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Encoding the complex features of an energy landscape is a challenging task, and often chemists pursue the
most salient features (minima and barriers) along a highly reduced space, i.e. 2- or 3-dimensions. Even
though disconnectivity graphs or merge trees summarize the connectivity of the local minima of an energy
landscape via the lowest-barrier pathways, there is more information to be gained by also considering the
topology of each connected component at different energy thresholds (or sublevelsets). We propose sublevelset
persistent homology as an appropriate tool for this purpose. Our computations on the configuration phase
space of n-alkanes from butane to octane allow us to conjecture, and then prove, a complete characterization
of the sublevelset persistent homology of the alkane CmH2m+2 Potential Energy Landscapes (PEL), for all
m, and in all homological dimensions. We further compare both the analytical configurational potential
energy landscapes and sampled data from molecular dynamics simulation, using the united and all-atom
descriptions of the intramolecular interactions. In turn, this supports the application of distance metrics
to quantify sampling fidelity and lays the foundation for future work regarding new metrics that quantify
differences between the topological features of high-dimensional energy landscapes.

This manuscript was published in the Journal of Chemical Physics (DOI:10.1063/5.0036747).

I. INTRODUCTION

High-dimensional energy landscapes (EL), including
the configuration space of electrons, atoms, molecules,
colloids, and other “particles”, frequently arise in mate-
rials science, chemistry, physics, and a wide range of dy-
namical systems. One of the most common forms of an
EL in chemical systems is the potential energy landscape
(PEL) coming from the reduction of the electronic Hamil-
tonian in the Born–Oppenheimer approximation.1–3 By
this construction, the EL is a function across the nuclear
configuration space of the system with dimension 3N ,
where N is the number of nuclei. How the physical sys-
tem evolves is often determined by such an EL,4,5 but
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their high-dimensionality poses critical challenges to the
analysis and understanding of them. Indeed, one instance
of the “curse of dimensionality” is that the space required
to even store or represent such a surface grows exponen-
tially with its dimension. Further important variants of
the EL may be based upon classical representations of
inter-particle interactions, or may incorporate statistical
mechanical ensembles of populated configurational states
of the system to yield the free energy landscape. The
topological method used in this paper to describe ELs,
namely sublevelset persistent homology, can be applied
as well to all variants.

Often chemists reduce the dimension of the EL from
3N to fewer by removing degrees of freedom that are
not associated with the specific chemical phenomena of
interest (e.g. rotations, translations, or the motion of
atoms not of interest) according to chemical intuition and
knowledge. Conceptually it is convenient to reduce the
dimensionality of the EL to two or three, yet in real-
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ity identifying the “best set” of reduced variables, and
understanding the extent of information loss upon di-
mensionality reduction, are significant and ongoing chal-
lenges. One important criterion in regard to finding the
“best sets” of reduced variables is that topological de-
scriptors such as the Morse indices of key critical points
of chemical relevance of the EL survive the reduction pro-
cess. Although there are many examples where “simple”
geometric criteria suffice for reducing the landscape to
represent a given chemical transformation, system com-
plexity can cause coupling of many configurational de-
grees of freedom such that higher-dimensional represen-
tations of the EL are necessary. Consider condensed
phase ion-pairing reactions, where recent work has at-
tempted to incorporate solvent reorganization by con-
structing ELs that depend upon ion separation distance,
solvent density and solvent coordination.6 Alternatively,
reduced variables that are intrinsically of dimensionality
more than 1 have been employed (i.e. topological descrip-
tors of intermolecular interactions).7,8

The representation and visualization of surfaces de-
scribed by scalar valued functions such as ELs is a highly
nontrivial problem where the difficulty increases with
the dimensionality of the surface. It is thus attractive,
and important, to consider how to represent the high-
dimensional surface in a more compact form that could,
in principle, support data-driven comparisons of ELs of
different chemical systems that have different dimension-
ality. Encoding or vectorizing complex chemical struc-
tures in phase space is already being employed in machine
learning frameworks for materials discovery and design
strategies.9,10 Outside of highly local representations of
ELs that are plotted and analyzed in 2–4 dimensions, a
common representation of large and complex regions of
ELs are disconnectivity graphs (or merge trees).11 A dis-
connectivity graph compactly represents the energy value
of each local minimum, and the energy barriers, usually
the lowest barrier, required to pass between nearby local
minima, which are critical to the chemistry of a system.
After their introduction in the late 1990s, the graphi-
cal properties of ELs have been exploited for a number
of purposes, to both understand chemical transforma-
tions in multidimensional ELs (i.e. protein folding)12 and
for EL exploration.2 A disconnectivity graph encodes the
number of connected components in an EL; two config-
urations are in the same connected component if there
is a path between the configurations that does not ex-
ceed the chosen energy barrier. As the energy barrier in-
creases, a disconnectivity graph stores how the connected
components of the EL merge. Formally, the disconnec-
tivity graph of an EL can be understood as a tree graph
with leaves corresponding to the local minima of the sur-
face, and internal nodes to lowest energy values which are
critical points of index one connecting the local minima.
The edges then correspond to pathways connecting the
nodes within the surface below the given energy thresh-
old. Disconnectivity graphs are widely and successfully
used in the study of ELs,13 however, they do not capture

all topological information of interest and also lack geo-
metric information. A related construction called lifted
nearest neighbor graphs (NNGs) have been constructed
using 0-dimensional topological persistence to study lo-
cal minima and index 1 saddle points of sampled energy
landscapes.14 Metric disconnectivity graphs have been in-
troduced to include some geometric information.15 Reeb
graphs are a refinement of disconnectivity graphs ob-
tained by identifying in a surface described by a scalar
function f the points of a given level set f−1(c) which
can be connected within that level set by a path.16,17

Though disconnectivity graphs encode the energy bar-
rier of the minimal energy pathway between two local
minima, they do not represent multiple transition path-
ways. This additional information is measured by sub-
levelset persistent homology. Described in more detail
below, we briefly compare the essential features of ELs
that this methodology can articulate. Consider Figure 1,
which shows an EL, transition pathways between local
minima, and the energies associated to critical points
of index 0 (minima), 1 (saddles), and 2. The discon-
nectivity graph encodes the energy barriers associated
with the local minima and the index 1 critical points
(saddle points) that first merge local minima, and ig-
nores all other transition paths. In fact, 0-dimensional
sublevelset persistent homology for the index 1 critical
points has been previously employed to derive discon-
nectivity graphs and coarse grained representations of
energy landscapes (based upon the energy filtration em-
ployed after including the effects of temperature).18 This
information is reflected, however, in the 1-dimensional
persistent homology. Consider the two local minima on
the top left, which have three transition paths between
them. The disconnectivity graph encodes that the lo-
cal minima merge at energy level 2, but ignores the ad-
ditional transition paths with energies 4 and 5 between
them, which are important for the dynamics of the chem-
ical system. 1-dimensional persistent homology (loops),
however, measures the second transition pathway of en-
ergy 4, which creates a 1-dimensional bar that ends at
energy level 6 when this pathway merges with the prior
pathway of energy 2. 1-dimensional persistent homol-
ogy also measures the third transition pathway of energy
5, which creates another 1-dimensional bar that ends
at energy level 7 when this pathway merges with the
prior pathway of energy 4. In summary, whereas discon-
nectivity graphs only encode merge events between lo-
cal minima, sublevelset persistent homology furthermore
encodes merge events between transition pathways and
higher-dimensional features. Higher-dimensional persis-
tent homology barcodes encode relative barrier heights
between k-dimensional features, for all k, enabling more
accurate estimations of the time scale of the associated
chemical dynamics.

Sublevelset persistent homology derives from persis-
tent homology, a technique that has been used in the
chemistry community to summarize the shapes of a
molecule, supramolecular assemblies, and other com-
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FIG. 1. A map of an energy landscape, its disconnectiv-
ity graph, and its persistent homology. The red edges are the
edges of the minimal spanning tree (merging) connected com-
ponents; the blue edges instead create 1-dimensional loops.
The 0-dimensional persistent homology is obtained by sim-
ply cutting “joints” in the disconnectivity graph, and then
laying the branches flat. Whereas the disconnectivity graph
or 0-dimensional persistent homology encodes the local min-
ima and index 1 critical points merging components, the 1-
dimensional persistent homology also encodes the index 1 crit-
ical points whose transition pathways form loops, along with
the energy barriers of index 2 critical points that fill between
two transition pathways.

plex structures that emerge in multicomponent solutions.
Given a set of atom locations in R3, one can build a sim-
plicial complex (consisting of vertices, edges, triangles,
tetrahedra) whose vertex locations are given by the posi-
tions of the atoms. Arguably the first paper on persistent
homology19 contains computations on the nonribosomal
peptide gramicidin A, on a portion of a periodic zeolite,
and on a portion of DNA. Perhaps the first simplicial
complexes built on top of molecules from the perspec-
tive of quantifying topology were alpha complexes,20,21

which pre-date and in fact helped lead to the invention
of persistent homology. The philosophy of persistence,
and indeed multi-parameter persistence, has been used
to improve the robustness of clustering (disconnectivity
graphs) of molecular dynamics data22, though this sum-
mary is only of 0-dimensional homology. The nudged

elastic band method23 has also inspired new methods
in topological data analysis (TDA).24 More modern ap-
plications of persistent homology to chemistry include
Refs. 25–27, which better account for differences between
different atom identities, and which successfully use the
persistent homology barcodes for machine learning tasks.
By contrast, instead of considering the persistent homol-
ogy of a single molecular configuration, Ref. 28 considers
the topology of the entire configurational space, either on
its own or alternatively equipped with an energy func-
tion, including the case of pentane. This work is heavily
inspired by Ref. 29, which studies the energy landscape
of the cyclo-octane molecule.

Herein, we propose that sublevelset persistent ho-
mology is an efficient quantitative descriptor of high-
dimensional surfaces, as demonstrated by the study of
a series of energy landscapes, with increasing dimen-
sions. In the process, we create a dictionary between the
lower-dimensional topological features measured by dis-
connectivity graphs that are also measured by sublevelset
persistent homology. These low-dimensional features are
furthermore generalized by higher-dimensional features
measured by persistent homology but not disconnectiv-
ity graphs. As an example system, the Potential En-
ergy Landscape (PEL) of n-alkanes, from n-butane to
n-octane, is considered and analyzed in this paper. (For
the remainder of this paper, we refer to the n-alkanes
simply as alkanes, as these are the only alkanes we con-
sider.) Within this series: the collective variables for the
reduced EL (based upon the 4 carbon-center dihedral
angles) are known; reducing dimensions down to the col-
lective variables preserves the critical points of index 0;
the dimensionality of the EL is systematically increased
by adding more carbons to the chain; the relative barrier
heights in the EL can be varied by considering bonded vs.
non-bonded interatomic interactions. Of particular note
is that the EL of butane can be embedded in pentane,
which can be embedded in hexane, etc, which then makes
it amenable to derive and prove the sublevelset persis-
tent homologies of all alkane chains. The alkanes also
exhibit surprisingly rich behavior in their physicochem-
ical properties that is, in part, related to the configura-
tional EL. For example, the odd-even effect of alkanes,
namely, the zig-zag variations of their physicochemical
properties such as the melting points, solid densities, sub-
limation enthalpy, solubility, and modulus as a function
of the number of carbon atoms, has been known since
1877.30–33 However, only recently, a dynamic odd-even
effect in the transport properties of liquid alkanes was
discovered,34 challenging the established understanding
of the odd-even effect as a consequence of packing effi-
ciency in the alkanes crystalline solids.33 Therefore, the
topology of the EL may provide a new perspective to elu-
cidate the intriguing physicochemical properties of alka-
nes. Toward that end, our computations on the alkanes
up through octane allow us to conjecture, and then prove,
a complete characterization of the sublevelset persistent
homology of the alkane CmH2m+2 PEL, for all m, and in
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all homological dimensions.

II. SUBLEVELSET PERSISTENT HOMOLOGY

A. Introduction of Sublevelset Persistent Homology

Given a real-valued function defined on some poten-
tially high-dimensional domain, sublevelset persistent ho-
mology is a way to visualize the shape of that function,
and in particular, the shape of its various sublevelsets.
Much of the popularity of persistent homology35–37 stems
from the fact that it is computable. Indeed, sublevelset
persistent homology can be computed with a running
time that is sub-cubic in the number of cells (vertices,
edges, triangles or squares, tetrahedra or cubes, etc.)
needed to mesh the domain.38

Let X be a space and let f : X → R be a real-valued
function. For example, X = S1×S1 may be a torus which
encodes the two dihedral angles in a pentane molecule
configuration, and f : X → R may be the reduced EL
for pentane, ignoring the hydrogen degrees of freedom
and the vibrational and bending modes of carbons. The
sublevelset of f : X → R at height r is f−1((−∞, r]) =
{x ∈ X | f(x) ≤ r}. That is, the sublevelset is the set of
all points in X whose value under f is at most r. In the
case of the pentane EL, this sublevelset encodes the set of
all conformations of the pentane molecule with energy at
most r. In other words, the sublevelset f−1((−∞, r]) is
the restricted energy landscape, with energy restricted to
be at most r. As r varies from small to large, sublevelset
persistent homology describes how the topology of the
sublevelsets change.

For r ≤ r′, note that we have an inclusion of sub-
levelsets f−1((−∞, r]) ↪→ f−1((−∞, r′]). As a result,
we can track how the homology (the number of holes
in each dimension) changes as the value of r increases.
0-dimensional holes correspond to connected compo-
nents, 1-dimensional holes correspond to loops, and 2-
dimensional holes correspond to voids, etc. Persistent
homology allows us to count the number of holes in a
restricted energy landscape f−1((−∞, r]) not only for a
single value of r, but also over an evolution of energies
as r increases from small to large.

B. Advantages of Sublevelset Persistent Homology
Barcodes

Energy Landscapes are often described by disconnec-
tivity graphs,2 or equivalently merge trees, that encode
how connected components of the EL appear and merge
as the energy threshold is raised. A disconnectivity graph
analysis, however, ignores the topology of connected com-
ponents: a connected component that is a disk is treated
the same as a connected component that has holes or
voids. We propose the use of sublevelset persistent ho-
mology to understand more of the topology of restricted

energy landscapes, including not only 0-dimensional per-
sistent homology (which is closely related to the discon-
nectivity graph), but also higher-dimensional persistent
homology. Whereas the disconnectivity graph depends
only on local minima and critical points of index 1 in
the energy landscape, the sublevelset persistent homol-
ogy depends on critical points of all indices (including
minima and critical points of index 1 as special cases).
Indeed, if the EL is a “Morse function,” then each k-
dimensional bar in the persistent homology barcode has
a birth time corresponding to the energy value of a crit-
ical point of index k, i.e. a critical point at which there
are k linearly independent directions in which the en-
ergy value decreases. Furthermore, a death time of a bar
in the sublevelset persistent homology of a Morse func-
tion corresponds to the energy value of a critical point
of index k + 1. A Morse function, defined rigorously in
Appendix A, is a smooth real-valued function with no
degenerate critical points.

As a motivating example, consider Figure 2. We see
two different ELs whose disconnectivity graphs are ex-
actly the same. This similarity is also reflected in the
0-dimensional sublevelset persistent homology barcode
plots (red bars)—indeed, the disconnectivity graph of an
EL completely determines its 0-dimensional sublevelset
persistent homology. Nevertheless, the two energy land-
scapes are quite different. In the EL shown in Figure 2A,
all connected components of sublevelsets are connected.
In the EL shown in Figure 2C, the connected compo-
nents instead have a “Swiss cheese” structure, with a
variety of holes. These differences are reflected in the 1-
dimensional persistent homology sublevelsets (blue bars).
One should think of sublevelset persistent homology as
a higher-dimensional analogue of disconnectivity graphs,
tracking higher-dimensional spatial features of an EL. In-
deed, sublevelset persistent homology has the power to
distinguish ELs whose disconnectivity graphs are identi-
cal, and to provide summaries of the higher-dimensional
topology of the ELs.

Although it has been traditionally held that that the
presence of higher-dimensional topology and its asso-
ciated transition pathways (e.g., second-order saddles)
are inconsequential to the mechanisms and dynamics of
chemical processes, their presence in energy landscapes
is well-established.39–41 Further, recent work has demon-
strated from ab-initio molecular dynamics that some re-
actions can follow second order pathways, for example
the denitrogenation of 1-pyrazoline,42 wherein the statis-
tical observation of the second-order path is likely altered
by available energy. Though disconnectivity graphs en-
code all of the local minima of an EL, they retain only
some of the index 1 critical points, i.e. transition states
between local minima. By contrast, from the sublevelset
persistent homology one can compute the critical points
of all indices, including all transition states between local
minima, as explained in Section IV. Each additional tran-
sition pathway provides an alternative relaxation mecha-
nism of the system that is missing from the disconnectiv-
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FIG. 2. While a disconnectivity graph summarizes the con-
nected components in an energy landscape, it does not por-
tray the topology of each connected component. The two ELs
drawn above have the same disconnectivity graph. However,
the connected components of sublevelsets of the EL (A) are
contractible, whereas those of the EL (C) may contain holes,
as shown by the sublevelsets in Figure 4. The 0-dimensional
persistent homology in red measures much of the same infor-
mation as the disconnectivity graph, but the 1-dimensional
persistent homology in blue distinguishes these two ELs. The
y-axis in (A) and (C) is energy, as is the x-axis in (B) and
(D). The y-axis in (B) and (D) is an ordering and count of
the bars. For this and for all of the remaining figures in the
paper, we order the bars vertically by birth energy, but any
vertical reordering of the bars gives a valid representation of
the persistent homology.

ity graph. Therefore, the timescale computed from a dis-
connectivity graph alone will be an overestimate to a cer-
tain degree. Persistent homology measures not only all
transition pathways, but also the relative barrier heights
between them (see Figure 1), enabling more rigorous sta-
tistical mechanics of the dynamics of the system.

Another important feature of persistent homology is
that it is stable, meaning that small changes to the input
produce only small changes in the persistent homology.43

This continuity property is necessary in any data analy-
sis technique, as input noise or measurement error is un-
avoidable. In Section IV C we quantify the difference be-
tween the analytical and OPLS-UA alkane energy land-
scapes using this notion of similarity between persistent
homology barcodes.

Another powerful topological descriptor that can be

used to visualize the surface described by a real-valued
function is the Morse–Smale complex.44 It can be asso-
ciated to any EL described by a potential energy func-
tion which fulfills the transversality condition; see Ap-
pendix B. In contrast to filtering the EL via sublevelsets,
the Morse–Smale complex provides a partitioning of the
EL into pieces whose points have equal behavior in regard
to the gradient flow of the potential energy function. As
a result, the Morse–Smale complex captures crucial in-
formation chemists are interested in, namely identifying
and describing areas within the EL with similar ener-
getic behavior such as points which are attracted to the
same local minimum. Moreover, it contains strictly more
topological information than the sublevelset persistent
homology, such as how critical points of adjacent indices
are connected to each other along gradient paths. The
increase in topological-geometric information comes with
the price that Morse–Smale complexes can only be visu-
alized easily for surfaces of dimension at most three. We
can compute the Morse–Smale complex for some small
chain-length alkanes as seen in Figure 3.

III. PHYSICAL DATA SETS AND METHODS

A. The Analytical PEL of Alkanes

In this paper, we choose gas phase alkanes as a model
system to demonstrate the application of sublevelset per-
sistent homology. In the absence of intermolecular inter-
actions, the intramolecular interactions were described
using the the Optimized Potentials for Liquid Simu-
lations (OPLS) force field, which, in general, consists
of energies of bonds, angles, dihedrals, and nonbonded
interactions.45 We first adopted the OPLS-UA (united
atom) approach by coarse-graining the hydrogen degrees
of freedom into the parameters of adjacent carbon atoms
implicitly. To further simplify the EL, we fixed all bond
lengths and the three-body angles. The nonbonded in-
tramolecular interactions were also ignored. Therefore,
the potential energy landscape (PEL) of a single alkane
molecule is only governed by the C–C–C–C dihedral an-
gles φi as

V (φ1, . . . , φm−3) =

m−3∑
i=1

(c1 [1 + cosφi] + c2 [1− cos 2φi] + c3 [1 + cos 3φi]) ,

(1)

where m is the number of carbon atoms, the energy co-
efficients are c1/kB = 355.03 K, c2/kB = −68.19 K, and
c3/kB = 791.32 K, and kB is the Boltzmann constant.46

The PEL of an alkane molecule with m carbon atoms
has a dimension of n = m − 3 in this simplistic analyt-
ical model, in the sense that the PEL is a real-valued
function V = fn : (S1)n → R, where each circular fac-
tor S1 encodes a dihedral angle φi. The reduction from
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FIG. 3. Morse–Smale complexes for the analytical PEL for
(A) butane, (B) pentane, and (C) hexane. The critical points
are indicated and are colored by their index. For pentane and
hexane, the unique flows between critical points whose indices
differ by one are also indicated; see Appendix D. For (A) and
(B), the energy scales are indicated by the vertical direction.

R3m down to this lower-dimensional PEL on (S1)n satis-
fies the important property that the indices of index zero
critical points are preserved. An observation that will be
useful in our classification of the sublevelset persistent
homology of the alkane PEL is that

fn(φ1, . . . , φn) = V (φ1, . . . , φn)

=V (φ1) + . . .+ V (φn) = f1(φ1) + . . .+ f1(φn).

B. Molecular Dynamics Simulation of the Coarse-Grained
and All-Atom Models of Alkanes

The second PEL data set is obtained from molecu-
lar dynamics (MD) simulations of the alkane OPLS-UA
model. A single alkane molecule, from butane to hexane

(m from 4 to 6), was placed in the center of a 10 nm
cubic box with periodic boundary conditions enforced in
all three dimensions. All bonds and angles were fixed us-
ing the SHAKE algorithm.47 The MD simulations were
performed in the canonical ensemble using the Nosé-
Hoover thermostat, where the temperature was was set
to RT ≈ 831 kJ/mol and employed to overcome the po-
tential energy barriers of the system and ensure ergodic
sampling. Initially, the velocity was randomly assigned
to each atom according to the Maxwell–Boltzmann dis-
tribution. The integration time was 0.1 fs and the molec-
ular configuration and potential energy were collected ev-
ery 0.1 ps for 1,000,000 frames. The resulting data set
consists of the sampled configurational potential energy
landscape for all dihedral rotations in the system. All the
simulations were performed using GROMACS 5.0.7.48

The PEL obtained from the united atom approach was
then compared to our third PEL, the all-atom (OPLS-
AA) model. We used the same simulation protocol for
OPLS-AA as we did with OPLS-UA except that: (i) the
C–C–C angles were left flexible to ensure that the to-
tal number of constraints does not exceed the number
of degrees of freedom, (ii) the temperature was set to
RT ≈ 16.6 kJ/mol to reduce the effect of the flexible an-
gles on the total potential energy, and (iii) the molecular
configuration and potential energy were collected every
1 fs for 10,000,000 frames to obtain better statistics. In
this model, all hydrogen atoms are considered explicitly.
Consequently, extra dimensions associated with the hy-
drogen degrees of freedom were introduced to the PEL.
In order to compare with the OPLS-UA model, the po-
tential energy corresponding to a specific dihedral angle
configuration was calculated by averaging all the poten-
tial energies sampled at that configuration, i.e. we aver-
aged the contribution of the hydrogens to the PEL and
the reduced the PEL to be only as a function of the C–C–
C–C dihedral angles. The resulting PEL is qualitatively
similar to the PEL obtained with the OPLS-UA model.
However, the averaging produced a rougher PEL with
small local features, and the energy values of all features
have been shifted higher.

C. Computation of Sublevelset Persistent Homology

We computed the sublevelset persistent homology of
the PEL of alkanes up through octane using the GUDHI
software package;49 our code is publicly available.50 For
the analytical OPLS-UA, we computed the sublevelset
persistent homology of a cubical grid with 63 (approxi-
mately 10 · 2π) vertices on each circular axis. This grid
was treated as a filtered cubical complex via the lower-
star filtration, assigning to higher-dimensional cubes a
filtration value matching the maximum energy value on
a boundary vertex. For the MD simulations of 1, 000, 000
configurations for OPLS-UA we computed the sub-
levelset persistent homology as follows. First we down-
sampled to 1, 000 vertices using sequential maxmin,51
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and then computed the sublevelset lower-star filtration
of a Delaunay triangulation with periodic boundary con-
ditions. The size of the resulting complexes are given in
Table I.

Dimension UA-Pentane UA-Hexane

0 1000 1000

1 3000 7528

2 2000 13056

3 0 6528

Total 6000 28112

TABLE I. Number of simplices in the periodic Delaunay tri-
angulation for UA-Pentane and UA-Hexane.

For the MD simulation of 1, 000, 000 configurations of
OPLS-AA we subdivided the domain into a cubical grid
with 100 cubical regions on each circular axis. The energy
values were then averaged over 9× 9 patches of cubes, as
described in Section IV C, and the persistent homology
computed of the lower-star filtration of the cubical grid
with respect to the averaged values.

IV. SUBLEVELSET PERSISTENT HOMOLOGY OF
THE PEL OF ALKANES

A. Sublevelset Persistent Homology of the Analytical PEL
of Pentane

We consider now the sublevelset persistent homology
of the analytical PEL of pentane in Figure 4. Sublevelset
(A) contains a single connected component, correspond-
ing to the first 0-dimensional bar that is born in the
persistent homology. This configuration represents the
global energy minimum of pentane, i.e. a fully stretched
pentane. In sublevelset (B), four new connected compo-
nents form, and then four more in (C), giving 8 new 0-
dimensional persistent homology bars. (B) and (C) rep-
resent two types of local minima configurations of pen-
tane, with corresponding energies of 3.58 kJ/mol and
7.15 kJ/mol respectively. Upon including four saddle
points of index one, in (D) we reduce back down to four
connected components. The saddle points are configura-
tions with φ1 = π and φ2 = π ± 2π/3, or alternatively
φ1 = π ± 2π/3 and φ2 = π, and an energy of 13.78
kJ/mol. Upon passing eight more saddle points of in-
dex one, in (E) we obtain a connected space with four
1-dimensional holes. We see that a critical point of in-
dex 1, i.e. a saddle point, can either correspond to the
energy barrier connecting nearby local minima (these are
the saddle points found, for example, by nudged elastic
band), or it could alternatively correspond to the birth of
a new 1-dimensional hole as measured by persistent ho-
mology. As the sublevelsets continue to grow, a variety
of other 1-dimensional holes are born. In the transition
from (G) to (H), we include four critical points of index 2,

which each kill a 1-dimensional persistent homology bar.
These configurations are local maxima of pentane, with
φ1 = π ± π/3 and φ2 = π ± π/3 and an energy of 27.57
kJ/mol, as shown in Figure 4. The final sublevelset (not
shown) is the entire 2-dimensional torus, which has a sin-
gle connected component, two 1-dimensional holes, and
a single 2-dimensional hole. The topological features in
the final sublevelset correspond to the semi-infinite bars
as they have no death times; all other bars are finite.

Now we explain how all critical points of all indices are
obtainable from the sublevelset persistent homology com-
putation. Each local minimum, i.e. critical point of in-
dex 0, is represented by the birth of a 0-dimensional bar.
The death of a 0-dimensional bar corresponds to a critical
point of index 1. The above are the only critical points
measured by disconnectivity graphs, but persistent ho-
mology encodes the remaining critical points of index 1
as births of 1-dimensional bars. For example, in the tran-
sition from (D) to (E), eight new saddle points of index
1 are included, corresponding to four 0-dimensional bars
ending (reducing from 5 connected components down to
1), and to four 1-dimensional bars that are born. More
generally, the number of critical points of index k in the
energy landscape is equal to the number of k-dimensional
persistent homology bars, plus the number of finite (i.e.,
not semi-infinite) (k − 1)-dimensional bars. The energy
values of these index k critical points are given by the
birth time of the corresponding k-dimensional bar, or al-
ternatively the death time of the corresponding (k − 1)-
dimensional bar.

The length of each persistent homology bar measures
the prominence of each topological feature. This is clear
for 0-dimensional bars; the prominence of local minimum
is measured in the same way as in disconnectivity graphs.
However, persistent homology also measures the promi-
nence of 1-dimensional features; see Figure 1.

B. From Butane to Octane

The analytical PEL for the alkanes are defined as fol-
lows. We index the alkane CmH2m+2 by the number of
dihedral angles n = m − 3. Each PEL is a function
V = fn : (S1)n → R given in Equation (1), where S1 is
the circle encoding a dihedral angle, and where (S1)n is
the n-dimensional torus. The PEL for butane is given
by a real-valued function f1 : S1 → R defined on the cir-
cle, shown in Figure 3A. We see that f1 has three local
minima, of which one is global, and three local maxima,
with the single global maxima pictured twice due to the
periodic boundary conditions. An equivalent definition
of the alkane energy landscape function fn : (S1)n → R
is given by fn(φ1, . . . , φn) = f1(φ1) + . . . + f1(φn). See
Figure 5 for the sublevelset persistent homology barcodes
of the analytical PELs of butane through octane.
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A B C D E F G H I

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIG. 4. (Left) Pentane sublevelsets f−1
2 (−∞, r] := {y ∈ (S1)2 | f2(y) ≤ r} are drawn, in green, for increasing values of energy

value r. (Right) The pentane sublevelset persistent homology of the analytical PEL. Red bars are 0-dimensional features
(connected components), blue bars are 1-dimensional features (loops), and the green bar is the lone 2-dimensional feature (the
entire torus). The x-axis is energy (kJ/mol).

C. Sublevelset Persistent Homology of the PEL of
Alkanes From MD Simulation

To compute the sublevelset persistent homology of the
MD data, specifically the energies of sampled configu-
rations, we first computed Delaunay triangulations on
the finite sample of the n-dimensional torus (S1)n. Our
triangulation is formed by quotienting out Delaunay tri-
angulations computed on Euclidean space, avoiding the
complexities of Delaunay triangulations in arbitrary Rie-
mannian manifolds.52–54

The first row of Figure 6 displays the sublevelset per-
sistent homology from butane to hexane, computed from
the OPLS-UA MD simulation data. Though sampling
noise has been added, we note the similarity with the
analytical OPLS-UA barcodes. For butane and pentane,
the MD simulation samplings are dense enough so that
the OPLS-UA barcodes are nearly indistinguishable from
the analytical barcodes. For hexane, the MD simulation
has small gaps in the sampling, which is reflected in the
noise added to the hexane OPLS-UA barcodes.

The alkane OPLS-AA PEL includes two additional

types of degrees of freedom related to the motions of the
hydrogen atoms and represents an important counter-
point to the united atom (UA) PELs. These added terms
to the intramolecular potential energy function that de-
scribe the molecule change both the absolute value of the
potential energy and the topology of the potential energy
landscape. The first added degree of freedom is associ-
ated with H–C–H and H–C–C vibrations, which account
for the majority of the increase in the absolute value of
the potential energy within the OPLS-AA model rela-
tive to the united atom model. The second additional
degree of freedom is the rotation of the methyl groups,
which have a smaller contributions to the increase in po-
tential energy values. Both of these degrees of freedom
modify the topology of the energy landscape, either by
altering the relative energies of basins and barriers, or
by adding new features to the PEL, which becomes more
complex as the alkane chain length is increased. To as-
sess the effect of the added degrees of freedom upon the
configurational PEL associated with the dihedral angles
within the OPLS-AA sampled MD data, we performed a
sliding average operation over the above two degrees of
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FIG. 5. Persistent homology barcodes for the alkane analytical PEL, from butane (n = 1) through octane (n = 5). The color
of the bar indicates the homological dimension. The y-axis counts the number of bars. The x-axis is energy (kJ/mol).

0 10 20
0

1

2

3

4
Butane OPLS-UA

0

1

40 60 80
0

1

2

3

4
Butane OPLS-AA Averaged

0

1

0 20 40
0

5

10

15

20
Pentane OPLS-UA

0

1

2

50 100
0

20

40

Pentane OPLS-AA Averaged

0

1

2

0 20 40 60
0

50

100

Hexane OPLS-UA

0

1

2

3

FIG. 6. Sublevelset persistent homology figures with butane, pentane, hexane in the columns, and with the OPLS-UA and
OPLS-AA PELs from MD simulations in the rows. The y-axis counts the number of bars. The x-axis is energy (kJ/mol). We
do not include the barcodes for hexane OPLS-AA because the H–C–H and H–C–C angle fluctuations cause too much noise in
the PEL compared to the MD sampling density.
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freedom to produce a PEL as a function of only the dihe-
dral angles, referred to as OPLS-AA averages. The new
sublevelset barcodes for these PELs are shown in the sec-
ond row of Figure 6. We then compare the changes to the
sublevelset persistence barcodes for the OPLS-AA aver-
ages and OPLS-UA systems. For butane, the number of
bars of each dimension is the same in both butane OPLS-
UA and OPLS-AA, but the energy values corresponding
to the births and deaths of these bars have been shifted
higher as a result of the added potential energy terms
caused by the H-atoms in the OPLS-AA description of
the intramolecular interactions. For pentane, the nine
0-dimensional bars in OPLS-UA are also apparent in the
OPLS-AA barcode (with energy values shifted higher).
For 1-dimensional homology, there is a correspondence
between the semi-infinite bars, but very weak correspon-
dence between the finite 1-dimensional bars. Despite
the averaging performed on the OPLS-AA data (which
should smooth out the effects of rapid H-atom vibrational
motion), the OPLS-AA PEL is significantly noisier or
rougher than the OPLS-UA PEL for pentane, indicating
the effect of the added degrees of freedom upon the di-
hedral PEL. Note too, that because of the added degrees
of freedom within the MD sampling, it is more difficult
to sample all configurations of the vibrational and rota-
tional motion at each dihedral angle value, which lends
itself to more sampling noise within the PEL. The com-
putational cost of MD sampling necessary to compare
the OPLS-UA and OPLS-AA PEL within higher-chain
alkanes was prohibitive, however the data illustrated in
Figure 6 are indicative of the rapid increase in topological
complexity that occurs when adding degrees of freedom
to even simple systems such as the alkanes.

D. Topological Distances Between ELs

In addition to identifying qualitative differences be-
tween ELs, say under a change to the chemical environ-
ment, it is also important to be able to measure quan-
titative distances between ELs. We are using the word
distance in the mathematical sense: a distance is a func-
tion that accepts two ELs as input, and returns a non-
negative real number which measures how close the two
ELs are. Small distances correspond to nearby ELs, and
large distances correspond to ELs that are far apart.

One class of distances may be defined on the ELs them-
selves. For example, if two ELs have the same domains
(input spaces), then one can compute the L∞ (maxi-
mum difference in energy values) or L1 (average differ-
ence in energy values) between these two ELs. Another
example of distance between ELs would be the earth
mover’s or Wasserstein distance,55 which roughly speak-
ing computes how much physical work would be required
to transform one EL into the other. Notions of earth
mover’s distance between graph representations of ELs
have been previously studied.14

We propose a second class of distances on ELs, which

are defined on the sublevelset persistent homology bar-
codes of the ELs. Two distances in this class are the
bottleneck and Wasserstein distances between persistence
barcodes.43,56 Intuitively, these distances are computed
by minimizing the costs of matching one persistence bar-
code with the other. For any matching between inter-
vals in one barcode with intervals in another barcode, we
can compute the cost of this matching. For the bottle-
neck distance, the cost of a matching is defined to be the
largest cost between intervals that are matched, whereas
the 1-Wasserstein distance is defined to be the sum of
all of the costs between matched intervals. The value of
the bottleneck distance and the 1-Wasserstein distance is
then defined to be the minimum cost over all matchings.

An advantage of defining distances between ELs us-
ing persistent homology is that ELs of different dimen-
sionality can be compared in this way. Indeed, any EL,
regardless of its dimension, has sublevelset persistence
barcodes, and any two such barcodes can be compared
regardless of the dimensionalities of the ELs from which
they came.

To investigate the robustness of sublevelset persistent
homology on energy landscapes, for each alkane, we may
quantify the differences between any two of its three dif-
ferent representations: analytic, OPLS-UA, and OPLS-
AA averaged. We conduct this analysis by mainly focus-
ing on analytical pentane and pentane OPLS-UA, but
also touch on hexane. We do not perform these quan-
titative comparisons between OPLS-UA and OPLS-AA
Averaged due to their large differences in energy. When
comparing analytical pentane with pentane OPLS-UA,
our MD simulations allows for sufficient sampling of the
PEL and in return, the barcodes between pentane-UA
and analytical pentane are essentially the same (see Fig-
ures 5 and 6). Therefore, it is not surprising that the bot-
tleneck distance between analytic pentane and pentane
OPLS-UA persistence barcodes is small (Table IV D). In
particular, the bottleneck distance is equal to 0.3 for 0-
dimensional homology and 0.28 for 1-dimensional homol-
ogy. However, in the case of hexane OPLS-UA, insuffi-
cient sampling of its energy landscape leads to a bar-
code with shorter bars and delayed births (see Figure 6).
Thus, the bottleneck distance between analytic hexane
and hexane OPLS-UA persistence barcodes is larger.

In comparison to the bottleneck distance, we find that
the 1-Wasserstein distance between an analytic alkane
and its respective OPLS-UA version serves as a finer
quantitative measure of the differences in the EL asso-
ciated with sampling by MD. For example, the relatively
similar values of the 0- and 1-dimensional bottleneck dis-
tances, even in the case of hexane, indicates that the
bottleneck distance does not distinguish between poor
sampling around a single local maxima as opposed to
bad sampling around many local maxima. In contrast,
the 1-Wasserstein distance exhibits very large differences
between the 0- and 1-dimensional homology, particularly
in hexane, where the sampling of regions associated with
the transitions between different minima is much poorer
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Bottleneck Distance

0-dim. homology 1-dim. homology

Butane 0.24 0.00

Pentane 0.30 0.28

Hexane 5.03 3.60

Wasserstein Distance

0-dim. homology 1-dim. homology

Butane 0.45 0.00

Pentane 3.11 2.35

Hexane 76.55 160.57

TABLE II. The bottleneck and 1-Wasserstein distances be-
tween the persistent barcodes derived from the analytic PEL
(Equation (1)) and sampled PEL from the OPLS-UA molec-
ular dynamics simulations.

than in pentane example.

V. MATHEMATICAL CHARACTERIZATION OF THE
SUBLEVELSET PERSISTENT HOMOLOGY OF
ALKANES

In Theorem 2 we provide a complete mathematical
characterization of the sublevelset persistent homology
of the alkanes, in all homological dimensions, and for
any number of carbons in the chain. We obtained this
theorem by computing the sublevelset persistent homol-
ogy barcodes in Figure 5, conjecturing a formula for how
the barcodes would look for any number of carbons in
the chain, and then rigorously proving this formula us-
ing the connection between Morse theory and persistent
homology. Our proof proceeds by understanding the crit-
ical points of the alkanes and their indices; from there we
can recover the persistent homology. In applications, this
process will often go in reverse — computed sublevelset
persistent homology may be used as a summary of the
critical points in the PEL (perhaps even vectorized for
use in machine learning tasks.)

Theorem 1. The function fn : (S1)n → R is a Morse
function with 6n critical points. Furthermore, fn has
3n
(
n
k

)
critical points of index k.

Indeed, the butane energy landscape in Figure 3A is a
Morse function57 with three minima and three maxima.
The energy function fn : (S1)n → R is defined by sum-
ming butane functions together, namely fn(φ1, . . . , φn) =
f1(φ1) + ... + f1(φn). For this reason, the restriction of
the pentane PEL to any horizontal or vertical slice pro-
duces a translated copy of the butane PEL. Similarly, the
restriction of the hexane PEL to any coordinate-aligned
line produces a translated copy of the butane PEL, and
the restriction of the hexane PEL to any coordinate-
aligned plane produces a translated copy of the pen-
tane PEL. This structure implies that fn is also a Morse
function with 3n

(
n
k

)
critical points of index k. Indeed,

k = 0 1 2 3 4 5 . . .

n = 1 3 1 0 0 0 0 . . .

2 9 10 1 0 0 0 . . .

3 27 55 29 1 0 0 . . .

4 81 244 246 84 1 0 . . .

5 243 973 1462 978 247 1 . . .

...
...

...
...

...
...

...

n 3n 3n(n− 1) + 1
(n
2

)
+ (3n − 1)

(n−1
2

)
. . . . . . . . .

TABLE III. We display the number of k-dimensional bars in
the sublevelset persistent homology of fn : (S1)n → R; com-
pare with Figure 5. The entry in row n and column k is equal
to

(
n
k

)
+ (3n − 1)

(
n−1
k

)
.

the n choose k term
(
n
k

)
:= n!

k!·(n−k)! arises because for

(φ1, . . . , φn) ∈ (S1)n to be a critical point of index k, we
must select k of the angles φi ∈ S1 to be minima of the
butane PEL, and the remaining n− k coordinates max-
ima for butane. The term 3n arises because for each of
the φi, we have three maxima (or minima) of butane to
choose from. The correspondence between Morse theory
and sublevelset persistent homology will now allow us to
describe the persistent homology bars. Indeed, each k-
dimensional bar in the persistent homology barcode has
a birth time corresponding to the energy value of a crit-
ical point of index k, and a death time corresponding to
the energy value of a critical point of index k + 1.

Theorem 2. The sublevelset persistent homology of the
analytical alkane potential energy landscape fn : (S1)n →
R has

(
n
k

)
+ (3n − 1)

(
n−1
k

)
persistent homology bars in

dimension k.

See Table III. The number of bars that are semi-infinite
is
(
n
k

)
, and the remaining (3n− 1)

(
n−1
k

)
bars all have the

same finite length which is equal to the energy differential
between the non-global maxima and the non-global min-
ima in the energy function for butane. Furthermore, in
Appendix C we give the birth values for these bars. This
provides a complete characterization of the sublevelset
persistent homology of the analytical alkane potential en-
ergy landscapes.

The main idea behind the proof of Theorem 2 is
as follows. The birth and death values in the sub-
levelset persistent homology of a Morse function cor-
respond precisely to its critical values. Since fn has
3n critical points of index 0, we know that there are
3n =

(
n
0

)
+ (3n − 1)

(
n−1
0

)
bars in its 0-dimensional sub-

levelset persistent homology, as desired. We can now
proceed by induction on k, which means that we assume
that fn has

(
n
k−1
)

+(3n−1)
(
n−1
k−1
)

bars of dimension k−1

(and we must show that fn has
(
n
k

)
+ (3n − 1)

(
n−1
k

)
bars

of dimension k). The torus Sn has (k − 1)-dimensional
homology of rank

(
n
k−1
)
, producing

(
n
k−1
)

semi-infinite

bars. This leaves (3n− 1)
(
n−1
k−1
)

finite bars in the (k− 1)-
dimensional persistent homology. Recall that fn has
3n
(
n
k

)
critical points of index k. Of these, (3n − 1)

(
n−1
k−1
)
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correspond to death times of the finite (k−1)-dimensional
bars. The remaining critical points of index k that do
not kill (k − 1)-dimensional bars instead give birth to
k-dimensional bars. So as desired, the number of k-
dimensional persistent homology bars is the difference

3n
(
n
k

)
− (3n − 1)

(
n−1
k−1
)

=
(
n
k

)
+ (3n − 1)

((
n
k

)
−
(
n−1
k−1
))

=
(
n
k

)
+ (3n − 1)

(
n−1
k

)
.

This proof by induction suffices to count the number of
persistent homology bars in each homological dimension.
A more detailed argument, relying on Morse theory57 and
a Künneth formula for persistent homology,58 is required
to show that all finite bars have the same length and to
determine the birth times of all bars; see Appendix C.

VI. CONCLUSIONS

We propose sublevelset persistent homology as a com-
pact representation of energy landscapes that measures
more geometric and topological information than a dis-
connectivity graph. In particular, 1-dimensional sub-
levelset persistent homology encodes the energy barriers
between nearby transition paths (in analogy with how
disconnectivity graphs encode the energy barriers be-
tween nearby local minima). We have chosen the alkanes
as our case study model, and have derived a complete for-
mula for their sublevelset persistent homology barcodes
for any number of carbons in the chain. Indeed, the
alkanes with n + 3 carbons have

(
n
k

)
+ (3n − 1)

(
n−1
k

)
persistent homology bars in homological dimension k.
When changing from this analytical model to the OPLS-
UA MD simulation data, sampling noise is added to the
energy landscape. As nearby energy landscapes have
nearby persistent homology barcodes, we use persistent
homology to quantify a notion of topological distance be-
tween the two PELs. A mathematical understanding of
the topology of the alkane PEL provides a useful new tool
to relate physicochemical properties and configurational
phase space.
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Appendix A: Proofs of Theorems 1 and 2

In this appendix we derive and prove Theorems 1
and 2, which show that the alkane PEL fn : (S1)n → R is
a Morse function with known critical points, and which
count the number of bars in the sublevelset persistent
homology barcodes.

1. Critical Points of the Alkane PEL

A smooth function f : M → R from a manifold M to
the real numbers is Morse if it has no degenerate critical
points, i.e. if the Hessian matrix at each critical point
is nonsingular.57 The index of a critical point, roughly
speaking, is the number of linearly independent direc-
tions in which one can move and have the value of g de-
crease; more formally the index is the number of negative
eigenvalues in the Hessian at this critical point.

From its definition in Section III A, or from its image in
Figure 3A, one can see that the butane energy landscape
function V : S1 → R is a Morse function with six critical
points: three local minima and three local maxima. The
alkane energy landscape function fn : (S1)n → R, defined
by fn(φ1, . . . , φn) = V (φ1) + · · ·+ V (φn), decomposes in
a way that allows us to identify all of its critical points,
and to furthermore describe their indices.

Proof of Theorem 1. We must show that fn : (S1)n → R
is a Morse function with 3n

(
n
k

)
critical points of index

k. Taking partial derivatives, we see that ∂fn
∂φi

= ∂V (φi)
∂φi

.

Therefore the gradient of fn is the zero vector if and
only if each φi is a critical point of V . Since V has
6 critical points, it immediately follows that fn has 6n

critical points.
Let (φ1, . . . , φn) be a critical point of fn. Then, the

Hessian of fn at this point is a diagonal matrix with one
positive entry on the diagonal for each φi that is a local

http://dx.doi.org/10.1039/C7CP05320G
http://dx.doi.org/10.1039/C7CP05320G
http://dx.doi.org/10.1021/jp048264l
http://dx.doi.org/10.1021/jp048264l
http://arxiv.org/abs/https://doi.org/10.1021/jp048264l
http://dx.doi.org/10.1039/B105571M
http://dx.doi.org/10.1039/B105571M
http://dx.doi.org/10.1039/C9CP02431J
http://dx.doi.org/10.1039/C9CP02431J
http://dx.doi.org/10.1007/978-1-4020-2696-6
https://gitlab.com/delta-topology-public/deltapersistence
https://gitlab.com/delta-topology-public/deltapersistence
https://gitlab.com/delta-topology-public/ttkalkanes
https://gitlab.com/delta-topology-public/ttkalkanes


Representations of Energy Landscapes by Sublevelset Persistent Homology 14

minimum of V , and with one negative entry on the diag-
onal for each φi that is a local maximum of V . Since all
critical points are non-degenerate, fn is a Morse function.
Furthermore, the index of a critical point (φ1, . . . , φn) is
the number of φi points that are local maxima of V .
There are

(
n
k

)
ways to choose the k indices for maxima

out of the n slots, and for each φi that is a maximum
(resp. minimum) we have 3 possible maxima (resp. min-
ima) of V to choose from. Hence the number of critical
points of index k is 3n

(
n
k

)
.

2. Connection between Morse Theory and Sublevelset
Persistence

The following is an important and well-known lemma
in persistent homology that we will reprove in Ap-
pendix B.

Lemma A.1. If f : M → R is a Morse function, then
the birth and non-infinite death times in the sublevelset
persistent homology correspond precisely to the critical
points of f . Each k-dimensional bar has birth time cor-
responding to a critical point of index k, and death time
either equal to infinity or otherwise corresponding to a
critical point of index k + 1. Furthermore, the number
of semi-infinite bars in dimension k is given by the k-
dimensional homology of M .

This lemma shows that the sublevelset persistent ho-
mology of a Morse function is closely tied to the critical
points of that function. But in addition to counting the
number of critical points of each index, sublevelset per-
sistent homology also shows how the critical points are
related to each other (often paired up).

In the case of the alkane PEL fn : (S1)n → R, the
number of semi-infinite bars is easy to derive. Indeed,
once the energy barrier r is larger than the energy value
of the global maximum of fn : (S1)n → R, the sub-
levelsets f−1n (−∞, r] are all equal to the n-dimensional
torus (S1)n. The homology groups of the n-torus are well
understood: the k-th homology group Hk((S1)n) of the
n-torus has rank equal to the binomial coefficient

(
n
k

)
. So

the number of semi-infinite bars in the k-dimensional per-
sistent homology of fn : (S1)n → R is

(
n
k

)
. For example,

the number of semi-infinite bars in the persistent homol-
ogy of pentane (n = 2), as k increases from 0 to 2, are(
2
0

)
= 1,

(
2
1

)
= 2,

(
2
2

)
= 1. The number of semi-infinite

bars in the persistent homology of hexane (n = 3), as
k increases from 0 to 3, are

(
3
0

)
= 1,

(
3
1

)
= 3,

(
3
2

)
= 3,(

3
3

)
= 1. For heptane this list is 1, 4, 6, 4, 1, and for

octane this list is 1, 5, 10, 10, 5, 1; these numbers are
given by the n-th row of Pascal’s triangle.

3. Proofs of the Number of Bars

We can now use the connections between Morse theory
and persistent homology to count the number of persis-

tent homology bars, as shown in Table III. The total
number of bars, in all homological dimensions, is given
by the following theorem.

Theorem 3. The sublevelset persistent homology of the
alkane energy landscape fn : (S1)n → R has (6n + 2n)/2
bars in all homological dimensions.

Proof of Theorem 3. The torus (S1)n has homology of
rank

(
n
k

)
in dimension k, and therefore total homology

(the sum of the ranks of the homology groups in all
dimensions) of rank

∑n
k=0

(
n
k

)
= 2n. So, there are 2n

semi-infinite bars that start at a critical point of fn and
never die. These 2n semi-infinite bars “use up” 2n of the
6n critical points, and the remaining critical points are
are paired up to give (6n − 2n)/2 finite-length bars in
the sublevelset persistent homology barcode. Hence, by
Lemma A.1, the total number of bars in the persistent
homology barcode of fn : (S1)n → R is(

2n semi-infinite bars
)

+

(
6n − 2n

2
finite-length bars

)
=

(
6n + 2n

2
bars

)
.

We are ready to prove our main theorem.

Proof of Theorem 2. We must show that the number of
k-dimensional bars in the sublevelset persistent homology
of fn : (S1)n → R is

(
n
k

)
+ (3n − 1)

(
n−1
k

)
. We proceed by

induction on k.
Our base case is k = 0. Since fn has 3n criti-

cal points of index 0, we know that there are 3n =
(3n − 1)

(
n−1
0

)
+
(
n
0

)
bars in its 0-dimensional sublevelset

persistent homology.
For the inductive step, assume that fn has

(
n
k

)
+ (3n−

1)
(
n−1
k

)
bars in its k-dimensional sublevelset persistent

homology. The homology of the torus is known to have
k-dimensional homology of rank

(
n
k

)
, and therefore there

are
(
n
k

)
semi-infinite bars. This leaves (3n − 1)

(
n−1
k

)
fi-

nite bars in the k-dimensional sublevelset persistent ho-
mology of fn. By Theorem 1, fn has 3n

(
n
k+1

)
critical

points of index k + 1. Of these, (3n − 1)
(
n−1
k

)
corre-

spond to death times of the finite k-dimensional bars. By
Lemma A.1, the remaining critical points of index k + 1
that do not kill k-dimensional bars instead give birth to
each of the (k + 1)-dimensional bars. So the number of
(k + 1)-dimensional persistent homology bars is

3n
(

n

k + 1

)
− (3n − 1)

(
n− 1

k

)
=

(
n

k + 1

)
+ (3n − 1)

((
n

k + 1

)
−
(
n− 1

k

))
=

(
n

k + 1

)
+ (3n − 1)

(
n− 1

k + 1

)
,

as desired. We are done by induction.
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We remark that Theorem 2 implies Theorem 3, since

n∑
k=0

((
n

k

)
+ (3n − 1)

(
n− 1

k

))

=
n∑
k=0

(
n

k

)
+ (3n − 1)

n−1∑
k=1

(
n− 1

k

)
=2n + (3n − 1)2n−1

=3n2n−1 + 2n−1

=(6n + 2n)/2.

To see the first equality above we used the fact that(
n−1
n

)
= 0, and for the second equality we used that∑n

k=0

(
n
k

)
= 2n. Nevertheless, we have proven the sim-

pler Theorem 3 first, as it is a more straightforward
demonstration of the tools needed to prove Theorem 2.

Appendix B: The Morse complex

We give a mathematical review of the Morse complex, a
fundamental object in Morse theory. Though the Morse
complex was not needed to give a count of the alkane
persistent homology bars in Theorem 2, it will be needed
to give a complete description of the sublevelset persis-
tent homology (including birth and death levels) in Ap-
pendix C.

See Section 8.6 of Ref. 62 and Chapter 3 of Ref. 44,
for example, for further details on the material on Morse
complexes in this section. We restrict attention to Z/2Z
coefficients mainly for convenience, so that we do not
have to worry about orientations, but also so that our re-
sults apply to non-orientable manifolds. Let f be a Morse
function on a Riemannian manifold M which satisfies the
transversality condition (also known as the Morse–Smale
condition), i.e. the stable and unstable manifolds W s(p)
and Wu(q) intersect transversally for all critical points p
and q. The stable manifold of a critical point p is the set
of all points x ∈ M such that the limit t → +∞ of the
solution to ẋ(t) = −∇f starting at x is p. The unstable
manifold is the same, but with the limit t→ −∞. Write
C•(f) for the vector space over Z/2Z generated by the set
of critical points of f . We denote the index of a critical
point p by µ(p), and we define µ(p, q) := µ(p) − µ(q).
The moduli space of gradient flow paths from p to q
will be denoted Mf

p,q, that is, Mf
p,q is the set of paths

x : R → M which satisfy ẋ = −∇f , limt→∞ x(t) = q,
and limt→−∞ x(t) = p, where we identify x and x̃ if for
some t and t̃ we have x(t) = x̃(t̃). If µ(p, q) = 1, then
Mf

p,q is a finite set. There is a grading on C•(f) by crit-
ical point index which is nonnegative and bounded: the
set of critical points of index k generate Ck(f). Define a
homomorphism ∂ : C•(f)→ C•(f) by

∂p =
∑

q : µ(p,q)=1

(#Mf
p,q)q,

where #Mf
p,q is the number of the flows from p to q, mod-

ulo two (since we are using Z/2Z coefficients). One can
verify that (C•(f), ∂) is a chain complex. The homology
of C•(f) is Morse homology. While a priori Morse ho-
mology depends on f and on the Riemannian metric on
M (as the gradient depends on such), it can be shown to
be isomorphic to singular homology for any such choices.

1. The Morse Complex and Persistence

The persistent homology of the sublevelsets of f is
closely related to the Morse complex C•(f). Let Ma =
f−1(−∞, a] be the sublevelset of M at value a. Then
the second Morse lemma guarantees that Ma has the ho-
motopy type of a cell complex with a cell of dimension
k for each critical point of index k in Ma. Let Ca• (f)
be the sub-complex of C•(f) corresponding to the sub-
levelset Ma. The sublevelset persistent homology of f is
the persistent homology of Ca• (f) filtered by increasing
a.

We are now prepared to prove Lemma A.1, which
states the following. If f : M → R is a Morse function,
then the birth and non-infinite death times in the sub-
levelset persistent homology correspond precisely to the
critical points of f . Each k-dimensional bar has birth
time corresponding to a critical point of index k, and
death time either equal to infinity or otherwise corre-
sponding to a critical point of index k+ 1. Furthermore,
the number of semi-infinite bars in dimension k is given
by the k-dimensional homology of M .

Proof of Lemma A.1. By the first Morse lemma, if [a, b]
contains no critical points of f , then the inclusion Ma ↪→
M b is a homotopy equivalence (and Ca• (f) ∼= Cb•(f)), so
persistence can only change when passing critical points.
Suppose that a0 < a1 < · · · < an is a sequence of values
interleaving between the critical values of f , so that Mai

contains exactly i critical points and Man = M . Let pi
be the critical point with value between ai−1 and ai, and
let Ci•(f) = Cai• (f). If pi is of index k, then Ci•(f) and
Ci−1• (f) differ only in the k-th degree:

Cik(f) = Ci−1k (f)⊕ span(pi).

Here span(pi) is isomorphic to the field Z/2Z, with a sin-
gle generator pi. We are interested in the corresponding
change in homology. Let Zik and Bik denote the cycles
and boundaries, respectively. Note that pi cannot be in
Bik because any bounding (k + 1)-chain would have to

have been in Ci−1k+1(f). Thus the only change in homol-

ogy comes from a change in Zik or Bi−1k−1. There are two
possibilities:

1. If Bik−1
∼= Bi−1k−1, then either pi ∈ Zik or pi+σ ∈ Zik

for some k-chain σ ∈ Ci−1k , and so the rank of Zik
(and thus Hi

k) increases by one.

2. If not, then Bik−1
∼= Bi−1k−1 ⊕ ∂pi, and the (k − 1)-

dimensional homology decreases in rank by one.
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The semi-infinite bars are the homology of Can• (f),
which is exactly the homology of M by the isomorphism
between Morse and singular homology. The assumption
that Mai contains exactly i critical points is true in the
generic case, so any Morse function can be perturbed
by a small amount to ensure it holds. If multiple criti-
cal points appear at the same critical value, as they do
for the alkane energy function, then we impose such a
perturbation, possibly losing the ability to canonically
identify which critical point corresponds to which birth
or death.

The following two corollaries are consequences of items
1 and 2, respectively, in the proof of the above lemma.

Corollary B.1. If ∂p = 0 for some critical point p in
the Morse complex of f , then p corresponds to the birth
of a bar in persistent homology.

Corollary B.2. If the bar corresponding to critical point
q dies at the appearance of critical point p, then q ∈ ∂p.

Appendix C: A Künneth Formula for the Alkane Persistent
Homology

We use the Morse complex to describe the sublevelset
persistent homology for butane and pentane. We then
apply a version of the Künneth formula for persistent
homology58 to give a complete description of the sub-
levelset persistent homology of the alkane molecules.

In particular, we show that all non-infinite bars in the
persistent barcode have exactly the same length. This is
visually evident by the persistence barcodes in Figure 5,
or equivalently by the persistence diagrams in Figure 7.
A persistence diagram displays the same information as
a persistence barcode, just in a different format — each
interval in the barcode is plotted as a point in the plane,
with its horizontal and vertical coordinates the birth and
death value, resp., of the interval.

1. The Persistence of the Butane Energy Function

The butane energy function f1 = V : S1 → R has six
critical points: a global minimum, a, two local minima,
b1 and b2, two local maxima, c1 and c2, and a global
maximum d, with corresponding critical values α < β <
γ < δ; see Figure 8.

The butane Morse complex is 0 → (Z/2Z)3 →
(Z/2Z)3 → 0. We determine the boundary map, ∂, by
determining the stable and unstable manifolds of each
critical point; see Table IV. The given intervals are in
the circle, S1 = R/2πZ. The boundary of every index 0
critical point is 0. The boundaries of the index 1 critical
points are ∂c1 = a+ b1, ∂c2 = a+ b2, and ∂d = b1 + b2.
If necessary for the purpose of breaking ties, assume a
small perturbation in the order suggested by the nota-
tion: b1 ≺ b2 and c1 ≺ c2.

p = index W s(p) Wu(p)

a 0 (c1, c2) {a}
b1 0 (d, c1) {b1}
b2 0 (c2, d) {b2}
c1 1 {c1} (b1, a)

c2 1 {c2} (a, b2)

d 1 {d} (b2, b1)

TABLE IV. The stable and unstable manifolds of the critical
points of f1 = V : S1 → R.

We will use the elder rule when determining the sub-
levelset persistence of butane.

Lemma C.1 (Elder Rule36). If u and v represent dis-
tinct k-dimensional homology classes in Hi

k at scale i,

and if u+ v is added to the boundaries Bjk at some scale
j > i, then the persistent homology bar corresponding to
the younger of u and v is killed.

We can now state exactly the persistence of the butane
energy landscape f1 = V . One zero-dimensional bar is
born at α, and two are born at β, by Corollary B.1 above.
At energy level γ, the appearance of c1 and c2 kills two
of the existing bars. Since the boundaries are both of the
form a + bi, the elder rule says that the bars generated
by b1 and b2 are those that die. Lastly a one-dimensional
bar appears at δ since ∂d is already an element of B0,
the 0-dimensional boundary group. The bars generated
by a and d are semi-infinite, matching the homology of
S1. The two finite bars have length L := γ − β.

2. Persistence of the Pentane Energy Function

We next consider the pentane energy landscape
f2 : (S1)2 → R. We know the cells of the Morse complex
by our work in Section A 3. We can now write down the
boundary maps and compute the persistence by brute
force using Lemma A.1. The birth times occur in the
order

2α < α+ β < 2β < α+ γ < β + γ

<α+ δ < β + δ < 2γ < γ + δ < 2δ.

Table V summarizes the persistent homology computa-
tion.

We remark that the index 1 critical points appearing
at β + γ are paired so that half of them are births and
half are deaths, but there is no canonical choice of which
critical point in each pair causes each effect.

3. General Form

The direct computations used above for pentane be-
come too complicated to perform by hand for larger
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FIG. 7. Persistent homology diagrams for the alkane systems, from butane (n = 1) through octane (n = 5). The x- and y-axes
are both energy (kJ/mol). The color of a persistence diagram point indicates its homological dimension, and the integer label
indicates its multiplicity. The multiplicities for heptane and octane are omitted due to space constraints, but they are given
by Theorem 7.
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FIG. 8. Energy of butane. Critical points are (left to right): d, b1, c1, a, c2, b2, d.

�
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�

↵
d b1 c1 a c2 b2 d

FIG. 8. PEL of butane. The y-axis is energy, and the x-axis
is the dihedral angle varying from 0 to 2π. From left to right,
the critical points are d, b1, c1, a, c2, b2.

alkanes with higher-dimensional PELs. To proceed to
the general case we need several lemmas. The alkane
energy function for n dimensions is fn(φ1, . . . , φn) =
V (φ1) + . . . V (φn). In Theorem 1 we established that
the critical points of fn must be critical points of V in
each component, and that the index is the sum of the
indices of the components.

We state the following lemmas for the slightly more
general setting where manifold M is a product M = M1×
· · · ×Mn, Morse function G : M → R is G(x1, . . . , xn) =

g1(x1) + · · ·+ gn(xn), and the functions gi : Mi → R are
possibly different with possibly different domains.

Lemma C.2. When product manifold M and Morse
function G(x1, . . . , xn) = g1(x1) + · · · + gn(xn) are as
described above,

1. A point p ∈ M is a critical point of G if and only
if p = (p1, . . . , pn) with pi a critical point of gi for
all i,

2. The stable manifold of p is W s(p) = W s(p1) ×
· · ·×W s(pn) and the unstable manifold is Wu(p) =
Wu(p1)× · · · ×Wu(pn),

3. If g1, . . . , gn each satisfy the transversality condi-
tion, so does G,

4. The moduli space of gradient flows is MG
p,q =

Mg1
p1,q1 × · · · ×M

gn
pn,qn ,

5. The index of p is
∑
i µ(pi) and the relative index

of critical points p and q is given by µ(p, q) =∑n
i=1 µ(pi, qi), and

6. If µ(p, q) = 1 and MG
p,q 6= ∅, then for some 1 ≤

i ≤ n we have pi 6= qi, qj = pj for all j 6= i, and
#MG

p,q = #Mgi
pi,qi .
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p = index ∂p f2(p) effect

(a, a) 0 0 2α birth

(a, b1) 0 0 α+ β birth

(a, b2) 0 0 α+ β birth

(b1, a) 0 0 α+ β birth

(b2, a) 0 0 α+ β birth

(b1, b1) 0 0 2β birth

(b1, b2) 0 0 2β birth

(b2, b1) 0 0 2β birth

(b2, b2) 0 0 2β birth

(a, c1) 1 (a, a) + (a, b1) α+ γ death α+ β bar

(a, c2) 1 (a, b2) + (a, a) α+ γ death α+ β bar

(c1, a) 1 (a, a) + (b1, a) α+ γ death α+ β bar

(c2, a) 1 (b2, a) + (a, a) α+ γ death α+ β bar

(b1, c1) 1 (b1, a) + (b1, b1) β + γ birth

(b1, c2) 1 (b1, b2) + (b1, a) β + γ birth

(b2, c1) 1 (b2, a) + (b2, b1) β + γ birth

(b2, c2) 1 (b2, b2) + (b2, a) β + γ birth

(c1, b1) 1 (a, b1) + (b1, b1) β + γ death 2β bar

(c1, b2) 1 (a, b2) + (b1, b2) β + γ death 2β bar

(c2, b1) 1 (b2, b1) + (a, b1) β + γ death 2β bar

(c2, b2) 1 (b2, b2) + (a, b2) β + γ death 2β bar

(a, d) 1 (a, b1) + (a, b2) α+ δ birth

(d, a) 1 (b1, a) + (b2, a) α+ δ birth

(b1, d) 1 (b1, b1) + (b1, b2) β + δ birth

(b2, d) 1 (b2, b1) + (b2, b2) β + δ birth

(d, b1) 1 (b1, b1) + (b2, b1) β + δ birth

(d, b2) 1 (b1, b2) + (b2, b2) β + δ birth

(c1, c1) 2
(a, c1) + (b1, c1)

+(c1, a) + (c1, b1)
2γ death β + γ bar

(c1, c2) 2
(a, c2) + (b1, c2)

+(c1, b2) + (c1, a)
2γ death β + γ bar

(c2, c1) 2
(b2, c1) + (a, c1)

+(c2, a) + (c2, b1)
2γ death β + γ bar

(c2, c2) 2
(b2, c2) + (a, c2)

+(c2, b2) + (c2, a)
2γ death β + γ bar

(c1, d) 2
(a, d) + (b1, d)

+(c1, b1) + (c1, b2)
γ + δ death β + δ bar

(c2, d) 2
b2, d) + (a, d)

+(c2, b1) + (c2, b2)
γ + δ death β + δ bar

(d, c1) 2
(b1, c1) + (b2, c1)

+(d, a) + (d, b1)
γ + δ death β + δ bar

(d, c2) 2
(b1, c2) + (b2, c2)

+(d, b2) + (d, a)
γ + δ death β + δ bar

(d, d) 2
(b1, d) + (b2, d)

+(d, b1) + (d, b2)
2δ birth

TABLE V. Pentane Morse complex computation. By “death
r bar” in the effect column, we mean that the critical point
kills a persistent homology bar that was born at energy r.

Proof. 1. Follows by the linearity of the gradient.

2. If limt→∞ x(t) = p where ẋ(t) = −∇G(x(t)), then
limt→∞ xi(t) = pi for each i, and likewise for the
limit t→ −∞.

3. To see that G satisfies the transversality condi-
tion, recall that TxM = Tx1

M1 × · · · × Txn
Mn,

and that by transversality in each component,
Txi

Mi = Txi
Wu(pi) ⊕ Txi

W s(pi). Thus TxM ∼=
TxW

u(p) ⊕ TxW
s(p) with the isomorphism given

by permuting the order of the coordinates.

4. Follows because a flow x(t) from p to q must consist
of a flow xi(t) from pi to qi in each component.

5. Since∇G is the sum of∇gi, the Hessian of G breaks
down into a block-diagonal matrix (in the natu-
ral product coordinates) with blocks given by the
Hessians of each individual gi. Therefore the num-
ber of negative (respectively, positive) eigenvalues
of the Hessian at p is the sum of the number of
negative (positive) eigenvalues of each gi, and so
µ(p) =

∑
i µ(pi) and µ(p, q) =

∑
i µ(pi, qi).

6. Let µ(p, q) = 1 andMG
p,q 6= ∅. Then it must be the

case that p and q differ in exactly one coordinate,
since otherwise there would be some index j with
µ(qj) > µ(pj), giving Mgj

pj ,qj = ∅ and MG
p,q = ∅ by

3, a contradiction. Hence p and q differ in exactly
one coordinate i, and in this coordinate µ(pi, qi) =
1, by 5. SoMG

p,q
∼=Mgi

pi,qi and #MG
p,q = #Mgi

pi,qi .

Corollary C.3. In C•(G) the differential is given by

∂p =
n∑
i=1

(p1, . . . , ∂pi, . . . , pn).

Proof. By the definition of the Morse boundary operator,
∂p =

∑
(#MG

p,q)q, where the sum is over all q such that
there is a gradient flow from p to q and µ(q) = µ(p)− 1.
By the lemma, if p = (p1, . . . , pn), then ∂p is a linear
combination of terms of the form q = (p1, . . . , qi, . . . , pn),
and where a term (p1, . . . , qi, . . . , pn) occurs if and only if
there is a flow in Mi from pi to qi and µ(pi, qi) = 1. The
result follows since #MG

p,q = #Mgi
pi,qi for this choice of

p and q.

The tensor product of chain complexes A• and B• has

(A• ⊗B•)k =
⊕
i+j=k

(Ai ⊗Bj)

as its k-th chain group, and the differential is the lin-
ear extension of ∂(a, b) = (∂Aa, b) + (a, ∂Bb) when using
Z/2Z coefficients. For an n-fold tensor product, a simple
induction argument shows that the direct sum runs over
all i1 + · · ·+ in = k, namely(
A

(1)
• ⊗ · · · ⊗ A(n)

•

)
k

=
⊕

i1+...+in=k

(
A

(1)
i1
⊗ · · · ⊗ A(n)

in

)
.
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The differential generalizes to the n-fold case as

∂(a1, . . . , an) =
n∑
i=1

(a1, . . . , ∂iai, . . . , an),

Proposition C.4. C•(G) ∼= C•(g1)⊗ · · · ⊗ C•(gn)

Proof. By Lemma C.2, critical points of G with index k
are in bijection with tuples (p1, . . . , pn) where pi is a crit-
ical point of gi and

∑
µ(pi) = k. Since such tuples freely

generate (C•(g1) ⊗ · · · ⊗ C•(gn))k and critical points of
index k freely generate Ck(G), there is an isomorphism
of graded vector spaces C•(G) ∼= C•(g1) ⊗ · · · ⊗ C•(gn).
By Corollary C.3 and the definition of the tensor prod-
uct differential, this extends to an isomorphism as chain
complexes.

A filtered chain complex is a functor from (Z,≤) to
the category of chain complexes. The tensor product of
filtered chain complexes A∗• and B∗• , denoted (A•⊗fB•)∗,
has

(A• ⊗f B•)ck :=
⊕
a+b≤c

⊕
i+j=k

(Aai ⊗Bbj )

as its k-th chain group at filtration value c, and boundary
maps given by the restriction of the usual tensor product.

The Morse complex of a Morse function f is naturally
a filtered chain complex C∗• (f), where Ca• (f) is the sub-
complex of C•(f) generated by critical points with value
less than a; this is a functor with domain (Z,≤) so long
as we restrict attention to a discrete set of real numbers
a that are interleaved between adjacent critical points
of f . The differential on Ca• (f) is the restriction of the
differential of C•(f) which is well-defined because the
gradient flow construction of the boundary ensures that
f(q) < f(p) for any q ∈ ∂p.

Theorem 4. Let M be a product of manifolds M =
M1×· · ·×Mn, and let Morse function G : M → R be de-
fined by G(x1, . . . , xn) = g1(x1)+· · ·+gn(xn), where each
function gi : Mi → R is Morse and satisfies the transver-
sality condition. Then C∗• (G) ∼= C∗• (g1)⊗f · · · ⊗f C∗• (gn)
as filtered chain complexes.

Proof. By Proposition C.4, C•(G) ∼= C•(g1) ⊗f · · · ⊗f
C•(gn) as chain complexes. Since G(x1, . . . , xn) =
g1(x1) + · · · + gn(xn), for a critical point p, G(p) < a
if and only if g1(p1) + · · ·+ gn(pn) < a. Thus the natural
filtration of C∗• (G) agrees with the natural filtration of
C∗• (g1)⊗f · · · ⊗f C∗• (gn).

The homology of a tensor product can be computed
using the Künneth formula (see Theorem 3B.5 of Ref. 63,
for example).

Theorem 5 (Künneth Formula). The homology of two
chain complexes A• and B• satisfies⊕

i+j=n

(Hi(A•)⊗Hj(B•)) ∼= Hn(A• ⊗B•).

This theorem is insufficient to give the persistent ho-
mology, however. For example, in the case of the alkanes,
f−12 (−∞, β+α) includes the points (b1, a) and (a, b1), but
it does not include (b1, b1), so the chain complex is not
the “pointwise” tensor product.

Instead, we need the version of the Künneth formula
for persistent homology by Gakhar and Perea;58 see their
Theorems 5.12 and 5.14. The persistent homology of a
filtered chain complex A∗• in degree k is denoted PHk(A).
We denote the space of barcodes of A∗• by bcd(A), where
bcdj(A) denotes the bars in homological dimension j.

Theorem 6 (Peristent Künneth Formula). There is a
natural short exact sequence of graded modules

0→
⊕
i+j=n

(PHi(X)⊗ PHj(Y ))→ PHn(X ⊗g Y )

→
⊕
i+j=n

Tor(PHi(X), PHj−1(Y ))→ 0.

If Hi(X) and Hj(Y ) are pointwise finite, then

bcdn(X ⊗f Y )

=
⊔

i+j=n

{(`J + I) ∩ (`I + J) | I ∈ bcdi(X), J ∈ bcdj(Y )}

t
⊔

i+j=n

{(rJ + I) ∩ (rI + J) | I ∈ bcdi(X), J ∈ bcdj−1(Y )} .

Here ` and r are the left and right endpoints of the
interval.

By convention if the right endpoint of interval I is rI =
+∞, then the bar rI + J does not appear.

Corollary C.5. Critical point (p, q) generates a semi-
infinite bar if and only if p and q generate semi-infinite
bars.

We are now prepared to prove that all non-infinite
bars in the sublevelset persistent homology have the same
length; see Figures 5 and 7.

Corollary C.6. If g1 = · · · = gn and all finite bars in the
persistence of g1 are of the same length, L, then all finite
bars in the persistence of G(x1, . . . , xn) :=

∑n
i=1 gi(xi)

have length L.

Proof. By assumption this holds for the case n = 1. Sup-
pose it holds for n− 1. A finite bar is the intersection of
a bar in PHi(Gn−1) with one in PHj(gn), at least one
of which is finite. The length of an intersection of bars
(with starting endpoints shifted to be identical) is equal
to the length of the shorter of the two bars, which in this
case is length L.

4. Persistence of the Alkanes

We apply Theorem 6 and Corollaries C.5 and C.6 to
the sublevelset persistence of the alkane energy function,
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FIG. 9. We obtain the pentane barcodes by applying the persistent Künneth formula to two copies of the butane barcodes.
The bar “I2 J2” in pentane comes from the butane bars I2 and J2, and the bar “I2 J2 Tor” is from the torsion portion of
Theorem 6. The y-axis is a count of bars, and the x-axis is energy (kJ/mol).

fn(φ1, . . . , φn) =
∑n
i=1 f1(φi). See Figure 9. These com-

putations are based off of our computations for butane,
from which we know that the semi-infinite bars of butane
are those generated by critical points a and d.

Definition C.7. Let fn : (S1)n → R be the alkane en-
ergy function, and let k ≤ n. For i ≤ k and j ≤ n − k,
we say an index k critical point (φ1, . . . , φn) of fn is of
class (k, i, j) if the ordered list of φ` points consists of

• i copies of c1 or c2, and hence k− i copies of d, and

• j copies of b1 or b2, and hence n−k− j copies of a.

The motivation for this definition is revealed in the
following immediate lemma.

Lemma C.8. All critical points of fn : (S1)n → R of
class (k, i, j) have the same energy value E(n, k, i, j) :=
iγ + (k − i)δ + jβ + (n− k − j)α.

Proof. This follows since fn(φ1, . . . , φn) =
∑n
i=1 f1(φi),

where f1(c1) = f1(c2) = γ, f1(d) = δ, f1(b1) = f1(b2) =
β, and f1(a) = α.

Let n1, n2, . . . , nm be integers with n1+n2+. . .+nm =
n. The multinomial coefficient, which is a generalization
of the binomial coefficient, is defined as(

n

n1, . . . , nm

)
:=

n!

n1! · . . . · nm!
.

It is equal to the number of ways, from a collection of n
objects, to choose n1 objects to go in box 1, to choose n2
objects to go in box 2, . . . , and to choose nm objects to
go in box m. Note that 0! = 1. If any of the integers ni
are negative or greater than n, then

(
n

n1,...,nm

)
= 0.

Lemma C.9. The number of critical points of class
(k, i, j) is 2i+j

(
n

i,k−i,j,n−k−j
)
.

Proof. Among its n entries (φ1, . . . , φn), a critical point
of class (k, i, j) has i copies of c1 or c2, k − i copies of d,
j copies of b1 or b2, and n− k− j copies of a. Hence the
lemma follows from the definition of the multinomial co-
efficient, where the constant 2i+j appears because there
are two choices for each of the i copies of c1 or c2, and
there are two choices for each of the j copies of b1 or
b2.

The following theorem gives the complete classification
of the sublevelset persistent homology of all of the alka-
nes.

Theorem 7. Consider the k-dimensional sublevelset
persistent homology barcodes of the alkane PEL
fn : (S1)n → R. Let i ≤ k and let j ≤ n − k. The num-
ber of bars that appear in the k-dimensional sublevelset
persistent homology with birth energy value equal to
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E(n, k, i, j) = iγ + (k − i)δ + jβ + (n− k − j)α is

2i+j

(
i∑

`=0

(−1)`
(

n

i− `, k − i, j + `, n− k − j

))
.

Furthermore, this bar is semi-infinite if and only if i =
j = 0, and otherwise has length L = γ − β. These are
the only bars that appear.

We check that when i = j = 0, we get
(

n
0,k,0,n−k

)
=(

n
k,n−k

)
=
(
n
k

)
semi-infinite bars, as expected.

Proof of Theorem 7. Fix n to be arbitrary. We will in-
duct on k ≤ n.

For the base case k = 0, note that necessarily
i = 0. The formula then follows from Lemma C.9,
since the number of critical points of class (k, i, j) is
2i+j

(
n

i,k−i,j,n−k−j
)
, and each of those necessarily gives

birth to a 0-dimensional peristent homology bar at the
corresponding energy value.

For the inductive step, assume that the formula is true
for k − 1, i.e. for all i ≤ k − 1 and j ≤ n − k + 1. Our
task is now to prove the formula is true for k, i.e. for all
i ≤ k and j ≤ n− k.

By Lemma C.9 the number of critical points of class
(k, i, j) is 2i+j

(
n

i,k−i,j,n−k−j
)
. Of those, the number

of critical points that must be used to kill (k − 1)-
dimensional bars is equal, by induction, to

2i+j

(
i−1∑
`=0

(−1)`
(

n

i− 1− `, k − i, j + 1 + `, n− k − j

))
.

Indeed, if a critical point of class (k, i, j) kills a (k − 1)-
dimensional bar of length L, then the birth time of that
bar must have been the energy of a critical point of class
(k−1, i−1, j+1) (Note E(n, k, i, j)−L = E(n, k−1, i−
1, j + 1)). Hence the number of k-dimensional persistent
homology bars with birth energy equal to E(n, k, i, j) is

2i+j
(

n
i,k−i,j,n−k−j

)
−2i+j

(∑i−1
`=0(−1)`

(
n

i−1−`,k−i,j+1+`,n−k−j
))

=2i+j
(

( n
i,k−i,j,n−k−j)−

i−1∑̀
=0

(−1)`( n
i−1−`,k−i,j+1+`,n−k−j)

)
=2i+j

(∑i
`=0(−1)`

(
n

i−`,k−i,j+`,n−k−j
))
.

Thus we have given a complete description of the sub-
levelset persistent homology of the alkanes, for all dimen-
sions n, and for all homological dimensions k.

Appendix D: The Morse–Smale Complex of the PEL of
alkanes

When considering a given conformation we are inter-
ested in what conformations are likely to be obtained

next as energy in the system increases or decreases. For
a non-critical point in the conformation space X, the
paths x : [0, 1] → X which pass through this point and
are integral curves to the energy gradient begin and end
at the critical points. The energy surface — whether
reduced or not — can therefore be partitioned into re-
gions wherein gradient flow lines share endpoints. Two
points from the same region correspond to conformations
which tend towards the same arrangement as energy in
the system changes. Such a partition can be formally
constructed as the Morse–Smale complex for the given
energy function f , provided that f is a Morse function
which additionally satisfies the transversality condition;
see Appendix B. The Morse–Smale complex is a cell com-
plex on X whose n-cells — that is the pieces of the de-
composition homeomorphic to n-dimensional Euclidean
balls — correspond to pairs of critical points p and q
whose indices differ by n and which are the endpoints of
integral curves through points in the interior of the cell.
(We remark that the Morse–Smale complex is a different
object than the Morse complex in Appendix B, though
the two are closely related.)

The potential energy landscape for butane has six crit-
ical points, and so the Morse–Smale complex has six 0-
cells. Three of these are minima and three are max-
ima, with indices 0 and 1 respectively. Each minimum is
connected via 1-cells in the Morse–Smale complex to its
two neighboring maxima, indicating the respective cor-
responding flows. As the landscape is one-dimensional,
this exhausts the complex.

The conformation space of pentane has two periodic
dimensions, so critical points can occur with index 0, 1,
or 2. There are nine critical points of index 0 and also
of index 2, with the remaining 18 being index 1. At
horizontal and vertical slices, the pentane landscape is a
copy of the butane landscape. Hence, the Morse–Smale
complex is also a copy at these slices. In particular, the
1-cells of the complex for pentane occur along a single
varying dihedral angle. Here though, there additionally
are 2-cells for each pair of adjacent minima and max-
ima. These fill the regions between the 1-cells joining
saddles and extrema, and correspond to an uncountable
family of flows from a minimum to a maximum. Such
flows never come to a stop at a saddle point, with both
dihedral angles varying as the molecule changes directly
from one extremum to another. We used the Topology
ToolKit (TTK)64 to calculate the Morse–Smale complex
and produce a visualization on a uniform sampling of the
analytic potential energy landscape; see65 for the code to
generate the sampling and Figure 3 for the visualization.

For hexane, the landscape is a copy of that for pentane
at planar slices parallel to axis planes. The 1-cells still oc-
cur along a single varying dihedral angle, and the 2-cells
similarly occur along two dihedral angles varying with
one dihedral angle fixed. We now also have 3-cells, which
again give regions where the integral curves directly con-
nect a minimum with a maximum without stopping at a
saddle point.
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