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This article  presents  experimental  validation  of  a  generalized  equivalent  two-port  model  for  a
magnetoelectric-based  wireless  power  transfer  system  (WPTS)  that  utilizes  a circular  multi-turn  coil  as  a
transmitter,  with  a  focus  on potential  application  to biomedical  implantable  devices.  The  central  objective
of  the  work  is  to investigate  the  performance  of  the  power  delivered  to a  resistive  load  under  uncer-
tainties  in  magnetoelectric  receiver  position  and orientation.  In  addition,  the  effects  of a  non-uniform
applied  magnetic  field  are  considered.  For  the  particular  experimental  system  being  studied,  a maximum
transferred  power  of  4.91  mW  is obtained  at a  distance  of 3 cm  between  the  centers  of the  coil  and
the  magnetoelectric  (ME)  transducer,  in  which  the corresponding  magnetic  flux  density  is 225.8  �T.  As
the  distance  increases  to  6 cm,  the generated  power  drops  to  1.97  mW.  Furthermore,  we find  that  the
output  power  is  proportional  to  the squared  cosine  of the  misorientation  angle,  compared  to the  power
achieved  at  the  nominal  (zero-angle)  position.  Meanwhile,  as expected,  the delivered  power  is less  sen-
sitive  to misalignment  since  the  width  of  the  receiver  is  relatively  small  in  comparison  with  the diameter

of  the  transmit  coil.  In general,  the  power  produced  at the  load  is  a quadratic  function  of  the  effective
magnetic  field  that is projected  onto  the  operating  direction  of  the  ME  laminated  composite  (i.e.,  the
longitudinal  axis  in  this  case).  All  findings  are expected  to  provide  a universal  comprehensive  picture  of
the  dynamics  and  performance  of  the  ME WPTS.  The  presented  device  concept  could  open  an  alternative
pathway  for  powering  implants.

©  2020  Elsevier  B.V.  All  rights  reserved.
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ternet of Things (IoT) for healthcare has received world-
earch effort for many biomedical applications such as
onitoring and therapeutic treatment of dysfunctional
ealthcare activities based on wireless sensor networks
ecure transmission and reception of medical signals both
diagnosis and for real-time observation of health status
ell-known early implant is a cardiac pacemaker, which is
in the heart through surgery to manage irregular rhythm,
ce, tachycardia (too fast) or bradycardia (too slow) [3]. In
ecades, the rapid progress of implantable medical devices
as seen extraordinary growth to have functionality and
g proper for biological implantations [4]. However, almost
so far have been powered by batteries that occupy the
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ncrease the longevity of IMDs, efforts to power the implant
ative contactless means has become more prevalent. Cen-
s ongoing advancement is wireless power transfer (WPT)
hnology that offers not only long-term sustainability but
ter flexibility, reliability, and safety [6,7].
less power transfer system (WPTS) enables the biomedi-
nt by wave transmission through the air and multi-layer
edia. The WPT  methods are generally categorized into
mes, near-field and far-field, depending on the operat-
ency and the transfer distance between the transmitter
ver [8]. In lossy dielectrics (e.g., skin, fat, and muscle), the

aves suffer from significant path loss as a result of high
bsorption [9]. Furthermore, the higher frequency waves
r-field transmission, resulting in higher energy absorption

 tissue, are potentially more harmful to the human body,
e more tightly limited by standard regulations [10–13].
st, near-field systems are more efficient (i.e., lower power

n) in lossy media [14], and therefore are generally more
or bio-implantable applications.
ell-established methods using electromagnetic fields are

 coupled resonators [15,16] and electrodynamic coupling
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Fig. 1. Sche toelectric (ME) transducer as a receiver. The geometric dimensions of the ME
laminated c espectively.
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iform
matic of the WPTS utilizing a circular multi-turn coil as a transmitter and a magne
omposite are included. (x, y, z) and (1, 2, 3) are the global and local coordinates, r

he latter is referred to here as the magneto-mechano-
ME)  mechanism. Each technique has its own  merits and

s. The typical operating frequency of a resonant inductive
(RIC) system is in a range of MHz, which limits the maxi-
wable magnetic flux density (B–field) that can be applied
s. By contrast, MME  devices operate at much lower fre-

 which allow them to be exposed to much higher field
. For instance, the permissible B–field at 1 kHz is ∼300

parison with 0.29 �T at 6.78 MHz, according to [12,13].
, the weak coupling between the magnetic and mechanical
of the MME  resonator, which is realized by the interac-
permanent magnet and the B–field, results in extremely
mission efficiency. In order to overcome the limitations
architectures, in this work, we introduce an alternative
t utilizes a magnetoelectric (ME) transducer as a receiver.
oach manifests a higher coupling than MME  structures
ires lower frequencies than RIC systems; therefore, it is
o transfer energy into an implanted medical device more

y (than MME  transducers) and at higher magnetic fields
) without violating the safety standards.
ctice, the position and orientation of IMDs cannot be per-
trolled. Furthermore, it is almost impossible to generate

 B–field throughout the space from the transmitter to
er. Any variations in the receiver location may  lead to a
t drop in the delivered power, making it insufficient for

 the IMDs. Thus, comprehending the effects of the field
rmity, device misalignment and misorientation is essen-

e influences were thoroughly investigated for RIC and
power transmission systems [19,20]. However, there has
uch a study on the ME  WPTS in the literature. Addressing
e concerns is the central objective of the article.
evious work [21], we presented in detail a two-port model
ceiver (a ME  transducer), with an assumption that the

B–field is ideally uniform along the length of the lami-
posite. To verify the model predictions, a Helmholtz coil

ed as a transmitter, and the ME  resonator was located at
. In contrast, in this paper, the developed model is further
ed and validated for the case where a non-uniform mag-

 is employed. By making use of a circular multi-turn coil
smitter, the effects of the coil geometry on the distribu-
e B–field now cannot be disregarded. Understanding the
nce of a complete structure that takes into account the

 of both transmitting and receiving sides is important to
 optimal system and bridge the gap between ideal oper-

 realistic scenarios. With the aim to power low-power
onics, we treat the actual transferred power as a key fac-

 investigation, while leaving the transfer efficiency open
r consideration.
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ent from a RIC architecture, in which the magnetic energy
ed on the principle of Faraday’s law of induction, a ME

the mech
tion facto
frequenc
impedan
Simplified equivalent circuit model for free-free ends configuration.

st converts the magnetic waves to mechanical vibrations
the interaction between the field and magnetostrictive

 The kinetic energy is then transformed into electrical
t the final stage of conversion due to the piezoelectric
e overall ME  coupling is dependent on not only the

geometry but also the intrinsic properties of materials
is characteristic could provide more degrees of freedom
ucer design and optimization in order to achieve a given
ower.

 shows the WPTS that is under consideration, in which
nsducer is utilized as a receiver while a circular multi-
is a transmitter. The ME  laminate used for this study is
d of one PZT layer placed in between two  Galfenol layers,
ogether by a conductive adhesive. The magnetostrictive
is magnetized in the length direction while the piezoelec-

 is poled in the thickness axis. The geometric dimensions
 generator are defined as in the figure; L, w, tm and tp are

 length, width, and thicknesses of the two  phases. (x, y, z)
stem global coordinates while the material local axes are

as (1, 2, 3). The positive z–axis is coming out of the coil
ards the ME  laminate. The transmitter can be modeled

 coil that uses the current density instead of the current
rder to eliminate the number of turns.

 an external AC magnetic field (H–field) applied along
is, a strain is induced inside the magnetostrictive mate-
h is then transferred to the piezoelectric layer through
ing interfaces. As a consequence, the entire composite

 vibrates along the length direction, which is also the
 3 and 1 of the magnetostrictive and piezoelectric phases,
ely. Since the magnetization and polarization vectors are
l with the 3−direction, Galfenol and PZT operates in the
nal (d33,m) and transversal (d31,p) coupling. The power
n capability of the ME  WPTS is evaluated by measuring the
cross a resistor that is connected to the output terminals

 receiver.
quivalent circuit model of the free-free configuration is

 Figure 2, which was  derived and experimentally validated
der the condition that the applied magnetic flux density
. Here, F0 = �mH0 cos(ωt) is the equivalent force input to
anical domain where �m is the magneto-elastic transduc-
r. The excitation magnetic field is sinusoidal with angular
y ω, Hac = H0 cos(ωt). We  denote Z and b as the mechanical
ce and damping coefficient, respectively. �p is the elec-
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nical transduction factor, C0 is the nominal capacitance
zoelectric resonator, and V is the voltage generated on

or RL.
odel parameters are given by
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s the interface coupling coefficient representing the strain
e transferred to the piezoelectric material from the mag-

tive layers,

tm
, 0 < n < 1, (5)

 A2 = tmw, A = (tp + 2tm)w, (6)

(
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33

)−1
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. (8)

itions of the material properties are as follows. �p and �m

nsities of the piezoelectric and magnetostrictive phases,
ely. sE

11 – elastic compliance of the piezoelectric material
stant electric field. d31,p – transverse piezoelectric charge

 �T
33 – dielectric permittivity under constant stress. �S

33 –
ity component at constant strain with the plane-stress
on of a thin narrow beam (i.e., �S

33 = �T
33 − d2

31,p/sE
11). sH

33
compliance of the magnetostrictive material at constant

 field. d33,m – piezomagnetic constant. �T
33,m – magnetic

ility at constant stress.
 on the derivations presented in [21], the two-port model
eneralized for the case of a non-uniform external mag-

 and an arbitrary position of the ME  receiver. The complex
e of the open-circuit voltage, RL → +∞, is determined as

�m〈H0〉
jω(Z + b) + �K

(9)

K  = �2
p/C0 and 〈H0〉 is the effective H–field amplitude.

 Hi as the projection of the total magnetic field acting on
esimal mass element mi onto the length direction of the

 composite, 〈H0〉 is then averaged over the entire volume
gnetostrictive material,

N∑
i=1

Hi (10)
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e subscript {3} denotes the local coordinate of both piezo-
nd magnetostrictive phases, and Z = jωZ is a real function
ve frequency ω,

n
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�sH
33

)
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v
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. (12)

ependent of the applied magnetic field, but it is a function
ing frequency.
wer delivered to the load is derived as

2
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 C0RL is the electrical time constant, and

N∑
i=1

H2
i . (14)

g equations (9), (11) and (13) are the main objectives of
e, taking into account the effects of non-uniform H–field,
t and orientation.

imental validations

rimental setup

 3 shows the complete electrical setup to evaluate the
ower of the ME  WPTS. A single-coil, connected to an E&I
ower amplifier, is used as a transmitter that generates a

 field as a means of power transmission. The receiver is a
ated composite, consisting of one PZT-5A and two TdVib

layers. The two materials are bonded together by EPO-TEK
onductive epoxy. Two rectangular K&J neodymium mag-
placed above and below the ME  transducer to produce a
etic field (as a bias) for its operation. The drive frequency
ower input to the transmitter are controlled by a Tek-

nction generator. The output voltage is measured with a
 10 M
 probe and collected by a Tektronix oscilloscope.

ments, the average transferred power is determined by

T
V2(t)

RL
dt (15)

t) is the waveform taken over a sampling period of time T .
e open-circuit operation, RL → +∞ and P → 0. A 10–M

used for approximating the open-circuit output voltage.
odel parameters are extracted from [21] and are listed in
This same set of constants is utilized to validate all fol-
ses. The damping coefficient is computed from a damped

 oscillation of the measured open-circuit voltage. The
 coupling, which relates the strain transfer between the
es (magnetostrictive and piezoelectric), is estimated by
e predicted anti-resonance frequency to its experimental

-circuit voltage and magnetoelectric coefficient

E  coefficient, ˛ME, is the most widely used factor for

g the performance of a ME  transducer as it shows the
ation between the induced electric field and the applied

 field. While ˛ME is a material-oriented criterion, the
uit output voltage is the actual physical parameter that



4 B.D. Truong, E. Andersen, C. Casados et al. / Sensors and Actuators A 316 (2020) 112269

Fig. 3. Sketch of the electrical setup for measuring the power transferred to the load, including the e
close-up  view.
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ven in [18], operating an electromechanical-based WPTS
i-resonance frequency together with the corresponding
oad is the most convenient method to approach the power
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nted in Figure 4. A magnetic field sensor (model MC110A)

 measure the B–field amplitude generated by the trans-
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be neglec
xperimental prototypes of the transmitting coil, the ME  receiver and its

 f = f1. The obtained results are f1 = 70.47 kHz, B0 = 240.5
ax{V∞} = 10.10 V. Note that, the impedance of the trans-
s a function of frequency. Hence, given the same source
he input current decreases with respect to the increase of
ting frequency, which hence reduces the B–field strength.
, for the particular transmitter and frequency range in use,
t can be neglected. In the simulations, the same value of

loyed and V∞ is calculated as V∞ = |V̂∞| with V̂∞ given
e measured capacitance of the PZT layer is C0 = 2.95 nF.
rison between the experiments and predictions shows
greement. The frequency performance of the ME  coeffi-
cluded in the same figure, in which a max{˛ME} = 41.17
−1 is attained at the anti-resonance frequency.

er to investigate the alteration of V∞ over the change of the
istance between the transmitter and receiver, we first use
ical model of a thick coil to generate a map of the mag-
d strength along the coil centerline (x, y, z) = (0, 0, z).
el is reliable for further studies as it was both numeri-

 experimentally validated [22,23]. This method relaxes the
for the precise measurements of the H–field with a large
of sampling points (i.e., N in (10)) over a short distance
hich is challenging to implement due to the large size of
etic field sensor (MC110A). A summary of the theoretical

ion developed in [23] is presented in Appendix A.
ing  equation (18) for the transmitter and receiver geome-
able 1, we find that, given the same z, the variation of the

 field in the longitudinal direction, Hz(x, y, z), is negligi-
∈ [x − w/2, x + w/2] and y∗ ∈ [y − t/2, y + t/2] where

t is the total thickness of the ME  laminate. In other
m

z(x∗, y∗, z) ≈ Hz(x, y, z). Meanwhile, at the same x and y,
niformity along the z–axis is more significant and cannot
ted, Hz(x, y, z∗) /=  Hz(x, y, z) for z∗ ∈ [z − L/2, z + L/2].
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Table  1
Coil  parameters, material properties and magnetoelectric transducer geometries.

Parameters Value

Transmitter

Inner radius, r1 7.78, cm
Outer radius, r2 8.35, cm
Lower height, z1 −1.65, mm
Upper height, z2 1.65, mm
Number of turns, Nc 9
Wire diameter, dw 1.291, mm

PZT-5A4E

Elastic constant, YE
11 66, GPa

Elastic compliance, sE
11 1/YE

11, m2/N
Piezoelectric constant, d31,p −190 × 10−12, m/V
Dielectric permittivity, �T

33/�0 1800
Mass density, �p 7800 kg/m3

TdVib Galfenol

Elastic constant, YH
33 40, GPa

Elastic compliance, sH
33 1/YH

33, m2/N
Piezomagnetic coefficient, d33,m 7.77 × 10−9, Wb/N
Magnetic permeability, �T

33,m/�0 100
Mass density, �m 7800, kg/m3

Receiver Geometry

PZT thickness, tp 1.02, mm
Galfenol thickness (each layer), tm 370, �m
Total thickness, t0 = tp + 2tm 1.76, mm
Laminated composite width, w 10, mm
Laminated composite length, L 20, mm

Mechanical characteristics

Damping coefficient, b 4.22, Ns/m
Interface coupling, � 62.2%
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 the analytical model of a thick coil.

, for the sake of simplification, we only consider the
f the H–field with respect to z without compromising the
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 5 shows the profile of the magnetic flux density strength
he current flowing into the transmitter coil (I in (18))
d, such that the simulation and experimental results of

 3 cm are identical. Figure 6 presents the influence of
niform magnetic field on the open-circuit output volt-
effective H–field amplitude 〈H0〉 is averaged over the
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 obtained in Figure 5. The operating frequency is at the
nance frequency, f = f1. The experimental and simulation
arked by solid red dot and blue square, respectively) are in
ement. In addition, we observe that V∞ can also be antic-
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n in Figure 6.

sferred power

ost important goals of the paper are to validate equation
o assess the maximum power transferred of the ME  WPTS

e effects of the field non-uniformity, misalignment, and
tation. These concerns are to be addressed in this section.
ing the principle of impedance matching to optimize the

 power, the load resistance is varied to experimentally
e its optimum, as shown in Figure 7. The drive frequency
the anti-resonance frequency f1. Under a B–field ampli-

= 225.8 �T, a maximum output power of max{P} = 4.91
etween the experimental and predicted data is negligibly
r a low coupling between the magnetic and mechanical

 RL−opt is isolated from the impedance of the thick coil.
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erall, are in good agreement. The discrepancy observed
ht-hand side of the figure could be due to the imperfect
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hat, the model is still able to capture the main essence of
dered system. Note that, at x = 0, the corresponding power
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 10 shows an experimental setup for evaluating the effects
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ent radii 

nominal 

comparis
cts of alignment on the output power with respect to the lateral position
e distance between the transmitter and receiver centers is z = 4 cm.  The
litude at x = 0 cm is B0 = 197.2 �T.

s rotated about the global coordinate x at its origin Ot. An
ntal example with � = 20◦ is depicted. The relative loca-
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, such that the DC bias field strength is kept unchanged
e measurement.

 consider a magnetic field vector that is oriented with
is, Hz. The effective H–field acting on the magnetostric-
rial, which is a projection of Hz onto the length direction
nsducer, is given by

os �. (16)

 the power delivered to the load at the nominal position
0) as P0, based on equations (13) and (16), the generated
r an arbitrary angle can be written as

os �)2. (17)

rent that, P� → P0 as � → 0 and P� → 0 if � → �/2 (or 90◦

tly). The accuracy of the prediction by (17) is presented
 11, in which the measured and simulated data are nearly

 for all � ∈ [0, �/2]. In this case, the nominal power is
 mW,  attained at z = 3 cm.  Since the ratio P�/P0 is only
t on �, and not z, equation (17) is simple but efficient to

e the behavior of the induced power with respect to the
tation angle.

ssion

 validity of the complete system model has been demon-
n previous sections, we proceed with further analysis.
t influence of the transmitter geometry and configuration
nerated power are of interest. In particular, attempts to
e effects of the field non-uniformity and the misorienta-
heoretically considered.

J
�

∫ r2

r1

∫ ϕ2

ϕ1

∫ z2

z1

(r̃ −  r cos ϕ̃)r̃

(r2 + r̃
2

− 2rr̃ cos ϕ̃ + (z − z̃)
2
)
3/2

dr̃d ϕ̃dz̃

 J = I
(z2 − z1)(r2 − r1)

. (18)

 12 shows the change of the power delivered to the load
of the transmitting coil, rc/2, rc and 2rc where rc is the
radius of the coil currently in use in experiments. For this
on, the (effective) input current I is altered accordingly
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Fig. 10. Experimental setup used for investigating the effects of the orientation between the longitudinal direction of the ME transducer and the centerline of the transmit
coil. The ME  laminate is rotated about the x−axis while Ot is kept fixed.

Fig. 11. Effects of the orientation of the receiver to the transmitter on the out-
put  power. The transmitter-to-receiver distance is z = 3 cm.  At � = 0, the B–field
amplitude  is B0 = 225.8 �T.

Fig. 12. Effects of coil radius on the power delivered to the load with respect to the
transfer distance z, assuming perfect alignment and orientation, x = y = 0, � = 0.
P|z=0 are identical for all three cases, and rc = (r1 + r2)/2 = 8.07 cm.

Fig. 13. Comparison of transferred power for different coil radii with the same arbi-
trary input current, characterized by the ratio P/Pr where Pr is the output power of
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Fig. 14. Combined influences of both the transfer distance and orientation on
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