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Abstract—Analysis of the human gait is used in many appli-
cations such as medicine, sports, indoor localization, and person
identification. Several research studies focus on the use of MEMS
inertial sensors for gait analysis and have shown promising results.
Step detection and step length estimation are two basic and
important gait analysis tasks. Although researchers have proposed
many methods for step detection, all of them rely on experimental
thresholds selected based on a limited number of subjects and
walking conditions. Also, most of these methods do not distinguish
walking from other activities; they can only recognize motion state
from an idle state. On the other hand, step length estimation
methods used in the literature either need constant calibration
for each user, rely on impractical sensor placement, or both. In
this paper, the human walking bipedal nature is employed for
gait analysis using two waist mounted MEMS gyroscopes. This
setup allows the step detection and discrimination from other
non-bipedal activities without the need for magnitude thresholds.
The hip rotation angle in the sagittal plane is also calculated that
allowed us to estimate the step length without needing for constants
calibration. By mounting an accelerometer on the center of the
back of the waist, an auto-calibration method for the Weinberg
equation’s constant is developed. This method also improves the
accuracy of the Weinberg equation for step length estimation.

I. INTRODUCTION

Gait analysis is the identification, measurement, and evalua-
tion of walking-related parameters. The analysis of the human
gait can be used in a broad range of applications including
sports, medical, and person identification applications. Step de-
tection and step length estimation are two of the most important
tasks of gait analysis. In fact, step detection is a prerequisite
for the analysis of the other gait parameters including step
length. The step length is strongly connected to the other gait
parameters, as it is a final output of the muscles and joint
activities during walking.

Several methods are used for gait analysis including clin-
ical examination by a specialist, image processing, and floor
sensors [1]. These methods need special setup and cannot
be used for long-term analysis. Another method that does
not suffer from these problems is the analysis of gait using
wearable sensor systems. Wearable systems have brought the
convenience of real-time gait analysis outside of laboratory
conditions for a long-term, which can provide more useful
information about persons’ daily life, and have also enabled
the use of gait analysis in new applications such as indoor
localization. Wearable systems can still be used in laboratories
as well, with the advantage of a lower cost analysis than the
methods that require special setup.

This material is based upon work partially supported by the US National
Science Foundation under Grants No. CNS-1764185 & CNS-1836870.

Microelectromechanical Systems (MEMS) technology en-
abled the miniaturization of inertial sensors including ac-
celerometers and gyroscopes so they can be used in wearable
systems. An accelerometer is a device used to measure linear
acceleration and a gyroscope is a device used to measure
angular velocity. MEMS inertial sensors became widely used
in wearable systems for gait analysis due to their small size,
lightweight, low cost, and low power consumption.

Researchers have proposed many methods for step detection
with more than 99% accuracy in some cases [2]. All of these
methods rely on experimental thresholds selected based on a
limited number of subjects and walking conditions. Selecting
and verifying an optimal threshold is a difficult task since it will
vary according to a lot of factors such as users, footwear and
the walking surface material [3]. Also, most of these methods
do not distinguish walking from other activities, they can only
recognize motion state from idle state [4]. The methods that
can be used to distinguish walking from other activities, such
as in [5], are based on machine learning techniques that need
training and complex data labeling. On the other hand, step
length estimation methods used in the literature either need
calibration of constants for each user, rely on impractical sensor
placement or both.

In this paper, a setup of two gyroscopes mounted on the lower
left and right sides of the waist is used instead of a single
inertial sensor for step detection and step length estimation.
One of the gyroscopes is mounted as close as possible to the
right upper hip bone while the other to the left upper hip bone.
This setup provides data about the angular motion of the hips
during walking and a fixed pattern between the two of them
that can be exploited for step detection. This pattern is used
to distinguish walking from other non-bipedal activities and
reduces the rate of false steps detected without using magnitude
thresholds. Using this setup, the hip rotation angle in the sagittal
plane is also estimated and used to estimate the step length using
only the effective leg length without using constants that need
to be calibrated. The hip rotation angle is used with the vertical
displacement of the body during walking to auto-calibrate the
constant of the Weinberg step length estimation method that
increases its accuracy and practicality. The body center-of-mass
(CoM) vertical displacement during walking is estimated using
a classical method by placing an accelerometer on the back
center of the waist.

II. BACKGROUND AND RELATED WORKS

Before estimating the step length, we need first to detect the
step itself. We begin by reviewing some of the step detection
methods, and then we review some of the step length estimation
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methods. Any step detection method can be paired with any step
length estimation method as a part of a complete system.

A. Step Detection Methods
All of the step detection techniques that we have found in the

literature use thresholds selected based on limited datasets and
walking conditions to eliminate false positives. These thresholds
can be magnitude thresholds or distance thresholds used to
measure the similarity between waveforms.

The scheme in [6] searches for peaks and valleys in the wave-
form of the magnitude of 3-axis accelerometer, and to reduce
false positives, thresholds are used to eliminate peaks which
are too small in magnitude or time duration. The algorithm
then makes use of the walking repetitive pattern to reduce false
positive furthermore by calculating the dynamic time warping
(DTW) distance between successive candidate steps and count
them only if the distance is less than a given threshold.

In [2], the user’s state is considered idle if the standard de-
viation of acceleration is less than a given threshold, otherwise
the algorithm computes the signal auto-correlation for each lag
within a predefined range, if the maximum auto-correlation
is greater than a predefined threshold then the user state is
considered walking and the period of walking is divided by
the calculated step duration to count the number of steps.

The work in [7] detects steps by tracking the zero-crossings
from negative to positive of the gyroscope data. To avoid false
positives, a timeout for zero crossing detection and a calibrated
threshold based on the slowest walk of each user are used.

These techniques do not distinguish walking from other
activities that have the same frequency [4]. The authors of [5]
have proposed a technique based on Adaptive Boosting machine
learning algorithm to recognize walking from other activities as
well as different types of walking like walking forward, back-
ward, sidestepping, and stairs climbing. The algorithm uses 3-
axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer.
The problem with this method is the need for complex training
and data labeling for each activity.

B. Step Length Estimation Methods
The IMU sensors can suffer from different types of errors;

one significant problem is the offset of the sensor signal known
as the bias error. A common way to reduce the bias error is to
calculate the average of the sensor’s data values over a period
of time in idle state and then subtract the calculated average
from the data. However, this is not an easy task especially
with accelerometer sensor since its vertical axis is affected
by the gravity acceleration and the exact orientation of the
sensor has to be known in order to determine the gravity
acceleration component at each axis and calculate the bias that
is independent of the sensor orientation. Moreover, this bias can
change over time [8]. Due to the accelerometer bias, double
integration of the forward accelerometer data cannot be used
to obtain the walked distance since bias errors accumulate over
time and lead to a quadratic drift from actual distance. Methods
to estimate each individual step length are used to avoid error
propagation over the entire traveled distance and hence reduce
the drift error.

One method used for step length estimation is to restart the
integration of a foot-mounted accelerometer at each foot stance
where the foot velocity is known to be zero [9], this method is
known as zero velocity update (ZUPT). The accelerometer data
are first transformed from sensor frame to world frame using the
rotation matrix obtained from the gyroscope data integration,
and then the transformed accelerations are integrated to get the
velocities between each two successive foot stances. The error
in velocity is then estimated by calculating the mean velocity
around the second stance event and then it’s used to correct
all velocities obtained in the entire step using weighted linear
interpolation, then the velocities are integrated to get the step
length. The main challenges of this method include extensive
computations and non-practicality of mounting the sensor on
the foot.

In [10], a gyroscope is mounted around the shank and the
swing leg angle θ is obtained by direct integration of the
gyroscope data in the sagittal plane for each step. The estimated
step length is given by:

Step Length = 2 sin(θ/2)

However, this method underestimates the step lengths for large
steps, and needs calibration using a least squares fit between the
calculated step lengths and the true step lengths.

Mounting the sensor on the waist is more practical and less
intrusive than the foot and the shank. Multiple methods to
calculate the step length by a sensor mounted on the waist
are proposed in the literature. Walking steps can be modeled
as an inverted pendulum, where the body rotates over the foot
in contact with the ground [11]. Authors of [12] estimate the
vertical displacement h of the hips resulting from the walking
inverted pendulum model by double integrating the data of an
accelerometer placed on the dorsal side of the trunk, and then
they calculate the step length estimation using the following
geometric relation:

Step Length = 2
√

2lh− h2

where l is the effective leg length measured from the sensor to
the ground. This method significantly underestimates the step
length and has to be calibrated. The calibration can be done by
multiplying the equation by a calibration constant.

An extended model divides the step into two phases, single
support and double support [13], where the step length part
of the single support is estimated using the inverted pendulum
model mentioned above without a calibration constant and the
step length part of the double support is proportional to the foot
size and then the step length is estimated by:

Step Length = 2
√

2lh− h2 + k × F

where F is the foot size and k is a constant that needs
to be calibrated for each user. Instead of double integrating
the vertical accelerometer data, the following approximation
equation, known as Weinberg method, is used in [14]:

Step length = k 4
√

(amax− amin)

where amax is the maximum vertical acceleration value
during a single step, amin is the minimum vertical acceleration
value during the same step, and k is constant and need to be
calibrated, this method is simple and does not need a lot of
computations but needs to be calibrated for each user. Another
method for step length estimation is based on the relationship
between the step length and the step frequency [6]:

Step length = a× f + b

where f is the step frequency, a and b are constants that have
to be calibrated for each user.
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III. SYSTEM ARCHITECTURE

A. System Overview
Our main gait analysis system components are depicted in

Fig. 1. The system is based on two gyroscopes mounted on the
lower waist using a belt, one gyroscope on the right side and the
other on the left side. Data are collected from the gyroscopes
over Bluetooth with a sampling rate of 50 samples/sec by
the Data Collection module, and then filtered using a Moving
Average Filter as a preprocessing for the Step Detection module.
If a step is detected, its information is fetched along with
the corresponding raw data by the Step Length Estimation
module. The Step Length Estimation module can be paired with
the vertical acceleration data collected from an accelerometer
mounted on the center of the back of the belt near the CoM to
auto-calibrate the constant of the Weinberg equation.

Fig. 1. Walking inverted pendulum model
B. Hardware

We use InvenSense CA-SDK board, which provides a Motion
Processing Unit (MPU-9250), a Bluetooth module for wireless
connectivity, and an MSP430 Microcontroller unit that provides
an interface with the MPU-9250. The MPU-9250 combines a 3-
axis gyroscope, 3-axis accelerometer and a 3-axis magnetometer
in a small 3 × 3 × 1 mm quad-flat no-leads (QFN) package.
The gyroscope has a programmable full-scale range of ±250,
±500,±1000 and ±2000◦/sec, an operating current of 3.2mA
and a sleep mode current of 8µA. The accelerometer has a
programmable full-scale range of ±2g, ±4g, ±8g and ±16g,
an operating current of 450µA and a sleep mode current of
8µA. In our algorithms and experiments, the lowest scale range
of both the accelerometer and gyroscope is used.

C. Data Collection
Data are collected from the gyroscope axis perpendicular

on the plane that divides the body into left and right parts
(sagittal plane). The data are collected over Bluetooth and
processed by a laptop. The MPU-9250 sampling rate is 50Hz.
Although the programmability of the CA-SDK board allows
the extraction of the timestamp, we do not use the board’s
timestamp for synchronization because of the clock drift. An
alternative approach is to timestamp the data at the receiving
device (laptop). The synchronization can be easily verified by
attaching the boards to each other and move them randomly for
a period of time then plot the signals to see whether they match
each other or not.

D. Sensors Placements
Mounting the sensors on the waist offers ease of wear-

ability since it can be done by the mean of a belt which
can also facilitate the addition of more sensors. The hip
can provide useful gait information because it represents

the inverted pendulum mass in the stance phase and the
point around which the leg rotates in the swing phase.

Fig. 2. Right sensor
placement

In fact, forward progression cannot hap-
pen without the hip flexion [15]. To find
the balance between wearability and ac-
curacy, we attach the sensors to a Velcro
belt using Velcro patches and position
them as close as possible to the upper
right and left hip bones. The sensors
are positioned with the same orientation.
Fig. 2 shows the placement of the right
side sensor.

IV. STEP DETECTION

A. Step Detection Algorithm
Our algorithm is based on the detection of the swing phase.

A peak detection technique is used, where the peak corresponds
to the mid-swing. Instead of rejecting false steps using a mag-
nitude threshold, the pattern that exists between the rotations of
the two hips and the repetition of this pattern across subsequent
steps are employed.

During the swing phase, the hip rotates in the sagittal plane
towards the trunk; this rotation is called hip flexion. On the
other hand, during the stance phase, the hip rotates apart from
the trunk in the sagittal plane; this is called hip extension.
Since the swing phase of a foot happens during the single
support period while the other foot is in its stance phase,
the angular motion of a hip during its swing phase will be
in the opposite direction of the angular motion of the other
hip. This pattern of opposite directions can be captured by
our gyroscopes’ setup. Consequently, we should expect that
gyroscope data corresponding to the swinging foot be +ve since
the hip is rotating counterclockwise. Similarly, the gyroscope
data corresponding to the stance foot should be −ve since the
hip is rotating clockwise in the stance phase. After several
walking trials, we observed that sometimes the stance leg
gyroscope produces +ve fluctuations in the early stance phase,
and the pattern of opposite signs always hold starting from the
mid-stance point as illustrated in Fig. 3. Since the swing leg is
modeled as a pendulum, where the mid-stance is the equilibrium
position, the mid-stance point can be identified as the point with
the maximum angular velocity (+ve peak) of the swing leg.

Fig. 3. Plot of two hips mounted gyroscopes
filtered data during walking

During the gait cy-
cle, the swing phase of
a foot is succeeded by
the swing phase of the
other foot. After the
last step is taken by
a foot, the other foot
will swing to reach
the last position of the
gait. So, to consider that a gyroscope peak corresponds to a
gait swing and hence detect a step, it has to be preceded and
succeeded by a peak of the other gyroscope, and all of the
three peaks have to satisfy the rotation pattern described earlier.
This pattern repetition has to happen within the walking steps
expected frequency, so the time between each two subsequent
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peaks has to be less than a time threshold ∆tmax and less than
another time threshold ∆tmin, where ∆tmax and ∆tmin are
selected according to [16].

Our algorithm works as follows:
• Data is filtered using a centered moving average filter of

window size 15.
• Eliminate hills which overlap with a positive value in the

region between the peak and the end point.
• If a hill of a sensor readings signal occurs between two

hills of the other sensor readings signal and the time
between its zero crossing and the zero crossings of each
of the other hills is less than a time threshold tmax and
greater than a time threshold tmin, it will be counted as a
step, tmax and tmin are chosen according to [8].

• If the first hill of the other sensor is not already counted
as a step, which can only happen for the first step, it will
be counted as well.

V. STEP LENGTH ESTIMATION

The gyroscopes are used to estimate the rotation angle of the
hips in stance phase. Integration of the gyroscope data for the
short time period of the stance phase will reduce the drift error
significantly and stops it from growing throughout the entire
gait. Since the gyroscope signal can experience fluctuation
during the early stance, we integrate the gyroscope data during
only late stance. The symmetry of the inverted pendulum model
allows us to do so, and this also offers the advantage of reducing
the integration time that will reduce the drift even more.

Fig. 4. Walking inverted pendulum
model angles

Using simple geometry and
since the triangle formed by the
leg at mid-stance and the same
leg at the end of its stance phase
in Fig. 4 is almost an isosceles
triangle, the following deriva-
tion can be used to estimate the
step length SL:

β = 90− θ (1)
α = 180− 2β (2)

sα = 2θ (3)
SL = 2l sin(2θ) (4)

where θ is the angle obtained by direct integration of the
gyroscope and l is the effective leg length measured from the
sensor to the ground.

The error accumulation is low in this method since we only
need to integrate the gyroscope data for a short period of time
and we need single integration to get the step length unlike the
methods based on the double integration of the accelerometer
data.

VI. WEINBERG METHOD AUTO-CALIBRATION

The Weinberg method has a high accuracy compared the to
other step length estimation methods [9], [17], that is confirmed
by our experiments. The main disadvantage of the Weinberg
method is the need for user calibration which is not user-
friendly and prone to errors in the user’s measurement of the
distance. Moreover, we found that the calculated calibration
constant does not always span different walking speeds, so

an auto-calibration method can increase the accuracy and user-
friendliness. The only way for calibration is the walking dis-
tance estimation, so another step length estimation method is
needed to auto-calibrate the Weinberg method. The obvious
option is to use a method with more or at least equal accuracy,
which we did not find and if it exists we would not need
the Weinberg method in the first place. The other option is
to use a less accurate method. Step length estimation methods’
accuracies vary between different steps. The method’s accuracy
refers here to its average accuracy since it is measured for
the entire walking distance, so even if a method has low
average accuracy, it may have some high accuracy estimated
step lengths. So our problem now is how to detect a high
accuracy estimated step length to use for calibration.

By looking at Fig. 4, we can conclude that since we can
estimate the vertical displacement h using accelerometer inte-
gration, that step length can be estimated without knowing the
effective leg length according to the following equation:

SL = 2×
h

tan(θ)
(5)

In fact, the effective leg length l can be estimated given these
information using the following equation:

l =
SL

2× sin(2θ)
(6)

To estimate h, we attach a CA-SDK chip to the center of the
back of the belt to be as close as possible to the CoM, which is
the same recommended place for the Weinberg method. We use
the method described in [12], which is double integration of the
vertical acceleration and estimate h as the difference between
the highest and lowest position during each step. But instead
of using a high-pass filter to reduce the drift, we use the ZUPT
method by restarting the integration at each foot’s mid-stance.

Our experiments show that the average accuracy of this
method is less than 80%, but for some of the steps, l is
accurately estimated. Given the user input of his effective leg
length, the step length SL is estimated using Equation 5, then
l is estimated using Equation 6. If the accuracy of l is greater
than a threshold thresh it is used to estimate a new constant
ki using the following equation:

ki =
4
√
amaxi − amini

SL
(7)

where i is the step number. Then the Weinberg constant K is
calculated using a weighted averaging where the weight is the
accuracy of l.

K =

∑n
i=1 ki × accuracyi∑n

i=1 accuracyi
(8)

where n is the number of steps and accuracyi is the leg length
estimation accuracy of step i which will be set to 0 if less than
the threshold thresh.

Two calibration constants are estimated using the above
algorithm, one for slow and one for faster step speeds. A step is
considered slow if its duration is less than or equal to 0.64 sec.
This value is calculated by taking the mean of the slow gait to
mean step frequencies of men and women aging from 10 to 79
years old in [16] and it is applicable to the slow walking speed
of subjects in our experiments as well.
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VII. EXPERIMENTS AND RESULTS
Our experiments are divided into two categories: walking

activity to calculate step detection and step length estimation
accuracies, and no-walking activities to verify that our step
detection algorithm can distinguish walking from other non-
bipedal activities. Our ground truth for the step detection is the
number of steps counted by an observer while the step length
estimation ground truth is done by measuring the overall walked
distance using a laser meter and then compare it to the overall
distance calculated by summing the estimated step lengths.

Two male and one female subjects participated in our exper-
iments. Their ages are 33, 36 and 34 years, their heights are
173, 179 and 169 cm and their effective leg lengths are 0.95,
1.01 and 0.89 cm respectively.

A. No-walking Activities
The subjects are instructed to do the following activities:

rocking on a rocking chair, twirling on a rotating chair, tran-
sitioning between standing and sitting, and jumping in place.
Each activity is repeated several consecutive times to ensure that
a false step will not be detected due to an activity repetition.
Fig. 5 shows the two gyroscopes signals of one subject doing
the no-walking activities.

Fig. 5. Plot of two hips mounted gyroscopes filtered data during no-walking
activities where A1 corresponds to the activity of rocking on a chair, A2 to
twirling on a chair, A3 to transitioning between standing and sitting and A4
jumping in place

None of the activities exhibited the searched pattern between
the gyroscopes signals of the two sensors, except for the twirling
on a chair activity labeled by A2 in Fig. 5. However, this activity
is not detected as a step because the time between the zero
crossings is relatively large when compared to the maximum
time between two consecutive steps, so the accuracy is 100%
for these experiments.

B. Walking Activity
The subjects are asked to do three experiments, at their slow,

regular and fast speeds. Each experiment is repeated 5 times
to ensure results consistency for a total of 45 experiments
runs. The subjects walk in a straight line for different distances
ranging from 18 to 32 meters long for each experiment run.
Fig. 6 shows the two gyroscopes signals of one subject walking
at his regular speed.

C. Step Detection Results
The approximate mean accuracy of the step detection is

97.92% for low walking speed, 99.57% for regular walking
speed and 99.26% for fast walking speed with total accuracy
of 98.92%. Table I shows the sum of the steps taken by the

Fig. 6. Plot of two waist mounted gyroscopes filtered data during walking at
regular speed.

three subjects, and the number of false +ve and false −ve of
our step detection algorithm for each walking speed.

TABLE I
STEP DETECTION ERRORS

Steps Count False +ve False −ve
Slow Walking Speed 715 1 11

Regular Walking Speed 553 2 1
Fast Walking Speed 493 4 0

D. Step Length Estimation Results

Four step length estimation methods are implemented to
compare their accuracies:

1) The first method M1 is the CoM vertical acceleration
integration based, we will refer to this method by the
vertical displacement method:

SLM1 = K × 2
√

2lh− h2

K is calculated for each user based on a single walk at
regular speed.

2) The second method M2 is our proposed method based
on the estimation of the hip angle in sagittal plane:

SLM2 = 2l sin(2θ)

3) The third method M3 is the Weinberg method based on
user calibration:

SLM3 = Kuser
4
√

(amax − amin)

4) The fourth method M4 is the Weinberg method based on
our new auto-calibration technique:

SLM4 = Kauto
4
√

(amax − amin)

Figures 7, 8, and 9 show the total estimated distances of
all of the experiments as a percentage of the real distances at
slow, regular and fast walking speeds respectively to show the
average estimated step lengths as a percentage of the true step
lengths.

Table II shows the average accuracy of the four methods
at slow, regular and fast walking speeds as well as their
overall accuracies. Our proposed method has higher overall
accuracy than the vertical displacement method, even though
it does not require any constant calibration. Its lowest average
accuracy happens at fast walking speed and it is higher than the
overall lowest average accuracies of the vertical displacement
and Weinberg methods. The user calibration constant of one
of the users do not span his slow walking speeds for the
Weinberg method, which decreases the slow walking speed
average accuracy significantly. The Weinberg method using
auto-calibrated constants has higher overall accuracy and it is
the more stable method across different walking speeds as well.
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Fig. 7. Plot of the step lengths estimations as a
percentage of the real steps lengths at slow walking
speed

Fig. 8. Plot of the step lengths estimations as
a percentage of the real steps lengths at regular
walking speed

Fig. 9. Plot of the step lengths estimations as a
percentage of the real steps lengths at fast walking
speed

TABLE II
STEP LENGTH ESTIMATION ACCURACIES

Vertical Displacement Novel Method Weinberg Weinberg Auto
Slow Walking Speed 84.66% 92.53% 82.25% 94.94%

Regular Walking Speed 92.41% 92.34% 97.86% 95.57%
Fast Walking Speed 93.68% 88.18% 96.26% 94.02%

Overall 90.25% 91.02% 92.12% 94.85%

We expect its accuracy to increase even more in practice as
the auto-calibration constants are expected to be enhanced with
more walking steps. The vertical displacement and traditional
Weinberg methods are expected to have lower accuracies in
practice because of their constants calibration requirements.

VIII. CONCLUSION

In this paper, a new method for gait analysis is developed
by mounting two gyroscopes, one on each side of the waist.
This mounting position has been found to be practical and
more convenient than other positions such as the feet, shanks or
thighs. Using this setup, walking steps are accurately detected
and discriminated from a lot of other non-bipedal activities
without using magnitude thresholds or needing for training,
which makes our algorithm more robust, easier to implement,
and more practical than other step detection algorithms. Our
step detection method is expected to accurately detect jogging
and running steps, but more experiments are needed to evaluate
its robustness in detecting these activities.

The hip rotation angle in the sagittal plane is also estimated
based on the walking inverted pendulum model, which allows us
to estimate the step length using only the user leg length without
the need for per-user constant calibration unlike all other step
length estimation methods that use inertial sensors mounted on
the waist. This is also the first gyroscope based step length
estimation that does not require further calibration algorithms,
and the first waist-mounted gyroscope step length estimation
method. Our step length estimation method is compared to two
other methods that are based on waist-mounted accelerometer.
Even though it does not need calibration constants, our method
had a higher accuracy than one of the methods that need a per-
user constant calibration and a comparable overall accuracy to
the other method across different walking speeds.

The estimation of the hip rotation angle allows us to develop a
method to auto-calibrate the Weinberg method’s constant, which
is one of the most accurate steps length estimation methods.
Two constants are calculated; one for the slow and one for faster
walking speeds, and these constants are to be continuously
updated while the user is walking. The Weinberg method
using the auto-calibrated constants has a higher accuracy than

all of the other step length estimation methods used in our
experiments including the Weinberg method that uses the user-
calibration constant. It is also the most stable method across
different walking speeds.
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