[ ∞̂

0

|h(rθ′)|2r2 dr
]1/2

.

We make the changes of variables y = rθ and y′ = r′θ′ in the integral in the left-hand 
side of (4.12). Notice that

∞̂

0

g(rθ)
〈rθ + p〉s r dr �s g̃(θ),

∞̂

0

h(r′θ′)
〈r′θ′ + p′〉s r

′ dr′ �s h̃(θ′),

using the Cauchy-Schwarz inequality and (4.13). Thus the integral in the left-hand side 
of (4.12) is bounded by

Cs

∣∣∣ ˆ

S2×S2

1
|θ − θ′| · g̃(θ)h̃(θ′) dθdθ′

∣∣∣.

Using Schur’s lemma this is bounded by ‖g̃‖L2(S2)‖h̃‖L2(S2), and the desired estimates 
(4.12) follow. This completes the proof. �

We summarize below two technical estimates we used in the proof of Lemma 4.2.

Lemma 4.3.

(i) If θ ∈ S2 and p ∈ R then

ˆ

R

1
〈rθ + p〉2s dr �s 1. (4.13)

(ii) Assume that ε1, ε2 ∈ [0, 1), a, b ∈ R, p ∈ R3, u, v ∈ S2, and s > 1/2. Then

ˆ
1[0,ε1](x · v − a)1[0,ε2](x · w − b) 1

〈x + p〉2s dx �s
ε1ε2

|v − w| + ε1ε2

|v + w| . (4.14)

R3
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Proof. (i) By rotation invariance, we may assume ω = (1, 0, 0). The bound (4.13) is then 
implied by the easy estimate

sup
q1,q2,q3∈R

ˆ

R

1[
(r + q1)2 + q2

2 + q2
3 + 1

]s dr �s 1. (4.15)

(ii) We may assume ε1 ≤ ε2. By rotation invariance, we may assume v = (1, 0, 0) and 
w = (w1, w2, 0). Clearly, |w2| ≈ min(|v − w|, |v + w|). Notice also that

x · w − b = x1w1 + x2w2 − b = x2w2 − (b− aw1) + (x1 − a)w1.

Since |w1| ≤ 1, the integral in the left-hand side of (4.14) is bounded by

ˆ

R3

1[0,ε1](x1 − a)1[−4ε2,4ε2](x2w2 − b′) 1
〈x + p〉2s dx.

The desired conclusion follows using (4.15) and integrating first the variable x3. �
4.3. The operator T3

As in the previous subsection we notice that T3(f, g, h) = f ·Q3(g, h) where

Q3(F,G)(p) :=
ˆ

R3×R3×R3

δ(p− p3 + x− y)

× δ(ω(p) − ω(p3) + ω(x) − ω(y))F (x)G(y) dxdydp3

=
ˆ

R3×R3

δ(ω(p) − ω(x− y + p) + ω(x) − ω(y))F (x)G(y) dxdy.

(4.16)

In view of the definitions, boundedness of T3 follows from the following lemma:

Lemma 4.4. If ω(x) = |x|2 as before and s > 1/2 then

‖Q3(F,G)‖L∞ �s ‖F‖L2
s
‖G‖L2

s
. (4.17)

Proof. As before we replace δ with ψε and notice that

ω(p) − ω(x− y + p) + ω(x) − ω(y) = 2(x− y) · (y − p).

We let f(x) = 〈x +p〉sF (x +p) and g(y) = 〈y+p〉sG(y+p) as in the proof of Lemma 4.2. 
After changes of variables, for (4.17) it suffices to prove that
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‖L3g‖L2 �s ‖g‖L2 where L3g(x) :=
ˆ

R3

ψε((x− y) · y) 1
〈x + p〉s

g(y)
〈y + p〉s dy,

(4.18)
uniformly for p ∈ R3 and ε ∈ (0, 1]. This follows using the TT ∗ argument as in Proposi-
tion 4.2, the uniform bounds in Lemma 4.3 (ii), and (4.12). �
5. Proof of Theorems 2.1 and 2.2

The two theorems follow by similar arguments from Propositions 2.3 and 2.4. For 
concreteness, we provide all the details only for the proof of Theorem 2.2.

Proof of Theorem 2.2. (i) Let T := A−1
s R−2 for a sufficiently large constant As. We 

define the approximating sequence

f0(t) := f0, fn+1(t) := f0 +
tˆ

0

Q(fn(τ)) dτ, (5.1)

on the interval [0, T ]. Using Proposition 2.4 it follows easily, by induction that fn ∈
C1([0, T ] : L2

s) and supt∈[0,T ] ‖fn(t)‖L2
s
≤ 2R. Using again Proposition 2.4 it follows that 

the sequence fn is Cauchy in C([0, T ] : L2
s), thus convergent to a function f ∈ C([0, T ] :

L2
s) that has the properties

f(0) = f0, f(t) = f0 +
tˆ

0

Q[f(τ)] dτ, sup
t∈[0,T ]

‖f(t)‖L2
s
≤ 2R. (5.2)

In particular ∂tf = Q[f ], thus f ∈ C1([0, T ] : L2
s). Uniqueness and continuity of the flow 

map f0 → f follow again from the contraction principle.
(ii) Clearly, f is real-valued if f0 is real-valued. To prove non-negativity, we need to 

be slightly more careful because the simple recursive scheme (5.1) does not preserve 
non-negativity.

Step 1: We construct a different approximating sequence, based on the temporal forward 
Euler scheme: for any n ∈ N we set Δn = T/n and define the sequence {gn,m}n−1

i=0 by

gn,0 := f0, gn,m+1 := gn,m + ΔnQ[gn,m]. (5.3)

Then we define gn for t ∈ [mΔn, (m + 1)Δn] by the formula

gn(t) := gn,m + (t−mΔn)Q[gn,m]

= 1 (
(t−mΔn)gn,m+1 + ((m + 1)Δn − t)gn,m

)
.

(5.4)

Δn
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Using Proposition 2.4 inductively and the assumption T = A−1
s R−2, it is easy to verify 

that

‖gn,m‖L2
s
≤ 2R for any n ≥ 1 and m ∈ {0, . . . , n− 1}. (5.5)

In particular, using the definition (5.4),

gn ∈ C([0, T ] : L2
s) for any n ≥ 1 and sup

t∈[0,T ]
‖gn(t)‖L2

s
≤ 2R. (5.6)

Step 2: We show now that

lim
n→∞

gn = f in C([0, T ] : L2
s). (5.7)

Let δn := supt∈[0,T ] ‖gn(t) − f(t)‖L2
s
. Given t ∈ [0, T ] we fix m ∈ {0, 1, . . . , n − 1} such 

that mT/n ≤ t ≤ (m + 1)T/n. Then we write, using (5.2)–(5.4),

gn(t) − f(t)

= {gn(t) − gn,m} +
{
gn,m − f0 −

mT/nˆ

0

Q[f(τ)] dτ
}
−

tˆ

mT/n

Q[f(τ)] dτ

= I(t) + II(t) + III(t),

(5.8)

where

I(t) := (t−mT/n)Q[gn,m],

II(t) :=
m−1∑
j=0

(j+1)T/nˆ

jT/n

{
Q[gn,j ] −Q[f(τ)]

}
dτ,

III(t) := −
tˆ

mT/n

Q[f(τ)] dτ.

Using Proposition 2.4 and the bounds (5.2) and (5.5) we estimate

‖I(t)‖L2
s
+ ‖III(t)‖L2

s
� (T/n)R3 � R/n. (5.9)

We estimate also, for any τ ∈ [jT/n, (j + 1)T/n],
∥∥Q[gn,j ] −Q[f(τ)]

∥∥
L2

s
�

∥∥Q[gn,j ] −Q[gn(τ)]
∥∥
L2

s

+
∥∥Q[gn(τ)] −Q[f(τ)]

∥∥
L2

s

5 2
� (T/n)R + δnR ,
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using Proposition 2.4 and recalling the definition δn := supt∈[0,T ] ‖gn(t) − f(t)‖L2
s
. Thus

‖II(t)‖L2
s

� R/n + δn(TR2). (5.10)

Since TR2 ≤ A−1
s � 1, it follows from (5.8)–(5.10) that δn � R/n. The desired conclu-

sion (5.7) follows.

Step 3: Finally, we show that all the functions gn are non-negative. In view of the defi-
nition (5.4), it suffices to prove that the functions gn,m are non-negative for any n ≥ 1
and m ∈ {0, . . . , n −1}. We prove this by induction over m. The case m = 0 follows from 
the hypothesis f0 ≥ 0. Moreover, recalling the definition (2.1),

gn,m+1 ≥ gn,m + Δn

[
T2(gn,m, gn,m, gn,m) + T3(gn,m, gn,m, gn,m)

]
.

Recall that Tk(gn,m, gn,m, gn,m) = gn,m ·Qk(gn,m, gn,m), k ∈ {1, 2}, see definitions (4.7)
and (4.16). Using Lemmas 4.2 and 4.4, it follows that

gn,m+1 ≥ (1 − CsR
2T/n)gn,m ≥ (1 − 1/(2n))gn,m.

The non-negativity of the functions gn,m follows. This implies the non-negativity of the 
solution f , as a consequence of (5.7). �
6. Further results

Define the function space Lr
s by the norm

‖f‖Lr
s

= ‖(1 + ωp)sf‖Lr .

Notice that our Theorems 2.1 and 2.2 are valid for the case where the initial condition 
does not belong to L1

1. In this case, moment estimate techniques, such as those used in 
[6,2] are not applicable.

Now, if we consider the 4-wave turbulence kinetic equation (1.1) (or (2.1)), and sup-
pose in addition that f0 ∈ L1

1; similar to the case of the classical Boltzmann equation 
[64], we also have the conservation of mass, momentum and energy of solutions to (1.1).

Taking any ϕ ∈ Cc(R3) as a test function in (1.1), the following weak formulation 
holds true

ˆ

R3

Q[f ]ϕdp =
ˆ

R9

δ(p + p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)×

× ff1(f2 + f3)[ϕ2 + ϕ3 − ϕ− ϕ1]dp1dp2dp3dp,

(6.1)

in which, again, we have used the abbreviation ϕ = ϕ(t, p), ϕ1 = ϕ(t, p1), ϕ2 = ϕ(t, p2), 
ϕ3 = ϕ(t, p3). By choosing ϕ to be 1, p or ω, the right hand side of (6.1) vanishes.
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Since

∂t

ˆ

R3

fϕdp =
ˆ

R3

Q[f ]ϕdp,

the following conservation laws are then satisfied

∂t

ˆ

R3

fdp = ∂t

ˆ

R3

fpidp = ∂t

ˆ

R3

fωdp = 0, (6.2)

with p = (p1, p2, p3), i ∈ {1, 2, 3}, or equivalently

ˆ

R3

f(t, p)dp =
ˆ

R3

f0(p)dp,

ˆ

R3

f(t, p)pidp =
ˆ

R3

f0(p)pidp,

ˆ

R3

f(t, p)ωpdp =
ˆ

R3

f0(p)ωpdp.

(6.3)

By the same argument used in (ii) of the proofs of Theorem 2.1 and Theorem 2.2, we 
obtain the following theorem.

Theorem 6.1. Assume that ω and the positive initial condition f0 satisfy the assumptions 
of Theorem 2.1 and Theorem 2.2. In addition, suppose f0 ∈ L1

1. Then the same conclu-
sion of Theorem 2.1 and Theorem 2.2 holds true. Furthermore, f ∈ C([0, T ] : L1

1) and f
also satisfies the conservation laws (6.3).
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