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ABSTRACT (Ops) focuses on deploying countermeasures (manual and 

automatic) and developers (Dev) focus on refactoring those 

aspects of source code that minimize the technical debt associated 

with the vulnerabilities revealed by the malicious attacks. 

SecDevOps “(also known as DevSecOps and DevOpsSec) is the 

process of integrating secure development best practices and 

methodologies into development and deployment processes which 

DevOps makes possible.”1 

Context:  Managing technical debt (TD) associated with external 

cybersecurity attacks on an organization can significantly improve 

decisions made when prioritizing which security weaknesses 

require attention. Whilst source code vulnerabilities can be found 

using static analysis techniques, malicious external attacks expose 

the vulnerabilities of a system at runtime and can sometimes 

remain hidden for long periods of time. By mapping malicious 

attack tactics to the consequences of weaknesses (i.e. exploitable 

source code vulnerabilities) we can begin to understand and 

prioritize the refactoring of the source code vulnerabilities that 

cause the greatest amount of technical debt on a system. Goal: To 

establish an approach that maps common external attack tactics to 

system weaknesses.  The consequences of a weakness associated 

with a specific attack technique can then be used to determine the 

technical debt principal of said violation; which can be measured 

in terms of loss of business rather than source code maintenance. 

Method: We present a position study that uses Jaccard similarity 

scoring to examine how 11 malicious attack tactics can relate to 

Common Weakness Enumerations (CWEs).  Results: We conduct 

a study to simulate attacks, and generate dependency graphs 

between external attacks and the technical consequences 

associated with CWEs. Conclusion: The mapping of cyber 

security attacks to weaknesses allows operational staff 

(SecDevOps) to focus on deploying appropriate countermeasures 

and allows developers to focus on refactoring the vulnerabilities 

with the greatest potential for technical debt. 

Many tools exist that provide metrics-based analysis in terms 

of the number of vulnerabilities found in a system; however, these 

tools are executed by developers independently of observations 

made by operations staff; thus, the prioritization of which 

vulnerabilities to address may be significantly different than if 

developers had a communication channel to first responders.  

Furthermore, operations staff are the first to effect 

countermeasures from live cyber-attacks.  Using a SecDevOps 

approach, this information can be made available to developers 

immediately.  The consequences of said attacks can be weighed 

against each other in terms of the technical debt affecting 

software maintainability but more importantly, in terms of the 

consequences to the business if a vulnerability is successfully 

exploited. “Repairing the damage can be very costly. The TD 

interest associated with such a weakness can grow significantly at 

the moment an attacker is successful.” [2] 

Enumerations of rules have been established by the greater 

community (i.e., CVE 2 , CWE 3 , and CERT 4 ) to explore 

vulnerabilities and weaknesses from different perspectives. These 

are most valuable to developers, not to operations staff.  Mitre’s 

Adversarial Tactics, Techniques, and Common Knowledge 

(ATT&CK)5 framework is a knowledge base of adversary tactics 

and techniques based on community contributions from real 

world observations.  It provides a perspective from the attacker’s 

point of view and focuses on describing the tactics and techniques 

employed in post compromise scenarios.  Tactics are subdivided 

into multiple techniques that describe specific ways in which an 

adversary can try to achieve a goal. This perspective is most 

useful to operations staff. 
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1 INTRODUCTION Izurieta et al. [2] is working on ways to operationalize ISO 

[3][4] standards using Quamoco [5][7] and QATCH [6] to include 

the assessment of technical debt principal associated with security 

weaknesses in more intuitive ways than by just providing 

Various techniques have been used to quantify Technical 

Debt (TD); however, none have specifically focused on 

measuring the potential TD of live security attacks that affect 

systems. The growing number of cybersecurity attacks and their 

frequency are forcing organizations to pay significantly more 

attention to security threats. To address cyber-attacks, 

organizations (including federal government departments) are 

starting to rely on a SecDevOps [1] approach where operations 

 
1 https://blog.sqreen.io/secdevops/ 
2 https://cve.mitre.org/ 
3 https://cwe.mitre.org/ 
4 https://www.sei.cmu.edu/about/divisions/cert/index.cfm 
5 https://attack.mitre.org/ 

http://clemente.izurieta@montana.edu/
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vulnerability counts 6 .  In this position study, we propose 

extending this approach further by first mapping the techniques 

and tactics encountered by Ops from the ATT&CK framework to 

the CWE consequences thus linking attacks from Ops to Dev.  

The effects of this mapping will help developers prioritize the 

technical debt observed from live attacks to source code that is 

relevant to the attack.  In many cases these attacks are sleeping 

cells, but their discovery is a valuable asset when prioritizing 

which technical debt should be tackled first.  We map Mitre’s 

11 attack tactics to CWEs consequences.  This mapping reveals 

which attack tactics can be used to exploit one of eight technical 

impacts caused by CWEs (detectable using static analysis), which 

currently includes 18 different CWEs. Traversing between attack 

tactics and CWE technical impacts helps us prioritize source code 

vulnerabilities that need attention to minimize technical debt. 

Index ranking system [8]. The source code of the contribution is 

publicly available in a Github9 repository. 

2 BACKGROUND AND RELEVANT WORK 

2.1 Technical Debt Quantification 

A new definition for TD was presented by a group of 

academics and practitioners who participated in a Dagstuhl [9] in 

2016. The definition was repurposed to be more focused and to 

help steer our community. Specifically: 

“In software-intensive systems, technical debt is a collection 

of design or implementation constructs that are expedient in the 

short term, but set up a technical context that can make future 

changes more costly or impossible. Technical debt presents an 

actual or contingent liability whose impact is limited to internal 

system qualities, primarily maintainability and evolvability.” 
1.1 Motivation and Research Objective A comprehensive synthesis of all approaches used to classify 

and quantify TD in the literature is beyond the scope of this 

paper; however, herein we describe the more notable approaches.  

Although the usage of agreed upon CWEs as a basis for 

quantifying TD associated with security issues is a step in the 

right direction when providing meaningful quantification, it is not 

enough in a highly dynamic SecDevOps environment where 

organizations are under constant attack. A solution that ties 

adversarial behaviors to root causes in source code (i.e. 

vulnerabilities) is needed before said vulnerabilities are exploited 

(i.e. become weaknesses) causing technical debt interest that is 

not recoverable. This is an important distinction because our 

objective is to address the vulnerability associated with the 

attacker’s behavior, not the results of static analysis tools usually 

executed out of context. 

Tom et al. [10] identified many aspects of TD and classified 

them into five main components: code debt, design and 

architectural debt, environmental debt, knowledge distribution 

and documentation debt, and testing debt. The classification is 

broad but also abstract and allows for too many aspects to affect 

TD in a system.  Tamburri et al. [11] also attempted to include 

socio-technical aspects of organizations as a form of TD. 

Four prominent approaches to quantify TD are highlighted –

all differ in their quantification. It is important to note that to the 

best of the author’s knowledge, there are no approaches that 

quantify or prioritize TD as a result of behaviors observed by 

operations personnel such as cybersecurity first responders.  

SecDevOps environments would facilitate these observations thus 

allowing for quick turnaround and context relevant TD scoring. 

Further, agile and iterative SecDevOps approaches are seeing 

quick adoption in government organizations. According to the 

Congressional National Defense Authorization Act (NDAA) 7 : 

“Not later than 30 days after the date of the enactment of this Act, 

the Secretary of Defense shall include the following systems for 

realignment under the pilot program to use agile or iterative 

development methods pursuant to section 873 of the National 

Defense Authorization Act for Fiscal Year 2018.”  This represents 

a significant cultural shift in how software development and 

acquisitions is done in the federal government that affects a large 

number of programs. The SecDevOps approach embraces the 

congressional act and is being promoted by the Defense 

Acquisitions University (DAU)8 with many trainings in place. 

Nugroho et al. [12] propose a formula to measure TD 

connected to the maintainability of software. No implementation 

of this approach is found in the literature. The formula focuses on 

the maintainability of software and gives a measurement of how 

much effort will be needed in order to repair the amount of TD in 

the software. A five-star rating scale is used to describe the 

quality of the maintainability in the system with one star 

signifying the lowest quality and five stars signifying the highest 

quality.  TD is measured by multiplying a rework fraction and a 

rebuild value. The rework fraction is an estimated percentage of 

the number of lines in the code that contribute to the TD. The 

rebuild value is the estimated amount of time (in months) that 

needs to be spent fixing the TD.  

1.2 Contribution 

Our position study provides the following contributions: i) a 

common link between the operational tactics employed by 

adversaries attempting to exploit a software system and the 

consequences of CWEs (i.e. technical impacts) and, ii) an 

approach to rank attack tactics used by adversaries based on how 

similar they are to an attack vector using the Jaccard Similarity 

Letouzey and Ilkiewicz [13] use the SQALE method to 

estimate the amount of TD in a system based on an ISO quality 

model. The quality model uses a stack of eight quality features: 

testability, reliability, changeability, efficiency, security, 

maintainability, portability, and reusability. These features are 

organized in a pyramidal hierarchy where testability is at the  
 6 https://www.sonarqube.org/ 

9 https://github.com/maryeprouty/attack-analysis 7 NDAA Act, June 2018, section 891, sub section 873-874 
 8 https://www.dau.mil/ 

https://www.sonarqube.org/
https://github.com/maryeprouty/attack-analysis
https://www.dau.mil/
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bottom and reusability at the top.  The idea is that concerns at 

lower levels need to be addressed first before tackling issues at 

higher levels.  This is necessary in order to effectively remediate 

issues.  For example, a part of the code that does not meet a 

condition that is associated with testability should be addressed 

before one that is associated with maintainability. 

capturing adversarial behaviors and it reflects all the phases of the 

adversary’s attack lifecycle.  It is under the auspices of the 

Mitre Corporation and aims to enumerate and categorize post-

compromise adversary tactics, techniques and procedures against 

various operating systems.  A tactic is at the core of the matrix 

and represents a high-level description of an attack behavior. 

Each tactic can be broken down into many techniques and 

procedures that an attacker may use to compromise a target 

system. The matrix has expanded to include other pre-

compromise behaviors as well as mobile devices.  It consists of 

three core components: i) 11 tactics (denoted by the columns in 

Fig. 1.  The full matrix can be found in Mitre’s website5), ii) 

219 techniques that describe specific approaches used to achieve 

a tactical goal, and iii) documented adversarial usage techniques. 

The SonarQube6 tool is quite popular amongst the community 

because they offer a free download of their framework which is 

composed of multiple widgets. One widget implements the 

calculation of TD and reports it in terms of days or dollars (i.e. 

cost) necessary to repay the debt.   

Curtis et al. [14] introduced a way to measure TD that focuses 

on converting the amount of TD in code to a dollar amount. The 

formula used calculates TD principal by observing should-fix 

violations in the code, the estimated number of hours to fix the 

should-fix violations, and the estimated cost of labor to do so. 

Should-fix violations are classified to be either low-, medium-, or 

high-severity, and the formula assigns a higher weight to the 

higher severity violations and a lower weight to the lower severity 

violations in the formula. The principal is calculated by 

multiplying each level of severity by the number of violations that 

need to be fixed, the average number of hours it will take to fix 

them, and a dollar amount that represents the average cost per 

hour for work in IT organizations. A calculation is made for each 

level of severity to obtain three values, and the sum of the three 

values is used to calculate the TD principal. 

3    PILOT STUDY 

We perform an attack-analysis simulation study that explores 

the landscape of potential techniques used by attackers that can be 

observed by operations staff in a SecDevOps environment.  

 

Table 1: Attack tactic dependencies 
Tactic Dependency Explanation 

Persistence Credential Access This tactic is useful for attackers 
wishing to maintain their presence 
in the target network even in the 
face of loss of credentials 

Execution Initial Access 
Lateral Movement 

An initial foothold into the target 
is necessary before adversary-
controlled code and commands 
execution. In cases where the 
attacker cannot successfully 
compromise the system after 
initial access, the adversary will 
move across the network 

Privilege 
Escalation 

Lateral Movement When attackers cannot gain 
privileges within an entry point, 
lateral movement is required 

Exfiltration Collection An attacker will often need to be 
able to first gather the sensitive 
data in the system through 
“Collection” before it can be 
removed from the system 

Collection Discovery Adversaries must gain an 
understanding of the system before 
gathering sensitive data 

Command 
and Control 

Discovery Adversaries first employ discovery 
tactics to understand the system 
well enough to avoid detection 
during control activities 

Defense 
Evasion 

 Adversaries employ this tactic to 
remain undetected 

 

Specifically, we populate an attack vector 𝒂⃗⃗  from observed 

behaviors and explore how it can relate to Mitre’s CWEs.  

However, before computing a similarity score we performed an 

analysis of the various dependencies that exist between attack 

tactics. Due to the nature of Mitre’s attack tactics, a simple 

bipartite graph relating tactics to CWE technical impacts is not 

sufficient. By manually examining the relationships between 

tactics, a clearer understanding of why and how tactics are used to 

exploit CWEs can be drawn.  Many of the tactics depend on other 

 

2.2 ATT@CK 

The Adversarial Tactics, Techniques, and Common 

Knowledge framework is a knowledge base and a model for 

Figure 1: A partial view of Mitre’s ATT@CK matrix 
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tactics and have temporal precedence before they can be 

employed by an attacker. For instance, Execution depends on 

Initial Access so that the attacker can gain an initial foothold into 

the target network before executing their adversary-controlled 

code or commands.  Table 1 shows a breakdown of tactics that 

are dependent on other tactics before they can be successfully 

employed by an attacker. Some dependencies are purely 

contextual, as in the case of Privilege Escalation’s dependency on 

Lateral Movement – if the attacker can gain privileges in the 

initial system, then there is no need to move across the network in 

order to employ this tactic. Note that Defense Evasion is not 

dependent on any other tactics nor do other tactics depend on it 

per se; however, this tactic is often used in parallel with other 

tactics.  

to connect the detected tactics employed by attackers to the 

CWEs associated with source code vulnerabilities.  This allows 

developers immediate access to TD prioritization based on 

operations experiences. Fig. 2 displays the tactic dependencies 

graph, and does not illustrate parallel usage of tactics. Future 

work could investigate which tactics are most often used in 

conjunction with one another.  Fig. 3 shows the mapping of 

tactics to technical impacts. 

 

 

 

Table 2: Technical Impacts associated with CWEs 
CWE Technical 

Impact 
Automatic Static 

Analysis 
Manual Static 

Analysis 

Execute 
unauthorized code 

78, 79, 98, 120, 129, 131, 
134, 190, 426, 798, 805 

98, 120, 131, 190, 
426, 494, 805 

Gain privileges, 
assume identity 

306, 352, 426, 601, 798 259, 306, 352, 426 
 

 
Read data 78, 79, 89, 129, 131, 134, 

352, 426, 798 
89, 131, 209, 311, 
327, 352, 426 

 

Modify data 78, 89, 129, 131, 190, 352 89, 131, 190, 311, 
327, 352  

DoS: unreliable 
execution 

78, 120, 129, 131, 190, 
352, 400, 426, 805 

120, 131, 190, 352, 
426, 805 

DoS: resource 
consumption 

120, 190, 400, 770, 805 120, 190, 805 

Bypass protection 
mechanism 

79, 89, 190, 352, 400, 
601, 798 

89, 190, 352 

Hide activities 78 327 

 

After tactic dependencies were established, we investigated 

how tactics employed by adversaries map to technical impacts. 

Technical impacts are consequences of CWEs that negatively 

affect TD in a target. We can detect CWEs using static analysis 

techniques. Automated static analysis (i.e., FxCop 10  and 

FindBugs11) helped us detect 18 different CWEs. Manual analysis 

helped us identify 14 CWEs. Manual and Automated analysis 

overlapped on 9 common CWEs and helped us validate the 

automated findings. Table 2 relates the CWE numbers detectable 

from static analysis techniques to their technical impacts. 

 

 

Once the tactic dependencies and the mappings from technical 

impacts to CWEs were agreed upon, the following steps were 

followed: 

1. A file of n randomly simulated attack vectors, each 

containing up to m techniques, defined as 𝒂⃗⃗ ij where i = 1..n 

and j = 1..m is compared to each of the tactics from the 

ATT@CK matrix, Finding a common link between the consequences of CWEs 

(i.e., technical impacts) and the tactics that are used to exploit a 

software system, allows developers to prioritize the TD associated 

with the vulnerabilities being exploited by the attacks. Thus, this 

mapping establishes which attack tactics can be used to impact 

TD caused by anyone of eight CWE technical impacts. 

Traversing from attack tactics to technical impacts provides a way 

2. For each attack, the ATT@CK tactics are ranked based on 

how similar they are to the simulated attack vector 𝒂⃗⃗ ij using 

the Jaccard Similarity (JS) Index ranking system, 

3. The graphs are traversed from the top ranked JS tactic to 

technical impact; which suggests the CWEs that are most 

likely to be at risk of attack based on the attack vector 𝒂⃗⃗ ij.  

The tactics dependency graph also points to secondary 

potential CWEs.  
10 https://www.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/ 4. CWEs describe the source code that requires attention. 11 http://findbugs.sourceforge.net/ 

 

Figure 2: Attack Tactics Dependencies 

Figure 2. Attack Tactics Dependencies 

Figure 3: Mapping of attacker tactics to CWE impacts 

Figure 2. Attack Tactics Dependencies 
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To use the JS Index, we convert the ATT@CK matrix to csv 

format where a 1 represents the partake of a technique in that 

tactic and a 0 does not. Attack vectors 𝒂⃗⃗ ij, are generated randomly 

where 𝒂⃗⃗ ij = 1 indicates that a technique is used/detected, 𝒂⃗⃗ ij = 0 

indicates that a technique is not used/detected, and 𝒂⃗⃗ ij = ? 

indicates that a technique is not detectable.  We use the ‘?’ 

symbol in order to simulate cases where a system cannot detect 

certain techniques; which is a common occurrence. By using a ‘?’ 

instead of a 0 in these situations, the algorithm for JS is not 

skewed by the system’s inability to detect the techniques, and 

instead can compute the closest tactic to the attack vector using 

available information. The comparison of a simulated attack 

vector 𝒂⃗⃗ ij against a tactic vector 𝒕 ij of the ATT@CK matrix uses 

the JS index, which measures the binary overlap between the 

attributes of two vectors 𝒂⃗⃗ ij  and 𝒕 ij. Equation JS = M11/(M01 + M10 

+ M11), where M11 is the total number of attributes where 𝒕 ij, and 

𝒂⃗⃗ ij is 1, M01 is the total number of attributes where 𝒕 ij is 0 and 𝒂⃗⃗ ij 

is 1, M10 is the total number of attributes where 𝒕 ij is 1 and 𝒂⃗⃗ ij is 0, 

and M00 is the total number of attributes where both vectors equal 

0, yields a similarity score for any two vectors. Note that for any 

two vectors 𝒂⃗⃗ ij  and 𝒕 ij,  M01 + M10 + M11 + M00 = m. 

By using an approach that can quickly map an attack to a 

relevant CWE, developers can prioritize much more effectively 

and fix the source code responsible for the vulnerability. It is also 

our position that the longer a technical impact associated with an 

attack goes unattended, the larger the TD interest incurred. 

Thus, our approach allows for: 

i. addressing PrincipalTD-Security in context, and 

ii. reducing the InterestTD-Security because relevant issues are 

tackled quickly 

6    CONCLUSION AND FUTURE WORK 

 In line with our prior conclusions [2], it is our position that 

security is a special case because the TD associated with 

cybersecurity cannot just be measured in terms of maintainability, 

but also in terms of damage to a business.  Addressing the TD 

needs to occur quickly in context with Ops.  SecDevOps allows 

developers an opportunity to address TD dynamically.  Significant 

work remains in terms of industrial and open source studies. 
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The simulation algorithm traverses the dependency and 

association graphs from the highest ranked tactic to determine 

which technical impacts are most at risk of being exploited by this 

tactic. Each technical impact has several CWEs associated with it; 

thus, an attack vector can be analyzed to determine which CWEs 

are most vulnerable to a given attack. This ranking allows 

developers to address the TD associated with code vulnerabilities 

as a result of real attacks observed by operations staff. Two csv 

files are compared, where one is a file of Mitre’s attack tactics 

and the other is a file of simulated attack vectors. It ranks the 11 

tactics for each simulated attack vector using JS, and then 

traverses the graphs to output the most vulnerable CWEs to each 

attack. A Swing application provides a visualization of these 

graphs for the user to view and interact with. 
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