Bioinformatics, 36(12), 2020, 3949-3950

doi: 10.1093/bioinformatics/btaa220

Advance Access Publication Date: 31 March 2020
Applications Note

Bioimage informatics

Plant 3D (P3D): a plant phenotyping toolkit for 3D point
clouds

lllia Ziamtsov'* and Saket Navlakha®*

'"The Salk Institute for Biological Studies, Integrative Biology Laboratory, La Jolla, CA 92037, USA and *Cold Spring Harbor Laboratory,
Simons Center for Quantitative Biology, Cold Spring Harbor, NY 11724, USA

*To whom correspondence should be addressed.
Associate Editor: Jinbo Xu

Received on January 28, 2020; revised on March 16, 2020; editorial decision on March 24, 2020; accepted on March 25, 2020

Abstract

Motivation: Developing methods to efficiently analyze 3D point cloud data of plant architectures remain challenging
for many phenotyping applications. Here, we describe a tool that tackles four core phenotyping tasks: classification
of cloud points into stem and lamina points, graph skeletonization of the stem points, segmentation of individual
lamina and whole leaf labeling. These four tasks are critical for numerous downstream phenotyping goals, such as
quantifying plant biomass, performing morphological analyses of plant shapes and uncovering genotype to pheno-
type relationships. The Plant 3D tool provides an intuitive graphical user interface, a fast 3D rendering engine for vis-
ualizing plants with millions of cloud points, and several graph-theoretic and machine-learning algorithms for 3D
architecture analyses.

Availability and implementation: P3D is open-source and implemented in C++. Source code and Windows installer

are freely available at https://github.com/iziamtso/P3D/.
Contact: iziamtso@ucsd.edu or navlakha@cshl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

New technological advances in plant phenotyping are now being
used to generate large volumes of data detailing the 3D shoot archi-
tectures of various plant species, grown in different environments, in
both the lab and in the field. This has raised the challenge of auto-
matically extracting phenotyping features, such as leaf size, shape
and quantity (Huang et al., 2018), branch lengths and angles
(Bucksch et al., 2017) and growth rates, amongst others. These fea-
tures are important for numerous tasks, including quantifying plant
biomass and yield (Mathan et al., 2016), understanding plant
responses to stressful conditions (Minervini et al., 2016), mapping
genotypes to phenotypes and building predictive structural-
functional models of plant growth (Sievanen et al., 2014).

2 The Plant 3D software package

We developed a tool called Plant 3D (P3D) to perform common phe-
notyping tasks using high-resolution 3D point clouds of plant archi-
tectures. 3D scanning avoids common issues with camera-based
imaging, including camera calibration, image registration, object oc-
clusion and inconsistencies in illumination—especially as these fac-
tors vary across labs and experimental setups (Perez-Sanz et al.,
2017). P3D is open-source and is bundled with a stand-alone
Windows application (Fig. 1). P3D is written in C++ using

OpenGL, QT, TensorFlow and the point cloud library. P3D can
visualize and process data imported as a 3D point cloud (pcd or txt
formats) or a mesh (obj format).

The tool focuses on four phenotyping tasks described below
(Supplementary Information). Technical details of all algorithms are
provided in Ziamtsov and Navlakha (2019).

Lamina versus stem classification. The first task is to classify
each point in the point cloud as belonging to either a lamina struc-
ture (e.g. leaf, cotyledon) or a stem structure (e.g. petiole, branch)
(Fig. 1A). A point cloud consists of a list of (x, y, z) coordinates of
the object of interest (a plant architecture). P3D computes fast point
feature histogram features (Rusu et al., 2009) for every point in the
cloud, and then feeds these features into a deep neural network for
binary classification. This classification is the first step toward com-
puting leaf-related features (using lamina points) and morphology/
shape-related features (using stem points).

P3D’s rendering engine allows classification results to be visual-
ized, with zooming and panning capabilities for evaluation of
performance.

Lamina counting and segmentation. The second task is to seg-
ment or cluster all of the lamina points into subsets, where each sub-
set represents an individual lamina (Fig. 1B). P3D uses a conditional
region growing method that clusters lamina points based on similar-
ity of their curvature (anisotropy), normal vectors and fast point fea-
ture histogram features. This step produces a set of lamina—which
are individually colored—and can then be used for analyses of
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Fig. 1. Overview of the P3D tool. Center panel shows the overall GUI and an example scan of a tomato plant on growth Day 20. Examples of the four phenotyping tasks are
shown in panels (A-D). (A) Classification of the point cloud into lamina points (red) and stem points (yellow) using a deep learning classifier. (B) Segmentation of the lamina
points into individual lamina (shown in different colors). (C) Skeletonization of the stem points into a 3D graph-theoretic tree. White lines show the tree, and green dots signify
the 3D locations of lamina found in the previous step. (D) Clustering of individual lamina into whole leaves. Three leaves are shown (red, green and blue), as well as two coty-
ledons (purple). Orange points signify stem points. (Color version of this figure is available at Bioinformatics online.)

lamina size, shape, arrangement (Kuhlemeier, 2017) and quantity
(Giuffrida et al., 2018).

Stem skeletonization. The third task is to generate a skeleton of
the stem points (Delagrange et al., 2014) (Fig. 1C). The P3D skeleto-
nization algorithm outputs a graph-theoretic tree, with nodes fol-
lowing along the shape of the plant from the root through potential
branching points to lamina end-points, and with edges correspond-
ing to the stem structure connecting the nodes. Morphological traits
of plant architectures are useful for studying plant geometry
(Bucksch et al., 2017), nutrient transport efficiency (Conn et al.,
2017), spatial distribution of branches and morphogenesis
(Prusinkiewicz and Lindenmayer, 1996).

Whole leaf labeling. The fourth task builds upon the first three
tasks and identifies whole leaves (Fig. 1D). Biologically, a single
‘leaf’ of (e.g.) a tomato plant consists of all the stem tissue (petioles
and petioules) and all the individual lamina that are downstream of
a single branching-point from the primary stem. Similar analyses of
leaf traits can be then performed.

Additional features. P3D includes methods to downsample very
large point clouds, methods to remove outliers and smoothen the
data, and a shading editor to model light capture by plants. There is,
of course, significant diversity in plant structures across the entire
plant kingdom, and our methods currently have only been tested on
Solanaceous species. However, P3D has a modular structure, which
can be extended to handle other leaf and branching structures in the
future.

3 Conclusions

P3D helps tackle several basic phenotyping challenges to better
understand the structure of plant architectures. As 3D point clouds
become a standard data type for digitizing plant architectures in the
lab and in the field, we hope the P3D tool can help accelerate next-
generation plant phenotyping.
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