
MAC Protocol Design Optimization Using Deep
Learning

Hannaneh Barahouei Pasandi, Tamer Nadeem
Dept. of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA

{barahoueipash, tnadeem}@vcu.edu

Abstract—Deep learning (DL)-based solutions have recently
been developed for communication protocol design. Such
learning-based solutions can avoid manual efforts to tune individ-
ual protocol parameters. While these solutions look promising,
they are hard to interpret due to the black-box nature of the
ML techniques. To this end, we propose a novel DRL-based
framework to systematically design and evaluate networking pro-
tocols. While other proposed ML-based methods mainly focus on
tuning individual protocol parameters (e.g., adjusting contention
window), our main contribution is to decouple a protocol into
a set of parametric modules, each representing a main protocol
functionality and is used as DRL input to better understand the
generated protocols design optimization and analyze them in a
systematic fashion. As a case study, we introduce and evaluate
DeepMAC a framework in which a MAC protocol is decoupled
into a set of blocks across popular flavors of 802.11 WLANs
(e.g., 802.11a/b/g/n/ac). We are interested to see what blocks are
selected by DeepMAC across different networking scenarios and
whether DeepMAC is able to adapt to network dynamics.

Index Terms—MAC Protocol; Deep Reinforcement Learning;
Wireless Networks.

I. INTRODUCTION AND MOTIVATION

The proliferation of the current Internet and mobile com-
munications networked devices, systems, and applications has
contributed to increasingly large-scale, heterogeneous, dy-
namic, and systematically complex networks. The increasing
availability and performance demands of these applications
suggest that ”general-purpose” protocol stacks are not always
adequate and need to be replaced by application tailored proto-
cols. The current approach of protocol design is to preprogram
empirical control rules with configurable thresholds that can
be adjusted by domain experts in an iterative trial-and-error
manner on the field for each scenario 1. However, heterogene-
ity and dynamically changing characteristics of networks (e.g.,
IoT) ask for intelligent, and auto-configurable techniques. In
this era, network protocol design requires a new approach in
which control rule optimizations are not only based on closed-
form analysis of isolated protocols, but are based on high-level
policy objectives and a comprehensive view of the underlying
components.

Cutting-edge advances in deep reinforcement learning
(DRL) have recently stirred up the network research commu-
nity, now rushing to apply DRL to various protocol optimiza-

This material is based upon work partially supported by the US National
Science Foundation under Grant No. CNS-1764185.

1In this paper the term scenario refers to different scenarios included in user
objective, device constraint, network condition, and application requirements.

Fig. 1. A Bird’s-Eye View of the Proposed Framework

tion tasks such as routing [7], congestion control [9] and MAC
protocol [16], just to name a few. Applying DRL techniques
can reduce manual human-based efforts to tune protocol
parameters. In this paper, we propose a DRL-based framework
to optimize the design of networking protocols. As a case
study, we narrow down our focus to propose a DRL-based
framework for designing MAC protocols hereafter DeepMAC.
In DeepMAC framework, MAC protocols are decoupled into a
set of parametric modules, each representing a main function-
ality across popular flavors of 802.11 WLANs (IEEE 802.11
a/b/g/n/ac amendments). The decoupled parametric modules,
referred as building blocks, are used as DRL inputs (see Figure
1). Protocol designers provide only high-level specifications
for a scenario, including the communication objective, the
protocol building blocks, measurements, and network config-
uration. The DRL agent is then able to learn what protocol
building blocks (functionality) are important to be included
or to be neglected in the protocol design. As we showcase
in Section §IV-C, the DRL agent learns that when the load of
the network is very low, it could eliminate control and sensing
mechanisms (ACK and Carrier Sensing blocks, respectively)
to increase the throughput of the channel by reducing the
bandwidth overhead and waiting time introduced in these
mechanisms. Therefore, this framework could provide a tool
for protocol designers to re-think the blocks used in a designed
protocol. In addition, our framework can be utilized as a multi-
variant optimization tool that helps in alleviating the current
protocol design process. When designing a protocol, domain
experts should keep different application requirements, user
objectives, device constraint and network conditions in mind.

709978-1-7281-4985-1/20/$31.00 ©2020 IEEE ICAIIC 2020
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 20,2021 at 16:42:03 UTC from IEEE Xplore. Restrictions apply.

Considering these parameters all together is a daunting task.
Using this framework, domain experts could identify/capture
the significance of components of protocol performance under
varying scenarios for different objectives. It could also help
them to get insights about the relation between different
protocol components for different objectives, although such
components may not have a direct dependency on each
other if considered alone. More importantly, our framework
goes beyond only tuning individual protocol parameters by
proposing to decouple a protocol into its main functionalities
to optimize the protocol design and to better understand the
generated protocols and analyze them in a systematic fashion.
Finally, merging different MAC protocols used for different
technologies and devices is a common practice in the research
community [8], [10], [23]. Our framework can also serve as a
tool in which blocks (functionalities) extracted from different
protocols (e.g., TDMA-like protocols used in Bluetooth or
CSMA-like protocols used in IEEE 802.11 WLANs) can be
used as the input to generate a new protocol. All-inclusive,
the proposed framework provides the opportunity for protocol
designers to explore a different combination of blocks across
multiple protocols under different scenarios.

A MAC protocol can be regarded as mapping a perceived
history of feedback from the network condition, to the next
choice of a set of building blocks for designing a protocol. We
hypothesize that such history contains information (useful fea-
tures) about network conditions that can be exploited for better
protocol design by learning the mapping from experience via
a DRL approach. We use our proposed building block-based
method to demonstrate what blocks are selected by DeepMAC
under different scenarios and why. We show that by using our
approach, we develop a deeper understanding of the interplay
between the parametric protocol blocks and the underlying
environment.

However, the main purpose of this paper is not to provide
a comprehensive solution for the protocol design optimization
and analysis problem using DRL techniques. The objective is
to better understand the design optimization task systemati-
cally, beyond just looking at the bottom-line performance. We
believe that this approach is not limited only to MAC layer
protocols, but to the communication protocol stack as a whole.

II. RELATED WORK

In recent years, machine learning has shown excellent
improvement across different fields [3], [6], [12], [18]–[20].
We narrow down our focus to recent network research com-
munity’s effort in exploiting DRL techniques to optimize
PHY and MAC protocols in mobile and wireless networks.
However, deep learning for the wireless MAC sub-layer has
been relatively much less explored. In the following, we
summarize a few recent works. Naparstek et al. [11] consider
the problem of DSA for network utility maximization in multi-
channel wireless networks. In their mechanism, the objec-
tive is a multi-user strategy for accessing the spectrum that
maximizes a certain network utility in a distributed manner
without online coordination between users. The action of

each user at the beginning of each time slot is to select a
channel and transmits a packet with a certain transmission
probability. In [17] the DSA problem is formulated as a
partially observable Markov decision process (POMDP) with
unknown system dynamics. In this framework, a user at each
time slot select a channel to transmit data and receives a
reward based on the success or failure of the transmission.
Yu et al. [21] investigate a DRL-based MAC protocol for
heterogeneous wireless networks. In their model, DRL agent
decides whether to transmit or to wait at each time slot with
the objective of maximizing the sum throughput and α-fairness
among all networks. In our previous work, [14] we proposed
an RL based framework to optimize the MAC protocol using
a simple set of functionalities. However, we discovered that
the RL-based approach may face instability since the agent
has to find a balance between exploration and exploitation. In
[2], [13] we give a complete overview of the whole protocol
design framework using machine learning techniques. In these
works, we describe the key design considerations for the
learning agent (e.g., centralized, distributed or hybrid agents)
and describe how these agents should communicate with one
another. We then expanded our framework [15] to use deep
architecture along with new building blocks.

Although the aforementioned mechanisms differ in the
details, their common objective is to optimize a protocol is
by tuning and/or controlling the protocol parameters. Our
proposed approach is different from these works in two
significant respects. First, we argue that designing methods
to boost protocol performance is not only about parameter
tuning, but also to decide what functionality to include or
exclude from the design. The novelty of our approach resides
in the way our framework constructs a protocol from a set
of building blocks. By decomposing the protocol into the set
of mechanistic building blocks, we aim to better understand
the design, the interdependencies among different protocol
building blocks, and to ease the analysis of the protocols. In
addition, our framework supports multi-variant communication
objectives that can be explicitly defined by domain experts.

III. DEEPMAC FRAMEWORK

MAC protocols need to be designed with a rich set of
requirements in order to satisfy the needs of the overlaying
applications and scenarios. Due to the limited channel re-
sources and a large number of devices accessing the channel,
it is desirable that the MAC protocol minimizes the time
wasted due to collisions or exchange of control messages. In
addition, it is required that the effective throughput remain
high irrespective of the traffic levels. Overwhelmingly, the
network conditions may be dynamic (e.g., nodes entering and
leaving). Thus, it is imperative that the MAC protocol can
be easily scalable and adjusted delicately to the changing
environment with little or no control information exchange.
Figure 2 shows DeepMAC framework and its key modules
that aim to optimize the design of wireless MAC protocols.
We describe these modules in the following subsections.

710
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 20,2021 at 16:42:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. DeepMAC framework

A. MAC Protocol Building Blocks

A network protocol is typically structured into several
layers, where each layer is broken into a set of protocol blocks
with its own specific functionality. The modular design of
protocols is a promising approach as acknowledged by [1],
[5]. The building blocks are a set of separated parametric
modular components, each of which is in charge of one (or
several) specific well-defined functionality. The combination
of different building blocks and the interactions between them
determine the overall behavior of a network protocol for a
given environment.

In our framework, we have extracted a set of MAC protocol
blocks from Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications [4] which includes
MAC functionalities across all 802.11a/b/g/n/ac amendments.
As shown in Figure 2, these blocks, and instances of their
dependencies are captured based on non-Directional Multi-
Gigabit (non-DMG) MAC architecture. Having established a
number of potential building blocks, DRL agent takes these
blocks and history of the average channel throughput as its
main inputs as described later.

B. DeepMAC As A Reinforcement Learning Problem

DeepMAC uses Reinforcement Learning (RL) along with a
deep architecture to learn the best set of protocol blocks for
different scenarios. In DeepMAC, we consider a centralized
learning agent for the design of 802.11 MAC protocols. This
centralized agent, in practice, can be placed on a single
supernode (e.g., the Access Point) that periodically updates
its model. Meaning it decides the selected set of MAC layer
blocks and parameters to be used by all the other nodes in the
network.

Reward function The designers need to specify the com-
munication objective according to corresponding use case,
device category under different scenarios. In the DRL frame-
work, this defines the reward function. For example, for a
battery-constrained IoT device which that cares for maximiz-
ing the throughput while minimizing spent energy, a designer
may specify to optimize the following objective function:
w0 (number of successful transmitted bits) - w1 (energy

spent per bit)

Where w0 and w1 control relative tradeoff between these
two conflicting components. In DeepMAC, the reward function
is the average throughput of the link. Although such reward
objectives can change based on the provided scenario by the
protocol designer.

State, Action The state of the agent is a vector of numerical
representation of the set of the building blocks, and a history
with a fixed link of the average link throughput values which
are used as part of the input for DeepMAC agent. In this
set, a value except 0 indicates that the corresponding block is
included in the protocol design (each of the elements in the
input vector can have different values which indicate what
parameter or algorithm/method/mechanism should be used
in the design), while 0 means the component is completely
excluded from the design. The action in this framework is the
act of choosing the next state among all the available states
from the current state such that the reward is maximized.
Given the input, the output of the simulator is the average
throughput of the channel which is considered as the reward
of the DRL agent for the selected building blocks at the current
step. We consider a global optimization of the reward function
which relies on the assumption that all nodes employ the same
prescribed protocol using the selected blocks by the agent. The
agent takes both the protocol design blocks and history of the
reward as inputs of the agent and outputs the best combination
of building blocks for the current scenario that maximizes the
reward.

Learning environment The designers specify the network
environment for which the DeepMAC must be optimized. In
the DRL framework, this feeds into the learning environment.
For example, a designer might choose the reference model in
[22] as a potential environment. Note that using such reference
models is standard practice in the industry for designing and
evaluating any new technologies as it offers a reproducible
way for testing the technology in a wide variety of realistic
and challenging deployment scenarios.

DRL agent architecture The neural network we adopt is
equipped with three hidden layers and an output layer. We
find through our experiments that this simple architecture can
yield satisfactory performance, and increasing the complexity
of the neural network does not contribute to performance
improvements while inducing more training overload. The
data is flattened before going through the hidden layers which
utilize Relu as the activation function. The output layer con-
sists of multiple neurons, each producing the Q-value of the
corresponding action.

C. Logic Controller

In network protocols, some functional blocks are dependent
on each other. The logic controller in our framework is
designed to check a) the block execution sequences b) their
interdependencies, and c) interaction rules between blocks to
ensure logically correct protocol design. Each protocol can
be modeled as a directed graph where the vertices are the
blocks and the edges are the interdependencies and interactions
between these blocks. We extracted the interdependencies

711
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 20,2021 at 16:42:03 UTC from IEEE Xplore. Restrictions apply.

from PHY and MAC specification [4], and incorporated them
in the logic controller using if-then-else rules. All depen-
dencies are uni-directional meaning if Block A depends on
Block B it only shows restrictions of A to B but not B to
A. We define two types of dependencies between blocks:
Strong and conditional dependency. In our framework, a strong
dependency is between those blocks that are tightly wired
together and must be selected together in order to deliver their
functionality properly. As an example, the Backoff mechanism
is strongly dependent on the ACK block (Backoff→ACK).
Although the other direction does not hold, meaning we can
use ACK without having a backoff mechanism.

In this framework, a conditional dependency is established
based on the extracted rules from [4]. We provide the following
examples to describe some of such dependencies in the fol-
lowing. As shown in Figure 2, NAV (virtual CS mechanism)
is conditionally dependant on RTS/CTS block. There are
two methods to set the NAV parameter: a) by reservation
information distributed through the RTS/CTS Duration field
and b) by information provided in the Duration/ID field in
individually addressed frames. Therefore, in our framework,
NAV is set based on the RTC/CTS block if this block is
available (selected by the agent). Otherwise, it is set based
on the latter approach.

D. Network Configuration and Designed Protocol Evaluation

Integrated with protocol design element would be the
network scenarios and conditions, such as communication
medium types and node mobility. Different scenarios have dif-
ferent assumptions and requirements that need to be captured
when designing a protocol. To evaluate DeepMAC framework,
we developed an event-driven simulator using C++, while
having the ns-3 design in mind. Our simulator mimics the
MAC protocol of ns-3, but it is flexible to support the
decomposed building blocks2, and consequently the design of
MAC protocols. Each building block is considered as a module
and the agent decides about the inclusion and exclusion of the
block as a part of protocol design. As an example, when the
ACK mechanism is turned on, the agent may select either
immediate or delayed ACK mechanism depending on the
underlying network scenario. As input, the simulator takes the
values of building blocks from the DRL agent that passed
the logic controller check of finding any type of conflict or
interdependency between them. It also receives the network
configuration parameters including the number of nodes, level
of noise, etc.

IV. DEEPMAC EVALUATION

Performance Metrics This section presents the numerical
results and evaluation of DeepMAC regarding a) average
throughput enhancement and b) block selection by the agent
under different scenarios, respectively. Before we delve into
the experimental evaluation of our analysis, we clarify that

2High-end simulation tools (such as Opnet, NS-3, etc.) have the ability of
reproducing with an accuracy of implementation. However, such tools do not
support our building block decomposition concept properly.

we run the pre-trained DRL agent for every scenario. After
training our DRL agent on a MacBook Pro with 2.9 GHz Intel
Core i5 with 16 GB of memory, the agent took on average 1 ms
to execute. We assume that the supernode (centralized agent)
uses hardware accelerators which can reduce the execution
time by an order of magnitude and comfortably meet the real-
time requirement. We have not considered the convergence
time of the DRL agent as a performance metric to evaluate.

A. Simulation Configuration

We consider an Ad-hoc network where individual nodes
communicate with each other directly. To carry out our simula-
tions, we use our event-driven simulator. Table II summarizes
the simulation configuration parameters used in our experi-
ments. The nodes are static and are randomly scattered in a
200x200m area. Without loss of generality, we assume that
each node has always a packet to transmit, and the packet
generation rate follows a Poisson process. In our experiments,
we consider eight different networking scenarios described
in Table IV. The low load corresponds to an under-saturated
network with 5 nodes, and average packet generation rate of 8
packets per second, while scenarios with high load represent
close to saturated, and saturated networks with 20 to 50
nodes, and average packet generation rate of 470 packets per
second. With regards to noise, when noise is not present, the
received packets are assumed to be delivered with no error
with probability 1, while when noise is present a fixed bit
error rate (BER) of 0.0001 is considered. Scenario 1, for
example, corresponds to a network having 5 nodes with a
low traffic load that represents an under-saturated network
while noise is absent. Table III includes the blocks and their
associated algorithm, mechanism, or parameters that are used
by DeepMAC framework for the experiments. Some blocks
have different algorithms or parameters. Table III also shows
the default values for these blocks. As an example, if the
fragmentation block is not selected by the agent, then the
frame size remains 1500 bytes in the corresponding scenario.
Otherwise if selected, the frame size varies. In order to see
what blocks are selected by the agent in different scenarios,
the evaluation for each scenario is performed 20 times. We
then collected those blocks that are selected together more
frequently than others by the agent over 20 rounds of repeating
each scenario.

TABLE I
SELECTED BLOCKS BY DEEPMAC UNDER DIFFERENT NETWORKING

LOAD

of Nodes Traffic
Load Blocks Selected by DeepMAC

3 Low No ACK, Aggregation
15 Average ACK, Fragmentation, BEB, CW
45 High EIED, CW, CS, ACK, Fragmentation, RTS/CTS

B. DeepMAC Against Baseline CSMA/CA

We compare the performance of DeepMAC against
CSMA/CA with a different number of contending nodes.
CSMA uses ACK mechanism for successful transmissions.

712
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 20,2021 at 16:42:03 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 3. Throughput comparison of DeepMAC against CSMA/CA under (a) Low load traffic. (b) High load traffic.

It also uses a Binary Exponential Backoff (BEB) technique
to randomize each node attempt of transmitting, to reduce
collision probability. CSMA/CA random backoff is decentral-
ized and unable to efficiently handle collisions. Therefore,
the network throughput degrades when the number of com-
peting nodes increases. In the case of wireless CSMA/CA
since collisions cannot be detected two main mechanisms to
determine the successful reception of a frame are exchanging
ACK and RTS/CTS control packets. The RTS/CTS mechanism
can effectively ameliorate the hidden node problem. Although
exchanging these control packets is useful for successful
packet transmission, they could introduce extra overhead for
bandwidth utilization. In this experiment, we increase the
number of contending nodes from 1 to 50 with the assumption
of no noise. Such an assumption helps to simplify the effect of
avalanche rate when multiple transmission rates are available.
Similarly, the traffic load increases from low to high.

In the following, we describe the throughput gains of
DeepMAC against CSMA/CA for two Different traffic loads:
Low and High 3. In the following, we try to get reasonable
insights about what did DeepMAC additionally learned to
dominate CSMA/CA.

Low traffic load In the first experiment, illustrated in
Figure 3(a), the number of contending nodes increases from
1 to 15. In our simulation, every 3 seconds a new node
joins the network, and the simulation duration lasts for 45
seconds. As illustrated by Figure 3(a), CSMA/CA fails to
fully utilize the channel bandwidth, while DeepMAC protocol
effectively adapts to the network load changes by selecting
the appropriate set of building blocks. Intuitively, DRL agent
learns that when the load of the network is low, it could
eliminate control packets e.g., ACK, to increase the throughput
of the channel. In Table I, we closely looked at the blocks
selected by DeepMAC when the number of nodes is 3. There
is an interesting observation of the selected blocks. The No
ACK mechanism is selected along with Aggregation that both

3It would be interesting to compare the performance for other objectives
as fairness and latency. However, since our objective function only optimizes
average throughput, we consider only the throughput for this experiment.

can enhance the throughput by reducing extra control frame
overhead. Intuitively, DeepMAC has learned what blocks are
important to choose for this scenario. These observations may
look intuitive for a human, but it makes it interesting when a
DRL agent is able to learn such intuition on its own.

High traffic load In the second experiment, we consider a
high load traffic network where at the start of the experiment
25 nodes are competing for the channel. We then add nodes
every two seconds until the number of contending nodes
reaches 50 as shown in Figure 3(b). By looking at Table I,
we observe that DeepMAC has selected EIED (Exponential
Increase Exponential Decrease) over BEB. This can be be-
cause the slower reduction rate helps improving saturation
throughput. Besides control packets are also selected by the
agent probably to avoid the collisions and retransmission of
large data packets.

C. Selected Blocks in Different Scenarios
This subsection focuses on the selected blocks by the agent

in different scenarios. The selected blocks are shown in Table
V in which the pink color cells indicate the active blocks in
each scenario along with their selected values (If the block
has a tunable parameter), while white cells indicate that the
corresponding block is inactive in the given scenario. In
the following, we divide our observations about DeepMAC
behavior in three parts and discuss further about each case
individually.

Low load with/without noise In scenarios with the low
load when the noise is absent (e.g., Scenario #1). As we
can see in Table V cells corresponding to control packets
such as ACK or RTS/CTS are inactive by the agent. This
observation is justifiable. Even though the control packets are
much smaller than the data packets, the time spent for control
packet transmission is not negligible.

Therefore, when the network is under saturated, and the
number of competing nodes are small, the DRL agent avoids
control packet overheads to maximize the throughput. Intu-
itively, to reduce the relative percentage of the time loss due to
packet overhead and MAC coordination, frame aggregation is
also selected by the agent. While for the same scenario, when

713
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 20,2021 at 16:42:03 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SIMULATION CONFIGURATION

Parameters Values
Frame Size 1500Bytes (Default)
Time Slot 0.2 msec

Channel Capacity 10 Mbps
Learning Rate (α) 1

History Length (Ht) 15
Discount Factor (γ) 0.8

TABLE III
BLOCKS AND THEIR ASSOCIATED ALGORITHM/ MECHANISM/ PARAMETER

Building Block Algorithm / Parameter Default
Backoff BEB, EIED BEB

ACK No ACK, ACK ACK
Fragmentation (Fr) Packet Size =200, 500, 1000 bytes Packet Size = 1500 bytes
Aggregation (Ag) Packet Size =2000 bytes Packet Size =1500 bytes

RTS/CTS Enabled/Disabled N/A
CW 0-1023 CWmin = 15

Carrier Sense (CS) Enabled/Disabled N/A
Data Transmission Rate (DR) 6/9/12/24/36/48/54 (Mbps) 54 Mbps

TABLE IV
SIMULATION SCENARIOS

Scenario Nodes Load Noise
1 5 Low No
2 5 Low Yes
3 15 Average No
4 15 Average Yes
5 20 High No
6 20 High Yes
7 50 Saturated No
8 50 Saturated Yes

TABLE V
BLOCKS SELECTED BY DEEPMAC AGENT

DR BEB EIED CS CW No ACK ACK Fr Ag RTS/CTS
1 54 31 2000
2 24 31
3 54
4 48 15
5 54 15
6 24 15 1000
7 36 15 500
8 24 15 500

the noise is present, it adds Career Sensing (CS) block. This
may be due to the fact that the agent learns such a mechanism
could be useful when the throughput drops.

Average load with/ without noise For scenarios with the
average level of noise (Scenario #3 and #4) except common
ACK mechanism selection, there is no obvious pattern. This
observation could be either because such scenarios are not
able to capture the useful information of what specific blocks
should be selected, or it is simply because selecting different
blocks does not provide a significant difference in the achieved
throughput in such scenarios.

High and saturated load with/without noise We divide
our observations for the three following scenarios: (1) The
first observation in the high and saturated scenarios (Scenario
#5 to #8) is the ACK mechanism is selected by the agent.
Intuitively, this could be because the agent learns such a
mechanism can contribute to prevent more number of col-
lisions and retransmissions to enhance the throughput. (2)
When comparing scenario 5 to 6, we observe that the agent
activates the Fragmentation block. The size of the sub-frames
in practice plays an important factor that can influence network
throughput performance for a given channel condition. The
larger packets could contribute to the higher Packet Error
Rate (PER) which would cause throughput drop due to a
large number of retransmissions. (3) When the network is
saturated, the agent selects protection mechanisms such as
ACK and RTS/CTS along with smaller frame sizes and lower
bitrate. However, it is not clearly obvious if the smaller frames
contribute much to enhance the throughput. This is due to the
fact that small fragments with the extra introduced overhead
could also decrease the throughput performance.

The varying results reveal why it is extremely hard for an
algorithm based on manually-specified rules and thresholds to
capture the optimal solution, and why instead it is helpful

to use machine-learning techniques to optimize the design
of control algorithms as well as, getting insights about what
functionality (block) is useful under what scenario.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed and evaluated a framework
for MAC protocol design optimization using a DRL-based
approach. We have shown that by observing the decisions
of the DeepMAC agent and using a method such as input
modularization (protocol decomposition into building blocks),
it is possible to extract information about the associated com-
ponent selection by the agent. We envision this method could
offer useful insights, especially to protocol designers to build
a deeper perception about the significance of an individual or
a set of protocol blocks (functions) under different scenarios.
This could help them focusing on enhancements/ modifications
of important protocol components than focusing on the whole
protocol performance which can contribute to enhancing the
overall protocol design and performance. However, more work
and a deeper analysis need to be done to discuss additional
issues specific to understanding DRL models.

In our proposed framework we considered a centralized
agent that is considered as a supernode that learns the best
combination set of blocks and enforces this set to the rest of
the nodes in the network. However, one of the main challenges
is to design a distributed multi-agent DRL algorithm in which
each node works locally towards serving its own objective.
This is a challenging open direction and requires DeepMAC
approach to be extended to incorporate fairness criteria. An-
other open question is whether it would be beneficial to
combine blocks from different medium access methods e.g.,
TDMA, CSMA/CA, etc., available to the agent to select
from while designing protocols, especially in heterogeneous
environments.

714
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 20,2021 at 16:42:03 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] F. Bai, G. Bhaskara, and A. Helmy. Building the blocks of protocol
design and analysis: challenges and lessons learned from case studies on
mobile ad hoc routing and micro-mobility protocols. ACM SIGCOMM
Computer Communication Review, 34(3):57–70, 2004.

[2] H. Barahouei Pasandi and T. Nadeem. Poster: Towards self-managing
and self-adaptive framework for automating mac protocol design in
wireless networks. In Proceedings of the 20th International Workshop
on Mobile Computing Systems and Applications, pages 171–171. ACM,
2019.

[3] U. Challita, L. Dong, and W. Saad. Proactive resource manage-
ment in lte-u systems: A deep learning perspective. arXiv preprint
arXiv:1702.07031, 2017.

[4] I. C. S. L. M. S. Committee et al. Part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications. 2016.

[5] C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D. C. Sicker, and
D. Grunwald. Multimac-an adaptive mac framework for dynamic radio
networking. In First IEEE International Symposium on New Frontiers
in Dynamic Spectrum Access Networks, 2005. DySPAN 2005., pages
548–555. IEEE, 2005.

[6] R. Eini and S. Abdelwahed. Distributed model predictive control for
intelligent traffic system. In 2019 International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), pages 909–915. IEEE, 2019.

[7] F. Geyer and G. Carle. Learning and generating distributed routing
protocols using graph-based deep learning. In Proceedings of the
2018 Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks, pages 40–45. ACM, 2018.

[8] J. Huang, Q. Li, S. Zhong, L. Liu, P. Zhong, J. Wang, and J. Ye.
Synthesizing existing csma and tdma based mac protocols for vanets.
Sensors, 17(2):338, 2017.

[9] N. Jay, N. H. Rotman, P. Godfrey, M. Schapira, and A. Tamar. Internet
congestion control via deep reinforcement learning. arXiv preprint
arXiv:1810.03259, 2018.

[10] G. Maselli, M. Piva, and J. A. Stankovic. Adaptive communication for
battery-free devices in smart homes. IEEE Internet of Things Journal,
6(4):6977–6988, 2019.

[11] O. Naparstek and K. Cohen. Deep multi-user reinforcement learning for
distributed dynamic spectrum access. IEEE Transactions on Wireless
Communications, 18(1):310–323, 2018.

[12] A. Panahi, S. Saeedi, and T. Arodz. word2ket: Space-efficient
word embeddings inspired by quantum entanglement. arXiv preprint
arXiv:1911.04975, 2019.

[13] H. B. Pasandi. Towards a machine learning-based framework for
automated design of networking protocols. In 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), page 433–434. IEEE, 2019.

[14] H. B. Pasandi and T. Nadeem. Challenges and limitations in automat-
ing the design of mac protocols using machine-learning. In 2019
International Conference on Artificial Intelligence in Information and
Communication (ICAIIC), pages 107–112. IEEE, 2019.

[15] H. B. Pasandi and T. Nadeem. Unboxing mac protocol design opti-
mization using deep learning. In 2020 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom
Workshops). IEEE, 2020.

[16] P. Wang, M. Petrova, and P. Mähönen. Dmdl: A hierarchical approach
to design, visualize, and implement mac protocols. In Wireless Commu-
nications and Networking Conference (WCNC), 2018 IEEE, pages 1–6.
IEEE, 2018.

[17] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari. Deep reinforce-
ment learning for dynamic multichannel access in wireless networks.
IEEE Transactions on Cognitive Communications and Networking,
4(2):257–265, 2018.

[18] C. S. Wickramasinghe, K. Amarasinghe, and M. Manic. Parallalizable
deep self-organizing maps for image classification. In 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 1–7.
IEEE, 2017.

[19] C. S. Wickramasinghe, D. L. Marino, K. Amarasinghe, and M. Manic.
Generalization of deep learning for cyber-physical system security: A
survey. In IECON 2018-44th Annual Conference of the IEEE Industrial
Electronics Society, pages 745–751. IEEE, 2018.

[20] C. S. Wicramasinghe, K. Amarasinghe, and M. Manic. Deep self-
organizing maps for unsupervised image classification. IEEE Trans-
actions on Industrial Informatics, 2019.

[21] Y. Yu, T. Wang, and S. C. Liew. Deep-reinforcement learning multiple
access for heterogeneous wireless networks. IEEE Journal on Selected
Areas in Communications, 37(6):1277–1290, 2019.

[22] H. Zhai, Y. Kwon, and Y. Fang. Performance analysis of ieee 802.11
mac protocols in wireless lans. Wireless communications and mobile
computing, 4(8):917–931, 2004.

[23] S. Zhuo, Y.-Q. Song, Z. Wang, and Z. Wang. Queue-mac: A queue-
length aware hybrid csma/tdma mac protocol for providing dynamic
adaptation to traffic and duty-cycle variation in wireless sensor networks.
In 2012 9th IEEE International Workshop on Factory Communication
Systems, pages 105–114. IEEE, 2012.

715
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 20,2021 at 16:42:03 UTC from IEEE Xplore. Restrictions apply.

