
Leveraging SecDevOps to Tackle the Technical Debt Associated with

Cybersecurity Attack Tactics

Clemente Izurieta
Montana State University

Bozeman, MT, USA
clemente.izurieta@montana.edu

Mary Prouty
Georgia Institute of Technology

Atlanta, GA, USA
meprouty@gatech.edu

ABSTRACT (Ops) focuses on deploying countermeasures (manual and

automatic) and developers (Dev) focus on refactoring those

aspects of source code that minimize the technical debt associated

with the vulnerabilities revealed by the malicious attacks.

SecDevOps “(also known as DevSecOps and DevOpsSec) is the

process of integrating secure development best practices and

methodologies into development and deployment processes which

DevOps makes possible.”1

Context: Managing technical debt (TD) associated with external

cybersecurity attacks on an organization can significantly improve

decisions made when prioritizing which security weaknesses

require attention. Whilst source code vulnerabilities can be found

using static analysis techniques, malicious external attacks expose

the vulnerabilities of a system at runtime and can sometimes

remain hidden for long periods of time. By mapping malicious

attack tactics to the consequences of weaknesses (i.e. exploitable

source code vulnerabilities) we can begin to understand and

prioritize the refactoring of the source code vulnerabilities that

cause the greatest amount of technical debt on a system. Goal: To

establish an approach that maps common external attack tactics to

system weaknesses. The consequences of a weakness associated

with a specific attack technique can then be used to determine the

technical debt principal of said violation; which can be measured

in terms of loss of business rather than source code maintenance.

Method: We present a position study that uses Jaccard similarity

scoring to examine how 11 malicious attack tactics can relate to

Common Weakness Enumerations (CWEs). Results: We conduct

a study to simulate attacks, and generate dependency graphs

between external attacks and the technical consequences

associated with CWEs. Conclusion: The mapping of cyber

security attacks to weaknesses allows operational staff

(SecDevOps) to focus on deploying appropriate countermeasures

and allows developers to focus on refactoring the vulnerabilities

with the greatest potential for technical debt.

Many tools exist that provide metrics-based analysis in terms

of the number of vulnerabilities found in a system; however, these

tools are executed by developers independently of observations

made by operations staff; thus, the prioritization of which

vulnerabilities to address may be significantly different than if

developers had a communication channel to first responders.

Furthermore, operations staff are the first to effect

countermeasures from live cyber-attacks. Using a SecDevOps

approach, this information can be made available to developers

immediately. The consequences of said attacks can be weighed

against each other in terms of the technical debt affecting

software maintainability but more importantly, in terms of the

consequences to the business if a vulnerability is successfully

exploited. “Repairing the damage can be very costly. The TD

interest associated with such a weakness can grow significantly at

the moment an attacker is successful.” [2]

Enumerations of rules have been established by the greater

community (i.e., CVE 2 , CWE 3 , and CERT 4) to explore

vulnerabilities and weaknesses from different perspectives. These

are most valuable to developers, not to operations staff. Mitre’s

Adversarial Tactics, Techniques, and Common Knowledge

(ATT&CK)5 framework is a knowledge base of adversary tactics

and techniques based on community contributions from real

world observations. It provides a perspective from the attacker’s

point of view and focuses on describing the tactics and techniques

employed in post compromise scenarios. Tactics are subdivided

into multiple techniques that describe specific ways in which an

adversary can try to achieve a goal. This perspective is most

useful to operations staff.

CCS CONCEPTS

• General and Reference Surveys and overviews • Software

and its engineering

KEYWORDS

quality assurance, software quality, technical debt; cybersecurity

1 INTRODUCTION Izurieta et al. [2] is working on ways to operationalize ISO

[3][4] standards using Quamoco [5][7] and QATCH [6] to include

the assessment of technical debt principal associated with security

weaknesses in more intuitive ways than by just providing

Various techniques have been used to quantify Technical

Debt (TD); however, none have specifically focused on

measuring the potential TD of live security attacks that affect

systems. The growing number of cybersecurity attacks and their

frequency are forcing organizations to pay significantly more

attention to security threats. To address cyber-attacks,

organizations (including federal government departments) are

starting to rely on a SecDevOps [1] approach where operations

1 https://blog.sqreen.io/secdevops/
2 https://cve.mitre.org/
3 https://cwe.mitre.org/
4 https://www.sei.cmu.edu/about/divisions/cert/index.cfm
5 https://attack.mitre.org/

http://clemente.izurieta@montana.edu/
mailto:meprouty@gatech.edu
https://blog.sqreen.io/secdevops/
https://cve.mitre.org/
https://cwe.mitre.org/
https://www.sei.cmu.edu/about/divisions/cert/index.cfm
https://attack.mitre.org/

TechDebt’19, May 2019, Montreal, Canada Izurieta and Prouty

2

vulnerability counts 6 . In this position study, we propose

extending this approach further by first mapping the techniques

and tactics encountered by Ops from the ATT&CK framework to

the CWE consequences thus linking attacks from Ops to Dev.

The effects of this mapping will help developers prioritize the

technical debt observed from live attacks to source code that is

relevant to the attack. In many cases these attacks are sleeping

cells, but their discovery is a valuable asset when prioritizing

which technical debt should be tackled first. We map Mitre’s

11 attack tactics to CWEs consequences. This mapping reveals

which attack tactics can be used to exploit one of eight technical

impacts caused by CWEs (detectable using static analysis), which

currently includes 18 different CWEs. Traversing between attack

tactics and CWE technical impacts helps us prioritize source code

vulnerabilities that need attention to minimize technical debt.

Index ranking system [8]. The source code of the contribution is

publicly available in a Github9 repository.

2 BACKGROUND AND RELEVANT WORK

2.1 Technical Debt Quantification

A new definition for TD was presented by a group of

academics and practitioners who participated in a Dagstuhl [9] in

2016. The definition was repurposed to be more focused and to

help steer our community. Specifically:

“In software-intensive systems, technical debt is a collection

of design or implementation constructs that are expedient in the

short term, but set up a technical context that can make future

changes more costly or impossible. Technical debt presents an

actual or contingent liability whose impact is limited to internal

system qualities, primarily maintainability and evolvability.”
1.1 Motivation and Research Objective A comprehensive synthesis of all approaches used to classify

and quantify TD in the literature is beyond the scope of this

paper; however, herein we describe the more notable approaches.

Although the usage of agreed upon CWEs as a basis for

quantifying TD associated with security issues is a step in the

right direction when providing meaningful quantification, it is not

enough in a highly dynamic SecDevOps environment where

organizations are under constant attack. A solution that ties

adversarial behaviors to root causes in source code (i.e.

vulnerabilities) is needed before said vulnerabilities are exploited

(i.e. become weaknesses) causing technical debt interest that is

not recoverable. This is an important distinction because our

objective is to address the vulnerability associated with the

attacker’s behavior, not the results of static analysis tools usually

executed out of context.

Tom et al. [10] identified many aspects of TD and classified

them into five main components: code debt, design and

architectural debt, environmental debt, knowledge distribution

and documentation debt, and testing debt. The classification is

broad but also abstract and allows for too many aspects to affect

TD in a system. Tamburri et al. [11] also attempted to include

socio-technical aspects of organizations as a form of TD.

Four prominent approaches to quantify TD are highlighted –

all differ in their quantification. It is important to note that to the

best of the author’s knowledge, there are no approaches that

quantify or prioritize TD as a result of behaviors observed by

operations personnel such as cybersecurity first responders.

SecDevOps environments would facilitate these observations thus

allowing for quick turnaround and context relevant TD scoring.

Further, agile and iterative SecDevOps approaches are seeing

quick adoption in government organizations. According to the

Congressional National Defense Authorization Act (NDAA) 7 :

“Not later than 30 days after the date of the enactment of this Act,

the Secretary of Defense shall include the following systems for

realignment under the pilot program to use agile or iterative

development methods pursuant to section 873 of the National

Defense Authorization Act for Fiscal Year 2018.” This represents

a significant cultural shift in how software development and

acquisitions is done in the federal government that affects a large

number of programs. The SecDevOps approach embraces the

congressional act and is being promoted by the Defense

Acquisitions University (DAU)8 with many trainings in place.

Nugroho et al. [12] propose a formula to measure TD

connected to the maintainability of software. No implementation

of this approach is found in the literature. The formula focuses on

the maintainability of software and gives a measurement of how

much effort will be needed in order to repair the amount of TD in

the software. A five-star rating scale is used to describe the

quality of the maintainability in the system with one star

signifying the lowest quality and five stars signifying the highest

quality. TD is measured by multiplying a rework fraction and a

rebuild value. The rework fraction is an estimated percentage of

the number of lines in the code that contribute to the TD. The

rebuild value is the estimated amount of time (in months) that

needs to be spent fixing the TD.

1.2 Contribution

Our position study provides the following contributions: i) a

common link between the operational tactics employed by

adversaries attempting to exploit a software system and the

consequences of CWEs (i.e. technical impacts) and, ii) an

approach to rank attack tactics used by adversaries based on how

similar they are to an attack vector using the Jaccard Similarity

Letouzey and Ilkiewicz [13] use the SQALE method to

estimate the amount of TD in a system based on an ISO quality

model. The quality model uses a stack of eight quality features:

testability, reliability, changeability, efficiency, security,

maintainability, portability, and reusability. These features are

organized in a pyramidal hierarchy where testability is at the
 6 https://www.sonarqube.org/

9 https://github.com/maryeprouty/attack-analysis 7 NDAA Act, June 2018, section 891, sub section 873-874
 8 https://www.dau.mil/

https://www.sonarqube.org/
https://github.com/maryeprouty/attack-analysis
https://www.dau.mil/

Leveraging SecDevOps to Tackle the Technical Debt Associated

with Cybersecurity Attack Tactics
TechDebt’19, May 2019, Montreal, Canada

 3

bottom and reusability at the top. The idea is that concerns at

lower levels need to be addressed first before tackling issues at

higher levels. This is necessary in order to effectively remediate

issues. For example, a part of the code that does not meet a

condition that is associated with testability should be addressed

before one that is associated with maintainability.

capturing adversarial behaviors and it reflects all the phases of the

adversary’s attack lifecycle. It is under the auspices of the

Mitre Corporation and aims to enumerate and categorize post-

compromise adversary tactics, techniques and procedures against

various operating systems. A tactic is at the core of the matrix

and represents a high-level description of an attack behavior.

Each tactic can be broken down into many techniques and

procedures that an attacker may use to compromise a target

system. The matrix has expanded to include other pre-

compromise behaviors as well as mobile devices. It consists of

three core components: i) 11 tactics (denoted by the columns in

Fig. 1. The full matrix can be found in Mitre’s website5), ii)

219 techniques that describe specific approaches used to achieve

a tactical goal, and iii) documented adversarial usage techniques.

The SonarQube6 tool is quite popular amongst the community

because they offer a free download of their framework which is

composed of multiple widgets. One widget implements the

calculation of TD and reports it in terms of days or dollars (i.e.

cost) necessary to repay the debt.

Curtis et al. [14] introduced a way to measure TD that focuses

on converting the amount of TD in code to a dollar amount. The

formula used calculates TD principal by observing should-fix

violations in the code, the estimated number of hours to fix the

should-fix violations, and the estimated cost of labor to do so.

Should-fix violations are classified to be either low-, medium-, or

high-severity, and the formula assigns a higher weight to the

higher severity violations and a lower weight to the lower severity

violations in the formula. The principal is calculated by

multiplying each level of severity by the number of violations that

need to be fixed, the average number of hours it will take to fix

them, and a dollar amount that represents the average cost per

hour for work in IT organizations. A calculation is made for each

level of severity to obtain three values, and the sum of the three

values is used to calculate the TD principal.

3 PILOT STUDY

We perform an attack-analysis simulation study that explores

the landscape of potential techniques used by attackers that can be

observed by operations staff in a SecDevOps environment.

Table 1: Attack tactic dependencies
Tactic Dependency Explanation

Persistence Credential Access This tactic is useful for attackers
wishing to maintain their presence
in the target network even in the
face of loss of credentials

Execution Initial Access
Lateral Movement

An initial foothold into the target
is necessary before adversary-
controlled code and commands
execution. In cases where the
attacker cannot successfully
compromise the system after
initial access, the adversary will
move across the network

Privilege
Escalation

Lateral Movement When attackers cannot gain
privileges within an entry point,
lateral movement is required

Exfiltration Collection An attacker will often need to be
able to first gather the sensitive
data in the system through
“Collection” before it can be
removed from the system

Collection Discovery Adversaries must gain an
understanding of the system before
gathering sensitive data

Command
and Control

Discovery Adversaries first employ discovery
tactics to understand the system
well enough to avoid detection
during control activities

Defense
Evasion

 Adversaries employ this tactic to
remain undetected

Specifically, we populate an attack vector 𝒂⃗⃗ from observed

behaviors and explore how it can relate to Mitre’s CWEs.

However, before computing a similarity score we performed an

analysis of the various dependencies that exist between attack

tactics. Due to the nature of Mitre’s attack tactics, a simple

bipartite graph relating tactics to CWE technical impacts is not

sufficient. By manually examining the relationships between

tactics, a clearer understanding of why and how tactics are used to

exploit CWEs can be drawn. Many of the tactics depend on other

2.2 ATT@CK

The Adversarial Tactics, Techniques, and Common

Knowledge framework is a knowledge base and a model for

Figure 1: A partial view of Mitre’s ATT@CK matrix

TechDebt’19, May 2019, Montreal, Canada Izurieta and Prouty

4

tactics and have temporal precedence before they can be

employed by an attacker. For instance, Execution depends on

Initial Access so that the attacker can gain an initial foothold into

the target network before executing their adversary-controlled

code or commands. Table 1 shows a breakdown of tactics that

are dependent on other tactics before they can be successfully

employed by an attacker. Some dependencies are purely

contextual, as in the case of Privilege Escalation’s dependency on

Lateral Movement – if the attacker can gain privileges in the

initial system, then there is no need to move across the network in

order to employ this tactic. Note that Defense Evasion is not

dependent on any other tactics nor do other tactics depend on it

per se; however, this tactic is often used in parallel with other

tactics.

to connect the detected tactics employed by attackers to the

CWEs associated with source code vulnerabilities. This allows

developers immediate access to TD prioritization based on

operations experiences. Fig. 2 displays the tactic dependencies

graph, and does not illustrate parallel usage of tactics. Future

work could investigate which tactics are most often used in

conjunction with one another. Fig. 3 shows the mapping of

tactics to technical impacts.

Table 2: Technical Impacts associated with CWEs
CWE Technical

Impact
Automatic Static

Analysis
Manual Static

Analysis

Execute
unauthorized code

78, 79, 98, 120, 129, 131,
134, 190, 426, 798, 805

98, 120, 131, 190,
426, 494, 805

Gain privileges,
assume identity

306, 352, 426, 601, 798 259, 306, 352, 426

Read data 78, 79, 89, 129, 131, 134,

352, 426, 798
89, 131, 209, 311,
327, 352, 426

Modify data 78, 89, 129, 131, 190, 352 89, 131, 190, 311,
327, 352

DoS: unreliable
execution

78, 120, 129, 131, 190,
352, 400, 426, 805

120, 131, 190, 352,
426, 805

DoS: resource
consumption

120, 190, 400, 770, 805 120, 190, 805

Bypass protection
mechanism

79, 89, 190, 352, 400,
601, 798

89, 190, 352

Hide activities 78 327

After tactic dependencies were established, we investigated

how tactics employed by adversaries map to technical impacts.

Technical impacts are consequences of CWEs that negatively

affect TD in a target. We can detect CWEs using static analysis

techniques. Automated static analysis (i.e., FxCop 10 and

FindBugs11) helped us detect 18 different CWEs. Manual analysis

helped us identify 14 CWEs. Manual and Automated analysis

overlapped on 9 common CWEs and helped us validate the

automated findings. Table 2 relates the CWE numbers detectable

from static analysis techniques to their technical impacts.

Once the tactic dependencies and the mappings from technical

impacts to CWEs were agreed upon, the following steps were

followed:

1. A file of n randomly simulated attack vectors, each

containing up to m techniques, defined as 𝒂⃗⃗ ij where i = 1..n

and j = 1..m is compared to each of the tactics from the

ATT@CK matrix, Finding a common link between the consequences of CWEs

(i.e., technical impacts) and the tactics that are used to exploit a

software system, allows developers to prioritize the TD associated

with the vulnerabilities being exploited by the attacks. Thus, this

mapping establishes which attack tactics can be used to impact

TD caused by anyone of eight CWE technical impacts.

Traversing from attack tactics to technical impacts provides a way

2. For each attack, the ATT@CK tactics are ranked based on

how similar they are to the simulated attack vector 𝒂⃗⃗ ij using

the Jaccard Similarity (JS) Index ranking system,

3. The graphs are traversed from the top ranked JS tactic to

technical impact; which suggests the CWEs that are most

likely to be at risk of attack based on the attack vector 𝒂⃗⃗ ij.

The tactics dependency graph also points to secondary

potential CWEs.
10 https://www.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/ 4. CWEs describe the source code that requires attention. 11 http://findbugs.sourceforge.net/

Figure 2: Attack Tactics Dependencies

Figure 2. Attack Tactics Dependencies

Figure 3: Mapping of attacker tactics to CWE impacts

Figure 2. Attack Tactics Dependencies

https://www.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/
http://findbugs.sourceforge.net/

Leveraging SecDevOps to Tackle the Technical Debt Associated

with Cybersecurity Attack Tactics
TechDebt’19, May 2019, Montreal, Canada

 5

To use the JS Index, we convert the ATT@CK matrix to csv

format where a 1 represents the partake of a technique in that

tactic and a 0 does not. Attack vectors 𝒂⃗⃗ ij, are generated randomly

where 𝒂⃗⃗ ij = 1 indicates that a technique is used/detected, 𝒂⃗⃗ ij = 0

indicates that a technique is not used/detected, and 𝒂⃗⃗ ij = ?

indicates that a technique is not detectable. We use the ‘?’

symbol in order to simulate cases where a system cannot detect

certain techniques; which is a common occurrence. By using a ‘?’

instead of a 0 in these situations, the algorithm for JS is not

skewed by the system’s inability to detect the techniques, and

instead can compute the closest tactic to the attack vector using

available information. The comparison of a simulated attack

vector 𝒂⃗⃗ ij against a tactic vector 𝒕 ij of the ATT@CK matrix uses

the JS index, which measures the binary overlap between the

attributes of two vectors 𝒂⃗⃗ ij and 𝒕 ij. Equation JS = M11/(M01 + M10

+ M11), where M11 is the total number of attributes where 𝒕 ij, and

𝒂⃗⃗ ij is 1, M01 is the total number of attributes where 𝒕 ij is 0 and 𝒂⃗⃗ ij

is 1, M10 is the total number of attributes where 𝒕 ij is 1 and 𝒂⃗⃗ ij is 0,

and M00 is the total number of attributes where both vectors equal

0, yields a similarity score for any two vectors. Note that for any

two vectors 𝒂⃗⃗ ij and 𝒕 ij, M01 + M10 + M11 + M00 = m.

By using an approach that can quickly map an attack to a

relevant CWE, developers can prioritize much more effectively

and fix the source code responsible for the vulnerability. It is also

our position that the longer a technical impact associated with an

attack goes unattended, the larger the TD interest incurred.

Thus, our approach allows for:

i. addressing PrincipalTD-Security in context, and

ii. reducing the InterestTD-Security because relevant issues are

tackled quickly

6 CONCLUSION AND FUTURE WORK

 In line with our prior conclusions [2], it is our position that

security is a special case because the TD associated with

cybersecurity cannot just be measured in terms of maintainability,

but also in terms of damage to a business. Addressing the TD

needs to occur quickly in context with Ops. SecDevOps allows

developers an opportunity to address TD dynamically. Significant

work remains in terms of industrial and open source studies.

ACKNOWLEDGMENTS

This research is funded by the Construction Engineering Research

Laboratories (CERL), Air Force, and the Department of Defense

through an intermediary partnership with TechLink. Funding is

also provided by NSF grant 1658971.

The simulation algorithm traverses the dependency and

association graphs from the highest ranked tactic to determine

which technical impacts are most at risk of being exploited by this

tactic. Each technical impact has several CWEs associated with it;

thus, an attack vector can be analyzed to determine which CWEs

are most vulnerable to a given attack. This ranking allows

developers to address the TD associated with code vulnerabilities

as a result of real attacks observed by operations staff. Two csv

files are compared, where one is a file of Mitre’s attack tactics

and the other is a file of simulated attack vectors. It ranks the 11

tactics for each simulated attack vector using JS, and then

traverses the graphs to output the most vulnerable CWEs to each

attack. A Swing application provides a visualization of these

graphs for the user to view and interact with.

REFERENCES
[1] A. A. U. Rahman, L. Williams, "Software Security in DevOps: Synthesizing

Practitioners' Perceptions and Practices", Proc. of the 2016 Intl. Workshop on

Continuous Software Evolution and Delivery (CSED), May 2016.

[2] C. Izurieta, D. Rice, K. Kimball, T. Valentien, “A Position Study to Investigate

Technical Debt Associated with Security Weaknesses,” Proc. of the 2018 Int.

Conference on Technical Debt (TechDebt), May 2018.

[3] Software Product Evaluation—Quality Characteristics and Guidelines for Their

Use, ISO/IEC Standard ISO-9126, 1991

[4] “ISO/IEC 25010:2011 Systems and Software Engineering – Systems and

Software Quality Requirements and Evaluation (SQuaRE) – Systm and

Software Quality Models,” Mar. 2011.

[5] S. Wagner, K. Lochmann, L. Heinemann, M. Klas, A. Trendowicz, R. Plosch,

A. Seidi, A. Goeb, and J. Streit, “The Quamoco product quality modelling and

assessment approach.” IEEE, Jun. 2012, pp. 1133–1142.

4 POSITION ON TECHNICAL DEBT [6] M. G. Siavvas, K.C. Chatzidimitriou, A. L. Symeonidis, “QATCH – An

adaptive framework for software product quality assessment,” Journal of

Expert Systems with Applications, Vol. 86, pp. 350-366, Elsevier, Nov. 2017. In the context of SecDevOps environments we are afforded a

unique opportunity to address cybersecurity threats to

computational environments quickly, and the decisions that

developers can make to address the technical debt associated with

said systems are vastly improved because of context – Ops is in

constant communications with Devs. Today, we run static

analysis tools to detect source code disharmonies and to compute

the TD principal associated with source code, but we often run

these tools independently of any other lifecycle phases or Ops,

and many times developers are not aware of the TD in the source

code until they review relevant QA reports. This disconnection

affects the decisions that developers make in terms of prioritizing

which debts to fix first. Executing static analysis tools out of

context does not help operational staff because although first

responders may be able to mitigate an attack, the TD associated

with the relevant source code vulnerabilities may still persist.

[7] I. Griffith, C. Izurieta, and C. Huvaere, “An Industry Perspective to Comparing

the SQALE and Quamoco Software Quality Models,” IEEE ACM 11th

International Symposium on Empirical Software Engineering and

Measurement (ESEM). Toronto, Canada, Nov. 9-10 2017.

[8] P. Jaccard, "Étude comparative de la distribution florale dans une portion des

Alpes et des Jura", Bulletin de la Société Vaudoise des Sciences

Naturelles, 1901, 37: 547–579.

[9] Managing Technical Debt in Software Engineering, Dagstuhl Reports, Vol. 6,

Issue 4, April 17-22, 2016. [Online] Available: dagstuhl.de/16162

[10] E. Tom, A. Aurumn, and R. Vidgen. “An Exploration of Technical Debt,”

Journal of Systems and Software, Vol. 86, Issue 6, pp. 1498-1516, June 2013.

[11] D. Tamburri, Philippe Kruchten, P. Lago, and H. van Vliet. “What is Social

debt in Software Engineering,” CHASE 2013, San Francisco USA.

[12] Nugroho, A.; Visser, J.; Kuipers, T., “An empirical model of technical debt and

interest,” In Proceedings of the 2nd Workshop on Managing Technical Debt

(MTD '11). ACM, New York, NY, USA, 1-8. doi:10.1145/1985362.1985364

[13] J.L. Letouzey and M. Ilkiewicz, “Managing Technical Debt with the SQALE

Method,” IEEE Software Vol. 29, Issue 6, Nov-Dec 2012

[14] B. Curtis, J. Sappidi, and A. Szynkarski. “Estimating the principal of an

application’s Technical Debt,” IEEE Software Software Vol. 29, Issue 6, Nov-

Dec 2012, IEEE doi:10.1109/MS.2012.156

