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Reaction-diffusion system

1. Introduction

Reaction-diffusion wavefronts are fascinating self-organizing phenomena found in many physical, chemical, and
biological systems. They characterize, for example, aggregating cell colonies [1], pigmentation lines propagating on the
skin of mutant mice [2], oxidation of carbon monoxide on Pt(110) surfaces [3], corroding metals in electrochemical
systems [4], and chemical liquid-phase reactions such as the Belousov-Zhabotinsky system [5,6]. Reaction-diffusion
waves can also be found within the human body in tissues such as cortical [7], cardiac [8], and gastric [9], or within
the uterus [10].

Using computer simulations inspired by the famous Belousov-Zhabotinsky reaction, we have previously documented
the disruption and recovery of such wavefronts interacting with hard convex objects [11]. Here we extend that work
to include concave, spiral, fractal, random, and soft obstacles. Fig. 1 previews a few of these systems. Related work
includes cell migration in two-dimensional channels [12,13], cardiac heterogeneities [14], the effects of obstacles on flame
propagation [15], fractal surface heat transfer [16,17], or the large work related to excitable chemical systems. Examples
are chemical reaction-diffusion waves in mazes [18] and as clocks [19] or spiral wave behavior around light-induced
unexcitable cores [20], in fractal heterogeneities [21], their unpinning or termination [22], or drift [23]. Electrochemistry
is another field in which wave propagation on microstructured surfaces has been investigated. Examples are the catalytic
oxidation of carbon monoxide on platinum surfaces with inert titanium boundaries [24] or on Pt-Ti, Pt-Rh, and Pt-Pd
composite catalysts [25], the catalytic reduction of NO with CO on Pt(100) surfaces with inert Ti/TiO, and reactive Rh
boundaries [26], or the catalytic methanol oxidation on macroscopic VO, islands on Rh(110) surfaces [27].

Section 2 gives a short description of our reaction-diffusion model. Sections 3 and 4 evaluate the propagation dynamics
of wavefronts interacting with polygons and Archimedean spirals, respectively. We explore the difference between
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Fig. 1. Obstacles. Simulation snapshots of reaction-diffusion wavefronts (gray) encountering various obstacles (green). Waves begin along the left
boundary and generally move rightward (white arrow). Brightness of the wavefront is proportional to the activator concentration u[x,y,t]. (a)
Concave polygons. (b) Archimedean spirals. (c) Hilbert curves. (d) Peano curves. (e) Sierpinski carpets. (f) Perlin-noise-generated randomness.

concave and convex polygons and show that Archimedean spirals can trap wavefronts for long times. Section 5 studies
fractal-like obstacles such as Hilbert and Peano curves, which can multiply wavefronts and also trap wavefront segments
for long times. In this section, we also investigate the effect of obstacles in the shape of inverse Sierpinski carpets. Section 6
investigates randomly shaped and placed Perlin-noise-generated obstacles. Finally, Section 7 explores soft obstacles whose
propagation condition change gradually, either by varying the diffusivity or the system’s reactivity (i.e., light sensitivity).
We use such gradients to implement diffusive diodes and clocks: obstacle-reaction-diffusion systems with “heart beats".
Section 8 summarizes lessons learned.

2. Reaction-diffusion model

Our computer simulations are based on the Tyson-Fife two-variable reduction [28] of the Oregonator model [29]
that describes the Belousov-Zhabotinsky reaction [5,6], a famous family of oscillating chemical reactions. With activator
u[x, y, t] and inhibitor v[x, y, t] concentrations changing in space x, y and time t, we add to our previous simulation [11]
a light-sensitivity parameter ¢ [30,31] to obtain the reaction equations

Ru[u,u]z1<u—u2+(fu+¢)q_”>, (1a)
€ q+u
R,(u,vl=u—v, (1b)
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Table 1
Polygon simulation parameters.
Symbol Name Value
q Rate constant 0.002
€ Rate constant 0.01
f Stoichiometric factor 40
Ue Excited state 0.8
Vs Steady state 0.003333
D, Activator diffusion 1.0
D, Inhibitor diffusion 0.6
dt Time step 0.003125
ds Space step 0.125
Ny Channel width 512
Ny Channel height 256

B
" time t

lag =,

Fig. 2. Time t versus lag x; for a wavefront interacting with an open triangle (red) and open square (orange). Sidebars (left and right) are simulation
snapshots of the corresponding wavefront propagation, with time increasing upward. Top insert shows the triangle and square inscribed in a common
circle.

which represent fast and slow chemical reactions with rate and stoichiometric parameters € < 1, q < 1, and f ~ 1. The
diffusion equations for the activator and the inhibitor are

du =V - (DyVu), (2a)
dv=V-(D,Vv), (2b)

with the diffusion coefficients D,[x, y] and D,[x, y] possibly varying in space, but typically D, > D, ~ 1. Then the coupled
partial differential reaction-diffusion equations

gt =R, + V - (D, V1), (3a)
v =R, +V-(D,Vv), (3b)

represent the Tyson-Fife model for ¢ = 0. To realize impermeable obstacles and channel walls, we enforce Neumann no-
flux boundary conditions [11]. We start our wavefronts with a narrow excitation strip on the left consisting of nonzero
activator and zero inhibitor, with zero activator and nonzero inhibitor everywhere else. We numerically integrate Eq. (3)
using Forward-Time Central-Space (FTCS) finite differencing with the At « As? stability condition. We use At = As?/5
for all hard obstacle simulations and more stringent conditions for soft obstacles. Our custom multi-threaded Objective-C
simulations run on desktop computers.

For open (concave) and closed (convex) polygons, spirals, fractals (Hilbert curve, Peano curve, and Sierpinski carpet),
and randomness, the diffusion coefficients D, and D, are constant and illumination is set to ¢ = 0. To generate time-
periodic wavefronts, as discussed in Section 7, the diffusion coefficients or the light sensitivity parameter vary spatially,
so wavefronts can propagate one way through a channel but not the other way.

3. Polygonal obstacles

We begin with the interaction of reaction-diffusion wavefronts with hard obstacles consisting of convex polygons or
concave polygons that resemble regular polygons with a missing side; the former we call closed, and the latter we call

3
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Fig. 3. Pentagons. (a) Time t versus lag x; for closed (red) and open (blue) pentagons. Open pentagon causes longer delay, due to the motion of the
front in the opposite direction, but long time behavior is the same. Inset shows strobed wavefront evolution; the bottom pentagon opens on the
down-stream side, and initial propagation direction is rightward. (b) Delay § versus time t. Long time behavior of the open pentagon is the same
as that of the closed pentagon.

open. Polygons range from triangles (N = 3) to near-circle hectogons (N = 100). The Fig. 1(a) simulation snapshot shows
a wavefront interacting with an open hexagon. Table 1 lists the parameters used to numerically solve Eq. (3).

As the wavefront propagates downstream (left-to-right) around the obstacle, we track its leftmost and rightmost points
x. and xg. We call the leftmost point of the wavefront the lag x; and the difference between the rightmost and leftmost
points the delay § = xg — x;. The red and orange curves of Fig. 2 show time t versus lag x; for a wavefront incident on
an open triangle and an open square. The kinks in the straight lines are the obstacles’ signatures.

We choose a pentagon with N = 5 to illustrate the general behavior of wavefronts interacting with concave and
convex obstacles. Fig. 3(a) plots the lags and Fig. 3(b) plots the corresponding delays. The latter nicely connects with
earlier work [11]. The Fig. 3(a) insets are strobed images of the wavefront interacting with an closed pentagon (top) and
an open pentagon (bottom).

A closed pentagon breaks the wavefront into two sections that propagate above and below it. They approach each other
along the downstream (vertical) side, generating the vertical jump in the Fig. 3(a) red line, and merge to leave a cusp that
shrinks as it flows downstream. An open pentagon also breaks the wavefront into two sections, but these recombine to
form an outside downstream wavefront and an inside upstream wavefront. The latter annihilates on the inside of the
pentagon, generating the horizontal jump in the Fig. 3(a) blue line.

This effect is largest if the opening of the pentagon is downstream because the initial wavefront sections take longer to
enter the inside, and this observation generalizes for all polygonal obstacles. Thus, the open pentagon causes the longer
wavefront delay §, as shown in Fig. 3(b). But the downstream wavefront merges and heals with the same power-law
dependence [11] as the wavefronts of the closed pentagon.

We systematically increase the number of polygon sides N from 3 to 10 (triangles to decagons) and use 100 (hectogons)
to approach the circle limit to investigate the effect of N on the wavefront disruption and recovery. N points equally spaced
on an imaginary circle define the polygons with a vertical side downstream, as shown for a triangle and square in Fig. 2.
The center of all polygons is fixed in all simulations, which results in the different x-values of the leftmost and rightmost
point of the polygons.

In general, the disruption starts later for more-sided polygons, as shown in Fig. 4. The actual disruptions, the vertical
jumps in the Fig. 4(a) lag plots, decreases with increasing N due to the vertically shorter downstream side. The sharp
transition changes to a curved transition when approaching the circle limit.

While Fig. 4(a) plots the lags for closed N-sided polygons, Fig. 4(b) plots the lags for open N-sided obstacles. The general
shape is identical to the example for N = 5 in Fig. 3(a) with a leftward moving lag as the wavefront moves upstream
inside the polygon. Noteworthy is the much smaller effect of closed N-sided polygons, as can be seen in the limited range
on the x and the y axes.



Y.F. Yu, CA. Fuller, M.K. McGuire et al. Physica A 565 (2021) 125536

221 L
(a) Closed (convex)

time ¢t

10
1000 1200 1400 1600 1800 2000
lag xp,
| |
(b) 40 Open (concave) [
30-] _ N
- 5 -
) S ~ Open
S 20 L
o=
-
10 L
Closed
0
0 1000 2000 3000 4000
lag xp,

Fig. 4. Polygons. (a) Time t versus lag x; for closed N-sided polygons. The more sides, the longer delay it causes, but the long time behavior is
the same. Jumps occur when the wavefront leaves the right downstream side of the polygon. For the nearly-circular hectogon, the curve reflects
the limiting circle. (b) Time t versus lag x; for open N-sided polygons. Delays increase with number of sides. The x reversals occur when part of
the wavefront enters the polygon and travels backwards. For nearly-circular hectogon, the time-space plot curves before the reversals rather than
zigzags.

Polygons with odd numbered sides have the same maximal upstream motion of the front inside the obstacle, reaching
the identical smallest x; value (the leftmost edge). Even sided polygons have various positions of their upstream and
downstream sides. This results in a delayed starting point of the deviation from the initial linear lag behavior and a short
time when the lag is constant. Fig. 2 presents a detailed explanation of this feature. After wavefronts interact with open
or closed objects, they continue to heal as a power-law function of time.

4. Spiral obstacles

We next present the interaction of reaction-diffusion wavefronts with obstacles consisting of Archimedean spirals
whose radius r varies with polar angle 6 by

0 — 6,
r=a O — k(O —6p), (4)
2

where 6y is the orientation of the spiral, a is the radial separation between adjacent spiral arms, and k = a/2x is the
“looseness” of the spiral obstacle. The Fig. 1(b) snapshot shows a wavefront encountering a k = 5 spiral. As the wave
reaches the opening, part of it is trapped and spirals inward until it self-annihilates at the center, which can be long after
the rest of the wavefront has moved on and largely healed or even left the simulation space.

We simulate spirals from k = 1 (tightest) to k = 10 (loosest), as summarized by Fig. 5(a). We keep the spiral opening
at the top, so the wavefronts always enter in the same way. The spiral geometry generates sinusoidal structure in the t
versus x; lag plots. The smaller k, the tighter the spiral, and the longer the delay due to the larger number of rotations. In
each case, the recovered wavefront exits the simulation space downstream before the trapped wave section reaches the
spiral’s center, generating the horizontal line at the tip of the oscillatory lag x;.

The Fig. 5(a) left inset enlarges the bottom-left lag oscillations. This is the leftmost section of the spiral. With increasing
looseness, the turning point is reached earlier because the width of the channel increases and, therefore, the horizontal
distance to the spiral’s outer radius increases.
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Fig. 5. Spirals. (a) Time t versus lag x; for spirals from tight (red) to loose (pink) depending on the looseness k. The smaller k, the tighter the
spiral, and the larger k, the looser the spiral. Inset magnifies the bottom-left sinusoidal structure of the time-space plot. (b) Trapped time T versus
spiral looseness k. Blue insets suggest actual spiral obstacles. As k — oo, the spiral becomes a straight line segment, which eliminates trapping and
minimizes delay.

Quantitatively, the trapped time T versus looseness k decreases to a fixed value, which is defined by the x-value of the
center of the spirals, as shown in Fig. 5(b). As k — oo, the spiral straightens to a vertical line segment that eliminates
trapping and minimizes delay. The dashed line indicates this asymptote.

5. Fractal obstacles

As Mandelbrot famously observed, “Clouds are not spheres, mountains are not cones, coastlines are not circles" [32].
Consequently, we next examine the interaction of wavefronts with obstacles that are (approximately) fractal.

Target fractals include the Hilbert curve [33], the Peano curve [34], and the Sierpinski carpet [35]. The Hilbert and
Peano curves are space-filling curves with Hausdorff dimension d = 2, but they have different symmetries. The Sierpinski
carpet, which is a generalization of the Cantor set [36], is not space filling and has Hausdorff dimension d ~ 1.8928.

5.1. Hilbert curves

The Fig. 1(c) snapshot shows a wavefront encountering an order © = 2 Hilbert curve obstacle. The Hilbert curves are
approximate fractals for finite © and ideal fractals for © — oco. We define the Hilbert curve as the limit of the ordered
sequence
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Fig. 6. Hilbert. (a) Time t versus lag x; for third-order © = 3 Hilbert curve obstacles rotating clockwise in increments of A9 = 30°. The 10 angles
other than 90° and 270° are overlapping pairs, due to symmetry. If the angles are complementary, the symmetrical Hilbert curves are inverted, and
the wavefronts are equivalent. (b) Time t versus lag x, for Hilbert curve obstacles at angle 6 = 270° for 9 different orders ©. The higher orders delay
the leftmost wavefront point the most. Horizontal lines indicate times when the wavefronts inside the Hilbert curves vanish. Differences between
vanishing times decrease as the orders increase. (¢) Vanishing time T versus order © for the Hilbert curve obstacles at angle 6 = 270°. Vanishing
time is when the last internally trapped wavefront segment annihilates. Bottom sketches illustrate orders © = 2,4, 6 and 8 Hilbert curves.

and use a computer simulation to generate obstacles with any integer order 1 < © < 9 and rotate the curve through any
real angle 0 < 6 < 360°. Wavefronts interacting with a Hilbert curve breaks into many parts, both wrapping around and
interpenetrating it, with many small wave segments simultaneously moving within its maze-like interior for long times.
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Fig. 7. Peano. (a) Time t versus lag x for third-order © = 3 Peano curve obstacles rotating clockwise in increments of A6 = 30°. The curves are
irregular, with none overlapping, because the Peano curve are asymmetrical. But the long time behavior is the same. (b) Time t versus lag x_ for
Peano curve obstacles at angle 6 = 120° for 4 different orders ©. At higher orders, the wavefront needs longer time to reach the same leftmost
point, which means that the wave is trapped longer inside the Peano curve. But again the long time behavior is the same. (¢) Vanishing time T
versus order © for the Peano curve obstacles at angle # = 120°. Vanishing time is when the last internally trapped wavefront segment annihilates.
Bottom sketches illustrate orders © = 1, 2, 3 and 4 Peano curves.

Fig. 6(a) is a time t versus lag x; plot for a third generation © = 3 Hilbert curve rotating clockwise in increments of
A6 = 30°. The 10 angles other than 90° and 270° are overlapping pairs. If the angles are complementary, the bilaterally
symmetric Hilbert curves are inverted, and the wavefronts are equivalent.
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Fig. 8. Sierpinski. (a) Time t versus lag x, for second order © = 2 Sierpinski carpet obstacles rotating clockwise in increments of A0 = 30° (red
and blue). Only two kinds of behaviors exist, and a delay-space plot accentuates the difference (gold and cyan). (b) Time t versus lag x; for the
Sierpinski carpet obstacles rotating through more generic angles from 6 = 2° to 6 = 332° in increments of A6 = 30°. Inset magnifies a portion of
the plot to show three distinct behaviors from angles separated by 30°, 60°, and 90°.

Fig. 6(b) is a t versus lag x; plot for a Hilbert curve at angle & = 270° for the first 9 orders O. This angle has the most
effect because the “opening of the fractal" points downstream (rightward). The higher orders delay the vanishing of the
leftmost wavefront inside the Hilbert curves the most. Fig. 6(c) plots the vanishing times T versus the order O. As the
Hilbert order © — o0, we expect the vanishing time T — oo.

5.2. Peano curves

The Fig. 1(d) snapshot shows a wavefront encountering a order © = 2 Peano curve obstacle. Like the Hilbert curves,
the Peano curves are approximate fractals for finite © and ideal fractals for © — oo. We define the Peano curve as the
limit of the ordered sequence

o = B

‘ (6)
and use a computer simulation to generate obstacles with any integer order 1 < © < 4 and rotate the curve through any
real angle 0 < # < 360°. Wavefronts interacting with a Peano curves break into many parts, engulfing and invading it,
with multiple small segments exploring its asymmetric maze-like interior for long times.

The plots of Figs. 7(a) and 7(b) summarize the phenomenology, which is similar to that of the Hilbert curve obstacles,
but without the Hilbert curves’ bilateral symmetry, the dynamics is less ordered and more irregular. Each angle creates
its own graph without any overlaying lines, as for the Hilbert curve graph in Fig. 6(a). The wavefronts are trapped much
longer inside the higher order curves, as witnessed by the different time axes for © = 3 Hilbert and Peano curves in
Figs. 6(a) and 7(a).

Unsurprisingly, the vanishing times for Peano curves also increase as the orders increase. Fig. 7(c) plots vanishing time
T versus order O for the Peano curve at angle # = 120°. Vanishing time is when the last internal wavefront segment

9
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Fig. 9. Time t versus lag x; for Perlin-noise-generated random obstacles of different densities p. Higher densities cause longer delays, until propagation
stops completely at a percolation threshold. The inset in the top left corner has a density of p ~ 0.05.

annihilates, the resonant time of the wavefront segments trapped inside the Peano curve. As the Peano order O — oo,
we expect the vanishing time T — oo so the internal wavefront is forever trapped inside the infinitely long ideal Peano
curve. The insets illustrate the orders © = 1, 2, 3 and 4 Peano curves.

5.3. Sierpinski carpets

The Fig. 1(e) snapshot shows a wavefront encountering a order © = 2 Sierpinski carpet. Unlike the Hilbert and Peano
fractals, the Sierpinski carpet is not space-filling. We define the (inverse) Sierpinski carpet as the limit

| —

(7)

and simulate wavefronts interacting with various orders of the carpet rotated through multiple angles. Each component
square in the carpet bends the wavefront, with the large central square bending most. The carpet’s open structure causes
less wavefront disruption than the previous fractals, and its greater 4-fold symmetry organizes the results.

Fig. 8(a) is a time t versus lag x; plot for the second order © = 2 Sierpinski carpet rotating clockwise in increments of
A0 = 30° (red and blue lines). Only two kinds of behaviors exist due to the 4-fold symmetry: the red line for arrangements
perpendicular to the propagation direction and the blue line for all other arrangements at the specified rotation angles.
The delay § versus lag x; plot accentuates the difference between the perpendicular case (gold) and the angled case (cyan).

More generically, Fig. 8(b) presents the same time versus lag plot for an © = 2 Sierpinski carpet rotating clockwise in
increments of A9 = 30° as in Fig. 8(a) but now through angles from 6 = 2° to § = 332°. Starting at an angle different
than zero, such as & = 2°, is necessary to obtain any clear varying behavior, as seen in the enlarged section. The inset
magnifies a portion of the plot to show three distinct behaviors corresponding to angles separated by 30°, 60°, and 90°.

6. Random obstacles

All the previous obstacles, even the fractals, were regular. But nature often appears irregular [37] and complex
labyrinths and patterned media are of great interest [18,38]. To simulate an irregular reaction-diffusion system, we used
Perlin noise [39] to generate random obstacles with adjustable average density 0 < p < 1, where p = 0 is an empty
channel and p = 1 is a full channel. The Perlin algorithm, which won a 1997 Academy Award, uses random gradients to
produce natural textures for computer-generated special effects in motion pictures, such as mountains and water waves.
Our implementation of Perlin noise fills a fraction of the channel with solid obstacles, and the Fig. 1(f) snapshot shows a
wavefront navigating a Perlin-noise generated obstacle field with p ~ 0.05.

We find a percolation-like transition at a density of p ~ 0.5 above which propagation does not occur. The time ¢t versus
lag x; plot in Fig. 9 summarizes the low-density phenomenology. Very low densities only slightly delay the wavefronts,
but higher densities cause greater delays, with the wavefronts breaking apart, reversing, and reconnecting until they are
stopped altogether at the percolation threshold.

10
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—— wavefront

Fig. 10. Simulation snapshot of a wavefront (vertical orange line segments) traveling left-to-right in channels with different diffusivities. The top
channel has larger diffusivity 1 < D,, and the bottom channel has smaller diffusivity 0 < D, < 1. The wavefront in the top channel propagates
faster than the wavefront in the bottom channel and outraces the latter.

<«——gradient

wavefront

sjisloin

Fig. 11. Selected simulation frames at variable time intervals At summarize the behavior of a clock or repeater. Soft obstacle with variable diffusivity
0.25 < D, < 1 (cyan gradient) allows the wavefront to propagate upstream (right-to-left) but not downstream (left-to-right). This pattern repeats
indefinitely as long as the medium remains excitable. Other constant simulation parameters: D, = 0.4 and ¢ = 0.

7. Soft obstacles

Previous models involve hard obstacles [40], which can be characterized as regions of zero diffusivity. We found
that such obstacles can delay reaction-diffusion wavefronts and resonate with segments of them for long times, but
eventually the segments self-annihilate (except in ideal limits). Here we consider soft obstacles [41] characterized by
regions of variable diffusivity that can sustain wavefronts indefinitely. Such ‘chemical clocks’ were first proposed by
Motoike et al. [42] using narrow gaps in excitability that enforced one-way propagation.

As a proof-of-concept, Fig. 10 illustrates a wavefront (orange) traveling left-to-right in channels (magenta) with
different diffusivities. At constant inhibitor diffusivity D,,, we vary the activator diffusivity D,. The top channel has larger
diffusivity 1 < D,,, the bottom channel has smaller diffusivity 0 < D, < 1, and the background (white) has intermediate
diffusivity D, = 1. The wavefront in the top channel propagates faster than the wavefront in the bottom channel (and
the wavefront in the background) and the former outraces the latter.
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Fig. 12. Soft obstacle with variable diffusivity (cyan gradient) allows wavefronts to circulate counter clockwise but not clockwise inside the square
channel, creating a compact clock or repeater.

7.1. Variable diffusivity

Next, we form a one-way channel [43] or diffusive diode by plugging a hard channel with a gradient soft obstacle whose
diffusivity increases linearly from D, = 0.25 on the upstream (left) side to the background D, = 1 on the downstream
(right) side, as indicated by the cyan gradient in Fig. 11. The abrupt decrease in diffusivity at the channel opening
extinguishes the wavefront’s propagation ability. Meanwhile, the wavefront outside the obstacle propagates around it,
partly reenters from the downstream side, and propagates upstream while continuously adapting to the gradual decrease
in diffusivity. Finally, it leaks out the left side, curls around, and propagates downstream again. The system cycles like a
clock, as long as the medium remains excitable [44].

The Fig. 12 simulation sequence shows a compact clock with a square geometry. The soft obstacle with variable
diffusivity (cyan gradient) allows wavefronts to circulate counterclockwise but not clockwise inside the square channel, so
wavefronts repeatedly leak out the top to initiate a new wavefront for the system. By keeping the soft obstacle parameters
constant, the frequency of wave generation can be modulated by changing the path length within the clock.

This frequency modulated clock-like behavior could have been accomplished with a non-excitable gap, as discussed
by Motoike and Yoshikawa [45]. They showed that a wavefront propagating normal to a non-excitable gap can excite
the medium beyond it from one direction but not the other. But with a diffusion gradient, one can change the wave
generation frequency by manipulating the gradient while keeping the channel length of the clock constant. This is a much
more flexible approach than a non-excitable gap that has defined limits beyond which the wave penetration becomes
impossible.

7.2. Light sensitivity

A more practical way to create diffusive diodes is to exploit the light sensitivity of some excitable media [30,31], which
we model with the Eq. (1) parameter ¢. We keep the activator diffusivity D, = 1 and vary ¢ via changing illumination,
effectively creating a soft obstacle.

The Fig. 13 simulation features a one-way channel or diffusive diode (blue gradient) caused by varying the light
intensity from dim to bright, corresponding to 0 < ¢ < 0.0344. As the wavefront enters the channel, it moves slower
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1

Fig. 13. Simulation sequence with variable At between the shown frames to capture the system’s behavior. The system’s diffusivity is constant but
the soft obstacle has variable illumination 0 < ¢ < 0.0344 (blue gradient) and also creates a one-way channel and repeater.

and slower downstream (left-to-right) due to the increasing brightness gradually eroding until it vanishes with nothing
leaking out downstream. Meanwhile, the wavefront outside the obstacle propagates around it, partly reenters from the
right side, propagates to the left, and leaks out on the left side. Similar to the previous diode, the system repeats like a
clock, as long as the medium remains excitable and the light gradient is maintained.

As with the diffusion diode, a similar arrangement as shown in Fig. 12 could create a clock with an easy-to-manipulate
frequency range.

8. Conclusion

This work extends previous work on the interaction of reaction-diffusion wavefronts with hard convex obstacles [11]
to a wide variety of other obstacles. We again observe disruption and recovery of the wavefronts with a healing power-law
function of time. Concave polygons do allow wavefronts to enter them and propagate upstream for short times before
annihilating.

Spiral obstacles can sustain wavefront motion for long times, limited in practice by the narrowness of the spiral walls
and the width of the channel that allow the reaction-diffusion wavefront to propagate. (Wavefronts can propagate within
exceedingly thin channels, but they can detach at sharps turns [24] and annihilate at the opposite wall if the channel width
is smaller than the core radius plus a critical radius.) Fractal obstacles can support extended motion of many wavefront
segments in fascinating patterns, again limited mainly by the narrowness of their maze-like features. Random objects
exhibit a percolation threshold, a critical density above which the reaction-diffusion wavefronts will not propagate.

Soft obstacles with a propagation condition gradient can form unidirectional channels (propagation diodes). This can
be achieved by varying the diffusivity of the medium (e.g., space-dependent material property of a gel) or because of
illumination gradient applied to a light-sensitive system. These gradients can be used to create clocks and repeaters that
can sustain wavefront activity indefinitely in, for example, a batch reactor. Such clocks might serve as the “heart beat" for
reaction-diffusion computers [46] and provide insight into biological pacemakers. They are vivid and spectacular examples
of the possibilities and potential of excitable media. Animations of our simulations are available online as a supplement
to this article.
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