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1. Introduction
1.1. Weak turbulence

Weak turbulence refers to the theory describing nonequilibrium statistical mechanics
of weakly nonlinear Hamiltonian systems; it is a universal phenomenon arising in a
number of physical systems. For these systems, it is expected that the nonlinear effects
lead to the stochastization of waves phases and a slow modulation of the amplitudes, and
that a kinetic equation of quantum Boltzmann type for the mean square amplitudes can
be written. There are two common types of such kinetic equations: the 3-wave and the
4-wave ones. The first derivation of a kinetic model of weak turbulence, which is a 3-wave
one, was obtained, to our knowledge, in [53,54] in the study of phonon interactions in
anharmonic crystal lattices. We refer to [68,45,66,21,46,47] for detailed discussions on
the topics.

4-wave kinetic equations play an important role in the theory of weak turbulence and
appear in several contexts: gravity and capillary waves on the surface of a finite-depth
fluid [67,27-29,13], Alfven wave turbulence in astrophysical plasmas [48], optical waves of
diffraction in nonlinear media [12,41,42], quantum fluids [34], water waves [19], Langmuir
waves [65] to name only a few.

1.2. The kinetic wave equation and its first properties

The present article investigates the local well-posedness theory for the space-
homogeneous 4-wave kinetic equation

O f(t,p) = Q[f](t,p), on Ry x R?,

1.1
£(0,p) =fo(p) on R®. -

The trilinear operator Q is given by

Qlfl(p) = ///5(p+p1—pz—p3)5(w+w1—wz—wz)[fzfs(f1+f)—ff1(f2+f3)] dp1 dpy dps,
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where we denoted

WZW(p), wi:w(pi)7 f:f(p)a fz:f(pl)

In the above, p — w(p) is the dispersive relation of the underlying dispersive problem,
to which we will come back shortly.
Notice that the nonlinear term can also be written

Qlfllp) = /// 6(p+p1—p2 —p3)d(w+wi —wr — ws)
Roxs

X ff1f2f3{% + % - % - %} dp1 dp2 dps.

Writing the nonlinear term in this way makes it clear that the mass, momentum, and
energy are formally conserved; they are defined respectively as

/ f(p) dp, / pf(p) dp / w(p) f(p) dp.
R3 R R

Furthermore, the entropy, defined by
[ 108 ) do
R3

is formally decreasing. Finally, the above form of the nonlinear term leads to the sta-
tionary solutions

1
p+v-p+Ew(p)’

(1.2)

where (u,v,€) € R x R? x R are such that g+ v - p + &w(p) > 0 for any p.

The equation (1.1) does not admit invariant scalings for general dispersion relations
w(p). However, for w(p) = |p|?, a number of scalings arises, which leave the set of solutions
invariant. The most relevant one leaves the time variable untouched: it is given by the
transformation

F(t,p) = N2 f(t, Ap). (1.3)
1.3. The dispersion relation

One of our aims is to allow more general dispersion relations which enjoy similar
bounds to w(p) = |p|?. This is motivated by the following instances of physical interest:
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o The basic example is the Schréodinger case
w(p) = Ipl*. (1.4)
¢ The Bogoliubov dispersion law [14,47]

J(p) = \/01|pl? + O2|pl4, (1.5)

where 61, 05 are strictly positive constants.
e The modified Bogoliubov dispersion law [14] and the Bohm-Pines dispersion law [5]

9(p) = /0o + 01[p[* + O2|p[*, (1.6)

where 6y, 61,0, are strictly positive constants. In the very low temperature regime
[15,30,5], ¥ can be replaced by the following approximated dispersion relation

w(p) = Xo + Mp|* + Aap|*, (1.7)

with Ag, A1, A2 being strictly positive constants depending on 6, 61, 05.

These examples are captured by the following general assumption.

Assumption 1.1. The dispersion relation is of the form

w(p) = Qpl), (1.8)
and satisfies:

(i) ©(0) = 0 (this is simply a convenient normalization).

(i) Q € CY(Ry) and Q(z) >0 for all 2 in R .

(iii) There exists a constant ¢; > 0 such that Q'(z) > ¢y, for all z in R. (1.9)

1
(iv) There exists a constant ¢ > 0 such that Q(z) < EQ(CQCE), for all  in Ry.

1.4. Rigorous results on the isotropic 4-wave kinetic equation and related models

The first question is that of the derivation of this kinetic equation from Hamilto-
nian dynamics: it should arise in the weakly nonlinear, big box limit under the random
phase approximation. This is not the subject of this paper, but we refer to the classi-
cal textbooks [66,45] for a heuristic discussion, as well as to [40] for the latest rigorous
results.

The question of the local existence and uniqueness of solutions to (1.1) was first
studied in [18], where the dispersion relation is of classical type w(p) = |p|?, and the
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solution f is radial (velocity-isotropic). Abusing notations by denoting p for |p| and f(p)
for f(|p|), the equation (1.1) reduces to a one-dimensional Boltzmann equation

o f = / p2p3min{p7p1,p2,p3}[fzfs(f+f1) — ff1(f2 + f3)] dps dpa, (1.10)

p
K2

where p? = p3 + p3 — p*.

It is proved in [18] that the above equation admits global, measure valued, weak
solutions. This functional framework allows in particular for condensation, namely the
development of a point mass at the origin. It is furthermore showed that condensation
can occur, and that, as t — oo, most of the energy is transfered to high frequencies. The
articles [33,32] are dedicated to a quadratic equation arising from (1.1) in the regime
where a Dirac mass has formed, and contains most of the mass. Note that the existence
and uniqueness of radial weak solutions to a slightly simplified version of the 4-wave
kinetic equation for general power-law dispersion has been proved in [43].

The reduction to the radial model (1.10) is restricted to the case w(p) = [p|*. It is
therefore one of the goal of this paper to construct a local existence and uniqueness
theory which would be valid in greater generality.

Besides the 4-wave kinetic equation, the 3-wave kinetic equation also plays an impor-
tant role in the theory of weak turbulence, and has been studied in [16,2,24,11,15] for
the phonon interactions in anharmonic crystal lattices, in [24] for stratified flows in the
ocean, and in [49] for capillary waves.

Finally, let us mention the (CR) equation, which is derived in [20,8] and studied
in [25,7,26], which is a Hamiltonian equation whose nonlinearity is given by the trilinear
term 77 (defined below).

1.5. Technical difficulties and novelty of the current work

In the theory of the classical Boltzmann equation, the conservation laws

p+pi=p2+ps, |p°+[p1]* = [p2|® + |ps]? (1.11)

play a very important role. Since (1.11) implies that p, pi, p2, ps are on the sphere

centered at X2 with radius lp=pi| £ 1l

, the Boltzmann collision operators can be considered
as integrals on spheres (see, for instance [64,10]) and the Carleman representation [9] can
be used. This is not the case for more general dispersion relations, for which the resonant
manifolds do not admit such simple parameterizations. This is the so-called resonance
manifold problem.

Let us mention that (1.1) is very similar to the Boltzmann-Nordheim (Uehling-
Ulenbeck) equation (cf. [51,63]), which describes the evolution of the density function of
a dilute Bose gas at high temperature (above the Bose-Einstein condensate transition
temperature)
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ouf(t,p) = Q[fI(t, p) + QolfI(t, p),

Qolfl(t,p) = /// d(p+p1 —p2 —p3)d(w+ w1 —ws —ws)[fafs — ffildpidpadps,
R3%3

f(0,p) =fo(p).
(1.12)
Notice that Qp is the classical Boltzmann collision operator. The study of (1.12) is also
a subject of rapidly growing interest in the kinetic community (cf. [3,18,17,59,58,50,35,
37-39,6,31,56,36,55,62] and the references therein).

Local existence and uniqueness results for (1.12) in the intersection between weighted
L' and L™ spaces, where wp = p?, have been done in [6,36] using the classical method
of moment production developed for the classical Boltzmann equation thanks to the
stabilization effect of the classical Boltzmann collision operator Qy. However, this method
cannot be used for the 4-wave kinetic equation since Qq is missing. Moreover, for the
4-wave kinetic equation with general w,, physically speaking, the energy

[t v

R3

is not necessarily conserved. Therefore, weighted L' spaces are not suitable for the exis-
tence theory and moment estimate techniques, like the one used in [6,36], are inadequate.

When the dispersive relation is of classical type w(p) = |p|?, and f(p) = f(|p|) is
radial, one get the one-dimensional Boltzmann equation

of = / KUfafs(f + 1+ 1) = FAi(fa+ fs+ 1)] dpo dps, (1.13)
R2

T

where p? = p3+p3—p? and K = paps min{p, p1, p2, p3}/p. Local existence and uniqueness
results for mild solutions of (1.13) in weighted L> spaces has been studied in [17] by
carefully estimating the domains of integration of the one-dimensional integrals, following
[9]. The resonance manifold problem has been then avoided.

A satisfactory theory for (1.12) in the full 3-dimensional case, with general dispersion
relations and without relying on the L'-norms is completely open. In the current work,
such a theory is constructed based on the following approaches:

e An observation that the Boltzmann collision operators can be rewritten as the com-
bination of several Schrodinger operators. That leads to Strichartz estimates on
Boltzmann collision operators.

e An observation that the Boltzmann collision operators are indeed Radon transform.
Therefore, TT* argument can be applied for the first time to Boltzmann collision
operators.
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¢ A new parametrization techniques on the 4-wave collision operator.

These techniques can be the base to study the regularity and the qualitative be-
havior of the solutions the 4-wave kinetic equation, for instance the uniformly in time
Maxwellian lower bound [50]. Such techniques could also be used to improve regularity
estimates of the classical Boltzmann, like the ones in [44]. They will be the subjects of
our future studies.

2. Main results

For the sake of simplicity, we impose the abbreviation f = f(t,p), f1 = fi(t,p),
2= f2(t7p)7 fz3= fS(tap) and w = w(p)v w1 = W(pl), W2 = W(pQ)a w3 = W(pfi)'
We consider the initial-value problems in R? x [0, 7] of the 4-wave kinetic equation

atf:Q[f] :ﬂ(fvaf)+7—2(f,fvf)_27?3(fafaf)7

2.1
£0) = . 21)

where

Ti(f,g9.h) = /5(p+p1 —p2 — p3)d(w+wi —wa —ws3) X
RQ

x f(p1)g(p2)h(ps) dp1dpadps,

T2(f,9,h) = /5(P+p1 —p2 — p3)d(w+wi —wa —ws3) X
2o (2.2)

x [(p)g(p2)h(ps) dpidpadps,

Ts(f,g9.h) = /5(p+p1 —p2 — p3)d(w+wi —wr —ws3) X
RQ

x f(p)g(p1)h(p2) dp1dpadps.

We define the function spaces L, r € [1,00], s > 0 by the norms

/]

rri= @5 fller, (@)= (14 |2)2 (2.3)
In the case r = oo we require also that f is continuous, so we define
LE = {f e C'R®): | fllrz= < oo}

Our first main theorem concerns local well-posedness of the initial-value problem (2.1)
in L%, s > 2. More precisely:
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Theorem 2.1.

(i) Assume that w satisfies Assumption 1.1 and s > 2. Then the initial-value problem
(2.1) is locally well-posed in L° for s > 2, in the sense that for any R > 0 there
is T Zs R™? such that for any initial-data fo € L with | follL < R, there is a
unique solution f in C1([0,T] : L) of the initial-value problem (2.1). Furthermore,
| f(t)llzee < 2R for any t € [0,T] and the map fo — f is continuous from LZ° to
CL([0,T) : L).

(#3) If furthermore fo > 0, then f(t) is non-negative for any t € [0,T).

In the special Schrodinger case, we prove also a stronger local-wellposedness theorem

in L2, s > 1/2. More precisely:

Theorem 2.2.

(i) Assume that w(p) = |p|? and s > 1/2. Then the initial-value problem (2.1) is locally
well-posed in L? for s > 1/2: for any R > 0 there is T =4 R™2 such that for any
initial-data fo € L2 with | fol 2 < R, there is a unique solution f in C'([0,T] : L2)
of the initial-value problem (2.1). Furthermore, ||f(t)||z2 < 2R for anyt € [0,T] and
the map fo — f is continuous from L? to C*([0,T]: L?).

(#3) If fo > 0 then f(t) is non-negative for any t € [0,T).

Theorems 2.1 and 2.2 follow by fixed point arguments from the following propositions:
Proposition 2.3. Assume that w satisfies Assumption 1.1, s > 2, and 0 < v < min(s —

2,1). Then the operators T;, j € {1,2,3}, defined in (2.2) are bounded from (L)* to
L

o s
Gy L€

175(f,9:W)llzee s I fllzeellgllee Pl ee -

Proposition 2.4. Assume that w(p) = |p|* and s > 1/2. Then the operators T;, j €
{1,2,3}, defined in (2.2) are bounded from (L?)3 to L?, i.e.

I75(f,9:h)]

L2 Ss |l

h

L2 gl L2 L2.
Propositions 2.3 and 2.4 and Theorems 2.1 and 2.2 are proved in the next three

sections. We conclude this section with several remarks:

Remark 2.5. The above theorems are optimal in terms of the exponent s since it is not
possible to define the operators 7; if w(p) = |p|* and the input functions have general
tails decaying like |p|~2. The two theorems are also nearly critical since the spaces L2°,
s > 2 and L2, s > 1/2, are nearly critical with respect to the scaling (1.3) of the
equation.
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Remark 2.6. We are working in dimension d = 3 mostly for the sake of concreteness.
Similar theorems hold in any dimension d > 2, with the corresponding ranges of expo-
nents s > d — 1 for the L2 local well-posedness theory, and s > (d — 2)/2 for the L?
local well-posedness theory.

Remark 2.7. As long as w(p) ~ |p|? for |p| — oo, the stationary solutions (1.2) are on
the borderline of the local well-posedness theory, since they belong to the scale-invariant
space L5°. Notice that this only occurs in dimension 3.

Remark 2.8. It is probably possible to prove nearly critical L? local well-posedness the-
orems for more general radial dispersion relations w. However, one would likely have to
assume some additional curvature assumptions on w, expressed in terms of bounds on the
second derivative ", in order to be able to run TT* arguments for Radon transforms,
as in section 4. For simplicity, we consider here only the Schrédinger case w(p) = |p|?.

Remark 2.9. It would be possible to prove identical local well-posedness results for the
more general equation Oy f = a1 Ti(f, f, f) + axTa(f, f, ) + asTs(f, f, f), but the conser-
vation law and the positivity of the solution would be lost.

Remark 2.10. The solution given by Theorem 2.1 has the property that

f(tup) - fO(p) € Cl([07T)7L§o+'y)

for some v > 0 (as a consequence of Proposition 2.3). This means that the decay at oo
of f(t) is exactly the same as that of the data fy. This should of course be contrasted
with the cases of the classical Boltzmann equation [1,4,22,23] and the quantum Boltz-
mann equation for bosons at very low temperature [2] (this is also the weak turbulence
kinetic equation for anharmonic crystal lattices), for which the decay of the solution is
immediately improved.

Remark 2.11. For some data one can prove additional properties of the solution, such as
conservation laws. See section 6.

3. Proof of Proposition 2.3: LS°(s > 2) boundedness of T;

Notice that, in the case w(p) = |p|?, the desired bound follows easily from the formu-
lation (1.10). The aim of this section is to explore the case of more general dispersion
relations w, for which no such simple representation of the collision operator is available.

3.1. Boundedness of Ty

Proposition 3.1. For s > 2 and 0 < v < min(s — 2,1), and under Assumption 1.1, the

operator Ty is bounded from (L3°)® to L35 .
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Proof. Step 1: first reduction. It suffices to prove that the following integral is bounded:

s+

J = Sgpé/g/Mwﬂp‘ﬂh—pz—p3)5(w+w1—wz—w:s)dpldpzdpg- (3.1)

Since in the above integral w(p) < w(ps2) + w(ps), then either w(p) < 2w(py) or
w(p) < 2w(ps). Suppose that w(p) < 2w(p3), which implies, by Assumption 1.1, that
(p) < (p3). We then infer that

N
J S sup/// %ﬂlﬂrm —p2 — p3)d(w + w1 — w2 — w3) dp1 dpz dps.
P T

Integrating out the p3 variable results in

J L w w1 — Wy — W —
S Sng/G/ <p1>s<pz>$5( twr —wy —w(p+p1—p2)) dprdps. (3.2)

Let us now set z = py and define the resonant manifold S, ,, to be the zero set of
&(z) = wlp+pi—2) +wz) —wp) —wip) =0, (3-3)

which leads to the following representation of the right hand side of (3.2), (see [52],
section 1.5)

~ (p)”
v [ [ e | 4

R3 Sp.p1

where p is the surface measure on S, 5, .

Step 2: parameterizing the resonant manifold. Setting p + p; = p, we now parameterize

the resonant manifold S, , , following [50]. In order to do this, we compute the derivative
of &
z

2= P !
V.6 = Q(lp = 2]) + =2 (|2]).
|z = pl 2|

In particular, let ¢ be any vector orthogonal to pi.e. p-q = 0. The directional derivative
of & in the direction of ¢, with z = ap + ¢, € R, satisfies
Q(lp— Q
(Ip— =) (\Zl)] >0,

q- V.6 =|q +
lp — 2| |2|

which means that &(z) is strictly increasing in any direction that is orthogonal to p.
This proves that the intersection between the surface S, 5, and the plane
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Paz{ap—kq,/rq:o}

is either empty or the circle centered at ap and of a finite radius r,, for a € R.

As a consequence, we can parametrize Sy p, as follows. Let p* be the vector orthogonal
to both p and a fixed vector e of R® and let ey be the unit vector in Py = {p-q = 0}
such that the angle between pt and eg is §. We parameterize S, ,, by

{z =ap+reeg @ 0€[0,21], a € Ay, }, (3.5)

where A, ,, is the set of a for which a solution to ®(z) = 0 exists.

We can think of & as a function of @ and r: & = &(r, ). We just saw that 9,& > 0 for
r > 0. Therefore, by the implicit function theorem, the zero set of & can be parameterized
as

{(O"r = Ta)7 S Ap,p1}7

where a — r, is a smooth function on A, ,, vanishing on its boundary.
Next, we have by definition that &(z,) = 0 for all « and therefore, keeping 6 fixed,

Za — P
|Za_p|

Ra

|2al

0=042q V.6 =0,24 - < (|2 — pl) +

120

Za Zo
N e A R () B SRS TER R

|20 = pl EX |20 = pl

1 Q(lp — 2a Q' (|24 Q(lp — za
:_aa|za|2|: (|_ |) + (| |):| _|p|2 (|_ |)
2 lp— zal |2l lp — zal

Therefore,

Y (lp—2al) o2

2 _ [p—zal
Oalzal” =2 Tloz]) DD (8.7)
P—Za Za

This implies in particular that a — |z, is increasing on A, ,,. Defining r to be zero on
the complement of A, ,,,, we get that o — |z,] is an increasing function on R; therefore,
the change of coordinates o — |z4| is well-defined.

Step 3: the surface measure on the resonant manifold. Since Jgey is orthogonal to both

p and ey, we compute the surface area

dp(z) = |0qz X Ogzldadd = |(p + Oaraey) X roadgey|dadl

1
- \/|p|2rg + £10a(r2) Pdads.
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Using |z|? = o?|p|? + 72, we learn from the last line of (3.6) that

Q' (|zal) Q' (lp=2al)

Tleal) 4 (g — 1)L llezzal)

2_ 2 [2a] [p—2al

806Ta_ 2|p| Q (lp—2zal) Q' (24) . (39)
Ip_zal |Zo¢|

Now, let us compute |V,®| under the new parameterization:

2

Za Za — P
2 (|za]) + Q' (|za — p
22zl 2B 0 )

O‘|p +| qQ/(| ) MQ/(V;

_ 12 [ 22D +(a_1>9’<'ﬂ%'>r+r2 [Q'upzan - 20z’
|2a| lp — 2al “ lp — 2al |2a|

|vz6|2 =

2

a_PD

‘a_l

In addition to (3.9), this implies that

D, 2 (lp - 2a (|24 2
) .
o [Pl D)
lp — zal |24l
Therefore
du(z) _ ol
V.6| - Tl=zD , @zp @9 (3.11)
: lo=2al T Tzal

Introduce the variable u = |zo| = v/@?|p|? + r2 as explained in Step 2; by (3.7) we get

dp(z) lp — zal
= ududb.
|vz®| Q/(|p— Za|)|p|
By Assumption 1.1, % < 1, and therefore
dp(z) u
< L duds. 3.12
V.81~ I (312)

Step 4: finiteness of the integral. Adopting the coordinates defined above and using
(3.12) yields

2

. ()
J < e d@dudpl
201 ;0

RB
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Changing variables p; — p = p + p1, this becomes
2

v o0
J < bup/%// deudp
P Re 0 0

Performing the integrations in z and 6, this leads to

T
J §Sup/Ls—dp
» J (p—D)*Ipl
]R3

Writing p = |p|o where o € S? and using the inequality’

1
< _ \2—s —2 3
/7@4 Tyl S (JA| = )25 (r) VAER3 r>0,5>2, (3.13)
SZ

we get

[ pl(p
bp/ d07
/ol TRarEa

which is bounded when s > 2 and 0 <y < min(s — 2,1). O
3.2. Boundedness of T

Proposition 3.2. Fors > 2 and 0 < v < s—2, and under Assumption 1.1, the operator Ta

is bounded from (L°)? to L.

Proof. Step 1: reduction to the boundedness of Q1. Defining

Qi(g,h)(p) = / S(w+wr —we —w(p+p1 —p2))g(p2)h(p+p1 —p2) dp1 dp2,  (3.14)

! In order to prove this inequality, simply observe that

/ 1 / sin ¢ dé
(A+ro)s (JA|2 4+ r2 — 2|A|rcos ¢ + 1)s/2 7
S2

The main contribution is

/2 1

/ sin ¢ /
J (JAI]2 + r2 —2|A|7‘cos<z§—i—1)s/2 ((JA] —7‘)2—1-2|A|7“2§)5/2
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it suffices to prove that

1Q1(g: W)l < gl

h

Lge Lge-

Taking the L> norm of Qq(g, h), we obtain

1Q1(9: M)llLee < sup lgllLee Al Lo X
peR3

X //5(w +wi — w2 —w(p+p1—p2))(p2) P+ p1— p2) " (p)” dp1 dpo.
R6

(3.15)

Step 2: upper bound on |p|. Keeping the notations of Section 3.1, we deduce from the
inequalities w(p) + w(p1) = w(p2) + w(ps) and p + p1 = p2 + ps that

w(p) < w(z) +wlp—2).

We now use Assumption 1.1 to bound
w(p) < w(z) +wlp—2) < 22 (max(lol, |p — 21) < ez max(o], |p - 21)).

Since (2 is increasing, this implies that

Ip| < lpl +1p— 2l

Step 3: parameterizing the integral. Adopting the same parameterization as in Sec-

tion 3.1, it appears that (3.15) would follow from a bound on

() (z)*ptp1—2)"°
pseu]I&R[ / V.00 du(z) | dp:. (3.16)

pP,P1

b

By the parametrization (3.5) and Step 2, matters reduce to bounding

27

oo
(p)"z|
sup //1 < —————————dfd|z|dpy,
bER® IpI<Iel+]p—2] (2)5(p — 2)°|p|
R3 0 O

where 1|,<|p|+|p—z| is the characteristic function of {|p| < [p| + |p — z[}. On the one
hand, integrating in 6 is harmless; and on the other hand, in the above integral, either

Ip| < |z| or |p| < |p — z|. Therefore, it suffices to bound

[ I
sup// . —— d|z[dp,
peR? (2)*1{p — 2)*2|p|
R3 0
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where s1, so > 2. Changing variables from p; to p, this becomes

sup// z|dp.
pere J 1(p — 2)%2|p| i

Writing p as |pjw and using (3.13), we obtain that the above is bounded by

sup
peR3

[ 2l
d|z|d|p|, 3.17
0/ ol = | (317

which is finite for s1, s9 > 2. This is the desired result! O
3.8. Boundedness of T

Proposition 3.3. Fors > 2 and 0 < v < s—2, and under Assumption 1.1, the operator T3

is bounded from (L) to L., .

Proof. Defining
Qs(g,h) = /5(w + w1 —wp —w(p+p1 —p2))9(p1)h(p2) dp: dp2, (3.18)
R6

it suffices to show that

[Q2(g, 7))l Le=

Similarly to Section 3.2, we set p = p+ p1, and define & and S, ,, . Proceeding as in the
proof of Proposition 3.1, it suffices to prove the boundedness of

27

J= sup / (p1) ™ (B / / d0d|z|dp1 (3.19)
peR3
R3 0 0

Setting p = p + p1, this becomes

7 — sw /<p—p>*5<p>7//<z>*sﬂded|z|dp
peRS3 |P|
R3 0 0

(3.20)

AN
w0
==l
el
w\
o
)
=
S~
@
S
2
—
_&_
.
=
S
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1
S sup /(p—p>_s<p>”mdp,

3
peR s

where the last inequality is due to the fact that s > 2.
Writing p as |p|w and using (3.13), we obtain

o

p
J< suwp / el g1,
b |p| 0

which is bounded when s >2and 0 <y <s—2. O

4. Proof of Proposition 2.4: L?(s > 1/2) boundedness of T}

(3.21)

In this section we assume that w(p) = |p|? and prove the L? bounds in Proposition 2.4.

One can think of the operators 7; as bilinear and trilinear operators defined by integrating

along moving surfaces in Euclidean spaces. Such operators are called Radon transforms,

and their boundedness properties have been studied extensively in Harmonic Analysis

(see for example the classical papers [57,60,61]).

One of the main ideas in the study of Radon transforms on Euclidean spaces is the

use of TT* arguments. We adapt this technique in our setting to bound the trilinear

operators T;. We remark that T7T* arguments are usually optimal if one uses L? based

spaces; this is the main reason for choosing the spaces L? as the local well-posedness

spaces in Theorem 2.2.
4.1. The operator Ty

We consider first the trilinear operator 7; and we prove the following:

Lemma 4.1. If s > 1/2 and Ty is defined as in (2.2) then

ITillz2xr2xrzsz2 Ss 1.
Proof. We adapt an argument from [7]. We start from the identity

1

d(q) = %/eiq£ dg.

R

For simplicity of notation, let Q := Ti[f, g, h]. We have
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Qp) =C / &'y (P+P1—p2—ps3)
(R9)3xRxR
X eit(w(p)+w(p1)—w(pz)—w(ps))f(pl)g@z)h(m) dprdp-dpsdtdy
—C [ et W LTy Lo(y, LAy 1) didy,
RxR
where

La(z,t) := /a(q)eiiq'mefi”(’mdq. (4.2)
Rd

Therefore, with G(y,t) := Lf(y,t)Lg(y,t)Lh(y, 1),

where H* denote the usual Sobolev spaces on R2. Notice that, for any ¢ € R,
IGCOlm < Do ILalt)llas L6, )|z | Le(, )] pee-
{a;b,c}={f,9,h}

Moreover, for any a € {f, g, h},
sup [|La(., )|l g < llallz.
teR

In view of the last three inequalities, for (4.1) it suffices to prove the linear estimates
) 1/2
[ [1zsnie ] < bl (1.3
R

for any s > 1/2 and b € L2

The estimates (4.3) are Strichartz-type linear estimates. To prove them we use a T'T™*-
type argument. We may assume that [|b]2 = 1 and b(p) = h(p){p)~*, ||h[[zz = 1. For
(4.3) it suffices to show that

‘ / Lb(x,t)F(x,t)dxdt] <1

R3 xR

1/2

provided that [ [ [[F(.,t)||2. dt] "~ < 1. Using (4.2), this is equivalent to proving that

[ [ P e e o g <.,
R3 xR
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where the L? norm is taken in the p variable. Expanding the L? norm in p, this is
equivalent to showing that

‘ / (p) "B F(x,t)ePTe PR (27 11)e i’ gt w(P) grdtda’ dt’ dp| <, 1. (4.4)
R3R3xR R3xR

Let

Ky, 1) = / (p) 2PV gp, (4.5)
RB

so the left-hand side of (4.4) is bounded by

C / / |F(x,t)||F (2", t)|| K (x — 2’ t — t')| dedtdx’dt’.

R3xR R3xR

Since [ [ [|1F (., t)[12. dt] 1z < 1, and recalling that s > 1/2, for (4.3) it suffices to prove
that there is ¢ = d(s) > 0 such that

K (y. 1)] S 11704 7%, (4.6)

for any (y,t) € R? x R. Recalling that w(p) = |p|?, this is a standard dispersive bound
on the kernel of the Schrédinger evolution and can be proved by oscillatory integral
estimates. O

4.2. The operator Ta

Notice that T2(f,g,h) = f - Q2(g, h) where, by definition,

Qs(F,G)(p) = / 5p+pr—a—y)

R3xR3xR3

X §(w(p) + w(p1) — w(z) — w())F(x)G(y) dudydp, (4.7)
- / 5(w(p) +w(x +y - p) - wlz) — w(y) F()G(y) dudy.

R3xR3

The boundedness of the operator 75 follows from the following lemma:

Lemma 4.2. If w(z) = |z|> and s > 1/2 then

1Q2(F, G|~ s
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Proof. We replace the §y function with a smooth version. More precisely, we fix a smooth
even function ¢ : R — [0, 00) supported in the interval [—1,1] with [p ¢ (t)dt = 1. For
any € € (0,1] let 9. (¢) := (1/e)y(t/e). Since

wp) tw@+y—p) —w@) —wly)=2(x-p) (y—p),

for (4.8) it suffices to prove that

| [ v -p) - PG dods| 5. [Fl121Gli (49)
R3xR3

for any p € R? and ¢ € (0,1]. We let

f@):={e+p)°Fle+p),  9():={y+p)°Gly+p).
After changes of variables, for (4.9) it suffices to prove that

flx)  g(y)
(x+p)*(y+p)*

‘ / Ve(2 - y)

R3xR3

dedy| <. |1f]lz2 gl (4.10)

This is equivalent to proving L? boundedness of a linear operator, i.e.

()
L S h L d 4.11
Lagllis S lgllse where  Lag(a /%xym+m< e v, (111

uniformly for any p € R3 and ¢ € (0, 1].
To prove (4.11) we use a TT*-type argument. We may assume g > 0 and write

, 1 gly)  9y) ,
L 22 = € . € : dydy'd
Laglfie = [ velae el ) o e I e
R3xR3xR3
gly)  9() ,
K dyd
/ .9 +><y+p>syy’
R3xR3
where
1
Koy, y') = Ksep(y,y /1/15 Ty (T -y )Wdf'

Using Lemma 4.3 (ii) below, we have

1 1 1
Koy )] S (—=+—=)
“ylly' I \|g— o i
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where 7 := z/|z| for any x € R3. For (4.11) it suffices to prove that

1 1 9ly)  hy) .
ST dydy'| <s llgllz2||h L2, 412
’ /3 Wil [g—y| w+p)® W +p)° llgll 2|7l (4.12)

for any g, h € L?(R3) and any p,p’ € R3.
For 6,60’ € S? let

3(0) = [O/|g(r9)|2r2 o R = [O/|h(r9’)|2r2 ar] "

We make the changes of variables y = 76 and 3’ = 7’6’ in the integral in the left-hand
side of (4.12). Notice that

(o] o0 h /9/ _

) ~ /< ) /
/ 7"9 +p Né g(e)’ / /9/ / dT ~S h(e )7
0 0

using the Cauchy-Schwarz inequality and (4.13). Thus the integral in the left-hand side
of (4.12) is bounded by

Cs

1 o~
S2xS2

Using Schur’s lemma this is bounded by H§||L2(Sz)|\i~z||Lz(§z), and the desired estimates
(4.12) follow. This completes the proof. O

We summarize below two technical estimates we used in the proof of Lemma 4.2.

Lemma 4.3.

(i) If 0 € S? and p € R then

1
R

rf + p)

(ii) Assume that e1,62 € [0,1), a,b € R, p € R3, u,v € S?, and s > 1/2. Then

€1€2 €12

1
/1[0 El](m v—a)l[o 52](x~w—b)m dr < (4.14)

R3

[v—w|  |Jv+w|
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Proof. (i) By rotation invariance, we may assume w = (1,0, 0). The bound (4.13) is then
implied by the easy estimate

1
sup / s dr <s 1. (4.15)
11171127(13€RR [(7’4‘(]1)24-(]%4-(]92, + 1]

(ii) We may assume &1 < 9. By rotation invariance, we may assume v = (1,0,0) and
w = (wy,ws,0). Clearly, |wz| &~ min(jv — w|, |v + w|). Notice also that

x-w—b=x1w1 + Tows — b= x2w5 — (b — awy) + (1 — a)w;.
Since |wi| < 1, the integral in the left-hand side of (4.14) is bounded by

1

/1[0,61](331 — )1 [_4ey ey (T2w2 — b,)W dx.
R3

The desired conclusion follows using (4.15) and integrating first the variable 3. O
4.3. The operator T3

As in the previous subsection we notice that T3(f,g,h) = f - Q3(g, h) where

Qs(F, G)(p) = / 5(p—ps+2—y)

R3xR3xR3

x 6(w(p) — w(ps) +w(x) — w(y))F(z)G(y) dedydps (4.16)
= / S(w(p) —w(@ —y+p)+w@) —wy)F(2)G(y) dedy.

R3xR3

In view of the definitions, boundedness of 73 follows from the following lemma:

Lemma 4.4. If w(z) = |z|? as before and s > 1/2 then

1Q3(F, G)l[L~ Ss [1F]

221Gl 22 (4.17)

Proof. As before we replace § with . and notice that

wp) —w(@—y+p) +w@) —wly) =2 -y) - (y—p).

We let f(z) = (x+p)°F(z+p) and g(y) = (y+p)°G(y+p) as in the proof of Lemma 4.2.
After changes of variables, for (4.17) it suffices to prove that
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1 9(y)
(x+p)*(y+p)

[LagllLz Ss llgll> where  Lag(x) := /we((x —y)-y)
R3

S dy,

(4.18)
uniformly for p € R? and ¢ € (0, 1]. This follows using the 77 argument as in Proposi-
tion 4.2, the uniform bounds in Lemma 4.3 (ii), and (4.12). O

5. Proof of Theorems 2.1 and 2.2

The two theorems follow by similar arguments from Propositions 2.3 and 2.4. For
concreteness, we provide all the details only for the proof of Theorem 2.2.

Proof of Theorem 2.2. (i) Let T := A;'R~2 for a sufficiently large constant As. We
define the approximating sequence

£2t) = fo, W“w:h+/QWMMﬂ (5.1)
0

on the interval [0,7T]. Using Proposition 2.4 it follows easily, by induction that f™ €
CH([0, 7] : L2) and supye(o 7y || fa(t)[| 22 < 2R. Using again Proposition 2.4 it follows that
the sequence f" is Cauchy in C([0, 7] : L?), thus convergent to a function f € C([0,T] :
L?) that has the properties

t
O =fo.  fO=fo+ [QUrNdr s [f@ <2k (52)
te[0,T
0
In particular 9, f = Q[f], thus f € C*([0,T] : L?). Uniqueness and continuity of the flow
map fo — f follow again from the contraction principle.
(ii) Clearly, f is real-valued if fy is real-valued. To prove non-negativity, we need to
be slightly more careful because the simple recursive scheme (5.1) does not preserve
non-negativity.

Step 1: We construct a different approximating sequence, based on the temporal forward

Euler scheme: for any n € N we set A,, = T'/n and define the sequence {gn’m}?:_o1 by

g™ = fo,  gvTThi= g4 ALQ[eM™. (5.3)

Then we define g" for ¢t € [mA,, (m + 1)A,] by the formula

g9"(t) = g™ + (t = mAn)Qlg™™]
1 (5.4)

= ((E=mAn)g™ ™+ ((m+ 1A, — t)g"").
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Using Proposition 2.4 inductively and the assumption T'= A;'R™2, it is easy to verify
that

lg™™lz2 < 2R for any n > 1 and m € {0,...,n—1}. (5.5)
In particular, using the definition (5.4),

g" € C([0,T] : L?) for any n > 1 and sup |[|g" ()|l < 2R. (5.6)
t€[0,T]

Step 2: We show now that

lim ¢" = f in Cc([0,T) : L?). (5.7)

n—oo

Let 6, := supeo, 7 19" (¢) — f(?)||z2. Given t € [0,T] we fix m € {0,1,...,n — 1} such
that mT/n <t < (m+ 1)T/n. Then we write, using (5.2)—(5.4),

g () — f(t)

mT/n

= {g"() ~ "™} + {g"m ~ fo - / alf - /‘Quwnw- (5.8)

mT/n
=I(t)+1I(t)+11I(¢),
where
I(t) == (t = mT/n)Q[g™™],

1 G+H)T/n

{Qlg™] - Qlf (7)1} dr,

m—

=0 ipn
III(t / olf
mT/n
Using Proposition 2.4 and the bounds (5.2) and (5.5) we estimate
11(2)

We estimate also, for any 7 € [jT/n, (j + 1)T/n],

v+ ITIT(0) 12 £ (T/n)R® < R/n. (5.9)

Qg™ = Qlf ([l . < [[Qlg™] — Qg™ (D]l .2
+[Qlg" ()] = QU (M| .2
< (T/n)R® + 6, R?,
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using Proposition 2.4 and recalling the definition d,, := sup,¢(o 7y l9" (t) — ()] 2. Thus
IT0)]l02 < R/ -+ 5,(TR?). (5.10)

Since TR? < A7! < 1, it follows from (5.8)—(5.10) that &,, < R/n. The desired conclu-
sion (5.7) follows.

Step 3: Finally, we show that all the functions g™ are non-negative. In view of the defi-

nition (5.4), it suffices to prove that the functions g™™ are non-negative for any n > 1
and m € {0,...,n—1}. We prove this by induction over m. The case m = 0 follows from
the hypothesis fo > 0. Moreover, recalling the definition (2.1),

gn,m+1 Z gn,m + An [B(gn,m,gn,m,gn,m) + E(gn,m7gn,m7gn,m)]

Recall that Ti(g™™, g™™, g™™) = g™ - Qr(g™™, g™™), k € {1, 2}, see definitions (4.7)
and (4.16). Using Lemmas 4.2 and 4.4, it follows that

gmm T > (1= CR*T/n)g™™ > (1= 1/(2n))g™™.

The non-negativity of the functions ¢g™™ follows. This implies the non-negativity of the
solution f, as a consequence of (5.7). O

6. Further results
Define the function space L} by the norm

rLr-.

/]

Ly = [[(1+wp)*f]

Notice that our Theorems 2.1 and 2.2 are valid for the case where the initial condition
does not belong to 1. In this case, moment estimate techniques, such as those used in
[6,2] are not applicable.

Now, if we consider the 4-wave turbulence kinetic equation (1.1) (or (2.1)), and sup-
pose in addition that fy € Li; similar to the case of the classical Boltzmann equation
[64], we also have the conservation of mass, momentum and energy of solutions to (1.1).

Taking any ¢ € C.(R?) as a test function in (1.1), the following weak formulation
holds true

/Q[f]sodp = /5(p+p1 —p2 — p3)d(w + w1 — wp — ws) X
R3 R® (6.1)
x ffi(f2 + f3)[p2 + 3 — @ — @1]dpidpadpsdp,

in which, again, we have used the abbreviation ¢ = (¢, p), ©1 = ©(t,p1), Y2 = p(t,p2),
w3 = p(t,p3). By choosing ¢ to be 1, p or w, the right hand side of (6.1) vanishes.
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Since

6t/f§0dp - /Q[f]wdp,
R3 R3

the following conservation laws are then satisfied

o [ s = o [ t'dy = a1 [ fudp = 0. (6.2)
R3 R3 R3

with p = (p',p?,p?), i € {1,2,3}, or equivalently

/f(t,p)dp = /fo(p)dp,
s

R3

[ teowar = [ fwwa. ©3)
R3 R3

[ pandy = [ ooy

R3 R3

By the same argument used in (ii) of the proofs of Theorem 2.1 and Theorem 2.2, we
obtain the following theorem.

Theorem 6.1. Assume that w and the positive initial condition fy satisfy the assumptions
of Theorem 2.1 and Theorem 2.2. In addition, suppose fo € L. Then the same conclu-
sion of Theorem 2.1 and Theorem 2.2 holds true. Furthermore, f € C([0,T] : L}) and f
also satisfies the conservation laws (6.3).
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