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Cybersecurity experts have appraised the total global cost of malicious hacking activities to be $450 billion
annually. Cyber Threat Intelligence (CTI) has emerged as a viable approach to combat this societal issue.
However, existing processes are criticized as inherently reactive to known threats. To combat these concerns,
CTI experts have suggested proactively examining emerging threats in the vast, international online hacker
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to identify emerging threats in terms of popularity and tool functionality. To achieve these goals, we cre-
ate a novel Diachronic Graph Embedding Framework (D-GEF). D-GEF operates on a Graph-of-Words (GoW)
representation of hacker forum text to generate word embeddings in an unsupervised manner. Semantic
displacement measures adopted from diachronic linguistics literature identify how terminology evolves. A
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word embedding models (e.g., word2vec) in tasks pertaining to semantic analogy, clustering, and threat clas-
sification. D-GEF’s practical utility is illustrated with in-depth case studies on web application and denial
of service threats targeting PHP and Windows technologies, respectively. We also discuss the implications
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publicly released to facilitate scientific reproducibility and extensions of this work.
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1 INTRODUCTION

Computing technology has afforded modern society with numerous benefits. Many private and
public organizations employ complex information systems (IS) to execute financial transactions,
maintain health records, and control critical infrastructure. Unfortunately, the rapid integration of
IS has been met with an alarming rate of cyber-attacks conducted by malicious hackers. Cyber-
security experts have appraised the total annual cost of hacktivism, espionage, cyberwarfare, and
other cybercrime hacking activities against major entities such as Equifax, Uber, and Yahoo! at
$450 billion. To combat this significant societal issue, many organizations have started developing
and using Cyber Threat Intelligence (CTI).

CTI is a data-driven process that focuses on developing timely, relevant, and actionable in-
telligence about emerging threats (e.g., exploits, vulnerabilities, etc.) and key threat actors (i.e.,
hackers) to enable effective cybersecurity decisions [11]. Prevailing CTI procedures collect data
from Network Intrusion Detection/Prevention Systems (NIDS/NIPS), and log files generated from
servers, workstations, firewalls, databases, and other internal network devices. Established ana-
lytics such as event correlation, forensics, anomaly detection, malware analysis, and others are
applied to collected data to generate intelligence about the threats used against the networks.
Despite the maturity and value of these processes, the data analyzed are past network events.
Consequently, the derived intelligence is inherently reactive to known threats. These limitations
have motivated CTI professionals from the acclaimed SANS Institute to note that “most organiza-
tions are still reactive to alerts and incidents instead of proactively seeking out the threats” [26].
Consequently, the quantity, severity, and sophistication of threats used in cyber-attacks increase
annually.

To combat these concerns, CTI experts have suggested proactively examining emerging threats
in the vast, international online hacker community [9, 49]. The online hacker community moti-
vates millions of hackers from the US, China, Russia, and the Middle East to share malicious tools
and knowledge. Today, four major hacker community platforms exist: forums, DarkNet Market-
places, Internet-Relay-Chat (IRC) channels, and carding shops [11]. Although each has CTI value,
hacker forums are particularly useful to CTI experts. Unlike other platforms, forums allow hackers
to freely share and discuss cyber-attack threats. Figure 1 illustrates one example, where a hacker
provides Bitcoin miner 0-day threats for other hackers to freely download and use.

Hackers have used threat knowledge and content available in hacker forums to execute well-
known breaches. One notable example is the Target incident, where hackers procured the Black-
POS malware from forums months before executing the attack. This event’s severity helps mo-
tivate the careful analysis of hacker forum data to identify emerging threats. However, hacker
forums contain hundreds of thousands of unstructured, un-sanitized text records. Hackers rapidly
evolve in their skillsets; thus, they develop new malware and augment existing threats with novel
functions. Compounding this issue are the unclear semantics of hacker terminology (e.g., “injec-
tion” can refer to memory, SQL, or process), and how they shift over time. Prevailing CTI analytics
such as IP reputation services and event correlation are ill-equipped for these unique characteris-
tics. Moreover, conventional and emerging text analytics approaches employed in extant hacker
forum literature require significant extensions to generate valuable CTL These challenges present
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numerous challenges for CTI professionals and motivate the development of innovative CTI text
analytics.

In this study, we aim to develop critically needed proactive CTI capabilities by exploring online
hacker forums to identify emerging threats in terms of popularity and functionality. To achieve
these objectives, we draw upon emerging text mining, graph embedding, network science, and
diachronic linguistics methods to design, develop, evaluate, and demonstrate a novel Diachronic
Graph Embedding Framework (D-GEF). As a result of these processes, this article makes the fol-
lowing contributions:

e First, the proposed D-GEF operates on a novel directed Graph-of-Words (GoW) representa-
tion of hacker forum text.

e Second, we operate state-of-the-art unsupervised graph embedding algorithms upon the
hacker forum GoW to automatically generate low-dimensional word embeddings.

e Third, and relatedly, we perform a series of rigorous evaluations to identify how graph
embeddings can generate higher quality embeddings than state-of-the-art Neural Network
Language Models (NNLMs) such as word2vec in tasks pertaining to semantic relatedness,
semantic analogy, clustering, and threat classification.

e Fourth, semantic displacement measures are adopted from diachronic linguistics literature
identifying how word embeddings evolve over time to pinpoint emerging threats in terms
of popularity and functionality.

e Fifth, we illustrate D-GEF’s practical utility with an in-depth case study identifying emerg-
ing trends and functionalities of web application and denial of service (DoS) threats tar-
geting PHP and Windows technologies (respectively) in a large-scale, international hacker
forum.

e Finally, we publicly release all datasets and code to facilitate scientific reproducibility and
extensions of this work.

This article is organized as follows: First, we review literature related to the online hacker com-
munity to identify key forum features and past efforts in detecting emerging threat trends. Sec-
ond, we summarize key gaps from extant literature and pose several research questions for study.
Third, we review text graphs, graph embeddings, and diachronic word embeddings to ground and
guide our proposed D-GEF framework. Fourth, we present each component of the D-GEF. Fifth,
we summarize our evaluation procedure, including experiment designs and benchmark datasets.
Subsequently, we summarize our evaluation and illustrate the potential utility with in-depth case
studies, discuss their security implications, and offer suggestions on promising directions for fu-
ture research. The last section concludes this work.

2 RELATED WORK: HACKER COMMUNITY RESEARCH

As mentioned in the introduction, hackers often use DarkNet Marketplaces, forums, carding shops,
and IRC channels to share malicious tools and knowledge [8, 11, 43]. Among these, hacker forums
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Table 1. Selected Studies Identifying Threats in Online Hacker Forums

Y. Data . Selected Identified Threat Trend Tl_'(?nd_
ear | Author s Analytics e Identification
ource Threats Identification?
Method
Pastrana
2019 |and Saurez- F(?mms, Keyword Cryptomining malware Yes Term
Tangil [34] VirusTotal | based frequency
g
2018 Yuan etal. | Four Word2vec |RAT, Zeus No None
[60] forums
Goyal et al. For}lms, RNN, Phishing, Windows Term
2018 Twitter, . . Yes .
[15] Blogs LSTM exploits, trojans forecasting
Williams Web, database, mobile, Term
2018 etal. [57] 10 forums | LSTM network, system Yes frequency
Zhang One Phishing, SQLI, crypters,
2018 et al.[62] forum HIN web exploits No None
2017 |Durrett Three Domain Bots, spam, kits No None
et al. [12] forums adaptation
2017 |Yangetal. |Forums, |Keyword |Domains, fraudulent No None
[58] markets approach | content
2017 |Sapienza Twitter, |Keyword |Botnets, DDoS Yes Term
et al.[46] forums approach frequency
2017 |Samtani Eight LDA and |Keyloggers, DDoS, SQLi, | Yes Term
et al.[43] forums SVM web exploits frequency
2017 | Grisham Four RNN Mobile malware Yes Term
etal. [16] forums frequency
2016 |Lietal. [27] | Three sLDA Phishing, botnets No None
forums
2016 |Nunesetal. |21 forums |SVM Botnets, keyloggers, No None
[31] worms, 0-days
2016 |Zhaoetal. [29QQ Word2vec, |Carding materials No None
[63] Groups LDA
2016 |Zhao etal. |12 forums | Manual DDoS, web exploits No None
[64]
2016 |Samtani Two LDA and |Bots, crypters, keyloggers, | Yes Term
etal. [41] |forums SVM bank exploits frequency
2015 |Hutchings |13 forums | Manual Keyloggers, banking No None
and Holt Trojans
[23]

*Note: DDoS=Distributed Denial of Service; HIN=Heterogenous Information Network; LDA=Latent Dirichlet Allocation;
LSTM=Long Short-Term Memory; RAT=Remote Administration Tool; RNN=Recurrent Neural Network; SLDA= supervised Latent
Dirichlet Allocation; Structured Query Language Injection=SQLi; SVM=Support Vector Machine.

are particularly valuable for detecting emerging threats. Carding shops and IRC platforms do not
provide the mechanisms for hackers to freely share threats, while DarkNet Marketplaces have
more drug, pornography, and weapon material than cybersecurity-related content [11]. Forums
also provide richer metadata, namely postdate and post content. Such features are not consis-
tently available on other platforms. These characteristics have motivated numerous researchers to
identify hacker forums to proactively identify threats. Table 1 summarizes selected recent studies
based on the datasets used, analytics run, identified threats, and if and how trends were identi-
fied. For purposes of the scope and goals of this research, we limit our review to selected studies
operating on hacker forums.
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Nearly all studies have been exploratory in nature, with the goal of identifying what content is
available. Scholars have employed support vector machine (SVM), topic modeling, heterogeneous
information networks (HIN), keyword approaches, and interviews with subject matter experts
(SMEs) to identify threats in forums [23, 41, 42, 64]. Analyses reveal that hackers freely share
threats such as botnets, email hacks, kits, keyloggers, remote administration tools (RATs), bank
threats, denial of service (DoS), and many others. Several studies have gone one step beyond iden-
tifying threats to detecting the overall trends. For example, Grisham et al. [16] plotted the number
of mobile malware occurrences within a major Arabic hacker forum. Other studies have monitored
the frequency of threat terms (e.g., “botnet,” “crypter,” etc.) over a selected time period [41, 43, 46].

While providing CTI value, using term frequency, bag-of-words, and keyword approaches have
several limitations. First, a term’s context is ignored. For example, “injection” can refer to “SQL” or
to “memory.” Consequently, results can lack granularity. Second, hackers’ rapid expansion of their
vocabulary can result in these methods initially overlooking new threat terms. One example is Mi-
rai, which appeared months before the attack. However, it remained undetected as cybersecurity
professionals were unaware of the new botnet term. Finally, term frequencies and bag-of-words
representations cannot capture the distance, context, or relationships of terms within and across
forum posts [36]. While word2vec offers a mechanism to project terms as vector representations
(i.e., embeddings) into a low-dimensional space and potentially help address some of these issues,
past studies have only used it in a synchronic fashion, wherein embeddings are only analyzed in
one time point. As a result, it is unclear how embeddings shift (i.e., semantics change) and relation-
ships evolve across time periods. Taken together, these limitations prevent an understanding of the
depth, breadth, complexity, and evolution of hacker language. Therefore, we pose the following
research questions for study.

e How can online hacker forum text be represented in a way that captures the relationships
of terms within and across all of a forum’s posts?

e How can this representation be used to identify the emerging trends in online hacker
forums?

e How do the semantics of hacker terminology shift over time?

3 METHODOLOGICAL FOUNDATION FOR PROPOSED D-GEF

The limitations summarized above necessitate an alternative approach to represent, process, and
longitudinally analyze hacker forum text. In the following sub-sections, we summarize three
methodological components that form the basis of our proposed D-GEF. First, we review text
graphs to identify approaches for and benefits of representing text as a network. Second, we ex-
amine prevailing graph embedding methods as a mechanism to automatically extract embeddings
from text graphs to facilitate semantic analysis. We focus the review on unsupervised methods
only as they are the most ideal for dynamically generating hacker forum text embeddings across
multiple time-spells of data without relying on external gold-standard datasets for training. Finally,
diachronic word embeddings are reviewed to identify approaches on how to compare embeddings
across multiple time-spells to detect semantic evolutions of hacker terminology.

3.1 Text Graphs: Graph of Words (GoW) Representation

Text graphs are gaining significant traction within the Natural Language Processing (NLP) com-
munity due to their ability to capture and reveal relationships, patterns, and regularities within
a corpus not captured in standard representations (e.g., bag-of-words) and language models (e.g.,
term frequency-inverse document frequency). Text graphs build upon network science principles
to represent text in a graph. Like other network science applications, text graphs are constructed
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with nodes and edges. Nodes are text units such as words, collocations, word senses, sentences, or
documents. Edges are the relationships between text units. One prevalent text graph formulation
is the word co-occurrence network, also known as the Graph-of-Words (GoW) [30]. Nodes in this
network are words, and edges indicate whether two words appear in a specified text unit (e.g.,
document, sentence, etc.). Weighted edges denote how frequently two words have co-occurred.

All GoW node relationships are held in an NxN adjacency matrix A, where N denotes the num-
ber of nodes (i.e., words) [5]. If a relationship exists between words i and j (i.e., words i and j appear
in the same text unit), A;; is 1. If no relationship is present, A;; is 0. This representation enables re-
searchers to calculate a suite of network and node-level descriptive statistics. Both provide insight
into the richness, expressiveness, and universality of a corpus’s vocabulary. Network-level met-
rics (e.g., network density, clustering coefficient, etc.) provide insight into the diversity, breadth,
and depth of a corpus’s vocabulary. Node-level measures (e.g., degree, eigenvector, betweenness,
and closeness) pinpoint key words based on different criteria. Count-based metrics (degree and
eigenvector) sum and/or weight the number of in- and out-links from a node. Betweenness and
closeness metrics measure the distances of nodes.

Scholars have integrated selected measures as features to achieve state-of-the-art performances
in authorship analysis [2] and text classification [38]. However, recent years have seen efforts shift
from manual feature engineering (often ad-hoc, labor- and time-intensive) to automatic genera-
tion of latent, low-dimensional vector representations (i.e., embeddings). These embeddings aim
to comprise a condensed feature representation for each node or edge on a network. For hacker
forums” GoWs, graph embeddings can reveal latent local and global relationships of threat terms
that would otherwise be overlooked. Moreover, it can facilitate the longitudinal analysis of how
terminology semantically shifts over time. For these reasons, we review prevailing unsupervised
graph embedding approaches next.

3.2 Unsupervised Graph Embedding Methods

Graph embedding methods rely on a series of mathematical transformations to project the graph
into a low-dimensional space. Most commonly, these methods can operate in a supervised or unsu-
pervised manner. Supervised approaches require a gold-standard dataset from which it can create
mappings between the training data and the pre-specified output labels. While the created em-
beddings are valuable for the specified task, they are less suitable for or generalizable to other
objectives (e.g., generating an embedding for a word in a GoW). Given this study’s goal, this draw-
back requires an unsupervised approach that generates task-independent node embeddings with-
out a gold-standard dataset. Such a resource is not available for all corpora, especially emerging
cybersecurity-relevant content.

Unsupervised graph embedding approaches aim to create a low-dimensional embedding with-
out using any external resources (e.g., gold-standard training data). Embeddings are created by
preserving node proximities at varying order levels. For example, first-order proximity preserves
edges, second-order proximity preserves a node’s similarity to its direct neighborhood, and higher-
order preserves the direct neighborhood of an adjacent node. Proximities can be defined at local
and global levels. These proximities are optimized by an objective function to create embeddings.
In general, four categories of objective functions exist:

1. Matrix factorization: Uses a series of matrix operations (e.g., singular value decomposi-
tion) on selected matrices generated from a graph (e.g., adjacency, degree, etc.)

2. Random walk-based: Estimates the probability of visiting a node from a specified graph
location using a walking strategy.
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Table 2. Summary of Prevailing Unsupervised Graph Embedding Algorithms

Proximity
Preserved
D|U| W | UW | Global | Local
Matrix Laplacian Embedding space N N N - Ist [6]
Factorization Eigenmaps spanned by significant
eigenvectors
Graph Embedding inner N R N v - Ist [1]
Factorization products approximate
edge weights between
nodes
LLE Embedding space N v R v - Ist [22]
spanned by significant
eigenvectors
HOPE Factorize high-order N v R v High Ist [32]
proximity matrix
GraRep Aggregate a graph’s k- VA N N High Ist [10]
step representations
obtained from
factorization
Random Walk- | DeepWalk Uniform walks; skip- N v v v 2nd - [35]
based gram
Node2vec Biased walks; skip-gram
Deep Rep. SDNE Autoencoder;

Learning reconstruct adjacency
matrix

VGAE Variational v v Ist [25]
Autoencoder; generative
model

Edge Recon. LINE Explicit 1st- and 2nd- AR v N 2nd Ist [51]
order proximity feature
extraction; negative
edge sampling

* Note: LLE = Local Linear Embedding; HOPE = High-Order Proximity preserved Embedding; GraRep = Graph Representation; SDNE
= Structural Deep Network Embedding; VGAE = Variational Graph Autoencoder; LINE = Large-scale Information Network
Embedding; D = Directed; U = Undirected; W = Weighted; UW = Unweighted.

Edge Variations References

Category Model Projection Method

N[ A N [ 2nd - [17]
2nd Ist [55]

<<
<]
<
<]

3. Deep representation learning: Relies on an unsupervised deep learning approach (e.g.,
autoencoders) to create embeddings via feed-forward, error correction, and backpropaga-
tion.

4. Edge reconstruction: Samples edges based on weighted edges and nodes to preserve local
and global proximities.

Methods in each category may use multiple approaches to optimize objective functions and
create embeddings. Table 2 summarizes the prevailing models in each category that aim to create
an embedding for nodes, as it is most closely related to the proposed work. For each method, we
summarize its projection method and its ability to operate on directed, undirected, weighted, or
unweighted edges. We also provide a brief summary of the global and local properties preserved
in the projection process.

Selection of graph embedding depends on graph type. For example, Laplacian eigenmaps and
VGAE are not designed for directed graphs. Irrespective of the approach, the embeddings gen-
erated are suitable for exploratory and/or descriptive analysis. Moreover, they can be inputted
into and support other downstream tasks with well-established operational procedures (e.g., clas-
sification and clustering). Within this study, the specified downstream task is mapping how the
graph-of-words embeddings shift to identify semantic shifts of hacker terminology. To this end,
we review diachronic word embeddings.
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3.3 Diachronic Word Embeddings

Despite their promise, extant graph embedding methods cannot capture embedding evolution,
shifts, or changes in temporal datasets. While data can be split into time-spells and embeddings
created in each, each time-spell would have a different semantic embedding space. These differ-
ences prevent the direct comparison of embeddings across time-spells. Thus, embedding spaces
need alignment via an external mechanism to enable fair and accurate comparisons. In this study,
operating graph embedding methods on a GoW would result in a novel approach to creating word
embeddings. Using this perspective, we examine an emerging stream of literature from information
retrieval and linguistics aligning embedding spaces over multiple time-spells to model semantic
shifts, i.e., diachronic word embeddings.

While synchronic linguistics studies language at one time point, diachronic (i.e., historical) lin-
guistics examines language development and evolution. While traditionally reliant on manual ap-
proaches, the advent of the synchronic unsupervised Neural Network Language Model (NNLM)
word2vec by Mikolov et al. [29] has spurred a new area of academic inquiry: diachronic word
embeddings [18]. As alluded to in the previous sub-section, one can split temporal data into mul-
tiple time-spells and create low-dimensional synchronic word embeddings in each. While seman-
tic similarity of word embeddings within time-spells can be compared, the same cannot be done
across spells, as the embeddings will not be naturally aligned (i.e., projected into the same semantic
spaces).

The prevailing method to align embedding spaces constructs a matrix of word embeddings at
each time-spell, W*) € R4* IVl where t is the time-spell [18]. Matrices generated at two time-
spells are aligned using the solution to the orthogonal Procrustes problem. Specifically, embedding
spaces are aligned across time-periods while preserving cosine similarities by optimizing:

R = argmin [WHQ - WV,
QT0=I

where || - || denotes the Frobenius norm. This solution conforms to the best rotational alignment
of both embedding spaces and can be attained by using an application of Singular Value Decom-
position (SVD) [48]. Aligning spaces facilitates the computation of a novel linguistic metric to
model language evolution: semantic displacement. Semantic displacement measures a word’s se-
mantic shift across time-periods by measuring the cosine distance of a word at two time-periods
(i.e., cosine-dist(w;, w;ip)). Computing this value across all time-spells shows a word’s rate of
semantic shift (i.e., how a word evolves in its usage). Taken together, diachronic word embed-
ding approaches have enabled scholars to identify how German, French, and Chinese change
across the centuries on the Google books corpus [18], the evolution of English on the Corpus
of Historical American English [19], and the evolution of terminology usage in New York Times
articles [59].

4 PROPOSED DIACHRONIC GRAPH EMBEDDING FRAMEWORK (D-GEF)

GoWs’ ability to capture relationships between text units can reveal the richness, diversity, and
expansiveness of hacker forum content. Graph embeddings provide a valuable mechanism for
projecting hacker forum text into low-dimensional spaces to facilitate selected downstream tasks.
However, when operating on temporal data, these embedding spaces must be augmented with
the diachronic computations to ensure appropriate comparisons of embeddings and facilitate the
identification of semantic shifts.

Recognizing the limitations of prior approaches, we propose a novel D-GEF to address these
methodological drawbacks and address this study’s research questions. The proposed D-GEF
has three major components: (1) Time-Spell and Threat Text Graph Construction, (2) Node
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Time-Spell 1 Time-Spell 2 Time-Spell 3 Time-Spell n
Graph Embedding Graph Embedding Graph Embedding Graph Embedding Graph Embedding
Generation Algorithm Algorithm Algorithm Algorithm

o 7

R® = argmingro., [WHQ— Wt HHFT R = argmingr o, [WOQ - WtD|| T R = argmingr -, [WHQ - WDl T

Word 1.456 Word 1.456 Word 1.456
Word 2 .432 Word 2 .432 Word 2.432

Fig. 2. Proposed Diachronic Graph Embedding Framework (D-GEF).

Embedding Space Alignment

Di e 0 ion.2:

Semantic Displacement

Embedding Generation, and (3) Diachronic Operations. Figure 3 depicts the conceptual archi-
tecture of the proposed D-GEF. Each component is summarized in the following sub-sections. All
D-GEF computations (e.g., text graph generation, embedding, diachronic operations) were imple-
mented using the PyTorch, Numpy, Scikit-learn, Networkx, and Natural Language Toolkit (NLTK)
packages in Python. We also provide the full codebase such that interested researchers can build
upon the D-GEF for future research.

4.1 Time-Spell and Threat Text Graph Construction

Conducting graph embedding-based diachronic linguistics requires splitting a collected dataset
into multiple time-spells. Time-splits can be made based on key end-user requirements. Follow-
ing the splitting of a dataset into multiple time-spells, a GoW is constructed in each time-spell
to facilitate diachronic analysis. We select a GoW representation as it captures relationships be-
tween words missed in other text representations (e.g., vector space model) or word embedding
approaches. Formally, each GoW is denoted as G = (V, E) . G is the entire directed graph. V is the
node set, {v1, vq, s, ..., vy} of all words appearing in posts in that time-spell. E is the edge set,
{e1, ez, es, ..., en}. Nodes have an edge if they are adjacent. Directionality is determined by the
ordering of the words. Edges are assigned if they appear in the same forum post-description.

Like other social media platforms (e.g., Twitter, Reddit), hacker forum text has considerable
inconsistencies and noise [43]. We address these issues with a series of automated pre-processing
procedures. First, all words are tokenized based on whitespace. Second, all punctuation is stripped
from the post-content to remove extraneous, irrelevant characters. This includes removing URLSs.
Third, a stop-words list filters all generic terms (e.g., the, at, this). These pre-processing steps are
consistent with past literature employing word embedding approaches in hacker forum contexts
(7, 52].

The GoW in each time-spell builds on the previous period’s; therefore, the graphs are always
expanding and never decreasing in size. This ensures there is no information loss. Even if a word
appears in a time-spell’s posts, does not in the second, and reappears in the following, the graph
will retain the existence of the word across all spells. Algorithm 1 presents a pseudocode of how
the text graphs are constructed.

To demonstrate how the threat text graph procedure is operationalized, Figure 3 presents an
illustrative example of how a sample GoW is constructed with the proposed specification. The
top of the figure represents one time-spell, while the bottom presents the subsequent spell. The
left side of the figure shows selected example sample posts, while the right side presents a visual
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Timespell 1: saL injection
Post 1: This is a SQL injection | |:> O ,,,,,,,,,,,,,, .O
saL memory

can do Windows hooking

Timespell 2 : O O hooking

Post 2: This memory injection Q
|:> O_kinjection

Post 3: Windows 10 process hijacking | O’O

process Windows
hijacking

Fig. 3. Example of GoW with the D-GEF specification.

depiction of the generated text graphs. The examples presented are intentionally simplistic; the
posts in hacker forums are typically far more extensive and detailed.

ALGORITHM 1: Directed Threat Text Graph Construction

Input: Directed text graph of the previous time-spell G,_; = {Node, Edge,_,}, new documents D, =
{docy,doc,, ..., doc;} in time-spell t, embedding dimension d,
Output: Directed text graph G, at time-spell ¢
Procedure
foreach doc; in D;:

doc] = preprocess(doc;) = (W, w?, ...,wij) // Tokenize and remove URL, punctuations, and
stop-words from each document
Node = Node + wl-j, VWl-j & Node // Append new words to the Node set
end for
Edge, = Edge,_4
foreach doc;:
Edge, = Edge,_, + edge(wf,w/**),v edge(w}, wf*') & Edge,_, // Append new directed
edge to the updated set Edge;
end for
G, = {Node,Edge;_,},|Node| = N // Construct the new directed text graph G, for time-spell ¢
return G;

Constructing text graphs in the proposed fashion omits general, unrelated forum discussions
while providing a granular look at threat terms and their relationships. It also provides access to
an array of metrics to understand overall network dynamics (e.g., vocabulary size, richness, etc.)
and pinpoint key network nodes (e.g., key functions, etc.). Table 3 presents selected nodal and
topological metrics that can be computed based on the proposed formulation. For each metric,
we also provide a brief description of its security-related implications as it pertains to detecting
emerging threats from hacker forums.

Measuring these metrics over time can provide insight on how a threat vocabulary evolves,
grows, or dissipates over time. Each has significant security implications, including providing crit-
ical intelligence on when and how to deploy appropriate security controls to proactively mitigate
appropriate security controls. In this vein, the GoW can also be visualized (e.g., Figure 3) to provide
systems administrators, Security Operations Center (SOC) analysts, and other CTI professionals
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Table 3. Summary of Selected GoW Metrics and Their Security Implications for
Diachronic Hacker Forum Threat Analysis

Category Metric Definition Security Implications
Number # of nodes in the network Quantity of threat terms
# of nodes pointing to a given node | Importance of a threat term in the vocabulary (e.g.,
In-Degree .
key functions)
Out-Degree # of nodes a given node is pointing | A thr'eat term’s depéndence on other terms (e.g.,
to function dependencies)
Overall Sum of a node’s in- and out- degree| Overall importance of each threat term within the
Node Degree vocabulary
# of shortest path ing through | Role the threat t lays in holdi bul
Betweenness of shortest paths passing throug ole the threat term plays in holding a vocabulary
a node divided by all shortest paths | together
. Summed connections to others How well connected a threat term is across the
Eigenvector . .
weighted by centrality vocabulary
Avg. # of hops required to reach Measures how quickly a threat term can reach
Closeness
every other node on the network others
h f edges divided . . .
Grap . Sum 0 .e ges divided by number Relationship and inter-dependence of threat terms
Density of possible edges
.. Maximum geodesic distance from Similar to closeness; measures how quickly a
Eccentricity
a node to all other nodes threat term can reach another
Network Diameter Maximum eccentricity Indicates the breadth and diversity of a threat
Radius Minimum eccentricity vocabulary
Avg. path Average distance between two Identifies the average dependencies between threat
length nodes terms
Clustering Identifies how nodes tend to cluster | Pinpoints how threat terms cluster together 2>
Coefficient together indicates the diversity of the threat landscape

the ability to make agile decisions. The operation of the D-GEF framework on varying security
datasets may result in varying security implications.

4.2 Graph Embedding Generation

Constructing text graphs and computing network and node-level metrics at each time-spell en-
ables an unprecedented ability to identify emerging threat trends. However, it cannot identify
semantic shifts of terms (i.e., new meanings for existing words). To this end, the second phase of
the proposed D-GEF aims to automatically generate embeddings for each node in the proposed
GoW. Given the general-purpose nature of the proposed framework, we do not specify the exact
embedding algorithm to be used for this task. However, two key design considerations must be
accounted for. First, since there is no gold-standard dataset, the selected algorithm must operate in
an unsupervised fashion. This also ensures that task-independent (i.e., general) node embeddings
for GoWs are created. Second, the selection of the algorithm must account for directed graphs.
Algorithm 2 presents pseudocode for creating node embeddings with these considerations.

Candidate algorithm selections that adhere to the required design specifications include random
walk-based DeepWalk and Node2vec, matrix factorization approaches such as LLE and HOPE,
deep-representation learning techniques such as SDNE, and edge reconstruction methods such as
LINE. Irrespective of algorithm selection, once node embeddings are generated and tabulated into
matrix form in each time-spell (i.e., W®) € R4 * IVl where t is the time-spell). This compilation
supports the subsequent proposed diachronic operations.

4.3 Diachronic Operations: Embedding Alignment and Semantic Shifts

After the embeddings are generated at each time-spell, the diachronic component of the D-GEF
performs two tasks: align embedding spaces and compute semantic shifts. For the former, we adopt
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ALGORITHM 2: Node Embedding Generation

Input: Directed text graph G, = {Node, Edge,} at time-spell t, embedding dimension d
Output: Node embedding matrix E, = [ef, el, ..., e} ] at time-spell t
Procedure

Define Similarity measure S;; = fo(Feature(Node,), Feature(Nodej)) °

fi (edge(Nodei, Nodej)) of, (First-order_Neighbor(Nodel-,Nodej)) 0.0
fr ((k-1)th-order_Neighbor(Nodei, Nodej)) // Define node similarity on graph

E, = [ef, e}, ...,eL], ef € R%// Construct d dimensional node embedding matrix for G,

k . o .
n}in Xixj Yildist(ef, e]-t) — Sijl /I Approximate the similarity measure in G,
t

return E,

orthogonal Procrustes matrix operations as outlined by [18]. Specifically, embedding spaces across
time-spells are aligned while retaining cosine similarities by optimizing the following objective
function:
R®) = argmin ||W(t)Q - W(HI)IIF,
QTQ=I
where || - || denotes the Frobenius norm. Algorithm 3 summarizes the pseudocode for aligning
embedding spaces.

ALGORITHM 3: Diachronic Embedding Alignment

Input: Directed text graph of the previous time-spell G,_,, embedding matrix of the previous time-

spell E,_; = [e8, ebt, ..., b 1], where e; is the embedding for node Node;, embedding matrix of the

current time-spell E, = [e}, e, ..., e},] (N = M), embedding dimension d.
Output: Embedding matrix for each node aligned to the previous embedding space E; =
[e87, e, ..., €], where e, is the embedding for node i
Procedure
deg(Node,|G,_,) = in_deg(Node,|G,_,) + out_deg(Node;|G,_,)
IND_anchor = [the indices of the nodes with top-d deg (Node;|G;_1)]
S, = [efNDjnchorl, efNDianchorz, s efNDianchord] // Construct the subset of E, with selected nodes

-1 —1 -1 )
Siq = [e[ND_anchorl, €IND_anchory’ e[ND_anchord] // Construct the subset of E,_; with selected

nodes
R = argming yro, IR - (ST = (S;-1)7|lF // Solve the optimal alignment mapping
E* = (R-ET)" // Align the embedding space

* * *
return £} = [}, e}, ..., e} ]

Following this alignment, we compute the magnitude and rate of semantic displacements (i.e.,
a word’s semantic shift over time-spells) by calculating the cosine distance of a word’s embedding
at across time-periods. This is done with the following computation:

cosine — dist(w;, Wiia),

where w; is the location of a word within the embedding space at time ¢, and w;.x is the location
of the same word in the embedding space subsequent to time t. Computing semantic displacement
enables the identification of which words are shifting most in their meaning. When applied to
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hacker forum datasets, this helps pinpoint emerging terminology (e.g., the importance of specific
functions, etc.).

5 EVALUATIONS: BENCHMARK DATASETS AND EXPERIMENTS

A key aspect of developing a novel computational approach for a critical cybersecurity appli-
cation is the rigorous evaluation of the proposed approach against state-of-the-art approaches.
Evaluations are typically conducted on a gold-standard, ground-truth dataset. Well-established
performance metrics and statistical significance tests are used to ascertain the performance of all
algorithms. In accordance with these principles, we carefully design an extensive set of experi-
ments to evaluate the proposed approach. The following sub-sections summarize our data collec-
tion, experiments, performance metrics, benchmark methods, and computational setup. While we
omit the title of this forum to protect ourselves from hackers within this community, we provide
these data to facilitate future scientific research within this area. Interested readers can contact the
authors or can directly access this project’s GitHub repository at https://github.com/HongyiZhu/
D-GEF. This repository also contains all parameters and experiment settings.

5.1 Data Collection

We collect a large and long-standing international hacker forum for analysis. This forum was
selected for several reasons. First, it was suggested by several cybersecurity experts who are well
versed in Dark Web analytics from academic and industry perspectives. Second, this forum is well
known within the online hacker community for being entirely focused on providing malicious
tools. This includes numerous zero-day (0-day) tools that have been used for well-publicized, large-
scale attacks. Third, and relatedly, no general forum discussions exist; each post is a separate,
distinct threat. Consequently, it is ideal for the proposed analysis. Fourth, all forum content is
accessible without direct hacker invitations. Finally, this forum has contributors from the Middle
East, Russia, U.S., and other geo-political regions.

Collecting hacker forums is a non-trivial technical task. Among other challenges, hacker forums
contain significant non-natural language text, include “drive-by malware” that infects users who
access the site, block crawling attempts, and often put researchers at risk. Recognizing these issues,
we designed a custom Tor-routed web spider to crawl and download all hacker forum HTML
pages onto our local hard disks for offline processing. The web spider operated used a breadth first
search strategy. Routing traffic through the Tor network enabled us to maintain anonymity against
hackers within these communities [24]. A specialized Python program using Regular Expressions
parsed all data into a relational database.

Our collection procedures resulted in a dataset with 32,766 posts (i.e., threats) made by 8,429
hackers between January 1, 1996 and July 10, 2019 (23-year period). Since the forum is designed for
providing hackers a platform to share high-quality threats, commonly available attributes include
title, description, full source code, post date, target platform, attack type, and author name. To
support the proposed evaluation procedure (summarized in the following sub-sections), we used
the attack type and target platform attributes to develop a gold-standard dataset. Each must be
verified (e.g., executed) by another forum member before the post is made public on the forum.
Therefore, they are the most trustworthy labels in the collected data to establish ground truth.

Both attributes were used to retrieve remote and local exploits to comprise our gold-standard
dataset. Remote exploits are those that require a network connection to be executed and/or no
prior access to a machine has been attained. Local exploits operate after an attacker has gained
prior access to a system. These exploits were retrieved for two reasons. First, they are the most
prevalent within our datasets, and thus can provide large corpora to generate embeddings and
conduct subsequent evaluations. Second, the exploit’s most common target platforms are Windows
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Table 4. Summary of Hacker Forum Testbed Used for Benchmark Experiments

Threat Type Target Platform Date Range # of Exploits Total

Remote Windows 03/23/2009 — 07/05/2019 1,418 1,864
Linux 06/24/2000 — 07/02/2019 446

Local Windows 09/28/2004 — 06/20/2019 1,818 2,429
Linux 01/01/1996 — 07/02/2019 611

Total: - 01/01/1996 — 07/05/2019 4,293 4,293

Table 5. Summary of Graphs of Words Generated from Hacker Forum Testbed

Dataset Topolog In-degree Out-degree
Size | # of nodes | # of edges | Min | Max | Avg. | Min | Max | Avg.
Local Linux 611 1,087 1,615 0 [ 209 [1486] O 80 | 1.486
Local Windows | 1,818 2,359 4,221 0 | 227 [1.789] 0 121 | 1.789
Remote Linux 446 862 1,219 0 214 | 1414 | O 29 | 1414
Remote Windows | 1,418 2,061 3,653 0 [ 267 [1.772] © 106 | 1.772
All 4,293 5,142 9,935 0 484 [ 1932 | 0 162 | 1.932

and Linux (as listed by the forum). Both are widely deployed in enterprise and other contexts.
Table 4 summarizes the date range and number of exploits for each category.

Overall, the gold-standard dataset contains 4,293 exploits (1,864 remote and 2,429 local) made
between January 1, 1996 and July 5, 2019. The number of Windows exploits totals 3,236, while
the total of the Linux exploits is 1,057. All exploits are non-overlapping; no exploit appears in
more than one category. To provide further granularity, we report key summary statistics for each
dataset’s GoW in Table 5. In particular, we present the size (i.e., number of threat posts); number
of nodes; number of edges; and minimum, maximum, and average in-degree and out-degree.

Overall, the number of nodes across graphs ranged from 862 to 2,061, while the number of edges
ranged from 1,219 to 4,221. Examining the minimum, maximum, and average in-degree and out-
degree values indicates that each dataset follows a power law distribution, wherein most nodes
have a low centrality, but a select few have values significantly above the average. This indicates
that the distribution seen in the gold-standard dataset represents to many others seen in related
hacker forum literature pertaining to network science and embedding analysis [7, 43].

5.2 Experimental Procedure: Objectives and Performance Metrics

D-GEF is fundamentally an unsupervised approach to generating and mapping word embeddings
across multiple semantic spaces. Although possessing significant descriptive capabilities, the di-
achronic component cannot be directly evaluated, unless ground truth about the precise semantic
shifts are known. Our scenario is like many other recent diachronic linguistics studies, wherein
our dataset does not offer this knowledge. Evaluations in these literature focus on evaluating the
quality of the generated word embedding.

Two major evaluation approaches for word embeddings exist: extrinsic and intrinsic [4]. Ex-
trinsic evaluations input the proposed algorithm’s generated word embeddings into a selected
downstream task (e.g., classification). Performance is measured against alternative approaches for
generating embeddings. Intrinsic evaluations directly examine word embedding quality. Common
tasks include semantic analogy and cluster purity [47]. In this study, we carefully design four sets
of experiments to identify the ideal graph embedding approach. Table 6 presents a summary of
the experiment type, experiment, and evaluation metrics.
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Table 6. Summary of Benchmark Experiments

Experiment Type Experiment* Evaluation Metrics
Intrinsic 1: Semantic Analogy Accuracy
2: Cluster Purity Homogeneity, completeness, v-measure,

Adjusted Mutual Information (AMI),
Adjusted Rand Index (ARI)

Extrinsic 3: Target Platform Classification Accuracy, precision, recall, F-Measure,

4: Attack Type Classification Receiver Operating Characteristics (ROC)
curve, Area Under the Curve (AUC)
*Note: Consistent with prior literature, the entire ground-truth dataset is used for all experiments.

Table 7. Summary of Analogies Used for Experiment 1

Local-Linux Local-Windows Remote-Linux Remote-Windows All
Vendor-Program 153 325 231 630 4,005
Object-Action 55 66 120 171 1,275
Total: 208 391 351 801 5,280

The entire ground-truth dataset, irrespective of the time period the posts they appear in, is used
for the proposed intrinsic and extrinsic experiments. Benchmarking in this fashion is commonly
accepted practice in computational diachronic linguistics literature. The following sub-sections
describe each experiment.

5.2.1 Experiment 1: Semantic Analogy (Intrinsic). Experiment 1 is an intrinsic evaluation that
evaluates semantic analogy of words that appear in the graph representation [54]. Proposed
from word embedding literature, the intuition of this evaluation is that a good low-dimensional
embedding should preserve the (geometric) semantic relationships between high-dimensional
words. In particular, assuming word pairs (A, B) and (X, Y) have the same semantic relation-
ship, a word analogy task aims to evaluate a word embedding model’s ability to correctly infer Y
when A, B, and X are given. For example, a good embedding model should capture the “Vendor-
Program” relation from (“Google,” “Chrome”), and infer “Firefox” when given (“Mozilla,” ?). The
inference is equivalent to searching the best word Y that minimizes the following total distance
Dist A,B,X"

Y = argmin Dist4 p x = arg mindist (B, i) + dist (C, i) — dist (A, i) .
1 L

A cybersecurity expert well-versed in Dark Web analytics and threat intelligence examined our
dataset and defined two relationships for evaluation: “Vendor-Program” (e.g., (“Google,” “Chrome”;
“Mozilla,” “Firefox”)) and “Object-Action” (e.g., (‘command,” “execution”; “credentials,” “disclo-
sure”)). Based on these, we manually defined analogies for each dataset and category. Adhering to
best practices, we asked a panel of three cybersecurity students and one professor to validate the
exploits in each category. To prevent any biases (e.g., social desirability), we asked each panelist to
perform this task independent of other participants. We calculate the level of agreement between
the raters using the Cohens’ Kappa statistic, reaching a final value of 0.9978. All analogies that
were disagreed upon were omitted from the dataset. Table 7 presents a summary of the analogies
for each dataset.

Overall, the resultant analogy quantities were 208 for Local Linux, 391 for Local Windows, 351
for Remote Linux, and 801 for Remote Windows with a total of 5,280 overall. These quantities are
consistent with past literature executing word embedding evaluation tasks. To computationally
implement the proposed evaluation, each embedding model generates the top-5 candidate words
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of Y when given A, B, and X. A hit is recorded if the top-5 candidates contain the correct Y.
Accuracy evaluates analogy task performance by:

# of hits
#of all (A, B;X, Y) tuples’

Accuracy =

This evaluation was run for all methods for each dataset individually. We also ran the analogy
task for the overall dataset (i.e., all 5,280 analogies). Benchmarking in this fashion is commonly
accepted practice in word embedding related literature.

5.2.2  Experiment 2: Clustering (Intrinsic). These unique domain characteristics motivate the
second intrinsic task in which we evaluate the D-GEF’s word embeddings: k-means clustering.
k-means is a popular clustering algorithm commonly used in differential privacy [50] and mal-
ware analysis tasks [53] as it provides easily interpretable results in a computationally efficient
manner [21]. In this study, identifying the semantic displacement of a word requires comput-
ing the distance a word travels across multiple embedding spaces. A high-quality embedding is
needed to ensure accurate distance calculations. This is also true for k-means. If embeddings are
lower-quality, then similar entities in the ground-truth data will have a larger distance calculated
between them and will be clustered apart, and overall clustering performance will suffer. This
intuition has made k-means a popular approach to evaluating word embedding quality [4, 61].
Moreover, CTI professionals, such as Security Operations Center (SOC) analysts, often wish to
comprehensively understand an exploit’s functions and implementation by examining closely as-
sociated terms [9, 14, 49]. This knowledge can pinpoint new exploit names and emerging trends
(e.g., Mirai for DDoS).

The top-200 keywords with the highest word frequencies were identified in each of the four
sub-datasets of Local Linux, Local Windows, Remote Linux, and Remote Windows. Duplicated
keywords that showed up in two or more datasets were removed, resulting in 118, 97, 107, and
89 unique keywords for four categories, respectively. The clustering task is then conducted as
follows:

e Step 1: The word embedding model produces word vectors for all the keywords.

e Step 2: A clustering algorithm (e.g., the k-means algorithm) is used to separate the word
vectors into k(k = 4) categories.

e Step 3: Clustering result evaluation.

Five well-established performance metrics evaluate the quality of clustering results: Adjusted
Mutual Information (AMI), Adjusted Rand Index (ARI), Completeness, Homogeneity, and V-
Measure. AMI measures the quantity of mutual information available between clustering results
and the ground truth. ARI computes a similarity measure between clusters by considering all pairs
of samples and counting how many pairs are assigned to clusters in the predicted vs. ground truth.
Completeness identifies if nodes within the pre-defined cluster in the gold-standard dataset appear
in the same cluster. Homogeneity identifies how many word embeddings in each cluster have the
same label. V-Measure is the harmonic mean of completeness and homogeneity [37]. Each metric
calculates a scalar value between 0.0 (random assignment) and 1.0 (perfect match).

5.2.3 Experiment 3: Exploit Target Platform Classification (Extrinsic). Experiment 3 is an
extrinsic evaluation task that focused on identifying how the embeddings generated from each
benchmark method performed in a binary classification task. In particular, we set the output label
as platform the exploit is targeted at (i.e., Windows or Linux). This evaluates an embedding’s
ability to discern what system an exploit is designed for (a common task for security analysts). The
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classification task was executed as follows: First, we adopted all aforementioned pre-processing,
representation, and embedding algorithmic procedures to generate word embeddings. Second,
word embeddings within each post are summed and inputted into an SVM classifier. Finally,
each post is classified based on the summed representation. Classifying posts in this fashion is
commonly accepted practice in related literature.

The entire ground-truth dataset is used for this evaluation task. Since the dataset is imbalanced
(3,236 Windows, 1,057 Linux), each algorithm was trained and tested using a 10-fold cross vali-
dation (CV) strategy. We evaluate algorithm performances using well-established metrics of ac-
curacy, precision, recall, and F1-score (i.e., F-measure). Each uses a combination of True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) to compute the metrics.
The formulations are presented below:

TP+TN o TP
Accuracy = ,  Precision = ———,
TP+ TN + FP + FN TP + FP
TP 2 - Precision - Recall
Recall = ——, F1- = .
eed TP+ FN score Precision + Recall

Given the imbalanced nature of the ground-truth dataset, we also use two additional performance
metrics to evaluate classification performance: Receiver Operating Characteristics (ROC) curve
and Area Under the Curve (AUC). ROC uses a 2-dimensional space to plot the false positive rate
(x-axis) and true positive rate (y-axis). This curve can be used to calculate the AUC score. AUC
quantifies the tradeoffs between type I and type II errors by computing a scalar metric ranging
from 0.5 (random guess) and 1.0 (perfect performance).

5.2.4  Experiment 4: Attack Type Classification (Extrinsic). Experiment 4 aimed to examine how
the embeddings generated from each benchmark method performed in a binary classification task
when the output label was the exploit type (i.e., remote or local). Delineating between exploits is
a critical CTI task. Like Experiment 3, each post’s word embeddings were summed and inputted
into an SVM classifier. Performance metrics of accuracy, precision, recall, and F1 were calculated.
Since the ground-truth dataset was also imbalanced in this setting, AUC and ROC were calculated.

5.3 Benchmark Methods

For each experiment, we selected prevailing word and graph embedding approaches to evaluate.
Word embedding models aim to map words into an embedding by operating a series of mathemat-
ical functions upon a corpus. These functions can use neural network, dimensionality reduction,
probabilistic, and other techniques to create embeddings. For this research, we evaluate six prevail-
ing models that rely on shallow neural networks (most closely related) to generate an embedding.
They are as follows:

e word2vec with Continuous Bag-of-Words (CBOW) aims to reconstruct linguistic contexts of
words by predicting a word based on a surrounding window [29].

e word2vec with Skip-Gram with Negative Sampling (SGNS) uses one word to predict surround-
ing words.

e doc2vec with Distributed Bag-of-Words (DBOW) enforces that the model predicts words ran-
domly sampled from a paragraph without providing any surrounding context.

e doc2vec with Distributed Memory (DM) randomly samples consecutive words from a para-
graph and aims to predict a center word from the sample based on its context.

o fastText with CBOW is like word2vec CBOW, but accounts for character and word
n-grams.
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o fastText with SGNS operates like word2vec SGNS, but accounts for character and word n-
grams.

Graph embedding methods include those that are random walk-based (node2vec, DeepWalk),
deep representation learning (SDNE), graph factorization (GF, HOPE, GraRep), and edge recon-
struction (LINE). All operate on the same GoW representation. Taken together, the selected graph
embedding models represent the prevailing unsupervised approaches operating on directed graphs
to produce task-independent embeddings suitable for selected downstream tasks (e.g., diachronic
linguistics). We also evaluate the classification tasks with the prevailing non-embedding approach,
TF-IDF.

5.4 Computational Setup

All experiments were conducted using the Python programming language, version 3.7. All word
embedding approaches were implemented using the Genism package. Graph embedding methods
were implemented using the Open Network Embedding (OpenNE) package. Performance metrics
and statistical tests were conducted using scikit-learn. To help facilitate fair comparisons, all em-
beddings were 128 dimensions. All experiments were conducted on a single workstation equipped
with an Intel® Core i7-8550U @1.80GHz processor, 16 GB of RAM, and an NVIDIA® GeForce
MX150 Graphical Processing Unit (GPU) with 2 GB of onboard RAM. All methods used default pa-
rameters, were trained over 20 epochs, and generated 128 dimension embeddings. We also provide
the entire experimental framework in this project’s publicly accessible GitHub repository such
that interested readers can reproduce the presented results. All hyperparameters for the selected
approaches are accessible on this page.

6 EXPERIMENT RESULTS

The results for each experiment are summarized in the following sub-sections. For space consid-
erations, we group the results of the intrinsic evaluations (Experiments 1 and 2) in Section 6.1 and
6.2, and the extrinsic evaluations (Experiments 3 and 4) in Section 6.3. Within each sub-section,
we discuss the overall observations and key takeaways from the experiment.

6.1 Results of Experiments 1: Semantic Analogy

Table 8 presents the results of the analogy and clustering evaluations. Results are grouped based on
method category (i.e., word embedding, graph embedding). Accuracy is computed for each dataset
as well as across datasets. The top performing algorithm is highlighted in boldface.

For the Local Windows, Remote Linux, and Remote Windows datasets, the conventional graph
factorization approach outperformed all other categories of methods. All graph embedding meth-
ods except HOPE outperformed all word embedding approaches. For the Local Linux dataset, LINE
achieved the highest accuracy at 0.317. When accounting for all data, node2vec attained the highest
performance at 0.253. the second and third best approaches were also graph embedding algorithms,
GF, and LINE, respectively.

Overall, the consistency of these results across the multiple, disparate datasets suggests that
the underlying graph of words representation assisted in capturing local and global relationships
within the threat corpora that are missed by prevailing word embedding models. A possible ex-
planation for graph factorization consistently achieving the best performance is that it focuses
on primarily capturing local proximities. Other graph embedding methods may aim to capture
both types of proximities (e.g., SDNE). In a task such as semantic analogy, wherein proximity of
wording is often critical for establishing analogical relationships, such computations may weight
critical semantic cues incorrectly.
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Table 8. Summary of Benchmark Experiment 1 Results

Embedding Dataset
Category Type Method chal Il_ocal Rgmote Rgmote Al
Linux | Windows Linux | Windows
Word word2vec SGNS 0.014 0.049 0.006 0.014 0.027
CBOW 0.010 0.018 0.000 0.006 0.007
fastText SGNS 0.024 0.008 0.023 0.007 0.011
CBOW 0.010 0.003 0.014 0.000 0.009
doc2vec DM 0.010 0.018 0.000 0.007 0.023
DBOW 0.005 0.056 0.006 0.015 0.031
Graph Graph Factorization GF 0.250 0.161 0.316 0.203 0.237
HOPE 0.019 0.000 0.020 0.007 0.002
GraRep 0.014 0.010 0.031 0.009 0.005
Random Walk-based DeepWalk | 0.308 0.130 0.197 0.191 0.248
node2vec 0.308 0.059 0.111 0.124 0.253
Deep Representation Learning | SDNE 0.019 0.003 0.000 0.006 0.004
Edge Reconstruction LINE 0.317 0.118 0.145 0.195 0.153
Table 9. Summary of Benchmark Experiment 2 Results
Method Clusterin
Category U= ehis AMI ARI | Completeness Hgmogeneity V-Measure
Word word2vec SGNS 0.236 | 0.205 0.269 0.222 0.243
CBOW 0.101 | 0.088 0.130 0.096 0.110
fastText SGNS 0.188 | 0.163 0.203 0.187 0.195
CBOW 0.046 | 0.031 0.058 0.051 0.054
doc2vec DM 0.112 | 0.095 0.142 0.105 0.121
DBOW 0.265 | 0.201 0.292 0.253 0.271
Graph Graph Factorization GF 0.249 | 0.196 0.262 0.248 0.255
HOPE 0.048 | 0.027 0.076 0.046 0.057
GraRep 0.121 | 0.074 0.138 0.121 0.129
Random Walk-based DeepWalk | 0.333 | 0.270 0.390 0.300 0.340
node2vec | 0.307 | 0.281 0.316 0.310 0.313
Deep Representation Learning | SDNE 0.076 | 0.069 0.119 0.067 0.085
Edge Reconstruction LINE 0.258 | 0.236 0.277 0.253 0.265

6.2 Results of Experiment 2: Clustering Threat Types

Table 9 presents the results of the clustering evaluations. Results are grouped based on method
category (i.e., word embedding, graph embedding). AMI, ARI, Completeness, Homogeneity, and V-
Measure are computed for each dataset. The top-performing algorithm is highlighted in boldface.

Across the board, the random walk-based methods of DeepWalk and node2vec outperformed
all other methods. In terms of V-Measure (overall measure of clustering performance), Deep-
Walk achieved the highest performance of 0.340. DeepWalk also attained the highest performance
in AMI (0.333) and Completeness (0.390), while node2vec had the highest scores in ARI (0.281)
and Homogeneity (0.310). As in Experiment 1, nearly all graph embedding approaches outper-
formed the conventional word embedding approaches. Doc2vec with DBOW and word2vec with
SGNS were the only exceptions, with the methods achieving V-Measure scores of 0.271 and 0.243,
respectively.

Overall, these results indicate that the graph embedding approaches better captured words
within the same category (i.e., intra-cluster purity), and were able to more accurately distinguish
words across categories (i.e., inter-cluster purity). The overall performance in AMI and ARI sug-
gests that the graph embedding approaches better captured the underlying distribution of word
categories. Relatedly, the completeness indicates that the proposed representation can map more
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Table 10. Summary of Results from Benchmark Experiments 3 and 4

Experiment 3 Results Attack Type (Local vs Remote) Classification

Embedding Operation Method Performance Metrics
Category Accuracy | Precision Recall F1 AUC
Non- TF-IDF x> 87.6£1.3% | 88.0+2.6% | 77.4+1.9% | 80.9+2.0% 0.872
embedding F-value 87.4£1.2% | 87.7£2.6% | 77.1+1.9% | 80.5+1.9% 0.877
Mutual Info | 84.1£1.2% | 84.4+2.8% | 70.5£2.0% | 73.842.1% 0.818
Word word2vec SGNS 84.9+1.4% | 82.242.5% | 74.2+2.6% | 76.9+2.6% 0.898
CBOW 83.51.1% | 81.5+1.5% | 70.742.3% | 73.6+2.3% 0.869
fastText SGNS 85.9£1.5% | 83.6+2.4% | 76.3+2.5% | 78.9+2.4% 0.907
CBOW 83.2+1.4% | 80.3£2.4% | 70.6+2.2% | 73.4+2.4% 0.868
doc2vec DM 82.3+1.5% | 79.9£2.0% | 68.3+2.5% | 71.0+2.8% 0.846
DBOW 84.7+1.3% | 81.9£2.0% | 74.2+2.2% | 76.842.1% 0.899
Graph Graph Factorization | GF 87.4£1.1% | 85.241.6% | 79.142.2% | 81.4+£2.0% 0.914
HOPE 84.2+£1.2% | 82.3£1.2% | 72.3+£2.9% | 75.1£2.8% 0.884
GraRep 86.7£1.4% | 83.9£2.1% | 78.442.7% | 80.5+2.5% 0.914
Random Walk- DeepWalk | 88.1+0.8% | 86.2+1.7% | 80.5+1.6% | 82.7+1.1% 0.926
based node2vec 88.0+1.4% | 85.7£2.1% | 80.6£2.7% | 82.6+2.3% 0.924
Autoencoder SDNE 83.8+1.7% | 81.242.2% | 71.8+¢3.2% | 74.6+3.3% 0.875
Edge Reconstruction | LINE 86.2+1.4% | 83.5£2.2% | 77.2+£2.9% | 79.5+2.6% 0.913

Experiment 4 Results: Platform (Linux vs Windows) Classification

Embedding Tvpe Method Performance Metrics
Category yp Accuracy | Precision Recall F1 AUC
Non- TF-IDF x2 84.7£1.8% | 88.0+2.6% | 77.4+1.9% | 80.9+2.0% 0.914
embedding F-value 85.1£1.9% | 87.7£2.6% | 77.1+1.9% | 80.5+1.9% 0.913
Mutual Info | 81.7+£1.2% | 84.4+2.8% | 70.5£2.0% | 73.842.1% 0.890
Word word2vec SGNS 85.3+1.7% | 82.242.5% | 74.2+2.6% | 76.9+2.6% 0.921
CBOW 80.9£1.3% | 81.5£1.5% | 70.742.3% | 73.6+£2.3% 0.895
fastText SGNS 85.0£2.0% | 83.6+2.4% | 76.3+2.5% | 78.9+2.4% 0.921
CBOW 79.9+1.8% | 80.3+2.4% | 70.6+£2.2% | 73.4£2.4% 0.883
doc2vec DM 80.2+1.3% | 79.9£2.0% | 68.3+2.5% | 71.0+2.8% 0.882
DBOW 85.6+1.9% | 81.9£2.0% | 74.2+2.2% | 76.842.1% 0.922
Graph Graph Factorization | GF 86.8+£1.2% | 85.2£1.6% | 79.1+2.2% | 81.4+2.0% 0.937
HOPE 84.2+1.6% | 82.3£1.2% | 72.3+2.9% | 75.1+2.8% 0.921
GraRep 86.5+1.5% | 83.9£2.1% | 78.4+2.7% | 80.5+2.5% 0.937
Random Walk- DeepWalk | 87.1+1.6% | 86.2+1.7% | 80.5+1.6% | 82.7+1.1% 0.938
based node2vec 87.8+1.8% | 85.7+2.1% | 80.6£2.7% | 82.6£2.3% 0.941
Autoencoder SDNE 83.0+1.3% | 81.242.2% | 71.84¢3.2% | 74.6+3.3% 0.917
Edge Reconstruction | LINE 86.4+1.3% | 83.5£2.2% | 77.2+2.9% | 79.5+2.6% 0.937

words in the same categories (from the same sub dataset) to a close region in the lower embedding
space. A possible explanation for the strong performance of random walk-based methods retains
sequential dependency (1% order proximity). In contrast, competing graph embedding methods
capture higher order proximities at a global level, or may miss some of these direct proximities
altogether (e.g., word embedding models).

6.3 Results of Experiments 3 and 4: Classification

Table 10 presents the classification evaluation results. Results are grouped based on method cate-
gory. For each algorithm, we report the accuracy, precision, recall, and F1 scores with a confidence
interval. We also present the ROC curves and AUC values in Figure 4. The top-performing algo-
rithm is highlighted in boldface.

Similar to experiment 2, results across both classification tasks indicate that the random walk-
based methods outperform the competing graph and word embedding approaches. In terms of F1,
the harmonic mean of precision and recall, DeepWalk achieved a score of 82.17%. When examining
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Fig. 4. ROC Curves for Attack Type and Platform Classification Experiments.

Table 11. Summary of Threat Testbeds Used for Case Studies

Threat Type Targeted Platform(s) Date Range # of Posts | # of Authors
Web Application PHP 1/1/2012 —7/8/2019 6,577 1,461
DoS Windows 1/1/2012 — 6/26/2019 1,355 376
Total: - 1/1/2012 - 7/8/2019 7,932 1,837

AUC (critical for evaluating unbalanced datasets), DeepWalk and node2vec attained the highest
values on both datasets across all benchmark methods.

As with the first two experiments, the graph embedding approaches consistently outperformed
the conventional word embedding techniques. A differentiator between the intrinsic and extrinsic
experiments is that the former only examined the quality of the word embeddings directly. How-
ever, the extrinsic evaluations examined how the word embeddings when aggregated together
can outperform the conventional approaches. Taken together, the consistency of the results across
multiple datasets and evaluation tasks suggest that the graph embedding approach captures local
and global relationships of words missed by prevailing word embedding methods.

7 CASE STUDY: PRACTICAL UTILITY AND SECURITY IMPLICATIONS

In this section, we demonstrate the potential practical utility and security implications of the pro-
posed D-GEF. To facilitate this demonstration, we identified two additional threat categories from
our collected forum (summarized in Section 5.1). The first category is web application threats that
target PHP technologies. The second is denial of service (DoS) threats that target the Windows
operating system. Both threats are retrieved using the available metadata of target platform and
attack type. Both were selected as they are common threats against prevailing and widely used
technologies. Table 11 summarizes each threat type, the targeted platform, date range, number
of posts (i.e., threats), and number of authors. To control the scope of these studies, we limit our
analysis to the past eight years (2012 - 2019).

In total, our testbed contains 7,932 posts (i.e., threats) made by 1,837 authors. Web applications
encompassed 6,557 threat posts made by 1,461 authors, while the DoS component comprised of
1,355 posts made by 376 authors. No posts were used in the benchmark experiments. Consequently,
they are “wild” posts, wherein we do not perform any annotation or have any prior knowledge
about the dataset. All posts are non-overlapping. Given the disparities in size, scale, and topical
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coverage, we process each threat type as a separate case study. The steps of time-spell specification,
text graph formulation, descriptive statistics calculation, and detection of semantic shifts used to
execute each study simulates the process a CTI professional can take when aiming to identify
threat trends and terms.

The following sub-sections present the results of executing this process on both datasets.
We note that the presented analysis illustrates only a selection of possibilities attainable.
Undoubtedly, there are numerous other variations and specifications available to end-users op-
erating this framework. It is not our goal to enumerate all options; rather, it is to illustrate selected
possibilities. Section 7.4 discusses potential security implications of the results and promising fu-
ture directions to expand the presented analysis.

7.1 Time-Spell Specification and Text Graph Formulation

Conducting diachronic analysis requires the dataset in question to be split into multiple time-
spells [19]. As such, we split our dataset into time intervals of three months (four quarters per
year). This breakdown is consistent with the analysis timeframes used by many industry CTI re-
ports. To counter the issues of simple term frequency-based approaches, we create text graphs at
each time-spell. Each graph builds upon the previous. Nodes represent all words in threat posts
in that time-spell, and edges denote if two words appeared in the same post. Table 12 presents
selected year-end visualizations of the generated GoWs. Node size represents degree score. Such
visualizations are commonly displayed in graph-based security analytics and CTI literature [43].
For space considerations, we only present the year-end results for four years.

For both threat sets, the visualizations reveal that the graphs are expanding over the specified
time-period. This indicates that the lexicon and vocabulary of hacker threats are expanding over
time. Between the two, the visualizations indicate that the DoS threat landscape is evolving more
rapidly and quickly than the web applications. Such insights can offer significant value for SOC
analysts and related cybersecurity professionals in prioritization and related mitigation activities.
However, as indicated in our methodological review, representing text as a GoW can provide ac-
cess to metrics that can further reveal the diversity, breadth, and characteristics. To this end, the
following sub-section summarizes the selected metrics we calculated for each threat type.

7.2 Descriptive Statistics: Node and Global Metrics

We opted to calculate node and network level measures to understand local and global network dy-
namics, respectively. Node level metrics include the minimum, maximum, and average in-degree
and out-degree. Network level metrics include number of nodes, number of edges, diameter, ra-
dius, density, average path length, average clustering, and average eccentricity. Each was carefully
selected based on their ability to reveal various insights about the key terms, growth, and breadth
of threat vocabularies. Results are summarized in Table 13. For space considerations, we only list
year-end results. The numbers in each time-spell account for the total in previous spell(s).

Table 12 reveals several key insights unavailable from the graph visualizations. First, the surges
seen in the number of posts were met with a commensurate increase in the number of nodes (i.e.,
words). This growth indicates that hackers are using a richer lexicon. The increase in vocabulary
size was concurrent with the decrease in overall graph density and average clustering coefficient.
The decrease in both measures indicates that hackers diversify their interests and specialties, re-
sulting in new threats implementing novel functionalities. The increases in average path length
and network diameter support this observation. The rate of changes for each of these metrics var-
ied across the different threat types. In the case of web application threats, the rates plateaued
around 2017. In contrast, the DoS threats saw more rapid rates of development and expansion
throughout the specified time-periods. Taken together, these metrics suggest that DoS threats are
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Table 12. Selected Year-End Visualizations of Threat GoWs

Year- GoWs for DoS Threats GoW Visualizations for Web Application
End Threats

2017 '

2018

2019

growing more varied, while web applications ones have relatively stabilized. This insight is critical;
organizations have limited ability to mitigate all threats. Therefore, carefully prioritizing threats
using such metrics is essential.

Examining the node level statistics reveals that each graph follows a power-law degree dis-
tribution, wherein a few nodes have an above-average centrality, and the majority of nodes fall
below the average. For both datasets, the maximum in-degree and out-degree increased each year.
This indicates that the new threats being introduced relied on a selected range of core features
and functionalities. To gain insight into these key words in the network, we summarize the top
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Table 13. Topological and Node Level Descriptive Statistics Between 2012-2019

Network Level and Node Level Descriptive Statistics for Web Application Threats

Category Metric 2012 2013 2014 2015 | 2016 | 2017 | 2018 2019
Forum # of threats 1,742 12,429 3,015 3,727 4,261 5,383 6,250 6,577
# of nodes 2,310 [3,003 3,515 4,058 14,436 5,229 5,853 |6,065
Network | # of edges 3,575 14,950 6,075 7,411 8,353 10,311 [11,860 |12,389
Level Diameter 16 17 17 15 15 15 15 15
Metrics Radius 0.000 10.000 0.000 0.000  10.000  [0.000 {0.000 |0.000
Density 0.001 10.001 0.000 0.000  10.000 [0.000 {0.000 ]0.000

Avg. path length [5.336  |6.077 5.632 5386 [5.345 |5.200 [5.135 [5.120
Avg. clustering  [0.012  [0.014 0.014 0.015 ]0.015 ]0.015 [0.015 0.014
Avg. eccentricity [10.710 |12.184 |11.945 ]10.617 |10.657 |10.684 |10.690 |10.682

Min. in-degree 0 0 0 0 0 0 0 0
Node Max in-degree 460 557 627 705 750 931 1,115 1,184
Level Avg. in-degree 1.548 1.648 1.728 1.826 1.883 1.972 2.026 2.043
Metrics | Min. out-degree |0 0 0 0 0 0 0 0

Max out-degree |67 113 167 295 347 443 481 494

Avg. out-degree | 1.548 | 1.648 1.728 1.826  [1.883 [1.972 |2.026 |2.043
Network Level and Node Level Descriptive Statistics for DoS Threats

Category | Metric 2012|2013 2014 2015 2016 2017 [2018 |2019
Forum # of threats 199 306 359 512 708 938 1,197 1,355
# of nodes 402 557 632 865 1,158  |1,423 1,699 1,838
Network | # of edges 514 763 880 1,277 1,824 {2,356 2,876 |3,188
Level Diameter 12 17 16 21 20 19 22 23
Metrics Radius 0.000 10.000 0.000 0.000 0.000 [0.000 {0.000 ]0.000
Density 0.003  10.002 0.002 0.002  0.001 ]0.001 ]0.001 |0.001

Avg. path length  {3.889  |6.144 6.021 7.215 |6.678 [6.733 |7.029 |7.029
Avg. clustering  {0.029 | 0.026 0.026 0.027 ]0.030 [0.030 ]0.024 ]0.023
Avg. eccentricity [4.953  |9.673 8.975 10.612 [11.331 [11.248 |14.623 [15.712

Min. in-degree 0 0 0 0 0 0 0 0
Node Max in-degree 38 49 53 63 82 109 217 287
Level Avg. in-degree 1.279 |1.370 1.392 1476 |1.575 [1.656 |1.693 |1.734
Metrics | Min. out-degree |0 0 0 0 0 0 0 0

Max out-degree |13 18 19 24 29 49 62 67

Avg. out-degree | 1.279 [1.370 1.392 1.476 | 1.575 1.656 | 1.693 1.734

ten words based on degree and betweenness centralities in Table 14. For space considerations, we
only list the ranks of words at the year-ends of 2017 - 2019.

The top ten words in terms of degree centrality remain relatively unchanged at each year-end
for both threat types. This indicates that even if new threat types emerge, the core functions of the
threats remain the same. In the case of web applications, common terms include PHP-based web
application technologies being targeted such as “WordPress” and “Joomla” or specific exploit func-
tions such as “Remote,” “Script,” “Arbitrary,” or “Injection.” Each pertains to a common web exploit
family, including SQL injection, cross-site scripting, and others. In the case of DoS, top words in
terms of degree and betweenness pertain to the specific target within the Windows system the
threat is aiming to attack. This includes “Memory,” “Buffer,” and “Stack.”

The high degree and betweenness values for each of these terms indicate that the entire threat
vocabulary is dependent upon these key aspects to maintain cohesiveness; without them, the en-
tire network could easily fall apart. CTI professionals can use this knowledge to discern between
threat types, capabilities, and operations (knowledge often gleaned by malware analysis). More-
over, these words indicate the specific targets that require the highest level of protection. While
useful, the intelligence provided by Table 14 does not reveal the specific features incorporated
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Table 14. Topological and Node Level Descriptive Statistics between 2017-2019

Top Degrees of Terms for Web Application Threats
Deg 2017 2018 2019
Rank Word Deg.|Between. Word Deg.|Between. Word Deg. |Between.
(rank) (rank) (rank)
1 Injection 986 |3 Injection 11753 Injection 1,246[2
2 Multiple 474 |6 WordPress  [494 |1 WordPress  [507 |1
3 WordPress 456 |1 Multiple 481 |7 Multiple 495 |7
4 Cross 399 |16 Cross 447 |18 Cross 454 |19
5 CSRF 327 |4 Plugin 353 |5 Plugin 374 |4
6 Plugin 299 |5 CSRF 334 |4 Arbitrary 341 |13
7 Arbitrary 291 |14 Arbitrary 330 |13 CSRF 338 |5
8 Remote 255 |13 Joomla 301 |6 Joomla 311 |6
9 Joomla 230 |7 Component ({298 |11 Component |311 |10
10 [Script 219 19 Remote 280 |14 Remote 301 |15
Top Degrees of Terms for DoS Threats
Deg. 2017 2018 2019
Rank Word Deg.|Between. Word Deg.|Between. Word Deg. |Between.
(rank) (rank) (rank)
1 |Denial 111 |4 Denial 219 |4 Denial 289 |4
2 |Buffer 102 |9 Buffer 110 |12 Buffer 113 [10
3 |[Server 86 |7 Exploit 102 |322 Exploit 113 |14
4 |Exploit 84 |276 Server 98 |6 Server 112 |6
5 [Memory 80 |3 Memory 85 |3 Memory 86 |3
6 |Crash 77 |25 Crash 77 131 Crash 77 |42
7 |Windows 56 |1 Windows 69 |1 Windows 74 |1
8 [Stack 49 |16 UseAfterFree|53 |17 UseAfterFree|57 |15
9 |UseAfterFree|48 |19 Stack 51 |18 Local 55 |18
10 |Player 47 |18 Local 50 |15 Remote 52 |5

over the years to develop new web applications or DoS threats. We gain deeper insight into this by
employing diachronic semantic displacement calculations to compute the average amount a word
shifts between time-spells. We present these results next.

7.3 Diachronic Analysis: Detection of Semantic Shifts

For the purpose of these case studies, we employ the DeepWalk algorithm to generate embed-
dings. DeepWalk was selected as it consistently achieved strong performances across the four
benchmark experiments. Moreover, it can operate upon the specified graph. Within the D-GEF
framework, DeepWalk is applied to create embeddings in each time-spell. We then align embed-
ding spaces using the Frobenius norm specification. Subsequently, we calculate each word’s se-
mantic displacement (i.e., how much words shift in their meaning) to identify emerging threat
trends. All processes are fully automated; no manual intervention is required at any stage of the
framework. The top 20 words with the highest average shift are summarized in Table 15. Words
are presented in their raw format.

Semantic shift values indicate how much the meaning has shifted from its original meaning.
Larger values indicate that term has shifted further away from its original meaning. Each word
shifted an average amount of 5.637 for web applications and 4.421 in semantic space for the DoS
threats. Words with the top 20 average shifts relate to specific functionalities. For web applica-
tions, this included “sqli” for SQL injection, “permission” for gaining access to specific file paths
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Table 15. Top Shifted Words Between 2012-2019 (*average shift per time-spell)

Semantic Shifts of Terms for Web Application Threats
Rank Word Amount Shifted* | Rank Word Amount Shifted*
1 sqli 7.447353 11 Filr 5.896086
2 Settings 6.961177 12 vuln 5.877753
3 takeover 6.748133 13 Cuentas 5.872392
4 DISCLOSURE | 6.55786 14 Electric 5.862406
5 metacharacters | 6.253232 15 bypassing 5.854489
6 Textfilter 6.19481 16 InjecTion 5.834347
7 writeup 6.179463 17 passwords 5.821093
8 filter 6.135306 18 Debit 5.720313
9 IPRC 6.043778 19 Rendicion 5.666406
10 Permission 5.906195 20 Privileges 5.637859
Semantic Shifts of Terms for DoS Threats
Rank Word Amount Shifted* | Rank Word Amount Shifted*

1 call 5.676367 11 access 4.822627
2 CSOWNDC 5.612645 12 management 4.753818
3 Corrupt 5.583253 13 OpMinlnAnArray | 4.609549
4 CSCLASSDC 5.333942 14 EMREXTESCAP | 4.551099
5 UserDefined 5.220336 15 Lacking 4.502576
6 console 5.099514 16 Consider 4.467911
7 Explicitly 5.045209 17 sftpget 4.459338
8 Between 4.940183 18 Switch 4.451778
9 Properly 4.920918 19 Traversal 4.428673
10 IsLoopPrePass 4.880469 20 Triggerable 4.42134

and directories, “bypassing” for circumventing security controls, and others. With respect to DoS
threats, shifts included “call” for calling functions to execute the attack, “corrupts” for altering
the integrity of the specified target, and others. A top word providing actionable intelligence for
the DoS is “Corrupt,” which appears at rank 3 (shift of 5.583). Such details cannot be attained by
conventional temporal graph metrics (e.g., degree).

Table 16 provides a representative sample post from three time points, 2012, 2016, and 2019, to
illustrate how the meaning of these terms have shifted. Given that the DoS threats are on more
of an uptick than the web applications, and considering space, we present only the shift in DoS.
However, interested readers, especially those working within the security industry, can contact
the authors to receive additional reports on selected web application exploit evolutions. We also
provide the entire dataset such that interested readers can access and explore the data. To protect
ourselves from hackers within this community, we anonymize the author and related information.

In its appearances, “corrupt” pertained primarily to attacking memory to deny service to a Win-
dows machine. However, the mechanism that it used to execute the threat varied. In 2012 (top
post), “corrupt” pertained to attacking RealPlayer, a program commonly installed on Windows XP
machines. At that time, XP was still a prevailing operating system across the globe. In 2016, XP
had reached end of life. As a result, the focus of executing memory corruptions shifted to other
technologies. In the case of the 2016 post (middle of Table 15), a target program was Cisco Webex
Player. This program was and currently is a common video-conferencing software that appears in
many commercial and enterprise level networks. By 2019 (bottom post), the focus of corruptions
shifted to attacking the memory of Windows 7 systems. A key motivator behind this shift was
the end-of-life for Windows 7, which was scheduled to occur on January 14, 2020. Given that this
post was made in mid-2019, this discovery can provide tactical intelligence of which systems to
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Table 16. Selected DoS Threat Postings with Term “Corrupt”

Year-End Evolution of DoS Threat Term “Corrupt”
2012 RealPlayer .mp4 file handling memory|
Exploit Functions, Contents,
ELLIDEETH
2016 LWRF' Use-After-Free Memory
t mmmm  Security Risk Medium I
Exploit Functions, Contents,
and Details
2019 Microsoft VBScript - VbsErase Memory . Shifted Term
Exploit Functions

proactively remediate. Such a shift cannot be identified by existing methods of identifying emerg-
ing threats presented in extant literature as they do not systematically weight and prioritize threat
terms in the same fashion as D-GEF.

7.4 Cybersecurity Implications and Potential Future Directions

As discussed in the introduction, CTI is fundamentally a data-driven process that aims to identify
emerging threats and key threat actors to enable cybersecurity decision making. Given the broad
nature of the discipline, CTI is often segmented into strategic, operational, and tactical levels of
focus. Each level has specified job roles and responsibilities as it pertains to the overall CTI lifecy-
cle. Novel CTI computational frameworks, systems, and approaches should ultimately offer value
to one or more of these levels.
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Table 17. Summary of Selected Security Implications for D-GEF for
Varying Levels of Cyber Threat Intelligence (CTI)

Intelligence Selected Relevant D-GEF Security Implications
Level Stakeholders Component(s)
Strategic Security managers, | Time-spell construction Development of publicly
CISO accessible CTI reports; relevant
Network level statistics security investments
Operational | IR Team, Security | Text graph visualizations | Reducing information overload;
Forensics threat prioritization
Unsupervised graph Automated and dynamic
embedding generation representation of threat terms
Top degree statistics Identification of key threat
Tactical Malware Analysts, functions for mitigation;
SOC Analysts integration into MAEC, STIX
Semantic shifts Identification of IoCs

* Note: CISO = Chief Information Security Officer (CISO); SOC = Security Operations Center (SOC); MAEC = Malware Attribute
Enumeration and Characterization; STIX = Structured Threat Information Expression; IoC = Indicators of Compromise.

Each component of the D-GEF holds value to selected stakeholders. Table 17 provides a brief
summary of the different intelligence levels, examples of selected stakeholders, the relevant D-
GEF component(s) that can offer value to those stakeholders, and selected security implications.
The following sub-sections provide a further discussion of each level. In each sub-section, we also
summarize promising future directions for significantly extending D-GEF to provide further value
to each stakeholder group. We note that the value, stakeholders, and implications discussed are not
exhaustive, nor are they mutually exclusive, and all require extensive future studies to determine
the extent of their validity and proof of self-sustaining use.

7.4.1  Strategic Intelligence. Strategic level CTI focuses on allocating appropriate resources to
relevant cybersecurity tasks within a given business unit or organization. Common jobs within
this level include CISO’s and IT Security Managers. A common mechanism for these roles to per-
form their job function is the use of quarterly and annual reports (e.g., Verizon Data Breach Re-
port). These colorful and illustrative documents play a crucial role in communicating statistics,
visualizations, and other essential content to communicate with executive management and other
stakeholders to attain resources and properly invest in cybersecurity mechanisms.

The time-spell construction, network level statistics, and text graph visualization aspects of the
D-GEF most directly pertain to prevailing strategic intelligence activities. The time-spell construc-
tion combined with the network level statistics supports the quarterly reporting of emerging threat
trends reporting of threats. The text graph visualizations can also play a significant role in present-
ing striking visualizations to guide security investments. For example, through our case studies,
we noted a significant increase in the quantities of DoS threats (as per the network level statistics
and visualizations). This knowledge can assist in proactively allocating resources to mitigate DoS
attacks against Windows systems. Future directions to improve D-GEF for strategic intelligence
purposes can be employing deep Bayesian forecasting principles to predict threats at future time-
spells with degrees of probability. Such predictions can assist in communicating industry level
predictions for future threats.

7.4.2  Operational Intelligence. Operational level CTI is commonly concerned with hunting
for threats, understanding their details, remediating them, and communicating their findings to
the strategic and tactical levels. Common jobs that relate directly to this level include Incident
Response and security forensics teams. These groups often face numerous issues, most notably

ACM Transactions on Privacy and Security, Vol. 23, No. 4, Article 21. Publication date: August 2020.



Proactively ldentifying Emerging Hacker Threats from the Dark Web 21:29

information overload from the vast quantities of heterogeneous data. As a result, it is often a
difficult and non-trivial task for them to prioritize relevant threats.

D-GEF’s text graph visualizations, unsupervised graph embedding generation, and top degree
statistics offer valuable mechanisms to alleviate some of these issues. The visualizations offer a
visual and intuitive approach to bypassing large tables of data and quickly make determinations of
subsequent prioritization activities. Unsupervised graph embedding generation provides analysts
the ability to dynamically create a representation of threats without any prior knowledge or
training datasets. In addition to helping facilitate diachronic analysis, this embedding can offer
significant value in categorizing and clustering threats and target platforms. Finally, the top
degree statistics can help prioritize top threats and facilitate subsequent remediation activities.

Future work to significantly extend D-GEF to offer additional operational intelligence include
creating linkages between discovered threats and their vulnerabilities to develop comprehensive
cyber-defenses, report key hackers behind emerging threats to help support attribution, and fusing
traditional social media data sources (e.g., Twitter, news articles) or hacker community platform
data (e.g., DarkNet marketplaces) with forum data to identify how threats propagate through cy-
berspace. Additional examination of how these emerging threats relate to vulnerabilities in varying
IoT devices described in past literature can also yield holistic CTI [13, 20, 28, 39, 44, 45, 56]. The ap-
proach can also have value in contexts beyond cybersecurity, including emerging health analytics
and IoT applications [65, 66].

7.4.3  Tactical Intelligence. Tactical intelligence focuses on monitoring, escalating, and detect-
ing Indicators of Compromise (IoCs), executing remediation exercises (e.g., patching vulnerable
systems), and feeding the indicators into selected security systems and reporting formats. Com-
mon job roles include SOC analysts and malware analysts. Common challenges that these job
functions face include threat identification and prioritization [3, 40]. D-GEF’s computation of top
degree statistics and semantic shifts can offer significant value to help address these issues. Both
provide valuable tactical leads for CTI professionals. One use case for the generated intelligence
would be the integration of new rules into Security Information and Event Management (SIEM)
systems (e.g., Splunk). SIEMs are used by many CTI professionals to monitor the status of machines
on a network and detect IoCs. Using the intelligence provided by the identification of semantic
shifts, the SIEM would monitor if the listed terms appear as file names or other objects within their
network. Should they exist, the SIEM can quarantine the machine and generate alerts to systems
administrators who can mitigate the threat. Future D-GEF extensions can monitor these semantic
shifts over time and implement novel diachronic anomaly detection to automatically present pri-
oritized threats based on unusually high (i.e., spiky) semantic shifts. Additional promising avenues
can be automatically inputting the detected threat terms into larger cybersecurity frameworks and
reporting, such as STIX, MAEC, and MITRE ATT&CK.

8 CONCLUSIONS AND FUTURE DIRECTIONS

Preventing cyber-attacks has become a grand societal challenge. CTI has emerged as a viable ap-
proach to combat this issue. However, existing CTI practices are reactive to threats already used in
cyber-attacks. Consequently, breaches are on an unfortunate and dangerous increase. CTI profes-
sionals have pointed to the online hacker community as a novel data source to proactively identify
emerging threats. Among other hacker community platforms, forums allow hackers to freely share
alarge scale of malicious threats. Despite its CTI promise, hacker forums possess unique data char-
acteristics which necessitate that novel, customized CTI analytics.

In this article, we examine online hacker forums to identify emerging threats and trends. To
achieve this objective, we developed a novel D-GEF (Diachronic Graph Embedding Framework).
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This innovative framework makes several key research contributions. First, it operates on a GoW
(Graph-of-Words) representation of hacker forum threat text to create low-dimensional word em-
beddings in an unsupervised fashion. Moreover, its unsupervised nature allows it to work on any
dataset size, ideal for contexts that lack sufficient training data (e.g., hacker community analysis).
Third, semantic displacement measures adopted from diachronic linguistics literature map the evo-
lution of hacker terminology over multiple time-spells. Finally, a series of benchmark evaluations
reveals D-GEF’s superior performance over prevailing word and graph embedding approaches in
selected downstream tasks. To the best of our knowledge, this is the first study that employs graph
embeddings in lieu of traditional word embedding analysis for a diachronic linguistics CTI task.

D-GEF’s practical utility is demonstrated with an in-depth case study of ransomware in a long-
standing English hacker forum. By constructing text graphs for multiple time-spells, we identified
the overall trends of when and how selected web applications and DoS threats were posted. More
importantly, we pinpointed how specific words shifted in their meaning. Identifying these seman-
tic displacements helped detect emerging ransomware functionalities. Each discovery can provide
valuable, actionable CTI for selected professionals to proactively deploy appropriate security con-
trols. While demonstrated in hacker forums, the D-GEF can be leveraged by scholars for other
novel, high-impact cybersecurity applications. Selected examples or recent interests include en-
hancing memory forensics [33] and malware evolution on datasets extracted from VirusTotal [53].
Each direction can develop proactive CTI capabilities to ultimately create a safer and more secure
society.
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