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ABSTRACT
We study ranked enumeration of join-query results accord-
ing to very general orders defined by selective dioids. Our
main contribution is a framework for ranked enumeration
over a class of dynamic programming problems that gener-
alizes seemingly di↵erent problems that had been studied
in isolation. To this end, we extend classic algorithms that
find the k-shortest paths in a weighted graph. For full con-
junctive queries, including cyclic ones, our approach is op-
timal in terms of the time to return the top result and the
delay between results. These optimality properties are de-
rived for the widely used notion of data complexity, which
treats query size as a constant. By performing a careful cost
analysis, we are able to uncover a previously unknown trade-
o↵ between two incomparable enumeration approaches: one
has lower complexity when the number of returned results
is small, the other when the number is very large. We theo-
retically and empirically demonstrate the superiority of our
techniques over batch algorithms, which produce the full re-
sult and then sort it. Our technique is not only faster for
returning the first few results, but on some inputs beats the
batch algorithm even when all results are produced.
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1. INTRODUCTION
Joins are an essential building block of queries in rela-

tional and graph databases, and recent work on worst-case
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optimal joins for cyclic queries renewed interest in their e�-
cient evaluation [73]. Part of the excitement stems from the
fact that conjunctive query (CQ) evaluation is equivalent to
other key problems such as constraint satisfaction [61] and
hypergraph homomorphism [38]. Similar to [73], we consider
full conjunctive queries, yet we are interested in ranked enu-
meration, recently identified as an important open problem
[22]: return output tuples in the order determined by a given
ranking function. Here success is measured not only in the
time for total result computation, but the main challenge lies
in returning the top-ranked result(s) as quickly as possible.

We share this motivation with top-k query evaluation [55],
which defines the importance of an output tuple based on
the weights of its participating input tuples. However, many
top-k approaches, including the famous Threshold Algo-
rithm [36], were developed for a middleware-centric cost
model that charges an algorithm only for accesses to ex-
ternal data sources, but does not take into account the cost
associated with potentially huge intermediate results. We
want optimality guarantees in the standard RAM-model of
computation for (1) the time until the first result is returned
and (2) the delay between results.

Example 1 (4-cycle query). Let w be a function that
returns the real-valued weight of a tuple and consider 4-cycle
query QC4 over R1(A1, A2), R2(A2, A3), R3(A3, A4), and
R4(A4, A1) with at most n tuples each:

SELECT R1.A1, R2.A2, R3.A3, R4.A4
FROM R1, R2, R3, R4
WHERE R1.A2=R2.A2 AND R2.A3=R3.A3 AND

R3.A4=R4.A4 AND R4.A1=R1.A1
ORDER BY w(R1) + w(R2) + w(R3) + w(R4) ASC
LIMIT k

One can compute the full output with a worst-case optimal
join algorithm such as NPRR [73] or Generic-Join [74]
and then sort it. Since the fractional edge cover number ⇢⇤

of QC4 is 2, it takes O(n2) just to produce the full output [9].
On the other hand, the Boolean version of this query (“Is

there any 4-cycle?”) can be answered in O(n1.5) [69]. Our
approach returns the top-ranked 4-cycle in O(n1.5) as well.
This is remarkable, given that determining the existence of
a 4-cycle appears easier than finding the top-ranked 4-cycle
(we can use the latter to answer the former). After the top-
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ranked 4-cycle is found, our approach continues to return
the remaining results in ranked order with “minimal” delay.

We develop a theory of optimal ranked enumeration over
full CQs. It reveals deeper relationships between recent work
that only partially addresses the problem we are considering:
Putting aside the focus on twig patterns [26] and subgraph
isomorphism [90], graph-pattern ranking techniques can in
principle be applied to conjunctive queries. An unpublished
paper [33] that was developed concurrently with our work
o↵ers a recursive solution for ranked enumeration. All this
prior work raises the question of how the approaches are re-
lated and whether they can be improved: Can time complex-
ity of the top-k algorithm by Chang et al. [26] be improved
for large k and is it possible to extend it to give optimal-
ity guarantees for cyclic queries? For [60, 90], how can the
worst-case delay be reduced? Is it possible to reduce the
complexity of [33] for returning the first few results and can
one close the asymptotic gap between the time complexity
for returning the top-ranked result and the complexity of
the corresponding Boolean query for simple cycles?

It is non-trivial to answer the above questions, because
those approaches blend various elements into monolithic so-
lutions, sometimes reinventing the wheel in the process.

Key contributions. We identify and formally model the
underlying structure of the ranked enumeration problem for
conjunctive queries and then solve it in a principled way:

(1) For CQs that are paths, we identify and formalize the
deeper common foundations of problems that had been stud-
ied in isolation: k-shortest path, top-k graph-pattern re-
trieval, and ranked enumeration over joins. While interest-
ing in its own right, uncovering those relationships enables
us to propose the first algorithms with optimal time com-
plexity for ranked enumeration of the results of both cyclic
and acyclic full CQs. In particular, the top-ranked output
tuple of an acyclic join query is returned in time linear in
input size. For cyclic queries this complexity increases with
the submodular width (subw) of the query [69], which is cur-
rently the best known for Boolean queries. Delay between
consecutive output tuples is logarithmic in k.

(2) To achieve optimality, we make several technical con-
tributions. First, for path CQs we propose a new algorithm
Take2 that has lower time complexity for returning the
top-k results than all previous work but Eppstein’s algo-
rithm [35], whose practical performance is unknown. Take2
matches the latter and has the added benefit that it can be
generalized to arbitrary acyclic queries.1 Second, to gener-
alize k-shortest path algorithms to arbitrary acyclic CQs,
we introduce ranked enumeration over Tree-based Dynamic
Programming (T-DP), a variant of Non-Serial Dynamic Pro-
gramming (NSDP) [20]. Third, we propose Union of T-DP
problems (UT-DP), a framework for optimally incorporat-
ing in our approach all existing decompositions of a cyclic
CQ into a union of trees. Thereby, any decomposition of
a full CQ that achieves optimality for the Boolean version
of the query will result in an optimal algorithm for ranked
enumeration over full CQs in our framework.
(3) Ranked enumeration over path CQs forms the back-

bone of our approach, therefore we analyze all techniques
for this problem in terms of both data and query com-
plexity. This is complemented by the first empirical study

1
This generalization is unknown for Eppstein and it would be

challenging due to the complex nature of that algorithm.

that directly compares landmark results on ranked enumer-
ation from diverse domains such as k-shortest paths, graph-
pattern search, and CQs. Our analysis reveals several in-
teresting insights: (i) In terms of time complexity the best
Lawler-type [65] approaches are asymptotically optimal for
general inputs and dominate the Recursive Enumeration Al-
gorithm (REA) [33, 57]. (ii) Since REA smartly reuses com-
parisons, there exist inputs for which it produces the full
ordered output with lower time complexity than Lawler; it
is even faster than sorting! Our experiments verify this be-
havior and suggest that Lawler-type approaches should be
preferred for small k, but REA for large k. Thus we are
the first to not only propose di↵erent approaches, but also
reveal that neither dominates all others, both in terms of
asymptotic complexity and measured running time. (iii)
Even though our new Take2 algorithm has lower complex-
ity than Lazy [26], in our environment it is often not the
winner because it su↵ers from higher constant factors.

Further information is available on the project web page
at https://northeastern-datalab.github.io/anyk/.

2. FORMAL SETUP
We use Nj

i to denote the set of natural numbers {i, . . . , j}.
For complexity results we use the standard RAM-model
of computation that charges O(1) per data-element access.
Reading or storing a vector of i elements therefore costs
O(i). In line with previous work [19, 43, 73], we also as-
sume the existence of a data structure that can be built
in linear time to support tuple lookups in constant time.
In practice, this is virtually guaranteed by hashing, though
formally speaking, only in an expected, amortized sense.

2.1 Conjunctive Queries
Our approach can be applied to any join query, includ-

ing those with theta-join conditions and projections, but
we provide optimality results only for full CQs [73] and
hence focus on them. A full CQ is a first-order formula
Q(x) = (g1 ^ · · · ^ g`), written Q(x) :� g1(x1), . . . , g`(x`) in
Datalog notation, where each atom gi represents a relation
Ri(xi) with di↵erent atoms possibly referring to the same
physical relation, and x =

S
i xi is a set of m attributes.

The size of the query |Q| is the size of the formula. We
use n to refer to the maximal cardinality of any input re-
lation referenced in Q. Occurrence of the same variable in
di↵erent atoms encodes an equi-join condition. A CQ can
be represented by a hypergraph with the variables as the
nodes and the atoms as the hyperedges; acyclicity of the
query is defined in terms of the acyclicity of the associated
hypergraph [42]. A Boolean conjunctive query just asks for
the satisfiability of the formula. We use QB to denote the
Boolean version of Q. To avoid notational clutter and with-
out loss of generality, we assume that there are no selection
conditions on individual relations.

Example 2 (`-path and `-cycle queries). Let
Ri(A,B), i 2 N`

1, be tables containing directed graph edges
from A to B. A length-` path and a length-` cycle can
respectively be expressed as:

QP `(x) :�R1(x1, x2), R2(x2, x3), . . . , R`(x`, x`+1)

QC`(x) :�R1(x1, x2), R2(x2, x3), . . . , R`(x`, x1).

We often represent an output tuple as a vector of those
input tuples that joined to produce it, e.g., (r1, r2, r3, r4) 2
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R1 ⇥ R2 ⇥ R3 ⇥ R4 for 4-path query QP4. We refer to this
vector as the result witness.

2.2 Ranked Enumeration Problem
We want to order the results of a full CQ based on the

weights of their corresponding witnesses. For maximal gen-
erality, we define ordering based on selective dioids [41],
which are semirings with an ordering property:

Definition 3 (Semiring). A monoid is a 3-tuple
(W,�, 0̄) where W is a non-empty set, � : W ⇥ W ! W
is an associative operation, and 0̄ is the identity element,
i.e., 8x 2 W : x � 0̄ = 0̄ � x = x. In a commutative
monoid, � is also commutative. A semiring is a 5-tuple
(W,�,⌦, 0̄, 1̄), where (W,�, 0̄) is a commutative monoid,
(W,⌦, 1̄) is a monoid, ⌦ distributes over �, i.e., 8x, y, z 2

W : (x � y) ⌦ z = (x ⌦ z) � (y ⌦ z), and 0̄ is absorbing for
⌦, i.e., 8a 2 W : a⌦ 0̄ = 0̄⌦ a = 0̄.

Definition 4 (Selective dioid). A selective dioid is a
semiring for which � is selective, i.e., it always returns one
of the inputs: 8x, y 2 W : (x� y = x) _ (x� y = y).

Note that � being selective induces a total order on W
by setting x  y i↵ x � y = x. We define result weight as
an aggregate of input-tuple weights using ⌦:

Definition 5 (Tuple Weights). Let w be a weight
function that maps each input tuple to some value in W
and let Q(x) :�R1(x1), . . . , R`(x`) be a full CQ. The weight
of a result tuple r is the weight of its witness (r1, . . . , r`),
ri 2 Ri, i 2 N`

1, defined as w(r) = w(r1)⌦ · · ·⌦ w(r`).

Recall Example 1 where we rank output tuples by the sum
of the weights of the corresponding input tuples, i.e., the
weight of (r1, . . . , r`) is

P`
i=1 w(ri). We achieve this by using

the selective dioid (R1,min,+,1, 0) with R1 = R [ {1}

that is also called the tropical semiring.
The central problem in this paper is the following:

Definition 6 (Ranked enumeration). Given a query
Q over an input database D, selective dioid (W,�,⌦, 0̄, 1̄),
and weight function w as defined above, a ranked enumer-
ation algorithm returns the output of Q on D according to
the total order induced by �.

We refer to algorithms for ranked enumeration over the
results of a CQ as any-k algorithms. This conforms to our
previous work [90] and reflects the fact that the number of
returned results need not be set apriori.

Generality. Our approach supports any selective dioid,
including less obvious cases such as lexicographic ordering
where two output tuples are first compared on their R1 com-
ponent, and if equal then on their R2 component, and so on.
For this to be well-defined, there must be a total order on
the tuples within each relation. Without loss of general-
ity, assume this total order is represented by the natural
numbers, such that input tuple r has weight w0(r) 2 N.
For the selective dioid, we set W = N`, i.e., each tuple
weight is an `-dimensional vector of integers. Input tuple
rj 2 Rj has weight w(rj) = (0, . . . , 0, w0(rj), 0, . . . , 0) with
zeros except for position j that stores the “local” weight
value in Rj . Operator ⌦ is standard element-wise vector
addition, therefore the weight of a result tuple with witness

(r1, . . . , r`) is (w0(r1), . . . , w
0(r`)). To order two such vec-

tors, � implements element-wise minimum, e.g., for ` = 2,
(a, b)� (c, d) = (a, b) i↵ w0(a) < w0(c) or w0(a) = w0(c) and
w0(b) < w0(d). The 0̄ and 1̄ elements of the dioid are `-
dimensional vectors (1, . . . ,1) and (0, . . . , 0), respectively.

We will present our approach for the tropical semiring
(R1,min,+,1, 0). Generalization to other selective dioids
follows immediately from the fact that the only algebraic
properties that are used in our derivations are those men-
tioned in Definitions 3 and 4. Note that addition over real
numbers has an inverse, hence (R1,+, 0) is a group, not
just a monoid. This simplifies the algorithm somewhat, but
our main result (Theorem 13) holds even without the inverse
with some minor subtleties (see the full version [87]).

2.3 Determining Optimality
An any-k algorithm should return the first result as soon

as possible, then the next results with minimal delay. We
therefore ask “how long does it take to return the k top-
ranked results, for any value of k?” and use TT(k) and
MEM(k) to denote time and space complexity, respectively,
to produce the k top results. We will pay particular at-
tention to the special cases of time-to-first (TTF = TT(1))
and time-to-last (TTL = TT(|out|)), where out denotes the
output of the query. In line with most previous work on
worst-case optimal join algorithms and decompositions of
cyclic queries, we measure asymptotic cost in terms of data
complexity [88], i.e., treat query size |Q| as a constant. The
exception is the in-depth analysis of ranked enumeration al-
gorithms for path CQs (Section 4.3), where including query
complexity reveals interesting di↵erences.

Consider full CQ Q over input relations with at most n
tuples. It takes O(n) just to look at each input tuple and
O(k) to output k result tuples, establishing ⌦(n + k) as a
lower bound for TT(k). Since we also require the output to
be sorted and sorting k items has complexity ⌦(k log k), we
consider a ranked enumeration algorithm to be optimal if
it satisfies TT(k) = O(n + k log k).2 For acyclic CQs, this
TT(k) optimality target is realistic, because the well-known
Yannakakis algorithm [92] computes the full (unsorted) out-
put in time O(n+ |out|).

For cyclic CQs, Ngo et al. [73] argue that the join result
cannot be computed in O(n + |out|) and propose the no-
tion of worst-case optimal (WCO) join algorithms, whose
computation time is O(n + |outWC|). Here, |outWC| is the
maximum output size of query Q over any possible database
instance, which is determined by the AGM bound [9]. WCO
join algorithms are thus not sensitive to the actual output
size of the query on a given database instance. Abo Khamis
et al. [5] argue for a stronger, output-sensitive notion of op-
timality based on the width ! of a decomposition of a cyclic
CQ Q into a set Q of acyclic CQs covering Q.3 The input
relations of the acyclic CQs in Q are derived from the orig-
inal input and have cardinality O(n!) for ! � 1 ideally as
small as possible. LetA be such a decomposition-based algo-
rithm and let T (A) denote its time complexity for creating
decomposition Q. By applying the Yannakakis algorithm
to the acyclic queries in Q, cyclic query Q can be evalu-
ated in time O(T (A)+ |out|) and its Boolean version QB in

2
To be precise, sorting may add less than k log k overhead if one

can replace generic comparison-based sorting with an algorithm that

exploits structural relationships between weights of input and output

tuples. However, this is not possible for all inputs and k values.
3
The union of their output equals the output of Q.
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O(T (A)). The current frontier are decompositions based on
the submodular width ! = subw(Q) [69], which is considered
a yardstick of optimality for full and Boolean CQs [5].

We adopt this notion of optimality and, arguing similar to
the acyclic case, we say that ranked enumeration over a full
CQ is optimal if TT(k) = O(T (A)+k log k). Intuitively, this
ensures that ranked enumeration adds “almost no overhead”
compared to unranked enumeration, because outputting k
results would take at least ⌦(k).

3. PATH QUERY AND ITS CONNECTION
TO DYNAMIC PROGRAMMING (DP)

We formulate optimal ranked enumeration for path
queries as a Dynamic Programming (DP) problem, then
generalize to trees and cyclic queries. Following common
terminology, we use DP to denote what would more pre-
cisely be called deterministic serial DP with a finite fixed
number of decisions [21, 29, 30]. These problems have a
unique minimum of the cost function and DP constructs a
single solution that realizes it. Formally, a DP problem has a
set of states S, which contain local information for decision-
making [21]. We focus on what we will refer to as multi-stage
DP. Here each state belongs to exactly one of ` > 0 stages,
where Si denotes the set of states in stage i, i 2 N`

0. The
start stage has a single state S0 = {s0} and there is a ter-
minal state s`+1 which we also denote by t for convenience.
At each state s of stage i, we have to make a decision that
leads to a state s0 2 Si+1. We use E ✓

S`
i=0(Si ⇥ Si+1) for

the set of possible decisions.
DP is equivalent to a shortest-path problem on a corre-

sponding weighted graph, in our case a (` + 2)-partite di-
rected acyclic graph (DAG) [21, 30], where states correspond
to nodes and decisions define the corresponding edges. Each
decision (s, s0) is associated with a cost w(s, s0), which de-
fines the weight of the corresponding edge in the shortest-
path problem.4 By convention, an edge exists i↵ its weight
is less than 1.

We now generalize the path definition from Example 2
and show that ranked enumeration over this query can be
modeled as an instance of DP. Consider

Q0
P `(x,y) :�R1(y1,x2), R2(x2,y2,x3), . . . , R`(x`,y`,x`+1),

allowing multiple attributes in the equi-join conditions and
additional attribute sets yi that do not participate in joins.
This query can be mapped to a DP instance as follows: (1)
atom Ri corresponds to stage Si and each tuple in Ri maps
to a unique state in Si, (2) there is an edge between s 2 Si

and s0 2 Si+1 i↵ the corresponding input tuples join and
the edge’s weight is the weight of the tuple corresponding
to s0, (3) there is an edge from s0 to each state in S1 whose
weight is the weight of the corresponding R1-tuple, and (4)
each state in S` has an edge to t of weight 0. Clearly, there is
a 1:1 correspondence between paths from s0 to t and output
tuples of Q0

P `, and path “length” (weight) equals output-
tuple weight. Hence the k-th heaviest output tuple corre-
sponds to the k-shortest path in the DP instance.

Example 7 (Cartesian product). We use the prob-
lem of finding the minimum-weight output of Cartesian

4
We use cost and weight interchangeably. Cost is more com-

mon in optimization problems, weight in shortest-path problems. We

sometimes use “lightest path” in order to emphasize that all paths

have the same number of nodes, but di↵er in their weights.

s0 “2”

“3”

“1”

“20”

“30”

“10”

“200”

“300”

“100”

t =

s4

S1 S2 S3S0 S4

3

2

1

10 100

0

0

0
20

3
0

200

3
0
0

20

30

1
0

20
0

300

1
0
0

Figure 1: DP instance for Example 7.

product R1 ⇥ R2 ⇥ R3 as the running example. Let
R1 = {“1”, “2”, “3”}, R2 = {“10”, “20”, “30”} and R3 =
{“100”, “200”, “300”} and set tuple weight equal to tuple la-
bel, e.g., tuple “20” in R2 has weight w(“20”) = 20. Fig. 1
depicts how this problem translates into our framework.

A solution to the DP problem is a sequence of ` states
⇧ = hs1 . . . s`i that is admissible, i.e. (si, si+1) 2 E, 8i 2 N`

0.
The objective function is the total cost of a solution,

w(⇧) =
X̀

i=0

w(si, si+1), (1)

and DP finds the minimal-cost solution ⇧1. The index de-
notes the rank, i.e., ⇧k is the k-th best solution.

Principle of optimality. [15, 16] The core property of
DP is that a solution can be e�ciently derived from solu-
tions to subproblems. In the shortest-path view of DP, the
subproblem at any state s 2 Si is the problem of finding the
shortest path from s to t. With ⇧1(s) and ⇡1(s) denoting
the shortest path from s and its weight respectively, DP is
recursively defined for all states s 2 Si, i 2 N`+1

0 by

⇡1(s) = 0 for terminal s 2 S`+1

⇡1(s) = min
(s,s0)2E

{w(s, s0) + ⇡1(s
0)}, for s 2 Si, i 2 N`

0.
(2)

The optimal DP solution is ⇡1(s0), i.e., the weight of the
lightest path from s0 to t. For convenience we define the
set of optimal paths reachable from s according to Eq. (2)
as Choices1(s) = {s � ⇧1(s

0) | (s, s0) 2 E}. Here � denotes
concatenation, i.e., si � hsi+1 . . . s`i = hsi si+1 . . . s`i.

Example 8 (continued). Consider state “2” in Fig. 2.
It has three outgoing edges and ⇡1(“2”) is computed as the
minimum over these three choices. The winner is path “2”�
⇧1(“10”) of weight 112. Similarly, ⇧1(“10”) is found as
“10” �⇧1(“100”), and so on.

Equation (2) can be computed for all states in time
O(|S|+ |E|) bottom-up, i.e., in decreasing stage order from
` + 1 to 0. Consider stage Si: To compute Choices1(s) for
state s 2 Si, the algorithm retrieves all edges (s, s0) 2 E
from s to any state s0 2 Si+1, looks up ⇡1(s

0), and keeps
track of the minimal total weight w(s, s0) + ⇡1(s

0) on-the-
fly. (If no such edge is found, then the weight is set to
1.) When computing ⇡1(s), the algorithm also adds point-
ers to keep track of optimal solutions. E.g., in Fig. 2 entry
“2” � ⇧1(“30”) at state “2” would point to the minimum-
weight choice “30” � ⇧1(“100”) at state “30”. This way
the corresponding paths can be reconstructed by tracing the
pointers back “top-down” from ⇡1(s0) [21]. Notice that DP
needs only the pointer from the top choice at each state, but
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!! ∘ Π"("1"):	111
!! ∘ Π"("2"):	112
!! ∘ Π"("3"):	113

"2" ∘ Π"("10"):	112
"2" ∘ Π"("20"):	122
"2" ∘ Π"("30"):	132

"3" ∘ Π"("10"):	113
"3" ∘ Π"("20"):	123
"3" ∘ Π"("30"):	133

"20" ∘ Π"("100"):	120
"20" ∘ Π"("200"):	220
"20" ∘ Π"("300"):	320

"30" ∘ Π"("100"):	130
"30" ∘ Π"("200"):	230
"30" ∘ Π"("300"):	330

"1" ∘ Π"("10"):	111
"1" ∘ Π"("20"):	121
"1" ∘ Π"("30"):	131

"10" ∘ Π"("100"):	110
"10" ∘ Π"("200"):	210
"10" ∘ Π"("300"):	310

s0 "2"

"3"

"10"

"20"

"30"

"1"

Figure 2: Excerpt from Fig. 1, showing Choices1(s) for
some states s. Term s � ⇧1(s

0) : w denotes a choice, which
is a path from s, and its weight w = w(s, s0) + ⇡1(s

0).

adding the others is “free” complexity-wise, which we later
use for ranked enumeration.

Whenever the bottom-up phase determines ⇡1(s) = 1

during the evaluation of Eq. (2), then that state s and all its
adjacent edges can be removed without a↵ecting the space
of solutions. We use Si ✓ Si and E ✓ E to denote the
remaining sets of states and decisions, respectively. This
DP algorithm corresponds to variable elimination [31] on
the tropical semiring [39, 78] and is reminiscent of the semi-
join reductions by Yannakakis [92], which corresponds to DP
with variable elimination on the Boolean semiring [2].

Encoding equi-joins e�ciently. For an equi-join, the
shortest-path problem has O(`n) states and O(`n2) edges,
therefore the DP algorithm has quadratic time complexity
in the number of tuples. We reduce this to O(`n) by an
equi-join specific graph transformation illustrated in Fig. 3.
Consider the join between R1 and R2, representing stages
S1 and S2, respectively. For each join-attribute value, the
corresponding states in R1 and R2 form a fully connected
bipartite graph. For each state, all incoming edges have the
same weight, as edge weight is determined by tuple weight.
Hence we can represent the subgraph equivalently with a sin-
gle node “in-between” the matching states in S1 and S2, as-
signing zero weight to the edges adjacent to states in S1 and
the corresponding tuple weight to those adjacent to a state
in S2. The transformed representation has onlyO(`n) edges.
At its core, our encoding relies on the conditional indepen-
dence of the non-joining attributes given the join attribute
value, a property also exploited in factorized databases [75].
Here we provide a di↵erent perspective on it as a graph
transformation that preserves all paths.

4. ANY-K ALGORITHMS FOR DP
We defined a class of DP problems that can be described

in terms of a multi-stage DAG, where every solution is equiv-
alent to a path from s0 to t in graph (S =

S`+1
i=0 Si,E). Hence

we use terminology from DP (solution, state, decision) and
graphs (path, node, edge) interchangeably.
In addition to the minimum-cost path, ranked enumera-

tion must retrieve all paths in cost order. Let ⇧k(s) be the
kth-shortest path from s to t and ⇡k(s) its cost. The asymp-
totically best k-shortest-paths algorithm was proposed by
Eppstein [35], yet it is not the best choice for our use case.
In the words of its author, it is “rather complicated”, thus it
is unclear how to extend it from path to tree queries. Since
our DP problems are only concerned with multi-stage DAGs
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(1,f)
"1" we0

0
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Figure 3: Equi-join from O(n2) representation to O(n).

(Eppstein targets more general graphs), we propose a sim-
pler and easier-to-extend algorithm, Take2, that guarantees
the same complexity as Eppstein.5

Below we explore algorithms that fall into two categories.
The first appeared in various optimization contexts as meth-
ods that partition the solution space and trace their roots to
Lawler [65] and Murty [70], including recent work on sub-
graph isomorphism [26]. We call this family anyK-part;
it includes Take2. The second finds the k-shortest paths
in a graph via recursive equations [34, 57]. We refer to the
application of this idea to our framework as anyK-rec.

4.1 Repeated Partitioning DP (ANYK-PART)

4.1.1 The Lawler Procedure and DP
Lawler [65] proposed a procedure for ranked enumera-

tion by repeatedly partitioning the solution space, which can
be applied to any optimization problem over a fixed set of
variables, not only DP. In our problem, there is one vari-
able per stage and it can take any state in that stage as a
value. Lawler only assumes the existence of a method best
that returns the optimal variable assignment over any space
S0
1 ⇥ · · ·⇥ S0

`, where 8i : S0
i ✓ Si.

The top-ranked solution hs⇤1 . . . s
⇤
` i is obtained by execut-

ing best on the unconstrained space S1 ⇥ · · ·⇥ S`. To find
the second-best solution, Lawler creates ` disjoint subspaces
such that subspace i has the first i� 1 variables fixed to the
top-ranked solution’s prefix hs⇤1 . . . s

⇤
i�1i and the i-th vari-

able restricted to Si � {s⇤i }. Then it applies best to each of
these subspaces to find the top solution in each. The second-
best overall solution is the best of these ` subspace solutions.
The procedure continues analogously by generating the cor-
responding subspaces for the second-best solution, adding
them to a priority queue of candidates.

Chang et al. [26] showed that the kth-ranked solution
hs1 . . . s`i is the output of best on some subspace

P = {s1}⇥· · ·⇥ {sr�1}⇥ (Sr � Ur)⇥ Sr+1 ⇥· · ·⇥ S`, (3)

with Ur being a set of states excluded from Sr. The new
candidates to be added to the candidate set for the (k+1)st

result are the results obtained by executing best on the
following `� r + 1 subspaces:

Pr = {s1}⇥· · ·⇥ {sr�1}⇥ (Sr�Ur�{sr})⇥ Sr+1 ⇥· · ·⇥ S`

Pr+1={s1}⇥· · ·⇥ {sr�1}⇥ {sr}⇥ (Sr+1�{sr+1})⇥· · ·⇥ S`

...
P` = {s1}⇥· · ·⇥ {sr�1}⇥· · ·⇥ {s`�1}⇥ (S`�{s`}).

5
Implementations of “Eppstein’s algorithm” exist, but they seem

to implement a simpler variant with weaker asymptotic guarantees

that was also introduced in [35].
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E�cient computation. Instead of calling best from
scratch on each subspace, we propose to exploit the structure
of DP. Consider any subspace P as defined in Eq. (3). Since
prefix hs1 . . . sr�1i is fixed, we need to find the best su�x
starting from state sr�1. In the next stage Sr, only states
that are not in exclusion set Ur can be selected, i.e., the set
of choices at sr�1 is restricted by Ur. Formally,

best(P ) = hs1 . . . sr�1si �⇧1(s), where (4)

s = arg min
s02Sr�Ur

{w(sr�1, s
0) + ⇡1(s

0)|

sr�1 �⇧1(s
0) 2 Choices1(sr�1)}, (5)

therefore Eq. (5) can be solved using only information that
was already computed by the standard DP algorithm. Note
that all elements in a choice set other than the minimum-
weight element are often referred to as deviations from the
optimal path.

Example 9 (continued). After returning ⇧1(s0) =
h“1” “10” “100”i, Lawler would solve three new optimiza-
tion problems to find the second-best result. The first sub-
space is the set of paths that start at s0, but cannot use
state “1”. The second has prefix h“1”i and cannot use
state “10”. The third has prefix h“1” “10”i and cannot
use state “100”. The best solution to the first subproblem
is h“2” “10” “100”i, corresponding to deviation s0 � ⇡1(“2”)
of weight 112. For the second subproblem, the best result is
found similarly as the second-best option “1” � ⇡1(“20”) =
h“1” “20” “100”i. For the third subproblem, the best sub-
space solution h“1” “10” “200”i is obtained analogously at
state “10”.

4.1.2 The ANYK-PART family of algorithms
We propose a generic template for anyK-part algorithms

and show how all existing approaches and our novel Take2
algorithm are obtained as specializations based on how
the Lawler-created subspace candidates are managed. All
anyK-part algorithms first execute standard DP, which
produces for each state s the shortest path ⇧1(s), its weight
⇡1(s), and set of choices Choices1(s). The main feature
of anyK-part is a set Cand of candidates: it manages the
best solution(s) found in each of the subspaces explored so
far. To produce the next result, the anyK-part algorithm
(Algorithm 1) (1) removes the lightest candidate from the
candidate set Cand, (2) expands it into a complete solution,
and (3) adds all new candidates found in the correspond-
ing subspaces to Cand. We implement Cand using a priority
queue with combined logarithmic time for removing the top
element and inserting a batch of new candidates.

Example 10 (continued). The standard DP algorithm
identifies h“1” “10” “100”i as the shortest path and gener-
ates the choice sets as shown in Fig. 2. Hence Cand ini-
tially contains only candidate (hs0i, “1”, 0, 1 + 110 = 111)
(Line 6), which is popped in the first iteration of the repeat-
loop (Line 7), leaving Cand empty for now. The for-loop
(Line 11) is executed for stages 1 to ` = 3. For stage 1,
we have tail = s0 and last = “1”. For the successor func-
tion (Line 15), there are di↵erent choices as we discuss in
more detail in Section 4.1.3. For now, assume Succ(x, y)
returns the next-best choice at state x after the previous
choice y. Hence the successor of “1” at state s0 is “2”. As
a result, newCandidate is set to (hs0i, “2”, 0, 2 + 110)—it is
the winner for the first subspace—and added to Cand. Then

Algorithm 1: anyK-part

1 Input: DP problem with stages S1, . . . , S`

2 Output: solutions in increasing order of weight

3 Execute standard DP algorithm to produce for each state s:
⇧1(s), ⇡1(s), and Choices1(s)

4 //Initialize candidate set with top-1 result hs⇤1 . . . s⇤` i
5 //A candidate consists of 4 fields: prefix hs1 . . . sr�1i,

lastState sr, prefixWeight w(hs1 . . . sr�1i), and

choiceWeight w(sr�1, sr) + ⇡1(sr).
6 Cand.add([hs⇤0i, s

⇤
1 , 0, w(s⇤0 , s

⇤
1) + ⇡1(s

⇤
1)])

7 repeat

8 //Pop the candidate with the lowest sum of prefixWeight

and choiceWeight. Let that be

[hs1 . . . sr�1i, sr, w(hs1 . . . sr�1i), w(sr�1, sr) + ⇡1(sr)]
9 solution = Cand.popMin()

10 //Complete the partial solution with the optimal su�x

and generate new candidates in all subspaces.

11 for stages from r to ` do

12 //Expand the prefix to the next stage. The tail of a

prefix is its last element. Succ(x, y) returns an

appropriate subset of Choices1(x).
13 tail = solution.prefix.tail

14 last = solution.lastState

15 for s 2 Succ(tail, last) do

16 newCandidate = (solution.prefix, s,
solution.prefixWeight, w(tail, s) + ⇡1(s))

17 Cand.add(newCandidate)

18 //Update solution by appending the last state to the

prefix.

19 solution.prefix.append(last)

20 solution.prefixWeight.add(w(tail, last))

21 s0 = argmins00{w(last, s00) + ⇡1(s
00
) | last � ⇧1(s

00
) 2

Choices1(last)}

22 solution.lastState = s0

23 solution.choiceWeight = w(last, s0) + ⇡1(s
0
)

24 output solution

25 until query is interrupted or Cand is empty

the solution is expanded (Line 19) to (hs0 “1”i, “10”, 1, 10+
100), because “10” is the best choice from “1”. The next
iteration of the outer for-loop (Line 11) adds candidate
(hs0 “1”i, “20”, 1, 20 + 100) to Cand and updates the solu-
tion to (hs0 “1” “10”i, “100”, 11, 100). The third and final
iteration adds candidate (hs0 “1” “10”i, “200”, 11, 200) and
updates the solution to (hs0 “1” “10” “100”i, t, 111, 0), which
is returned as the top-1 result.

At this time, Cand contains entries (hs0i, “2”, 0, 112),
(hs0 “1”i, “20”, 1, 120), and (hs0 “1” “10”i, “200”, 11, 200).
Note that each is the shortest path in the correspond-
ing subspace as defined by the Lawler procedure. Among
the three, (hs0i, “2”, 0, 112) is popped next, because it
has the lowest sum of prefix-weight (0) and choice-
weight (112). The first new candidate created for it is
(hs0i, “3”, 0, 113), followed by (hs0 “2”i, “20”, 2, 120), and
(hs0 “2” “10”i, “200”, 12, 200). At the same time, the so-
lution is expanded to (hs0 “2” “10” “100”i, t, 112, 0).

4.1.3 Instantiations of ANYK-PART
The main design decision in Algorithm 1 is how to manage

the choices at each state and how to implement successor-
finding (Line 15) over these choices.

Strict approaches. A natural implementation of the suc-
cessor function returns precisely the next-best choice.

Eager Sort (Eager): Since a state might be reached re-
peatedly through di↵erent prefixes, it may pay o↵ to pre-sort
all choice sets by weight and add pointers from each choice
to the next one in sort order. Then Succ(x, y) returns the
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next on	choices1("2")
"2" ∘ Π!("10"):	110
"2" ∘ Π!("20"):	120
"2" ∘ Π!("30"):	130
"2" ∘ Π"("10"):	210

“2”

“30”

“20”

“10”

next on	choices2("2")
"2" ∘ Π!("20"):	120
		"2" ∘ Π!("30"):	130
"2" ∘ Π"("10"):	210
"2" ∘ Π"("20"):	220

next on	choices3("2")
"2" ∘ Π!("30"):	130
		"2" ∘ Π"("10"):	210
"2" ∘ Π"("20"):	220
"2" ∘ Π"("30"):	230

next on	choices4("2")
"2" ∘ Π"("10"):	210
		"2" ∘ Π"("20"):	220
"2" ∘ Π"("30"):	230
"2" ∘ Π#("10"):	310

Figure 4: Example 11: Recursive enumeration at state “2”.

next-best choice at x in constant time by following the next-
pointer from y.

Lazy Sort (Lazy): For lower pre-processing cost, we can
leverage the approach Chang et al. [26] proposed in the con-
text of graph-pattern search. Instead of sorting a choice set,
it constructs a binary heap in linear time. Since all but one
of the successor requests in a single repeat-loop execution
are looking for the second-best choice6, the algorithm al-
ready pops the top two choices o↵ the heap and moves them
into a sorted list. For all other choices, the first access pop-
ping them from the heap will append them to the sorted list
that was initialized with the top-2 choices. As the algorithm
progresses, the heap of choices gradually empties out, filling
the sorted list and thereby converging to Eager.

Relaxed approaches. Instead of finding the single true
successor of a choice, what if the algorithm could return
a set of potential successors? Correctness is guaranteed, as
long as the true successor is contained in this set or is already
in Cand. (Adding potential successors early to Cand does
not a↵ect correctness, because they have higher weight and
would not be popped from Cand until it is “their turn.”) This
relaxation may enable faster successor finding, but inserts
candidates earlier into Cand.

All choices (All): This approach is based on a construc-
tion that Yang et al. [90] proposed for any-k queries in the
context of graph-pattern search. Instead of trying to find
the true successor of a choice, all but the top choice are re-
turned by Succ. While this avoids any kind of pre-processing
overhead, it inserts O(n) potential successors into Cand.

Take2: We propose a new approach that has better
asymptotic complexity than any of the above. Intuitively,
we want to keep pre-processing at a minimum (like All),
but also return a few successors fast (like Eager). To this
end, we organize each choice set as a binary heap. In this
tree structure, the root node is the minimum-weight choice
and the weight of a child is always greater than its parent.
Function Succ(x, y) (Line 15) returns the two children of y
in the tree. Unlike Lazy, we never perform a pop opera-
tion and the heap stays intact for the entire operation of
the algorithm; it only serves as a partial order on the choice
set, pointing to two successors every time it is accessed. Also
note that the true successor does not necessarily have to be a
child of node y. Overall, returning two successors is asymp-
totically the same as returning one and heap construction
time is linear [29], hence this approach asymptotically dom-
inates the others.

6
During each execution of the repeat-loop, only the first iteration

of Line 11 looks for a lower choice.
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Figure 5: Pointers between solutions from and to “2”.

4.2 Recursive Enumeration DP (ANYK-REC)
anyK-rec relies on a generalized principle of optimal-

ity [68]: if the k-th path from start node s0 goes through
s 2 S1 and takes the js-lightest path ⇧js(s) from there,
then the next lightest path from s0 that goes through s will
take the (js +1)-lightest path ⇧js+1(s) from there. We will
refer to the prototypical algorithm in this space as Recur-
sive [57]. Recall that lightest path ⇧1(s0) from start node
s0 is found as the minimum-weight path in Choices1(s0).
Assume it goes through s 2 S1. Through which node does
the 2nd-lightest path ⇧2(s0) go? It has to be either the
2nd-lightest path through s, of weight w(s0, s) + ⇡2(s), or
the lightest path through any of the other nodes adjacent to
s0. In general, the k-th lightest path ⇧k(s0) is determined
as the lightest path in some later version Choicesk(s0) =
{s0 � ⇧js(s) | (s0, s) 2 E} of the set of choices, for appro-
priate values of js. Let ⇧k(s0) = s0 � ⇧js0 (s

0). Then the
(k + 1)st solution ⇧k+1(s0) is found as the minimum over
the same set of choices, except that s0 � ⇧js0+1

(s0) replaces

s0 � ⇧js0 (s
0). To find ⇧js0+1

(s0), the same procedure is ap-

plied recursively at s0 top-down. Intuitively, an iterator-style
next call at start node s0 triggers a chain of ` such next calls
along the path that was found in the previous iteration.

Example 11 (continued). Consider node “2” in
Fig. 1. Since it has adjacent states “10”, “20”, and “30”
in the next stage, the lightest path ⇧1(“2”) is selected from
Choices1(“2”) = {“2” � ⇧1(“10”), “2” � ⇧1(“20”), “2” �

⇧1(“30”)} as shown in Fig. 2. The first next call on state
“2” returns “2” � ⇧1(“10”), updating the set of choices for
⇧2(“2”) to {“2” �⇧2(“10”), “2” �⇧1(“20”), “2” �⇧1(“30”)}
as shown in the left box in Fig. 4. The subsequent next
call on state “2” then returns “2” � ⇧1(“20”) for ⇧2(“2”),
causing “2” � ⇧1(“20”) in Choices2(“2”) to be replaced by
“2” �⇧2(“20”) for Choices3(“2”); and so on.

As the lower-ranked paths starting at various nodes in
the graph are computed, each node keeps track of them for
producing the results as shown in Fig. 5. For example, the
pointer from ⇧1(“2”) to ⇧1(“10”) at node “10” was created
by the first next call on “2”, which found “2” �⇧1(“10”) as
the lightest path in the choice set. For details see [87].

4.3 Any-k DP Algorithm Complexity
In contrast to the discussion in Section 2.3, which focused

on data complexity and treated query size as a constant,
we now include query size in the analysis to uncover more
subtle performance tradeo↵s between the di↵erent any-k ap-
proaches. Since each input relation has at most n tuples, the
DP problem has O(`n) nodes, each with at most n outgoing
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Algorithm TT(k) TTL for |out| = ⌦(`n) TTL for |out| = ⇥(n`
) MEM(k)

Recursive O(`n + k` logn) O(|out|` logn) O(n`
(logn + `)) O(`n + k`)

Take2 O(`n + k(log k + `)) O(|out|(log |out| + `)) O(n`
· ` logn) O(`n + k`)

Lazy O(`n + k(log k + ` + log n)) O(|out|(log |out| + `)) O(n`
· ` logn) O(`n + k`)

Eager O(`n logn + k(log k + `)) O(|out|(log |out| + `)) O(n`
· ` logn) O(`n + k`)

All O(`n + k(log k + `n)) O(|out|(log |out| + `)) O(n`
· ` logn) O(`n + min{kn, |out|}`)

Batch O(`n + |out|(log |out| + `)) O(|out|(log |out| + `)) O(n`
· ` logn) O(`n + |out|`)

Figure 6: Complexity of ranked-enumeration algorithms for equi-joins. Best performers in each column are colored in green.

edges. Based on our equi-join construction (Fig. 3), it is
easy to see that the total number of edges is |E| = O(`n).
For simplicity we make the following assumptions: (1) the
maximum arity of a relation is bounded by a constant, thus
|Q| = `, and (2) the operations � and ⌦ of the selective dioid
over which the ranking function is defined take � = O(1)
time to execute. It is straightforward to extend our analysis
to scenarios where those assumptions do not hold. Note that
(2) holds for many practical problems, e.g., tropical semiring
(R1,min,+,1, 0), but not for lexicographic ordering where
weights are `-dimensional vectors and hence � = O(`). With
Batch, we refer to an algorithm that sorts the full output
produced by the Yannakakis algorithm [92].

4.3.1 Time to First
All any-k algorithms first execute DP to find the top result

and create all choice sets in time O(`n). Eager requires
O(`n log n) for sorting of choice sets. Heap construction for
Lazy and Take2 takes time linear in input size.

4.3.2 Delay
Each algorithm requires O(`) to assemble an output tuple.

In addition, the following costs are incurred:
anyK-rec. In Recursive each next call on s0 triggers

O(`) next calls in later stages—at most one per stage. The
call deletes the top choice at the state and replaces it with
the next-heavier path through the same child node in the
next stage (see Fig. 4). With a priority queue, these op-
erations together take time O(log n) per state accessed, for
a total delay of O(` log n) between consecutive results. In
total, it takes O(`n+ k` log n) to produce the top k results.
The resulting TTL bound ofO(`n+|out|·` log n) can be loose
because it does not take into account that in later iterations
many next calls will stop early because the corresponding
su�xes ⇧i had already been computed by an earlier call:

Theorem 12. There exist DP problems where Recur-
sive has strictly lower TTL complexity than Batch.

An example are problems with near-worst-case output size
⇥(n`) such as the Cartesian product [87]. The lower TTL
of Recursive is at first surprising, given that Batch is
optimized for bulk-computing and bulk-sorting the entire
output. Intuitively, Recursive wins because it exploits the
multi-stage structure of the graph—which enables the re-use
of shared path su�xes—while Batch uses a general-purpose
comparison-based sort algorithm. We leave as future work
a more precise characterization of graph properties that en-
sure better TTL for Recursive over Batch.
anyK-part. For all anyK-part algorithms, popMin and

bulk-insertion of all new candidates during result expan-
sion take O(log |Cand|). For e�cient candidate generation
(Line 15 in Algorithm 1) the new candidates do not copy
the solution prefix, but simply create a pointer to it. There-
fore, a new candidate is created in O(1).

Eager finds each successor in constant time. Since
|Cand|  k`, its total delay is O(log(k`) + `) = O(log k + `).
For Lazy, in the first iteration of the main for-loop (Al-
gorithm 1, Line 11), finding the successor (Line 15) re-
quires at most one pop on a heap storing O(n) choices. All
later iterations find the successor in constant time. Hence
total delay is O(log k + ` + log n). The All algorithm
might insert up to `n new candidates to Cand for each re-
sult produced. Hence access to Cand after producing k re-
sults takes a total of O(log(k`n)). All together, delay is
O(log k+log `+log n+ `n) = O(log k+ `n). Finally, Take2
finds up to two successor candidates of a choice in constant
time. Delay therefore is O(log k + `). It is easy to see that
all these algorithms have worst-case TTL of O(n`

· ` log n),
the same as Batch (refer to [90] for All).

4.3.3 Memory
All algorithms need O(`n) memory for storing the input.

The memory consumption of anyK-part approaches de-
pends on the size of Cand. All grows Cand by O(`n) ele-
ments in each iteration, but creates at most |out| candidates
in total. The others create only O(`) new candidates per it-
eration, thus MEM(k) = O(`n + k`). For Recursive, size
of a choice set Choicesk(s) is bounded by the out-degree of
s, hence cannot exceed n. However, we need to store the
su�xes ⇧i(s) produced by the algorithm, whose number is
O(`) per iteration, thus MEM(k) = `n + k`. Batch first
materializes the output and then sorts it in-place, therefore
has MEM(k) = O(`n+ |out|`), regardless of k.

4.3.4 Summary
Figure 6 summarizes the analysis for TT(k), for TTL

where the output is su�ciently big (so that result-
enumeration time dominates pre-processing time), for TTL
on worst-case outputs where we can see the advantage of
Recursive, and for memory MEM(k). Setting k = 1 in the
TT(k) column, we observe that all any-k algorithms except
Eager have optimal TTF = O(`n). In contrast, Batch
has to sort the full output in O(|out| log |out|). Eager and
Take2 have the lowest delay O(log k + `). Only our new
algorithm Take2 achieves optimal TT(k) (Section 2.3).

While Recursive has higher delay than Take2, Lazy,
and Eager, it has the lowest TTL for a worst-case-size out-
put. This seemingly paradoxical result stems from the fact
that as Recursive outputs results, it builds up state (rank-
ing of su�xes) that speeds up computation for later results.
Hence even though its delay complexity is tight for small
k, our amortized accounting showed that it ultimately must
achieve lower delay for large k.

All any-k algorithms but All require minimal space, de-
pending only on input size and the number of iterations k
times query size `. All has higher memory demand because
it overloads the candidate set early, while Batch material-
izes the complete output.
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Figure 7: Tree-Based DP (T-DP) problem structure.
Rounded rectangles are stages, small circles are states.

5. EXTENSION TO GENERAL CQS
We extend our ranked enumeration framework from serial

to Tree-Based DP (T-DP), and then to a Union of T-DPs
(UT-DP). This enables optimal ranked enumeration of ar-
bitrary conjunctive queries.

5.1 Tree-Based DP (T-DP)
We first consider problems where the stages are organized

in a rooted tree with S0 = {s0} as the root stage. In these
problems, there is a distinct set of decisions for each parent-
child pair. Figure 7 depicts an example with 10 stages.
We assume that all leaf stages contain only one (terminal)
state7, thus every root-to-leaf path represents an instance of
serial DP as discussed in Sections 3 and 4. We now extend
our approach to Tree-based DP problems (T-DP) and adapt
all any-k algorithms accordingly. Due to space constraints,
only the main ideas are discussed; for details see [87].

A T-DP solution is a tree with one state per stage. For
the bottom-up phase, we serialize the stages by assigning a
tree order that places every parent before its children, e.g.,
by a topological sorting of the tree. The optimal solution
is then computed bottom-up by following the serial order
of the stages in reverse. Each subproblem corresponds to
finding an optimal subtree and it is solved by computing
the optimal decision in each branch independently.

To enumerate lower-ranked results, we need to extend the
path-based any-k algorithms. This is straightforward for
anyK-part algorithms by simply following the serialized
order of the stages. Intuitively, the ith stage in this tree
order is treated like the ith stage in the path problem, except
that the sets of choices are determined by the actual parent-
child edges in the tree. For illustration, assume a tree order
as indicated by the stage indices in Figure 7. Given a prefix
hs1s2s3i, the choices for s4 2 S4 are not determined by s3
(as they would be for a path with stages S1, S2,. . . ), but
by s1 2 S1, because S1 is the parent of S4 in the tree. This
means that we can run Algorithm 1 unchanged as long as we
define the successor function Succ based on the parent-child
relationships in the tree. Hence the complexity analysis in
Section 4.3 still applies as summarized in Figure 6.
Unfortunately, for anyK-rec the situation appears more

challenging, because each state processes a next call by re-
cursively calling next on its children. The challenge is to
combine the lower-ranked solutions from the children and
to rank these combinations e�ciently. For example, con-
sider a state s1 2 S1 with children S2 and S4. A solution
rooted at s1 consists of two parts: one solution rooted at the
first child S2 and the other at S4. Suppose this solution con-
tains the 2nd-best path from S2 and the 3rd-best path from
S4—[⇧2,⇧3] for short. Then the next-best solution from s1

7
Artificial stages can be introduced to meet this assumption.

could be either [⇧3,⇧3] or [⇧2,⇧4]. Since any combination
of child solutions [⇧j1 ,⇧j2 ] is valid for the parent, the prob-
lem is essentially to rank the Cartesian product space of
subtree solutions. This produces duplicates when directly
applying the recursive algorithm [33], or requires a di↵er-
ent approach such as anyK-part for this Cartesian product
problem to avoid duplicates. We adopt the latter approach.
As a result, anyK-rec behaves similar to the (path) DP
case for nodes with a single child, but similar to anyK-
part when encountering branches. In the extreme case of
star queries (where a root stage is directly connected to all
leaves), Recursive degenerates to an anyK-part variant.

5.2 DP over a Union of Trees (UT-DP)
We define a union of T-DP problems as a set of T-DP

problems where a solution to any of the T-DP problems is
a valid solution to the UT-DP problem. Thus, we are given
a set of u functions F =

�
f (i)

 
, each defined over a solution

space ⇧(i), i 2 Nu. The UT-DP problem is then to find the
minimum solution across all T-DP instances.

Changes to ranked enumeration. The necessary
changes to any of our any-k algorithms are now straight-
forward: We add one more top-level data structure Union
that maintains the last returned solution of each separate
T-DP algorithm in a single priority queue. Whenever a so-
lution is popped from Union, it gets replaced by the next
best solution of the corresponding T-DP problem.

5.3 Cyclic Queries
Recent work on cyclic join queries indicates that a promis-

ing approach is to reduce the problem to the acyclic case
via a decomposition algorithm [43]. Extending the notion of
tree decompositions for graphs [79], hypertree decomposi-
tions [46] organize the relations into “bags” and arrange the
bags into a tree [80]. Each decomposition is associated with
a width parameter that captures the degree of acyclicity in
the query and a↵ects the complexity of subsequent evalua-
tion: smaller width implies lower time complexity. Our ap-
proach is orthogonal to the decomposition algorithm used and
it adds ranked enumeration capability virtually “for free.”

The state-of-the-art decomposition algorithms rely on the
submodular width subw(Q) of a query Q. Marx [69] de-
scribes an algorithm that runs in O(f(|Q|)n(2+�)subw(Q)) for
� > 0 and a function f that depends only on query size.
Panda [5] runs in O(f1(|Q|)nsubw(Q)(log n)f2(|Q|)) for query-
dependent functions f1 and f2. Since this is an active re-
search area, we expect these algorithms to be improved and
we believe our framework is general enough to accommo-
date future decomposition algorithms. Su�cient conditions
for applicability of our approach and for achieving optimal
delay are, respectively, (1) the full output of Q is the union
of the output produced by the trees in the decomposition
and (2) the number of trees depends only on query size |Q|.
Both are satisfied by current decompositions and it is hard
to imagine how this would change in the future.

We can execute any decomposition algorithm almost as
a blackbox to create a union of acyclic queries to which
we then apply our UT-DP framework. However, there are
subtle challenges: For correctness, we have to (1) properly
compute the weights of tuples in the bags (i.e., tree nodes)
and (2) deal with possible output duplicates when a decom-
position creates multiple trees. For (1), we slightly modify
the decomposition algorithm to track the lineage for bags at
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the schema level: We only need to know from which input
relation a tuple originates and if that relation’s weight val-
ues had already been accounted for by another bag that is
a descendent in the tree structure.

For (2), note that if all output tuples have distinct weights,
then an output tuple’s duplicates will be produced by our
any-k algorithm one right after the other, making it trivial
to eliminate them on-the-fly. Since the number of trees de-
pends only query size |Q|, total delay induced by duplicate
filtering is O(1) (data complexity). When di↵erent output
tuples can have the same weight, we break ties using lexico-
graphic ordering on their witnesses [87].

Simple cycles. For `-cycle queries QC` we use the stan-
dard decomposition [4, 80], which was pioneered by Alon
et al. [8] in the context of graph-pattern queries. It does
not produce output duplicates and achieves O(n2�1/d`/2e)
for TTF. On the other hand, for a worst-case optimal join
algorithm such as NPRR [73] or Generic-Join [74], TTF is
O(n`/2). We show in [87] that those algorithms can indeed
not be modified to overcome this problem.

5.4 Putting everything together
Our main result follows from the above analysis when us-

ing Take2 for the acyclic CQ base case:

Theorem 13. Given a decomposition algorithm A that
takes time T (A) and space S(A), ranked enumeration of
the results of a full conjunctive query can be performed with
TT(k) = O(T (A)+ k log k) and MEM(k) = O(S(A)+ k) in
data complexity.

6. EXPERIMENTS
Since asymptotic complexity only tells part of the story,

we compare all algorithms in terms of actual running time.
Algorithms. All algorithms are implemented in the same

Java environment and use the same data structures for the
same functionality. We compare: (1) Recursive represent-
ing the anyK-rec approach, (2) Take2, (3) Lazy [26], (4)
Eager, (5) All [90] representing the anyK-part approach,
and (6) Batch, which computes the full result using the
Yannakakis algorithm [92] for acyclic queries andNPRR [73]
for cyclic queries, both followed by sorting.
Queries. We explore paths, stars, and simple cycles over

binary relations. The SQL queries are listed in the full ver-
sion [87]. A path is the simplest acyclic query, making it
ideal for studying core di↵erences between the algorithms.
The star represents a typical join in a data warehouse and by
treating it as a single root (the center) with many children,
we can study the impact of node degree. The simple cycles
apply our decomposition method as described in Section 5.3.
Synthetic data. Our goal for experiments with synthetic

data is to create input with regular structure that allows
us to identify and explain the core di↵erences between the
algorithms. For path and star queries, we create tuples with
values uniformly sampled from the domain Nn/10

1 . That way,
tuples join with 10 others in the next relation, on average.
For cycles, we follow a construction by [73] that creates a
worst-case output: every relation consists of n/2 tuples of
the form (0, i) and n/2 of the form (i, 0) where i takes all the

values in Nn/2
1 . Tuple weights are real numbers uniformly

drawn from [0, 10000].
Real Data. We use two real networks. In Bitcoin OTC

[62, 63], edges have weights representing the degree of trust

Dataset Nodes Edges Max/Avg Degree Weights

Bitcoin [62, 63] 5,881 35,592 1,298 / 12.1 Provided

TwitterS [94] 8,000 87,687 6,093 / 21.9 PageRank

TwitterL [94] 80,000 2,250,298 22,072 / 56.3 PageRank

Figure 8: Datasets used for experiments with real data.

between users. Twitter [94] edges model followership among
users. Edge weight is set to the sum of the PageRanks [23]
of both endpoints. To control input size, we only retain
edges between users whose IDs are below a given threshold.
Since the cycle queries are more expensive, we run them on a
smaller sample (TwitterS) than the path queries (TwitterL).
Figure 8 summarizes relevant statistics. Note that the size
of our relations n is equal to the number of edges.

Implementation details. All algorithms are imple-
mented in Java and run on an Intel Xeon E5-2643 CPU
with 3.3Ghz and 128 GB RAM with Ubuntu Linux. Each
data point is the median of 200 runs. We initialize all data
structures lazily when they are accessed for the first time.
For example, in Eager, we do not sort the Choices set of a
node until it is visited. This can significantly reduce TT(k)
for small k, and we apply this optimization to all algorithms.
Notice that our complexity analysis in Section 4.3 assumes
constant-time inserts for priority queues, which is important
for algorithms that push more elements than they pop per
iteration. This bound is achieved by data structures that
are well-known to perform poorly in practice [28, 64]. To
address this issue in the experiments, we use “bulk inserts”
which heapify the inserted elements [26] or standard binary
heaps when query size is small.

6.1 Experimental results
Figure 9 reports the number of output tuples returned in

ranking order over time for queries of size 4. On the larger
input, Batch runs out of memory or we terminate it after 2
hours. This clearly demonstrates the need for our approach.
We then set a limit on the number of returned results and
compare our various any-k algorithms for relatively small
k. We also use a fairly small synthetic input to be able to
compare TTL performances against Batch.

Results. For TTL, Recursive is fastest on paths and cy-
cles, finishing even before Batch. This advantage disap-
pears in star queries due to the small depth of the tree. For
small k, Lazy is consistently the top-performer and is even
faster than the asymptotically best Take2. Batch is im-
practical for real-world data since it attempts to compute
the full result, which is extremely large.

For path and cycle queries on the small synthetic data,
Recursive is faster than Batch (Figs. 9a and 9i) due to
the large number of su�xes shared between di↵erent output
tuples. It returns the full sorted result faster (7.7 sec and 5.4
sec) than Batch (8.3 sec and 14.1 sec). Especially for cy-
cles, our decomposition method really pays o↵ compared to
Batch [73], as Recursive terminates around the same time
Batch starts to sort. For star queries, Recursive behaves
like an anyK-part approach because of the shallowness of
the tree (Fig. 9e). When many results are returned, the
strict anyK-part variants (Eager, Lazy) have an advan-
tage over the relaxed ones (Take2, All) as they produce
fewer candidates per iteration and maintain a smaller pri-
ority queue. Eager is slightly better than Lazy because
sorting is faster than incrementally converting a heap to a
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Recursive Take2 Lazy Eager All Batch Batch(No sort)

(a) 4-Path Synthetic (n=10
4
):

All ⇠10
7
results.

(b) 4-Path Synthetic (n=10
6
):

Top n/2 of ⇠6.2·109 results.

(c) 4-Path Bitcoin (n⇠3.6·104):
Top n/2 of ⇠4.1·109 results.

(d) 4-Path TwitterL (n⇠2.3·106):
Top n/2 of ⇠10

15
results.

(e) 4-Star Synthetic (n=10
4
):

All ⇠10
7
results.

(f) 4-Star Synthetic (n=10
6
):

Top n/2 of ⇠6.2·109 results.

(g) 4-Star Bitcoin (n⇠3.6·104):
Top n/2 of ⇠1.9·1010 results.

(h) 4-Star TwitterL (n⇠2.3·106):
Top n/2 of ⇠6.2·1015 results.

(i) 4-Cycle Synthetic (n=5·10
3
):

All ⇠1.2·107 results.

(j) 4-Cycle Synthetic (n=10
5
):

Top n/2 of ⇠5·10
9
results.

(k) 4-Cycle Bitcoin (n⇠3.6·104):
Top 10n of ⇠7.3·106 results.

(l) 4-Cycle TwitterS (n⇠8.8·104):
Top 10n of ⇠3.1·108 results.

Figure 9: Experiments on queries of size 4 (Section 6.1).

sorted list. This situation is reversed for small k where ini-
tialization time becomes a crucial factor: Then Eager and
Recursive lose their edge, while Lazy shines (Figs. 9c, 9g,
9h, 9k and 9l). Recursive starts o↵ slower, but often over-
takes the others for su�ciently large k (Figs. 9b and 9j).
Eager is also slow in the beginning because it has to sort
each time it accesses a new choice set. Take2 showed mixed
results, performing near the top (Fig. 9f) or near the bot-
tom (Fig. 9l). All performs poorly overall due to the large
number of successors it inserts into its priority queue.

6.2 More results for different query sizes
We performed the same experiments for di↵erent query

sizes: 3-Path, 6-Path, 3-Star, 6-Star, and 6-Cycle [87]. We
summarize our findings below:
Results. Recursive’s TTL advantage over Batch is more
evident in longer queries since there are more opportunities
of reusing computation. Lazy again dominates for the first
results (small k) for all query sizes.

6.3 Comparison against PostgreSQL
To validate our Batch implementation, we compare it

against PostgreSQL 9.5.20. Following standard methodol-
ogy [13], we remove the system overhead as much as possible
and make sure that the input relations are cached in mem-
ory. On our synthetic datasets, our implementation is 12%

to 54% faster [87]. Although the two implementations are
not directly comparable since they are written in di↵erent
languages and PostgreSQL is a full-fledged database system,
this result shows that our Batch implementation is compet-
itive with existing batch algorithms.

7. RELATED WORK
Top-k. Top-k queries received significant attention in the

database community [6, 7, 14, 24, 27, 55, 85, 86]. Much of
that work relies on the value of k given in advance in order
to prune the search space. Besides, the cost model intro-
duced by the seminal Threshold Algorithm (TA) [36] only
accounts for the cost of fetching input tuples from external
sources. Later work such as J* [71], Rank-Join [54], LARA-
J* [66], and a-FRPA [37] generalizes TA to more complex
join patterns, yet also focuses on minimizing the number of
accessed input tuples. While some try to find a balance be-
tween the cost of accessing tuples and the cost of detecting
termination, previous work on top-k queries is sub-optimal
when accounting for all steps of the computation, including
intermediate result size (see the full version [87]).

Optimality in Join Processing. Acyclic Boolean
queries can be evaluated optimally in O(n) data complexity
by the Yannakakis algorithm [92]. The AGM bound [9], a
tight bound on the worst-case output size for full conjunc-
tive queries, motivated worst-case optimal algorithms [72,
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73, 74, 89] and was extended to more general scenarios, such
as the presence of functional dependencies [45] or degree con-
straints [3, 5]. The upper bound for cyclic Boolean CQs was
improved over the years with decomposition methods that
achieve ever smaller width-measures, such as treewidth [79],
(generalized) hypertree width (ghw) [46, 47, 48, 49, 51], frac-
tional hypertree width (fhw) [52], and submodular width
(subw) [69]. Current understanding suggests that achieving
the improvements of subw over fhw requires decomposing a
cyclic query into a union of acyclic queries. Our method can
leverage this prior work on subw [5, 69] to match the subw
bound of Boolean CQs for TTF. We also show that it is
possible to achieve better complexity for TTL than sorting
the output of any of these batch computation algorithms.

Unranked enumeration of query results. Enumer-
ating the answers to CQs with projections in no particular
order can be achieved only for some classes of CQs with con-
stant delay, and much e↵ort has focused on identifying those
classes [11, 18, 25, 83, 84]. If the ranking function is defined
over the Boolean semiring, our technique achieves constant
delay if we replace the priority queues with simple unsorted
lists. However, we consider only full CQs, eschewing the
di�culties introduced by projections and focusing instead
on the challenges of ranking. A recent paper by Berkholz
and Schweikard [19] also uses a union of tree decompositions
based on subw. Our focus is on the issues arising from im-
posing a rank on the output tuples, which requires solutions
for pushing sorting into such enumeration algorithms.

Factorization and Aggregation. Factorized databases
[13, 75, 76, 82] exploit the distributivity of product over
union to represent query results compactly and generalize
the results on bounded fhw to the non-Boolean case [77].
Our encoding as a DP graph leverages the same principles
and is at least as e�cient space-wise. Finding the top-1
result is a case of aggregation that is supported by both
factorized databases, as well as the FAQ framework [1, 2]
that captures a wide range of aggregation problems over
semirings. Factorized representations can also enumerate
the query results with constant delay according to lexico-
graphic orders of the variables [12], which is a special case
of the ranking that we support (Section 2.2). For that to
work, the desired lexicographic order has to agree with the
factorization order ; a di↵erent order requires a restructur-
ing operation that could result in a quadratic blowup even
for a simple binary join (see [87] for the full example). Re-
lated to this line of work are di↵erent representation schemes
[58] and the exploration of the continuum between represen-
tation size and enumeration delay [32].

Ranked enumeration. Both [26] and [90] provide any-
k algorithms for graph queries instead of the more general
CQs; they describe the ideas behind Lazy and All respec-
tively. [60] gives an any-k algorithm for acyclic queries with
polynomial delay. Similar algorithms have appeared for the
equivalent Constraint Satisfaction Problem (CSP) [44, 50].
These algorithms fit into our family anyK-part, yet do not
exploit common structure between sub-problems hence have
weaker asymptotic guarantees for delay than any of the any-
k algorithms discussed here. After we introduced the general
idea of ranked enumeration over cyclic CQs based on mul-
tiple tree decompositions [91], an unpublished paper [33] on
arXiv proposed an algorithm for it. Without realizing it,
the authors reinvented the REA algorithm [57], which cor-
responds to Recursive, for that specific context. We are

the first to guarantee optimal time-to-first result and optimal
delay for both acyclic and cyclic queries. For instance, we re-
turn the top-ranked result of a 4-cycle in O(n1.5), while [33]
requires O(n2). Furthermore, our work (1) addresses the
more general problem of ranked enumeration for DP over a
union of trees, (2) unifies several approaches that have ap-
peared in the past, from graph-pattern search to k-shortest
path, and shows that neither dominates all others, (3) pro-
vides a theoretical and experimental evaluation of trade-o↵s
including algorithms that perform best for small k, and (4)
is the first to prove that it is possible to achieve a time-to-
last that asymptotically improves over batch processing by
exploiting the stage-wise structure of the DP problem.

k-shortest paths. The literature is rich in algorithms
for finding the k-shortest paths in general graphs [10, 17, 34,
35, 53, 56, 57, 59, 65, 68, 67, 93]. Many of the subtleties of
the variants arise from issues caused by cyclic graphs whose
structure is more general than the acyclic multi-stage graphs
in our DP problems. Ho↵man and Pavley [53] introduces the
concept of “deviations” as a su�cient condition for finding
the kth shortest path. Building on that idea, Dreyfus [34]
proposes an algorithm that can be seen as a modification
to the procedure of Bellman and Kalaba [17]. The Recur-
sive Enumeration Algorithm (REA) [57] uses the same set
of equations as Dreyfus, but applies them in a top-down re-
cursive manner. Our anyK-rec builds upon REA. To the
best of our knowledge, prior work has ignored the fact that
this algorithm reuses computation in a way that can asymp-
totically outperform sorting in some cases. In another line
of research, Lawler [65] generalizes an earlier algorithm of
Murty [70] and applies it to k-shortest paths. Aside from k-
shortest paths, the Lawler procedure has been widely used
for a variety of problems in the database community [40].
Along with the Ho↵man-Pavley deviations, they are one of
the main ingredients of our anyK-part approach. Epp-
stein’s algorithm [35, 56] achieves the best known asymp-
totical complexity, albeit with a complicated construction
whose practical performance is unknown. His “basic” ver-
sion of the algorithm has the same complexity as Eager,
while our Take2 algorithm matches the complexity of the
“advanced” version for our problem setting where output
tuples are materialized explicitly.

8. CONCLUSIONS AND FUTURE WORK
We proposed a framework for ranked enumeration over

a class of dynamic programming problems that generalizes
seemingly di↵erent problems that to date had been studied
in isolation. Uncovering those relationships enabled us to
propose the first algorithms with optimal time complexity
for ranked enumeration of the results of both cyclic and
acyclic full CQs. In particular, our technique returns the top
result in a time that meets the currently best known bounds
for Boolean queries, and even beats the batch algorithm
on some inputs when all results are produced. It will be
interesting to go beyond our worst-case analysis and study
the average-case behavior [81] of our algorithms.
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