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ABSTRACT

Context: Managing technical debt (TD) associated with external
cybersecurity attacks on an organization can significantly improve
decisions made when prioritizing which security weaknesses
require attention. Whilst source code vulnerabilities can be found
using static analysis techniques, malicious external attacks expose
the vulnerabilities of a system at runtime and can sometimes
remain hidden for long periods of time. By mapping malicious
attack tactics to the consequences of weaknesses (i.e. exploitable
source code vulnerabilities) we can begin to understand and
prioritize the refactoring of the source code vulnerabilities that
cause the greatest amount of technical debt on a system. Goal: To
establish an approach that maps common external attack tactics to
system weaknesses. The consequences of a weakness associated
with a specific attack technique can then be used to determine the
technical debt principal of said violation; which can be measured
in terms of loss of business rather than source code maintenance.
Method: We present a position study that uses Jaccard similarity
scoring to examine how 11 malicious attack tactics can relate to
Common Weakness Enumerations (CWEs). Results: We conduct
a study to simulate attacks, and generate dependency graphs
between external attacks and the technical consequences
associated with CWEs. Conclusion: The mapping of cyber
security attacks to weaknesses allows operational staff
(SecDevOps) to focus on deploying appropriate countermeasures
and allows developers to focus on refactoring the vulnerabilities
with the greatest potential for technical debt.
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1 INTRODUCTION

Various techniques have been used to quantify Technical
Debt (TD); however, none have specifically focused on
measuring the potential TD of live security attacks that affect
systems. The growing number of cybersecurity attacks and their
frequency are forcing organizations to pay significantly more
attention to security threats. To address cyber-attacks,
organizations (including federal government departments) are
starting to rely on a SecDevOps [1] approach where operations
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(Ops) focuses on deploying countermeasures (manual and
automatic) and developers (Dev) focus on refactoring those
aspects of source code that minimize the technical debt associated
with the vulnerabilities revealed by the malicious attacks.
SecDevOps “(also known as DevSecOps and DevOpsSec) is the
process of integrating secure development best practices and
methodologies into development and deployment processes which
DevOps makes possible. ™!

Many tools exist that provide metrics-based analysis in terms
of the number of vulnerabilities found in a system; however, these
tools are executed by developers independently of observations
made by operations staff; thus, the prioritization of which
vulnerabilities to address may be significantly different than if
developers had a communication channel to first responders.
Furthermore, operations staff are the first to effect
countermeasures from live cyber-attacks. Using a SecDevOps
approach, this information can be made available to developers
immediately. The consequences of said attacks can be weighed
against each other in terms of the technical debt affecting
software maintainability but more importantly, in terms of the
consequences to the business if a vulnerability is successfully
exploited. “Repairing the damage can be very costly. The TD
interest associated with such a weakness can grow significantly at
the moment an attacker is successful.” [2]

Enumerations of rules have been established by the greater
community (i.e., CVE2, CWE?3, and CERT *) to explore
vulnerabilities and weaknesses from different perspectives. These
are most valuable to developers, not to operations staff. Mitre®’s
Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK)® framework is a knowledge base of adversary tactics
and techniques based on community contributions from real
world observations. It provides a perspective from the attacker’s
point of view and focuses on describing the tactics and techniques
employed in post compromise scenarios. Tactics are subdivided
into multiple techniques that describe specific ways in which an
adversary can try to achieve a goal. This perspective is most
useful to operations staff.

Izurieta et al. [2] is working on ways to operationalize ISO
[3][4] standards using Quamoco [5][7] and QATCH [6] to include
the assessment of technical debt principal associated with security
weaknesses in more intuitive ways than by just providing

! https://blog.sqreen.io/secdevops/

2 https://cve.mitre.org/
3 https://cwe.mitre.org/
4 https://www.sei.cmu.edu/about/divisions/cert/index.cfm

3 https://attack.mitre.org/
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vulnerability counts ®©. In this position study, we propose
extending this approach further by first mapping the techniques
and tactics encountered by Ops from the ATT&CK framework to
the CWE consequences thus linking attacks from Ops to Dev.
The effects of this mapping will help developers prioritize the
technical debt observed from live attacks to source code that is
relevant to the attack. In many cases these attacks are sleeping
cells, but their discovery is a valuable asset when prioritizing
which technical debt should be tackled first. We map Mitre®’s
11 attack tactics to CWEs consequences. This mapping reveals
which attack tactics can be used to exploit one of eight technical
impacts caused by CWEs (detectable using static analysis), which
currently includes 18 different CWEs. Traversing between attack
tactics and CWE technical impacts helps us prioritize source code
vulnerabilities that need attention to minimize technical debt.

1.1 Motivation and Research Objective

Although the usage of agreed upon CWEs as a basis for
quantifying TD associated with security issues is a step in the
right direction when providing meaningful quantification, it is not
enough in a highly dynamic SecDevOps environment where
organizations are under constant attack. A solution that ties
adversarial behaviors to root causes in source code (i.e.
vulnerabilities) is needed before said vulnerabilities are exploited
(i.e. become weaknesses) causing technical debt interest that is
not recoverable. This is an important distinction because our
objective is to address the vulnerability associated with the
attacker’s behavior, not the results of static analysis tools usually
executed out of context.

Further, agile and iterative SecDevOps approaches are seeing
quick adoption in government organizations. According to the
Congressional National Defense Authorization Act (NDAA)7:
“Not later than 30 days after the date of the enactment of this Act,
the Secretary of Defense shall include the following systems for
realignment under the pilot program to use agile or iterative
development methods pursuant to section 873 of the National
Defense Authorization Act for Fiscal Year 2018.” This represents
a significant cultural shift in how software development and
acquisitions is done in the federal government that affects a large
number of programs. The SecDevOps approach embraces the
congressional act and is being promoted by the Defense
Acquisitions University (DAU)? with many trainings in place.

1.2 Contribution

Our position study provides the following contributions: i) a
common link between the operational tactics employed by
adversaries attempting to exploit a software system and the
consequences of CWEs (i.e. technical impacts) and, ii) an
approach to rank attack tactics used by adversaries based on how
similar they are to an attack vector using the Jaccard Similarity

¢ https://www.sonarqube.org/
7NDAA Act, June 2018, section 891, sub section 873-874

8 https://www.dau.mil/
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Index ranking system [8]. The source code of the contribution is
publicly available in a Github? repository.

2 BACKGROUND AND RELEVANT WORK

2.1 Technical Debt Quantification

A new definition for TD was presented by a group of
academics and practitioners who participated in a Dagstuhl [9] in
2016. The definition was repurposed to be more focused and to
help steer our community. Specifically:

“In software-intensive systems, technical debt is a collection
of design or implementation constructs that are expedient in the
short term, but set up a technical context that can make future
changes more costly or impossible. Technical debt presents an
actual or contingent liability whose impact is limited to internal
system qualities, primarily maintainability and evolvability.”

A comprehensive synthesis of all approaches used to classify
and quantify TD in the literature is beyond the scope of this
paper; however, herein we describe the more notable approaches.

Tom et al. [10] identified many aspects of TD and classified
them into five main components: code debt, design and
architectural debt, environmental debt, knowledge distribution
and documentation debt, and testing debt. The classification is
broad but also abstract and allows for too many aspects to affect
TD in a system. Tamburri et al. [11] also attempted to include
socio-technical aspects of organizations as a form of TD.

Four prominent approaches to quantify TD are highlighted —
all differ in their quantification. It is important to note that to the
best of the author’s knowledge, there are no approaches that
quantify or prioritize TD as a result of behaviors observed by
operations personnel such as cybersecurity first responders.
SecDevOps environments would facilitate these observations thus
allowing for quick turnaround and context relevant TD scoring.

Nugroho et al. [12] propose a formula to measure TD
connected to the maintainability of software. No implementation
of this approach is found in the literature. The formula focuses on
the maintainability of software and gives a measurement of how
much effort will be needed in order to repair the amount of TD in
the software. A five-star rating scale is used to describe the
quality of the maintainability in the system with one star
signifying the lowest quality and five stars signifying the highest
quality. TD is measured by multiplying a rework fraction and a
rebuild value. The rework fraction is an estimated percentage of
the number of lines in the code that contribute to the TD. The
rebuild value is the estimated amount of time (in months) that
needs to be spent fixing the TD.

Letouzey and Ilkiewicz [13] use the SQALE method to
estimate the amount of TD in a system based on an ISO quality
model. The quality model uses a stack of eight quality features:
testability, reliability, changeability, efficiency, security,
maintainability, portability, and reusability. These features are
organized in a pyramidal hierarchy where testability is at the

9 https://github.com/maryeprouty/attack-analysis
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bottom and reusability at the top. The idea is that concerns at
lower levels need to be addressed first before tackling issues at
higher levels. This is necessary in order to effectively remediate
issues. For example, a part of the code that does not meet a
condition that is associated with testability should be addressed
before one that is associated with maintainability.

The SonarQube® tool is quite popular amongst the community
because they offer a free download of their framework which is
composed of multiple widgets. One widget implements the
calculation of TD and reports it in terms of days or dollars (i.e.
cost) necessary to repay the debt.

Curtis et al. [14] introduced a way to measure TD that focuses
on converting the amount of TD in code to a dollar amount. The
formula used calculates TD principal by observing should-fix
violations in the code, the estimated number of hours to fix the
should-fix violations, and the estimated cost of labor to do so.
Should-fix violations are classified to be either low-, medium-, or
high-severity, and the formula assigns a higher weight to the
higher severity violations and a lower weight to the lower severity
violations in the formula. The principal is calculated by
multiplying each level of severity by the number of violations that
need to be fixed, the average number of hours it will take to fix
them, and a dollar amount that represents the average cost per
hour for work in IT organizations. A calculation is made for each
level of severity to obtain three values, and the sum of the three
values is used to calculate the TD principal.

There are 11 tactics (Column names)
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Figure 1: A partial view of Mitre’s ATT@CK matrix
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The Adversarial Tactics, Techniques, and Common
Knowledge framework is a knowledge base and a model for
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capturing adversarial behaviors and it reflects all the phases of the
adversary’s attack lifecycle. It is under the auspices of the
Mitre® Corporation and aims to enumerate and categorize post-
compromise adversary tactics, techniques and procedures against
various operating systems. A tactic is at the core of the matrix
and represents a high-level description of an attack behavior.
Each tactic can be broken down into many techniques and
procedures that an attacker may use to compromise a target
system. The matrix has expanded to include other pre-
compromise behaviors as well as mobile devices. It consists of
three core components: i) 11 tactics (denoted by the columns in
Fig. 1. The full matrix can be found in Mitre®’s website’), ii)
219 techniques that describe specific approaches used to achieve
a tactical goal, and iii) documented adversarial usage techniques.

3 PILOT STUDY

We perform an attack-analysis simulation study that explores
the landscape of potential techniques used by attackers that can be
observed by operations staff in a SecDevOps environment.

Table 1: Attack tactic dependencies

Tactic Dependency Explanation
Persistence Credential Access This tactic is useful for attackers
wishing to maintain their presence
in the target network even in the
face of loss of credentials
An initial foothold into the target
is necessary before adversary-
controlled code and commands
execution. In cases where the
attacker cannot successfully
compromise the system after
initial access, the adversary will
move across the network
‘When attackers cannot gain
privileges within an entry point,
lateral movement is required
An attacker will often need to be
able to first gather the sensitive
data in the system through
“Collection” before it can be
removed from the system
Adversaries must gain an
understanding of the system before
gathering sensitive data
Adbversaries first employ discovery
tactics to understand the system
well enough to avoid detection
during control activities
Defense Adversaries employ this tactic to
Evasion remain undetected

Initial Access
Lateral Movement

Execution

Privilege Lateral Movement

Escalation

Exfiltration Collection

Collection Discovery

Command
and Control

Discovery

Specifically, we populate an attack vector @ from observed
behaviors and explore how it can relate to Mitre®’s CWEs.
However, before computing a similarity score we performed an
analysis of the various dependencies that exist between attack
tactics. Due to the nature of Mitre®’s attack tactics, a simple
bipartite graph relating tactics to CWE technical impacts is not
sufficient. By manually examining the relationships between
tactics, a clearer understanding of why and how tactics are used to
exploit CWEs can be drawn. Many of the tactics depend on other
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tactics and have temporal precedence before they can be
employed by an attacker. For instance, Execution depends on
Initial Access so that the attacker can gain an initial foothold into
the target network before executing their adversary-controlled
code or commands. Table 1 shows a breakdown of tactics that
are dependent on other tactics before they can be successfully
employed by an attacker. Some dependencies are purely
contextual, as in the case of Privilege Escalation’s dependency on
Lateral Movement — if the attacker can gain privileges in the
initial system, then there is no need to move across the network in
order to employ this tactic. Note that Defense Evasion is not
dependent on any other tactics nor do other tactics depend on it
per se; however, this tactic is often used in parallel with other
tactics.

Table 2: Technical Impacts associated with CWEs

CWE Technical
Impact

Automatic Static
Analysis

Manual Static
Analysis

Execute
unauthorized code

78,79, 98, 120, 129, 131,
134, 190, 426, 798, 805

98, 120, 131, 190,
426, 494, 805

Gain privileges,
assume identity

306, 352, 426, 601, 798

259, 306, 352, 426

Read data 78,79, 89, 129, 131, 134, | 89, 131,209, 311,
352, 426, 798 327, 352, 426
Modify data 78, 89, 129, 131, 190, 352 | 89, 131, 190, 311,

327,352

DoS: unreliable

78, 120, 129, 131, 190,

120, 131, 190, 352,

execution 352, 400, 426, 805 426, 805
DoS: resource 120, 190, 400, 770, 805 120, 190, 805
consumption

Bypass protection 79, 89, 190, 352, 400, 89, 190, 352
mechanism 601, 798

Hide activities 78 327

After tactic dependencies were established, we investigated
how tactics employed by adversaries map to technical impacts.
Technical impacts are consequences of CWEs that negatively
affect TD in a target. We can detect CWEs using static analysis
techniques. Automated static analysis (i.e., FxCop '© and
FindBugs'") helped us detect 18 different CWEs. Manual analysis
helped us identify 14 CWEs. Manual and Automated analysis
overlapped on 9 common CWEs and helped us validate the
automated findings. Table 2 relates the CWE numbers detectable
from static analysis techniques to their technical impacts.

Finding a common link between the consequences of CWEs
(i.e., technical impacts) and the tactics that are used to exploit a
software system, allows developers to prioritize the TD associated
with the vulnerabilities being exploited by the attacks. Thus, this
mapping establishes which attack tactics can be used to impact
TD caused by anyone of eight CWE technical impacts.
Traversing from attack tactics to technical impacts provides a way

10 https://www.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/
' http://findbugs.sourceforge.net/
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to connect the detected tactics employed by attackers to the
CWEs associated with source code vulnerabilities. This allows
developers immediate access to TD prioritization based on
operations experiences. Fig. 2 displays the tactic dependencies
graph, and does not illustrate parallel usage of tactics. Future
work could investigate which tactics are most often used in
conjunction with one another. Fig. 3 shows the mapping of
tactics to technical impacts.
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Figure 2: Attack Tactics Dependencies
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Figure 3: Mapping of attacker tactics to CWE impacts
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Once the tactic dependencies and the mappings from technical
impacts to CWEs were agreed upon, the following steps were
followed:

1. A file of n randomly simulated attack vectors, each
containing up to m techniques, defined as dj where i = I..n
and j = [..m is compared to each of the tactics from the
ATT@CK matrix,

2. For each attack, the ATT@CK tactics are ranked based on
how similar they are to the simulated attack vector @ using
the Jaccard Similarity (JS) Index ranking system,

3. The graphs are traversed from the top ranked JS tactic to
technical impact; which suggests the CWEs that are most
likely to be at risk of attack based on the attack vector dj.
The tactics dependency graph also points to secondary
potential CWEs.

4. CWE:s describe the source code that requires attention.
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To use the JS Index, we convert the ATT@CK matrix to csv
format where a 1 represents the partake of a technique in that
tactic and a 0 does not. Attack vectors dj, are generated randomly
where d@;; = 1 indicates that a technique is used/detected, di = 0
indicates that a technique is not used/detected, and @y = ?
indicates that a technique is not detectable. We use the ‘?’
symbol in order to simulate cases where a system cannot detect
certain techniques; which is a common occurrence. By using a ‘?’
instead of a 0 in these situations, the algorithm for JS is not
skewed by the system’s inability to detect the techniques, and
instead can compute the closest tactic to the attack vector using
available information. The comparison of a simulated attack
vector @y against a tactic vector & of the ATT@CK matrix uses
the JS index, which measures the binary overlap between the
attributes of two vectors @ and &y. Equation JS = Mi1/(Mo1 + Mio
+ Mi1), where M1 is the total number of attributes where i:ij, and
dijis 1, Moi is the total number of attributes where i“),, is 0 and dj
is 1, Mo is the total number of attributes where Z‘,, is 1 and @ is 0,
and Moo is the total number of attributes where both vectors equal
0, yields a similarity score for any two vectors. Note that for any
two vectors d@j and f,’j, Mo + Mio+Mii+ Moo= m.

The simulation algorithm traverses the dependency and
association graphs from the highest ranked tactic to determine
which technical impacts are most at risk of being exploited by this
tactic. Each technical impact has several CWEs associated with it;
thus, an attack vector can be analyzed to determine which CWEs
are most vulnerable to a given attack. This ranking allows
developers to address the TD associated with code vulnerabilities
as a result of real attacks observed by operations staff. Two csv
files are compared, where one is a file of Mitre®’s attack tactics
and the other is a file of simulated attack vectors. It ranks the 11
tactics for each simulated attack vector using JS, and then
traverses the graphs to output the most vulnerable CWEs to each
attack. A Swing application provides a visualization of these
graphs for the user to view and interact with.

4 POSITION ON TECHNICAL DEBT

In the context of SecDevOps environments we are afforded a
unique opportunity to address cybersecurity threats to
computational environments quickly, and the decisions that
developers can make to address the technical debt associated with
said systems are vastly improved because of context — Ops is in
constant communications with Devs. Today, we run static
analysis tools to detect source code disharmonies and to compute
the TD principal associated with source code, but we often run
these tools independently of any other lifecycle phases or Ops,
and many times developers are not aware of the TD in the source
code until they review relevant QA reports. This disconnection
affects the decisions that developers make in terms of prioritizing
which debts to fix first. Executing static analysis tools out of
context does not help operational staff because although first
responders may be able to mitigate an attack, the TD associated
with the relevant source code vulnerabilities may still persist.
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By using an approach that can quickly map an attack to a
relevant CWE, developers can prioritize much more effectively
and fix the source code responsible for the vulnerability. It is also
our position that the longer a technical impact associated with an
attack goes unattended, the larger the TD interest incurred.

Thus, our approach allows for:

i addressing Principalrp-security in context, and
ii. reducing the Interestrp-security because relevant issues are
tackled quickly

6 CONCLUSION AND FUTURE WORK

In line with our prior conclusions [2], it is our position that
security is a special case because the TD associated with
cybersecurity cannot just be measured in terms of maintainability,
but also in terms of damage to a business. Addressing the TD
needs to occur quickly in context with Ops. SecDevOps allows
developers an opportunity to address TD dynamically. Significant
work remains in terms of industrial and open source studies.
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