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Robust Phase Retrieval Algorithm for Time-Frequency Structured Measurements\ast 
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Abstract. We address the problem of signal reconstruction from intensity measurements with respect to a mea-
surement frame. This nonconvex inverse problem is known as phase retrieval. The case considered in
this paper concerns phaseless measurements taken with respect to a Gabor frame. It arises naturally
in many practical applications, such as diffraction imaging and speech recognition. We present a
reconstruction algorithm that uses a nearly optimal number of phaseless time-frequency structured
measurements and discuss its robustness in the case when the measurements are corrupted by noise.
We show how geometric properties of the measurement frame are related to the robustness of the
phaseless reconstruction.

Key words. phase retrieval, Gabor frames, expander graphs, order statistics of frame coefficients, angular
synchronization, spectral clustering
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1. Introduction. The phase retrieval problem arises naturally in many applications within
a variety of fields in science and engineering. Among these applications are optics [3], astro-
nomical imaging [4], and microscopy [5].

As an example, let us consider the diffraction imaging problem [6]. To investigate the
structure of a small particle, such as a DNA molecule, we illuminate the particle with X-
rays and then measure the radiation scattered from it. When X-ray waves pass by an object
and are measured in the far field, detectors are not able to capture the phase of the waves
reaching them, but only their magnitudes. The measurements obtained in this way are of the
form of pointwise squared absolute values of the Fourier transform of the object x, that is,
the measurement map \scrA is given by \scrA (x) = \{ | \scrF (x)(n)| 2\} n\in \Omega , where \Omega is the sampling grid.
Since \scrA is not injective, some additional a priori information on the object x is needed for
reconstruction. For instance, knowledge of the chemical interactions between parts of a DNA
molecule were used for the construction of the DNA double helix model in the Nobel Prize
winning work of Watson, Crick, and Wilkins [7].

One way to overcome this noninjectivity when no a priori information is available is
masking. To modify the phase front, one can insert a known mask after the object, as shown
on Figure 1. The measurement map in this case is given by \scrA (x) = \{ | \scrF (x\odot ft)(n)| 2\} n\in \Omega ,t\in I ,
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mask

DNA
molecule

X-ray source

diffraction pattern

Figure 1. A typical setup for structured illuminations in diffraction imaging using a phase mask.

where ft, t \in I, are the masks used, and \odot denotes pointwise multiplication. By increasing
the number of measurements in this way, we reduce the ambiguity in the reconstruction of
signal x.

Since the problem of signal reconstruction from magnitudes of Fourier coefficients is par-
ticularly hard to handle, a more general frame theoretical setting is frequently considered.
Namely, for \Phi = \{ \varphi j\} Nj=1 \subset \BbbC M being a frame, that is, a possibly overcomplete span-

ning set for \BbbC M , we aim to recover x \in \BbbC M from its phaseless squared frame coefficients
\scrA \Phi (x) = \{ | \langle x, \varphi j\rangle | 2\} Nj=1.

Note that the masked Fourier coefficients of the signal x with masks \{ ft\} t\in I \subset \BbbC M can be
viewed as the frame coefficients of x with respect to the frame \Phi given by \Phi = \{ \varphi t,j\} , where
\varphi t,j(m) = e2\pi ijm/M

\surd 
M

\=ft(m).

It is clear that, even in an optimal setting, x can be reconstructed from intensity measure-
ments only up to a global phase. Indeed, for every real \theta , the signals x and ei\theta x produce the
same intensity measurements. Thus, the goal of phase retrieval is to reconstruct the equiva-
lence class [x] \in \BbbC /\sim of x, where x \sim y if and only if x = ei\theta y for some \theta \in [0, 2\pi ). In the
following, we are going to identify x with its equivalence class [x] \in \BbbC /\sim .

Obviously, not every frame gives rise to an injective measurement map. But even in the
case when \scrA \Phi is known to be injective, the problem of reconstructing [x] from \scrA \Phi (x) is NP-
hard in general [8]. So, the main goals in this area of applied mathematics is to find conditions
on the number of measurements N and vectors \varphi j for which there exists an efficient and robust
numerical recovery algorithm.

Until recently, very little was known on how to achieve robust and efficient reconstruction
given injectivity. Many practical methods used today have their origins in the alternating
projection algorithms proposed in the 1970s by Gerchberg and Saxton [9]. Due to their lack
of global convergence guarantees, the problem of developing fast phase retrieval algorithms
which have provable recovery and robustness guarantees receives significant attention today.
Some of the most prominent suggested algorithms are PhaseLift [10, 11, 12, 13, 14], Wirtinger
flow algorithms [15, 16], a fast phase retrieval algorithm from local correlation measurements
[17], and phase retrieval with polarization [18, 19]. The latter is described in more detail in
section 2.1.D
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738 G\"OTZ E. PFANDER AND PALINA SALANEVICH

While recovery guarantees have been established for all these algorithms, most of them
require the measurement frame vectors to be independent random vectors. Since measure-
ments of this type are not implementable in practice, the design of fast and stable recovery
algorithms with a small number of application relevant, structured, measurements remains an
important problem. We address this problem below.

1.1. Main result. We study the phase retrieval problem for Gabor frame measurements,
that is, the case when frame vectors are given by time and frequency shifts of a randomly
chosen vector, called the Gabor window (see section 2.2 for a precise definition). The main mo-
tivation for using Gabor frames is that Gabor frame coefficients are masked Fourier coefficients,
where the masks are time (or space) shifts of the Gabor window. This makes measurements
implementable in applications while preserving the flexibility of the frame-theoretic approach.

Apart from diffraction imaging, phase retrieval with Gabor frames also arises, for example,
in speech recognition problems. The use of a noisy phase or its estimation is a critical problem
in speech recognition that may prevent the accurate reconstruction of a signal. There is a
long-standing belief that speech recognition should be independent of phase. Balan, Casazza,
and Edidin addressed this conjecture by using the phase retrieval framework to show that
the reconstruction of a signal is possible without using a phase or its estimation for a generic
frame [20]. However, construction of Gabor frames with such a property still remains an open
problem. Previous work on phase retrieval with Gabor frames concentrated on injectivity
conditions for full Gabor frames and shows reconstruction from M2 time-frequency structured
measurements of an M -dimensional signal [21], while no injectivity results for Gabor frames
of smaller cardinality are available to this date.

Based on the idea of polarization [18], we propose a reconstruction algorithm for time-
frequency structured measurements and investigate its robustness in the case when measure-
ments are corrupted by noise. More precisely, we consider measurements of the form

(1) | \langle x, \varphi j\rangle | 2 + \nu j , \varphi j \in \Phi ,

where \nu j are noise terms and \Phi = \Phi V \cup \Phi E is the measurement frame with a Gabor frame
\Phi V given by (7) and a set of vectors for additional measurements \Phi E given by (8). We note
that, while the frame \Phi used for reconstruction is not a Gabor frame, the set of vectors for
the additional measurements \Phi E also obeys a time-frequency structure and measurements of
a signal x with respect to \Phi E have the form of windowed Fourier transform measurements;
see section 3.1 for the details. We prove the following result, a more precise formulation of
which we state in section 4.2 as Theorem 4.7.

Theorem 1.1. Fix x \in \BbbC M and consider the time-frequency structured phaseless measure-
ments given by (1). If the noise vector \nu satisfies | | \nu | | 2

| | x| | 22
\leq c

M for some c sufficiently small, then

there exists a numerical constant C independent of M , so that for the estimate \~x produced by
Algorithm 3 the following holds with overwhelming probability:

(2) min
\theta \in [0,2\pi )

| | \~x - ei\theta x| | 22 \leq 
C
\surd 
M | | \nu | | 2
\Delta 

.

Here \Delta = min\Lambda \prime \subset \Lambda ,| \Lambda \prime | \geq 2/3| \Lambda | \sigma 
2
\mathrm{m}\mathrm{i}\mathrm{n}(\Phi 

\ast 
\Lambda \prime ) is the numerically erasure-robust frame bound for the

Gabor frame \Phi V .
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The reconstruction algorithm we propose in this paper requires a close to optimal number
N = O(M logM) of time-frequency structured measurements. To the best of our knowledge,
Theorem 1.1 provides the best existing robustness guarantee for measurements obeying time-
frequency structure. Moreover, our result guarantees exact recovery of x (up to a global phase)
in the noiseless case, that is, when \nu = 0. We note that the reconstruction guarantees given
in Theorem 1.1 are nonuniform, in the sense that inequality (2) holds with high probability
for each particular signal x, but not for all x \in \BbbC M simultaneously. Obtaining a uniform
version on Theorem 1.1 is one of the main directions for future work. Numerical experiments,
presented in section 5, verify the robustness of the proposed phase retrieval algorithm and
illustrate dependencies of the error to noise ratio on various parameters.

Remark 1.2. The bound obtained in Theorem 1.1 is similar, up to a log factor, to the
recovery guarantees obtained in [18] for phase retrieval with random Gaussian frames with
independent frame vectors. Note that, in (2), the norm of the reconstruction error \~x - ei\theta x is
squared, while the norm of the noise vector \nu is not. This makes the obtained bound somewhat
weaker compared to the recovery guarantees for the PhaseLift reconstruction algorithm (for
random frames with independent frame vectors), which ensure that, if | | \nu | | 2 < \epsilon , the estimate
\~x obtained using PhaseLift satisfies min\theta \in [0,2\pi ) | | \~x - ei\theta x| | 2 \leq C\epsilon for an appropriately chosen
numerical constant C > 0 [12]. At the same time, while the noise bound \epsilon is an input
parameter of the PhaseLift algorithm, the method described in this paper is independent of
the actual noise size.

The remaining part of this paper is organized as follows. In section 2, we describe the
idea of polarization and give some basic definitions and results from Gabor analysis and the
theory of expander graphs that are used in the following. In section 3, we describe the recon-
struction algorithm for time-frequency structured measurements and discuss the robustness
of this algorithm in section 4. The analysis of robustness of the constructed algorithm leads
to the investigation of geometric properties of Gabor frames, such as order statistics of frame
coefficients. These properties are discussed in section 4.1. Numerical results of the algorithm's
robustness are presented in section 5.

2. Notation and setup. Here and in the following, \odot denotes pointwise multiplication of
two vectors of the same dimension. We view a vector x \in \BbbC M as a function x : \BbbZ M \rightarrow \BbbC ,
that is, all the operations on indices are done modulo M and x(m - k) = x(M +m - k). We
denote the complex unit sphere by \BbbS M - 1 = \{ x \in \BbbC M , | | x| | 2 = 1\} .

The adjoint matrix of A \in \BbbC k\times m is denoted by A\ast \in \BbbC m\times k, and the smallest singular
value of A is denoted by \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A). Also, by a slight abuse of notation, we identify a frame
\Phi = \{ \varphi j\} Nj=1 \subset \BbbC M with its synthesis matrix, having the frame vectors \varphi j as columns. For
any V \subset \{ 1, . . . , N\} , we set \Phi V = \{ \varphi j\} j\in V .

We denote the Bernoulli distribution with success probability p by B (1, p). Further,
\scrN (\mu , \sigma ) denotes the Gaussian distribution with mean \mu and variance \sigma 2, and \BbbC \scrN (\mu , \sigma ) denotes
the complex valued Gaussian distribution.

2.1. Phase retrieval with polarization. The polarization approach to phase retrieval can
be described as follows [18]. Suppose \Phi V = \{ \varphi j\} j\in V \subset \BbbC M is a measurement frame. WeD
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740 G\"OTZ E. PFANDER AND PALINA SALANEVICH

consider the phase retrieval problem

find x

subject to | \langle x, \varphi j\rangle | 2 = bj .(3)

For any (i, j) \in V \times V with | \langle x, \varphi i\rangle | \not = 0 and | \langle x, \varphi j\rangle | \not = 0, we define the relative phase between
frame coefficients as

(4) \omega ij =

\biggl( 
\langle x, \varphi i\rangle 
| \langle x, \varphi i\rangle | 

\biggr)  - 1 \langle x, \varphi j\rangle 
| \langle x, \varphi j\rangle | 

=
\langle x, \varphi i\rangle \langle x, \varphi j\rangle 

| \langle x, \varphi i\rangle | | \langle x, \varphi j\rangle | 
.

Note that \omega ij\omega jk = \omega ik. Suppose that we are given \{ \omega ij\} (i,j)\in E for some set E \subset V \times V in
addition to the phaseless measurements with respect to \Phi V . Then we seek to solve the simpler
problem

find x

subject to
\langle x, \varphi i\rangle \langle x, \varphi j\rangle 

| \langle x, \varphi i\rangle | | \langle x, \varphi j\rangle | 
= \omega ij ,(5)

| \langle x, \varphi i\rangle | 2 = bi.

This problem can be solved using phase propagation. More precisely, we choose | \langle x, \varphi i0\rangle | \not = 0,
set ci0 = | \langle x, \varphi i0\rangle | , and for every j \in V with (i0, j) \in E define

cj =

\Biggl\{ 
\omega i0j | \langle x, \varphi j\rangle | if | \langle x, \varphi j\rangle | \not = 0,

0 otherwise.

In the next step, for each k with ck not defined yet and (i0, j), (j, k) \in E for some j with
bj \not = 0, we set

ck =

\Biggl\{ 
\omega jk

cj
| cj | | \langle x, \varphi k\rangle | if | \langle x, \varphi k\rangle | \not = 0,

0 otherwise.

We repeat this step iteratively until values ci are assigned to all indices i \in V that can be
reached from i0 using edges from E. This process is illustrated in Figure 2 (left).

Assume that we were able to compute ci for all i \in V . Then, using a dual frame \~\Phi V =
\{ \~\varphi i\} i\in V and treating ci's as frame coefficients, we reconstruct a representative of the ``up-to-
a-global-phase"" equivalence class [x] as\sum 

j\in V
cj \~\varphi j =

\sum 
j\in V

\omega i0j | \langle x, \varphi j\rangle | \~\varphi j =
\bigl( \langle x,\varphi i0

\rangle 
| \langle x,\varphi i0

\rangle | 
\bigr)  - 1

\sum 
j\in V

\langle x, \varphi j\rangle \~\varphi j =
\bigl( \langle x,\varphi i0

\rangle 
| \langle x,\varphi i0

\rangle | 
\bigr)  - 1

x \in [x].

Let us consider the graph G = (V,E), later called the graph of measurements, with the
set of vertices indexed by V and the set of edges E. From the phase propagation procedure, it
is apparent that if \langle x, \varphi j\rangle = 0 for some j \in V , then the corresponding relative phases \omega ji are
not defined for all i \in V and the phase cannot be propagated through vertex j. This has theD
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i

ci

k

ck = \omega jk
cj
| cj | 

| \langle x, \varphi k\rangle | 

j

cj = \omega ij
ci
| ci| 

| \langle x, \varphi j\rangle | 

\omega jk

\omega ij
i

ci

k

ck is not defined

j

cj = 0

Figure 2. Phase propagation process described above is shown on the left. We iteratively compute phases
of the measurements using relative phases (4) and phases computed on previous step. On the right, phase
propagation through vertex j fails since the corresponding measurement is zero and relative phases \omega ij and \omega jk

are not defined.

effect of deleting vertex j from G; see Figure 2 (right). If G remains connected after deleting
all ``zero"" vertices, then, for every vertex i, there exists a path from i0 to i, and ci can be
computed. This solves problem (5).

Thus, the initial phase retrieval problem (3) is reduced to the problem of finding relative
phases between pairs of frame coefficients from a set E, so that the corresponding graph of
measurements G = (V,E) satisfies strong connectivity properties. To obtain the relative phase
between frame coefficients, the following polarization identity is useful.

Lemma 2.1 (see [18]). Let \omega = e2\pi i/3. If \langle x, \varphi i\rangle \not = 0 and \langle x, \varphi j\rangle \not = 0, then

\omega ij =
1

3| \langle x, \varphi i\rangle | | \langle x, \varphi j\rangle | 

2\sum 
k=0

\omega k
\bigm| \bigm| \langle x, \varphi i + \omega k\varphi j\rangle 

\bigm| \bigm| 2.
In other words, to compute the relative phase \omega ij between the nonzero frame coefficients

\langle x, \varphi i\rangle and \langle x, \varphi j\rangle , we may use three additional phaseless measurements of x with respect to
\varphi i +\varphi j , \varphi i + \omega \varphi j , and \varphi i + \omega 2\varphi j . This means that the reconstruction of x using phase prop-
agation involves only phaseless measurements, namely, phaseless measurements with respect
to the union \Phi V \cup \Phi E , where \Phi V is a ``vertex"" frame and \Phi E = \{ \varphi i + \omega k\varphi j\} (i,j)\in E, k\in \{ 0,1,2\} .
Note that | \Phi V \cup \Phi E | = | V | + 3| E| .

In [18], it is shown that in the noiseless case, one can perform phase retrieval with po-
larization using only O(M) measurements. This algorithm is robust provided \Phi V consists
of independent Gaussian vectors and the number of measurements is O(M logM). In [19],
Bandeira, Chen, and Mixon adapt the polarization method to magnitude measurements of
masked Fourier transforms of the signal. Using tools from additive combinatorics, the authors
show that the graph of measurements they are using for reconstructon is sufficiently connected
provided that the total number of measurements is O(M logM). However, no stability results
are given for the case of structured measurements as considered in [19].

In section 3 we use the idea of polarization to build a recovery algorithm for time-frequency
structured measurements and show reconstruction and stability guarantees for the designed
algorithm.

2.2. Gabor frames for \BbbC \bfitM . Let us begin by defining two families of unitary operators
on \BbbC M , namely, cyclic shift operators and modulation operators.D
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742 G\"OTZ E. PFANDER AND PALINA SALANEVICH

Definition 2.2.
1. Translation (or time shift) by k \in \BbbZ M is given by

Tkx = Tk (x(0), x(1), . . . , x(M  - 1)) = (x(m - k))m\in \BbbZ M
.

That is, Tk simply permutes entries of x using k cyclic shifts.
2. Modulation (or frequency shift) by \ell \in \BbbZ M is given by

M\ell x = M\ell (x(0), x(1), . . . , x(M  - 1)) =
\Bigl( 
e2\pi i\ell m/Mx(m)

\Bigr) 
m\in \BbbZ M

.

That is, M\ell multiplies x = x(\cdot ) pointwise with the harmonic e2\pi i\ell (\cdot )/M .
3. The superposition \pi (k, \ell ) = M\ell Tk of translation by k and modulation by \ell is a time-

frequency shift operator.
4. For g \in \BbbC M \setminus \{ 0\} and \Lambda \subset \BbbZ M \times \BbbZ M , the set of vectors

(g,\Lambda ) = \{ \pi (k, \ell )g\} (k,\ell )\in \Lambda 

is called the Gabor system generated by the window g and the set \Lambda . A Gabor system
which spans \BbbC M is a frame and is referred to as a Gabor frame.

The discrete Fourier transform \scrF : \BbbC M \rightarrow \BbbC M plays a fundamental role in Gabor analysis.
It is given pointwise by

\scrF x(\ell ) =
\sum 

m\in \BbbZ M

x(m)e - 2\pi im\ell /M , \ell \in \BbbZ M .

The short-time Fourier transform (or windowed Fourier transform) Vg : \BbbC M \rightarrow \BbbC M\times M

with respect to the window g \in \BbbC M \setminus \{ 0\} is given by

(6) (Vgx)(k, \ell ) = \langle x, \pi (k, \ell )g\rangle = \scrF (x\odot Tk\=g)(\ell ), k, \ell \in \BbbZ M .

Equality (6) indicates that the short-time Fourier transform on \BbbC M can be efficiently computed
using the fast Fourier transform (FFT), an efficient algorithm to compute the discrete Fourier
transform of a vector. Phase retrieval with time-frequency structured measurements benefits
from this, as it reduces the run time of recovery algorithms.

As we shall use polarization for phase retrieval, we would like to choose a window function
g so that the frame (g,\Lambda ) is a full spark frame, that is, so that for any subset S \subset (g,\Lambda ) of
frame vectors with | S| \geq M , S spans \BbbC M [22]. Note that if the full Gabor system (g,\BbbZ M\times \BbbZ M )
is full spark, then so is (g,\Lambda ), for any \Lambda \subset \BbbZ M \times \BbbZ M .

The following result on the spark of Gabor frames with random window was shown for M
prime in [23] and for M composite in [24].

Theorem 2.3. Let M be a positive integer and let \Lambda be a subset of \BbbZ M \times \BbbZ M with | \Lambda | \geq M .
Then, for almost all windows \zeta on the complex unit sphere \BbbS M - 1 \subset \BbbC M , (\zeta ,\Lambda ) is a full spark
frame.

A more detailed description of Gabor frames in finite dimensions and their properties can
be found in [25].D
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3. Phase retrieval from Gabor measurements. We now describe our design of a mea-
surement frame and a reconstruction process in the noisless case, also addressed in [1], and
then discuss the robustness of our algorithm in the case when measurements are corrupted
by noise. The analysis of the algorithm's robustness leads to the investigation of geometric
properties of the measurement frame, such as frame bounds and flatness of the vector of
frame coefficients. These properties are not only important for the problem at hand, but are
of general interest in Gabor analysis.

3.1. Measurement process and frame construction. Consider the phase retrieval prob-
lem (3) with measurement frame

\Phi = \{ \varphi j\} Nj=1 = \Phi V \cup \Phi E \subset \BbbC M ,

where \Phi V is a Gabor frame and \Phi E is a set of vectors corresponding to the additional edge
measurements. As described in section 2.1, phaseless measurements with respect to \Phi E are
used to compute relative phases between frame coefficients.

Let us specify \Phi V and \Phi E now. For \Phi V we choose the Gabor frame

\Phi V = (g,\Lambda ) with \Lambda = F \times \BbbZ M , F \subset \BbbZ M , | F | = K,

and g \in \BbbC M uniformly distributed on the unit sphere \BbbS M - 1 \subset \BbbC M .
(7)

The integerK is fixed and does not depend on the ambient dimensionM , and F is an arbitrary
subset of \BbbZ M of cardinality K. That is, we consider all frequency shifts and only a constant
number of time shifts. As (6) indicates, our measurements are magnitudes of masked Fourier
transform coefficients with the masks being Tk\=g, k \in F .

We choose

\Phi E =
\bigl\{ 
\pi (\lambda 1)g + \omega t\pi (\lambda 2)g

\bigr\} 
(\lambda 1,\lambda 2)\in E, t\in \{ 0,1,2\} with \omega = e2\pi i/3,

E = \{ ((k1, \ell 1), (k2, \ell 2)), s.t. k1, k2 \in F, \ell 2  - \ell 1 \in C\} \subset \Lambda \times \Lambda ,

and C =D \cup ( - D) \setminus \{ 0\} \subset \BbbZ M with 1D(m) \sim i.i.d. B
\Bigl( 
1, d \mathrm{l}\mathrm{o}\mathrm{g}MM

\Bigr) (8)

(where i.i.d. is independent and identically distributed). In other words, D \subset \BbbZ M is con-
structed at random, so that every m \in \BbbZ M is chosen to be an element of D independently
with probability d \mathrm{l}\mathrm{o}\mathrm{g}M

M for a parameter d > 0 we will specify later, and C = D \cup ( - D) \setminus \{ 0\} .
Then

\pi (\lambda 1)g + \omega t\pi (\lambda 2)g = \pi (k1, \ell 1)g + \omega t\pi (k2, \ell 2)g = p(\ell 2 - \ell 1)k1k2(t)\odot \pi (\lambda 1)g,

where the vector pck1k2(t) \in \BbbC M is defined pointwise by

pc,k1,k2(t)(m) = 1 + e2\pi i(
cm
M

+ t
3)

g(m - k2)

g(m - k1)
, m \in \BbbZ M ,

with parameters c \in C, k1, k2 \in F , and t \in \{ 0, 1, 2\} . Therefore, for each fixed set of four
parameters (c, k1, k2, t), the respective additional measurements are magnitudes of maskedD
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744 G\"OTZ E. PFANDER AND PALINA SALANEVICH

Fourier transform coefficients as well, namely,

(9) | \langle x, pck1k2(t)\odot \pi (k1, \ell )g\rangle | = | \scrF (x\odot \=pck1k2(t)\odot Tk1\=g) (\ell )| , \ell \in \BbbZ M .

Let us note that the frame \Phi = \Phi V \cup \Phi E constructed in this way consists of | \Lambda | + 3| E| =
| F | M + 3| F | 2 | C| M vectors. Since C = D \cup ( - D) \setminus \{ 0\} with 1D(m) \sim i.i.d. B(1, d \mathrm{l}\mathrm{o}\mathrm{g}MM ), we
have | C| = O(logM) with high probability and thus | \Phi | = O(M logM).

Using the polarization identity in Lemma 2.1 with \omega = e2\pi i/3, we compute the relative
phases

(10) \omega \lambda 1\lambda 2 =
\Bigl( 

\langle x,\pi (\lambda 1)g\rangle 
| \langle x,\pi (\lambda 1)g\rangle | 

\Bigr)  - 1 \langle x,\pi (\lambda 2)g\rangle 
| \langle x,\pi (\lambda 2)g\rangle | =

\sum 2
t=0 \omega 

t| \langle x, \pi (\lambda 1)g + \omega t\pi (\lambda 2)g\rangle | 2

3| \langle x, \pi (\lambda 1)g\rangle | | \langle x, \pi (\lambda 2)g\rangle | 

for (\lambda 1, \lambda 2) \in E, where E is defined by (8). Recall, that \omega \lambda 1\lambda 2 is well defined if and only if
| \langle x, \pi (\lambda 1)g\rangle | \not = 0 and | \langle x, \pi (\lambda 2)g\rangle | \not = 0.

Remark 3.1. As (6) and (9) indicate, all required measurements are magnitudes of masked
Fourier transform coefficients. These are relevant for many applications. Moreover, mea-
surements and reconstruction in this case can be implemented using FFT, which allows a
noticeable speed up of measurement and reconstruction processes. For comparison, the com-
putational complexity of the measurement process with random Gaussian frame of cardinality
O(M logM) (as considered, for example, in [12] and [18]) is O(M2 logM), and the complexity
of measurement with the frame \Phi constructed above is O(M log2M). Furthermore, in the
case of random Gaussian frames, we have to use O(M2 logM) memory bits to store the mea-
surement matrix, while for our frame \Phi it is enough to store the window g and the set C, and
the overall amount of memory used is only M + O(logM) = O(M). These are some of the
advantages of time-frequency structured frames in comparison to randomly generated frames.

3.2. Reconstruction in the noiseless case. We now describe our polarization based re-
construction algorithm for time-frequency structured measurements.

Let us consider graph G = (\Lambda , E), where \Lambda and E are defined by (7) and (8), respectively.
Since 0 /\in C, the graph G has no loops, and since C =  - C, it is not directed. Also, each
vertex \lambda = (k, \ell ) of G is adjacent to any vertex \lambda \prime = (k\prime , \ell + c) with c \in C and k\prime \in F . Thus,
each vertex in G has degree | F | | C| and G is regular.

Let A = A(G) be the adjacency matrix of G, that is, a | \Lambda | \times | \Lambda | matrix whose (\lambda 1, \lambda 2)
entry is equal to the number of edges in G connecting vertices \lambda 1 and \lambda 2. Being real and
symmetric, A(G) has | \Lambda | real eigenvalues \alpha 1 \geq \alpha 2 \geq \cdot \cdot \cdot \geq \alpha | \Lambda | . We refer to the sequence
\{ \alpha i\} ni=1 of eigenvalues of A(G) as the spectrum of the graph G. Note that for a d-regular
graph G, \alpha 1 = d. The spectrum encodes information about the connectivity of the graph.
For example, G is connected if and only if \alpha 1 > \alpha 2. The value spg(G) = \alpha 1 - \alpha 

\alpha 1
, where

\alpha = max\{ | \alpha 2| , | \alpha n| \} , is known as the spectral gap of G. The following version of [26, Lemma
5.2] relates connectivity properties of the graph G and its spectral gap; see also [18].

Lemma 3.2. Let G be a d-regular graph. For all \varepsilon \leq \mathrm{s}\mathrm{p}\mathrm{g}(G)
6 , the graph obtained by removing

any \varepsilon n vertices from G has a connected component of size at least (1 - 2\varepsilon 
\mathrm{s}\mathrm{p}\mathrm{g}(G))n.

To be able to reconstruct a signal x using Algorithm 1, we need to ensure that | \Lambda \prime \prime | is
sufficiently large, so that \Phi \Lambda \prime \prime = (g,\Lambda \prime \prime ) is a frame (see Figure 3 for an example). Then xD
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PHASE RETRIEVAL FOR TIME-FREQUENCY MEASUREMENTS 745

Algorithm 1: Reconstruction in the noiseless case.

Input : phaseless measurements b with respect to \Phi \Lambda \cup \Phi E , defined by (7) and (8);
F \subset \BbbZ M , C \subset \BbbZ M , and window g \in \BbbC M \setminus \{ 0\} 

Output: \~x \in [x], i.e., the signal x up to a global phase.
\bfone construct the graph G = (\Lambda , E) with \Lambda = F \times \BbbZ M and E as in (8);
\bftwo assign to each \lambda \in \Lambda the weight b\lambda = | \langle x, \pi (\lambda )g\rangle | 2;
\bfthree assign to each edge (\lambda 1, \lambda 2) \in E the weight \omega \lambda 1\lambda 2 computed using (10);
\bffour delete from G all vertices \lambda with b\lambda = 0 to obtain G\prime = (\Lambda \prime , E\prime ) \subset G;
\bffive choose a connected component G\prime \prime = (\Lambda \prime \prime , E\prime \prime ) \subset G\prime of the biggest size;
\bfsix run the phase propagation process (section 2.1) to obtain c\lambda , \lambda \in \Lambda \prime \prime ;
\bfseven reconstruct \~x = (\Phi \Lambda \prime \prime \Phi \ast 

\Lambda \prime \prime ) - 1\Phi \Lambda \prime \prime c from c = \{ c\lambda \} \lambda \in \Lambda \prime \prime .

Figure 3. An example of the graph of measurements G with M = 6, F = \{ 0, 3\} , and C = \{ 2, 3, 4\} (left).
This graph remains connected after deleting one third of its vertices (middle). After we delete one half of its
vertices it has a connected component of size at least 4 (right).

can be recovered from its frame coefficients with respect to \Phi \Lambda \prime \prime . In terms of the graph of
measurements G, this means that after we delete all vertices \lambda with zero weight, the resulting
graph has a connected component of sufficiently big size. As Lemma 3.2 shows, this is satisfied
provided that G has a sufficiently big spectral gap. The spectral gap of G = (\Lambda , E) can be
estimated in terms of the set C. More precisely, for the random set C constructed in (8), the
following result is shown in [19].

Lemma 3.3. Pick d > 36 and suppose the entries of the characteristic vector 1D of a set D
are independent with distribution B(1, d \mathrm{l}\mathrm{o}\mathrm{g}MM ). Take C = D \cup ( - D) \setminus \{ 0\} and construct the
graph G as above. Then with overwhelming probability

spg(G) \geq 1 - 6\surd 
d
.

Now we are ready to establish recovery guarantees for Algorithm 1.

Theorem 3.4. Let frames \Phi V and \Phi E be constructed as above with | F | = 12 and d = 144.
Then every signal x \in \BbbC M can be reconstructed form M+3| F | 2M | C| = O(M logM) phaseless
measurements with respect to the frame \Phi V \cup \Phi E using Algorithm 1.

Proof. We begin the reconstruction algorithm by assigning to each vertex \lambda \in \Lambda of the
constructed graph G the weight b\lambda = | \langle x, \pi (\lambda )g\rangle | and assigning to each edge (\lambda 1, \lambda 2) \in E of GD
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746 G\"OTZ E. PFANDER AND PALINA SALANEVICH

the relative phase \omega \lambda 1\lambda 2 which is computed from the additional edge measurements. Theorem
2.3 implies that the frame \Phi V = \{ \pi (\lambda )g\} \lambda \in \Lambda is full spark with probability 1. Thus, for any
vector x \in \BbbC M , the number of zero measurements among \{ b\lambda = | \langle x, \pi (\lambda )g\rangle | \} \lambda \in \Lambda is at most
M  - 1. In other words, Algorithm 1 deletes at most M  - 1 vertices from G to obtain G\prime .

Next, \Phi V being full spark implies that any its subset \Phi V \prime \subset \Phi V of size | \Phi V \prime | \geq M form
a frame. Thus, to recover x, it is enough to know any M of the frame coefficients with
respect to \Phi V . To show that G\prime has a connected component G\prime \prime of size at least M , first
note that Lemma 3.3 ensures that spg(G) \geq 1  - 6\surd 

d
= 1

2 . Then, applying Lemma 3.2 with

n = | \Lambda | = | F | M and \varepsilon = 1
| F | =

1
12 \leq \mathrm{s}\mathrm{p}\mathrm{g}G

6 , we obtain that after deleting any \varepsilon n = M vertices

from G, the largest connected component G\prime \prime will have at least (1 - 2\varepsilon 
\mathrm{s}\mathrm{p}\mathrm{g}G)n \geq 2

3 | F | M = 8M >
M vertices.

By running the phase propagation algorithm on the connected graph G\prime \prime = (\Lambda \prime \prime , E\prime \prime ), we
recover c\lambda , \lambda \in \Lambda \prime \prime , which are, up to a global phase ei\theta , \theta \in [0, 2\pi ), equal to the corresponding
frame coefficients of x with respect to \Phi \Lambda \prime \prime , that is,

c\lambda = ei\theta \langle x, \pi (\lambda )g\rangle , \lambda \in \Lambda \prime \prime .

Now, using the canonical dual frame, we obtain

\~x = (\Phi \Lambda \prime \prime \Phi \ast 
\Lambda \prime \prime ) - 1\Phi \Lambda \prime \prime c = ei\theta (\Phi \Lambda \prime \prime \Phi \ast 

\Lambda \prime \prime ) - 1\Phi \Lambda \prime \prime \Phi \ast 
\Lambda \prime \prime x = ei\theta x.

4. Robustness of reconstruction in the presence of noise. In many applications, mea-
surements are corrupted by noise. In this section we address the behavior of the presented
algorithm in the case when the available measurements are of the form

b\lambda = | \langle x, \pi (\lambda )g\rangle | 2 + \nu \lambda , \lambda \in \Lambda ,

b\lambda 1\lambda 2t = | \langle x, \pi (\lambda 1)g + \omega t\pi (\lambda 2)g\rangle | 2 + \nu \lambda 1\lambda 2t, (\lambda 1, \lambda 2) \in E, t \in \{ 0, 1, 2\} ,
(11)

where \nu \lambda , \nu \lambda 1\lambda 2t are noise terms. We aim to construct a modification of Algorithm 1 which,
in the presence of noise, recovers a close estimate \~x of the original signal x.

4.1. Order statistics of frame coefficients. To compute a relative phase between two
frame coefficients, we rely on formula (10). The calculations include division by | \langle x, \pi (\lambda 1)g\rangle | 
and | \langle x, \pi (\lambda 2)g\rangle | and are therefore very sensitive to perturbations when | \langle x, \pi (\lambda 1)g\rangle | or
| \langle x, \pi (\lambda 2)g\rangle | is small. While vertices with zero corresponding measurements provide no rel-
ative phase information, vertices with small vertex measurements lead to unreliable relative
phase estimations and should therefore be deleted from the graph. As we require the graph of
measurements to have a connected component of size at least M after deleting vertices with
small weights, the number of such vertices has to be estimated. To do so, we show that the
vector of frame coefficients of a fixed x \in \BbbS M - 1 with respect to a Gabor frame with random
window is ``flat"" with high probability. That is, most of the frame coefficients are in the range
of c\surd 

M
to K\surd 

M
, for some suitably chosen constants K > c > 0.

Theorem 4.1. Fix x \in \BbbS M - 1 \subset \BbbC M and consider a Gabor frame (g,\Lambda ) with \Lambda \subset \BbbZ M \times \BbbZ M

and a random window g uniformly distributed on the unit sphere \BbbS M - 1. Then the following
hold.D
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PHASE RETRIEVAL FOR TIME-FREQUENCY MEASUREMENTS 747

(a) For any c > 0 and k > 0 with probability at least 1 - 1
k2
, we have\bigm| \bigm| \bigm| \bigm| \biggl\{ \lambda \in \Lambda , s.t. | \langle x, \pi (\lambda )g\rangle | < c\surd 

M

\biggr\} \bigm| \bigm| \bigm| \bigm| < | \Lambda | (c2 + kc).

(b) For any K > 0 and k > 0 with probability at least 1 - 1
k2
, we have\bigm| \bigm| \bigm| \bigm| \biggl\{ \lambda \in \Lambda , s.t. | \langle x, \pi (\lambda )g\rangle | > K\surd 

M

\biggr\} \bigm| \bigm| \bigm| \bigm| < | \Lambda | 

\Biggl( 
8

\pi 
e - K2

+ k
2
\surd 
2\surd 
\pi 
e - 

K2

2

\Biggr) 
.

The proof of this result is presented in the appendix.

Remark 4.2. A similar result can be shown for a Gabor frame with a window whose entries
are independent Gaussian random variables. The proof in this case involves the same steps
as the proof of Theorem 4.1.

Theorem 4.1 is a nonuniform result in the sense that the proven bounds hold with high
probability for each individual x. Note that this does not imply that the same bounds will
hold simultaneously for all x \in \BbbS M - 1 with high probability. We give a uniform bound for the
number of large frame coefficients in the following result; see also [2].

Theorem 4.3. Consider a Gabor frame (g,\BbbZ M \times \BbbZ M ) with window g whose entries are
independent Gaussian random variables with zero mean and variance 1\surd 

M
. Then, for some

suitably chosen numerical constants c, c1 > 0,\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggl\{ 
\lambda \in \BbbZ M \times \BbbZ M , s.t. | \langle x, \pi (\lambda )g\rangle | >

\sqrt{} 
3

2c

log2M\surd 
M

\Biggr\} \bigm| \bigm| \bigm| \bigm| \bigm| < cM

log4M

for all x \in \BbbS M - 1 with probability at least 1 - e - c1 \mathrm{l}\mathrm{o}\mathrm{g}
3 M .

Proof. Let g be a random vector with g(m) \sim i.i.d. \scrC \scrN 
\Bigl( 
0, 1\surd 

M

\Bigr) 
, m \in \BbbZ M , and let \Phi =

\Phi \BbbZ M\times \BbbZ M
be an M \times M2 matrix whose columns are \pi (\lambda )g, \lambda \in \BbbZ M \times \BbbZ M . Fix s \in \{ 1, . . . ,M2\} 

and for any x \in \BbbS M - 1 denote by Sx the set of \lambda \in \BbbZ M \times \BbbZ M corresponding to the s biggest
in modulus frame coefficients of x with respect to the Gabor frame (g,\BbbZ M \times \BbbZ M ). Then, for
the phase vector vx \in \BbbC M2

defined by

vx(\lambda ) =

\Biggl\{ 
\langle x,\pi (\lambda )g\rangle 
| \langle x,\pi (\lambda )g\rangle | , \lambda \in Sx,

0, otherwise,

we have

x\ast \Phi vx =
\sum 
\lambda \in Sx

| \langle x, \pi (\lambda )g\rangle | .

Applying the Cauchy--Schwarz inequality to x\ast \Phi vx = \langle \Phi vx, x\rangle , we obtain\sum 
\lambda \in Sx

| \langle x, \pi (\lambda )g\rangle | \leq | | x| | 2| | \Phi vx| | 2 = | | \Phi vx| | 2.D
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748 G\"OTZ E. PFANDER AND PALINA SALANEVICH

Note that vx is an s-sparse vector with | | vx| | 2 =
\surd 
s. Then, if s = cM

\mathrm{l}\mathrm{o}\mathrm{g}4 M
for a suitably chosen

numerical constant c > 0, we have

1

2
| | v| | 22 \leq | | \Phi v| | 22 \leq 

3

2
| | v| | 22

for any s-sparse vector v \in \BbbC M2
with probability at least 1 - e - c1 \mathrm{l}\mathrm{o}\mathrm{g}

3 M , where c1 > 0 depends
only on c; see [27, Theorem 5.1]. Thus

\sum 
\lambda \in Sx

| \langle x, \pi (\lambda )g\rangle | \leq | | \Phi vx| | 2 \leq 
\sqrt{} 

3s

2

with probability at least 1 - e - c1 \mathrm{l}\mathrm{o}\mathrm{g}
3 M . It follows that with the same probability,

min
\lambda \in Sx

| \langle x, \pi (\lambda )g\rangle | \leq 
\sqrt{} 

3

2s
=

\sqrt{} 
3

2c

log2M\surd 
M

.

In other words, with probability at least 1 - e - c1 \mathrm{l}\mathrm{o}\mathrm{g}
3 M for any x \in \BbbS M - 1, all except at most

cM
\mathrm{l}\mathrm{o}\mathrm{g}4 M

 - 1 frame coefficients are in modulus bigger then
\sqrt{} 

3
2c

\mathrm{l}\mathrm{o}\mathrm{g}2 M\surd 
M

.

Since Theorem 4.3 holds for the full Gabor frame (g,\BbbZ M \times \BbbZ M ), it also holds for any of
its subframes (g,\Lambda ), \Lambda \subset \BbbZ M . Also, note that while Theorem 4.3 gives a better bound on the
number of large frame coefficients than Theorem 4.1(b), it gives a slightly weaker bound on

the modulus of the remaining coefficients, namely, C \mathrm{l}\mathrm{o}\mathrm{g}2 M\surd 
M

instead of C\surd 
M
.

Remark 4.4. Note that [27, Theorem 5.1] is formulated for a window g with independent
mean-zero, variance one, L-sub-Gaussian entries. Thus, Theorem 4.3 is also true in this more
general case.

4.2. Reconstruction from noisy measurements. To obtain a modification to Algorithm
1 that leads to robust reconstruction, we may assume, without loss of generality, that the sig-
nal x lies on the complex unit sphere \BbbS M - 1 \subset \BbbC M . As mentioned before, instead of deleting
vertices with zero weight, a portion of vertices with small weights should be deleted in the
first step of the reconstruction algorithm. As shown later, very large measurements can also
prevent stable reconstruction, so we delete respective vertices as well. To delete vertices from
the graph of measurements, we use Algorithm 2.

Algorithm 2: Deleting ``small"" and ``large"" vertices.

Input : graph G = (\Lambda , E) with weighted vertices V , parameters \alpha , \beta 
Output: graph G\prime with more ``flat"" vertex weights

\bfone for i = 0 to (1 - \alpha )| \Lambda | do
\bftwo find \lambda \in \Lambda with the smallest value of b\lambda and delete it from G;
\bfthree end
\bffour for j = 0 to (1 - \beta )| \Lambda | do
\bffive find \lambda \in \Lambda with the largest value of b\lambda and delete it from G.
\bfsix endD
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PHASE RETRIEVAL FOR TIME-FREQUENCY MEASUREMENTS 749

Let G\prime \prime = (\Lambda \prime \prime , E\prime \prime ) be a subgraph of G\prime and let A be the weighted adjacency matrix of the
graph G\prime \prime given by

(12) A(\lambda 1, \lambda 2) =

\left\{     
\langle x, \pi (\lambda 1)g\rangle \langle x, \pi (\lambda 2)g\rangle + \varepsilon \lambda 1\lambda 2\bigm| \bigm| \bigm| \langle x, \pi (\lambda 1)g\rangle \langle x, \pi (\lambda 2)g\rangle + \varepsilon \lambda 1\lambda 2

\bigm| \bigm| \bigm| , (\lambda 1, \lambda 2) \in E\prime \prime 

0, (\lambda 1, \lambda 2) /\in E\prime \prime ,

where \lambda 1, \lambda 2 \in \Lambda \prime \prime and \varepsilon \lambda 1\lambda 2 = 1
3

\sum 2
t=0 \omega 

t\nu \lambda 1\lambda 2t. Then A(\lambda i, \lambda j) can be considered as an
approximation of the relative phase between frame coefficients corresponding to \Lambda \prime \prime .

Noise might accumulate while passing from one vertex to another in the phase propagation
process. Thus, we seek an efficient method to reconstruct the phases of the vertex frame
coefficients using measured relative phases (12). For this purpose, we shall use the angular
synchronization algorithm [28, 18]. The following result shows robustness of the angular
synchronization algorithm in the presence of noise [18, 29].

Theorem 4.5. Consider a graph G = (\Lambda \prime \prime , E\prime \prime ) with spectral gap \tau > 0, and define | | \theta | | \BbbT =
mink\in \BbbZ | \theta  - 2\pi k| for all angles \theta \in \BbbR /2\pi \BbbZ . Then, given the weighted adjacency matrix A as in
(12), the angular synchronization algorithm outputs \~\upsilon \in \BbbC | V | with unit-modulus entries, such
that for some phase \theta \in \BbbR /2\pi \BbbZ ,

\sum 
\lambda \in \Lambda \prime \prime 

| | arg(\~\upsilon \lambda ) - arg(\langle x, \pi (\lambda )g\rangle ) - \theta | | 2\BbbT \leq C| | \varepsilon | | 2

\tau 2P 2
,

where P = min(\lambda 1,\lambda 2)\in E\prime \prime | \langle x, \pi (\lambda 1)g\rangle \langle x, \pi (\lambda 2)g\rangle + \varepsilon \lambda 1\lambda 2 | and C is a universal constant.

As Theorem 4.5 shows, the accuracy of the angular synchronization algorithm depends on
the spectral gap of the graph G\prime \prime . To find a subgraph G\prime \prime \subset G\prime with spectral gap bounded away
from zero, we shall use the spectral clustering algorithm [30, 18]. To ensure that | \Lambda \prime \prime | \geq M ,
we rely on the following result. Its proof is based on the Cheeger inequality for the graph
connection Laplacian [29] and can be found in [18].

Theorem 4.6. Take p \geq q \geq 2
3 . Consider a regular graph G = (V,E) with spectral gap

\lambda 2 > g(p, q) = 1  - 2(q(1  - q)  - (1  - p)) and set \tau = 1
8(\lambda 2  - g(p, q))2. Then, after Algorithm

2 removes at most (1  - p)| V | vertices from G, the spectral clustering algorithm outputs a
subgraph with at least q| V | vertices and spectral gap at least \tau .

We summarize the above discussion in the following reconstruction algorithm.
Now we are ready to prove our main result.

Theorem 4.7. Fix x \in \BbbC M and consider the measurement procedure (11) described above,

with | F | and d sufficiently large. If the noise vector satisfies | | \nu | | 2
| | x| | 22

\leq C1
M for some C1 small

enough, then there exists a constant C \prime \prime such that the estimate \~x produced by Algorithm 3 from
the noisy measurements \{ bj\} Nj=1 satisfies with overwhelming probability

min
\theta \in [0,2\pi )

| | \~x - ei\theta x| | 22 \leq 
C \prime \prime \surd M | | \nu | | 2

\Delta 
,

where \Delta = min\Lambda \prime \prime \subset \Lambda ,| \Lambda \prime \prime | \geq 2/3| \Lambda | \sigma 
2
\mathrm{m}\mathrm{i}\mathrm{n}(\Phi 

\ast 
\Lambda \prime \prime ).D
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Algorithm 3: Reconstruction in the noisy case.

Input : F \subset \BbbZ M , C \subset \BbbZ M , window g;
noisy measurements b w.r.t. \Phi \Lambda \cup \Phi E , given by (11);
parameters \alpha , \beta , \tau 

Output: approximation \~x of the signal x (up to a global phase)
\bfone construct graph G = (\Lambda , E) with \Lambda = F \times \BbbZ M and E as in (8);
\bftwo assign to each \lambda \in \Lambda weight b\lambda ;
\bfthree assign to each edge (\lambda 1, \lambda 2) \in E weight A\lambda 1\lambda 2 , given in (12);
\bffour run Algorithm 2 with parameters \alpha , \beta to obtain G\prime = (\Lambda \prime , E\prime );
\bffive run spectral clustering to find G\prime \prime = (\Lambda \prime \prime , E\prime \prime ) with spg(G\prime \prime ) \geq \tau ;
\bfsix run angular synchronization to obtain approximate phases \{ u\lambda \} \lambda \in \Lambda \prime \prime ;
\bfseven set c\lambda = u\lambda 

\surd 
b\lambda , \lambda \in \Lambda \prime \prime ;

\bfeight reconstruct \~x = (\Phi \Lambda \prime \prime \Phi \ast 
\Lambda \prime \prime ) - 1\Phi \Lambda \prime \prime c from c = \{ c\lambda \} \lambda \in \Lambda \prime \prime .

Proof. Without loss of generality we can assume that | | x| | 2 = 1. As follows from Lemma
3.3, with overwhelming probability spg(G) \geq 1 - 6\surd 

b
. Let us fix parameters \tau 0 > 0, \alpha , \beta \in (0, 1)

and apply Theorem 4.6 with g(p, q) = 1  - 2(q(1  - q)  - (1  - p)) = 1  - 6\surd 
b
 - \tau 0 < spg(G).

Then, after Algorithm 2 deletes (1  - p)| \Lambda | = (1  - \alpha  - \beta )| \Lambda | vertices with the smallest and
the largest corresponding measurements, we apply the spectral clustering algorithm with

parameter \tau = 1
8(spg(G) - g(p, q))2 \geq \tau 20

8 . We obtain a graph G\prime \prime = (V \prime \prime , E\prime \prime ) with | V \prime \prime | \geq q| \Lambda | 
and spg(G\prime \prime ) \geq \tau 20

8 .
Let us specify q now. Since we set 1  - 2(q(1  - q)  - (1  - p)) = 1  - 6\surd 

b
 - \tau 0, it follows

q(1  - q) = 3\surd 
b
+ (1  - \alpha  - \beta ) + \tau 0

2 . If \tau 0, \alpha , \beta , and b are chosen appropriately, we can make

3\surd 
b
+ (1  - \alpha  - \beta ) + \tau 0

2 = A \leq 2
9 . Then 1 \geq q = 1+

\surd 
1 - 4A
2 \geq 1+

\surd 
1/9

2 = 2
3 . This ensures that

q \in 
\bigl( 
2
3 , 1
\bigr) 
.

Now, after applying the angular synchronization algorithm and using Theorem 4.5, we
obtain a universal constant C > 0 and phase \theta \in \BbbR /2\pi \BbbZ , such that

\sum 
\lambda \in V \prime \prime 

| | arg(u\lambda ) - arg(\langle x, \pi (\lambda )g\rangle ) - \theta | | 2\BbbT \leq C| | \varepsilon | | 22
\tau 2P 2

,

where \varepsilon \lambda 1\lambda 2 = 1
3

\sum 2
t=0 \omega 

t\nu \lambda 1\lambda 2t. Since | | \nu | | 2 \leq C1
M , we also have | \nu \lambda 1\lambda 2t| \leq C1

M for all \lambda 1, \lambda 2 \in \Lambda \prime \prime 

and t \in \{ 0, 1, 2\} and, thus, | \varepsilon \lambda 1\lambda 2 | \leq C1
M . By the Cauchy--Schwarz inequality we have

| | \varepsilon | | 22 =
\sum 

(\lambda 1,\lambda 2)\in E\prime \prime 

| \varepsilon \lambda 1\lambda 2 | 2 \leq 
1

9

\sum 
(\lambda 1,\lambda 2)\in E\prime \prime 

\Biggl( 
2\sum 

i=0

| \omega t| 2
\Biggr) \Biggl( 

2\sum 
i=0

| \nu \lambda 1\lambda 2t| 2
\Biggr) 

\leq 1

3
| | \nu | | 22.

Theorem 4.1 implies that, for any k, c > 0 and \epsilon = c2,\bigm| \bigm| \bigm| \bigm| \biggl\{ \lambda \in \Lambda , s.t. | \langle x, \pi (\lambda )g\rangle | < c\surd 
M

\biggr\} \bigm| \bigm| \bigm| \bigm| < | \Lambda | (\epsilon + k
\surd 
2\epsilon )D
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with probability at least 1 - 1/k2. Then, since | \nu \lambda | \leq C1
M , on this event\Bigl\{ 

\lambda \in \Lambda , s.t. | \langle x, \pi (\lambda )g\rangle | 2 + \nu \lambda < c2

M  - C1
M

\Bigr\} 
\subset 
\Bigl\{ 
\lambda \in \Lambda , s.t. | \langle x, \pi (\lambda )g\rangle | 2 < c2

M

\Bigr\} 
,

that is, \bigm| \bigm| \bigm| \bigm| \biggl\{ \lambda \in \Lambda , s.t. | \langle x, \pi (\lambda )g\rangle | 2 + \nu \lambda <
c2  - C1

M

\biggr\} \bigm| \bigm| \bigm| \bigm| < | \Lambda | (\epsilon + k
\surd 
2\epsilon ).

We set \alpha = 1 - (\epsilon + k
\surd 
2\epsilon ) and delete | \Lambda | (\epsilon + k

\surd 
2\epsilon ) vertices with the smallest corresponding

measurements. For the remaining coefficients we have | \langle x, \pi (\lambda )g\rangle | \geq \~c\surd 
M

for some constant

\~c > 0, provided c2 is sufficiently larger then C1. Similarly, setting \beta = 1 - (\eta +k
\surd 
2\eta ), we delete

| \Lambda | (\eta + k
\surd 
2\eta ) vertices with the largest corresponding measurements, and for the remaining

vertices, with probability at least 1 - 1
k2
, we have | \langle x, \pi (\lambda )g\rangle | \leq \~K\surd 

M
for some constant \~K > 0.

Now, with probability at least 1 - 2
k2
, after applying Algorithms 1 and 2, we have \~c\surd 

M
\leq 

| \langle x, \pi (\lambda )g\rangle | \leq \~K\surd 
M

for all \lambda \in V \prime \prime . Thus

P = min
(\lambda 1,\lambda 2)\in E\prime \prime 

| \langle x, \pi (\lambda 1)g\rangle \langle x, \pi (\lambda 2)g\rangle + \varepsilon \lambda 1\lambda 2 | 

\geq 
\bigm| \bigm| \bigm| \bigm| \~c2M  - max

(\lambda 1,\lambda 2)\in E\prime \prime 
| \varepsilon \lambda 1\lambda 2 | 

\bigm| \bigm| \bigm| \bigm| \geq \bigm| \bigm| \bigm| \bigm| \~c2M  - C1

M

\bigm| \bigm| \bigm| \bigm| \geq \~C

M
.

Summing up, we obtain\sum 
\lambda \in V \prime \prime 

| | arg(u\lambda ) - arg(\langle x, \pi (\lambda )g\rangle ) - \theta | | 2\BbbT \leq 64C| | \nu | | 22M2

3\tau 40
\~C2

.

For every \lambda \in V \prime \prime , we denote the obtained estimate of the corresponding frame coefficient
by c\lambda = u\lambda 

\surd 
b\lambda = u\lambda 

\sqrt{} 
| \langle x, \pi (\lambda )g\rangle | 2 + \nu \lambda . Also, set \delta \lambda = c\lambda  - ei\theta \langle x, \pi (\lambda )g\rangle and \zeta \lambda =

\surd 
b\lambda  - 

| \langle x, \pi (\lambda )g\rangle | . Then

| \delta \lambda | =
\bigm| \bigm| \bigm| \sqrt{} b\lambda e

i \mathrm{a}\mathrm{r}\mathrm{g}(u\lambda )  - 
\sqrt{} 

b\lambda e
i(\theta +\mathrm{a}\mathrm{r}\mathrm{g}(\langle x,\pi (\lambda )g\rangle )) + \zeta ei(\theta +\mathrm{a}\mathrm{r}\mathrm{g}(\langle x,\pi (\lambda )g\rangle ))

\bigm| \bigm| \bigm| 
\leq 
\sqrt{} 
b\lambda 

\bigm| \bigm| \bigm| ei(\mathrm{a}\mathrm{r}\mathrm{g}(u\lambda ) - \mathrm{a}\mathrm{r}\mathrm{g}(\langle x,\pi (\lambda )g\rangle ) - \theta )  - 1
\bigm| \bigm| \bigm| + | \zeta \lambda | 

\leq 
\sqrt{} 
b\lambda | | arg(u\lambda ) - arg(\langle x, \pi (\lambda )g\rangle ) - \theta | | \BbbT + | \zeta \lambda | .

Further, since | \delta \lambda | 2 \leq 2b\lambda | | arg(u\lambda ) - arg(\langle x, \pi (\lambda )g\rangle ) - \theta | | 2\BbbT + 2| \zeta \lambda | 2, it follows

| | \delta | | 22 \leq 2
\sum 
\lambda \in V \prime \prime 

b\lambda | | arg(u\lambda ) - arg(\langle x, \pi (\lambda )g\rangle ) - \theta | | 2\BbbT + 2
\sum 
\lambda \in V \prime \prime 

| \zeta \lambda | 2.

Using the fact that, for any a, b \in \BbbR , (a  - b)2 \leq | a2  - b2| , we obtain

\zeta 2\lambda = (
\surd 
b\lambda  - | \langle x, \pi (\lambda )g\rangle | )2 \leq | \nu \lambda | . And, since b\lambda \leq \~K2

M and | | .| | 1 \leq 
\sqrt{} 
| \Lambda \prime \prime | | | .| | 2,

| | \delta | | 22 \leq 
2 \~K2

M

\sum 
\lambda \in V \prime \prime 

| | arg(u\lambda ) - arg(\langle x, \pi (\lambda )g\rangle ) - \theta | | 2\BbbT + 2| | \nu V | | 1

\leq 128C \~K2| | \nu | | 22M
3\tau 40

\~C2
+ 2
\sqrt{} 
| F | M | | \nu | | 2.

Since | | \nu | | 2 \leq C1
M , we have | | \delta | | 22 \leq C \prime \prime \surd M | | \nu | | 2.
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For the estimate \~x of x, constructed by Algorithm 3, we have

\~x = (\Phi \Lambda \prime \prime \Phi \ast 
\Lambda \prime \prime ) - 1\Phi \Lambda \prime \prime c = ei\theta x+ (\Phi \Lambda \prime \prime \Phi \ast 

\Lambda \prime \prime ) - 1\Phi \Lambda \prime \prime \delta .

As such, we obtain the desired bound on the reconstruction error,

| | \~x - ei\theta x| | 22 \leq | | (\Phi \Lambda \prime \prime \Phi \ast 
\Lambda \prime \prime ) - 1\Phi \Lambda \prime \prime | | 22| | \delta | | 22 =

| | \delta | | 22
\sigma 2
\mathrm{m}\mathrm{i}\mathrm{n}(\Phi 

\ast 
\Lambda \prime \prime )

\leq C \prime \prime \surd M | | \nu | | 2
\sigma 2
\mathrm{m}\mathrm{i}\mathrm{n}(\Phi 

\ast 
\Lambda \prime \prime )

.

5. Numerical results on the robustness of Algorithm 3. In this section we numerically
investigate the behavior of the constructed phase retrieval algorithm for time-frequency struc-
tured measurements (Algorithm 3). In particular, we use numerical simulations to demon-
strate robustness of Algorithm 3 in the presence of noise and to investigate dependencies of
the reconstruction error on various parameters.

Recall that, to construct the measurement frame \Phi = \Phi \Lambda \cup \Phi E \subset \BbbC M , we first introduce
a random graph of measurements G = (\Lambda , E), where \Lambda = F \times \BbbZ M with F \subset \BbbZ M such that
| F | is a constant that does not depend on the ambient dimension M , and

E = \{ ((k1, \ell 1), (k2, \ell 2)) , s.t. k1, k2 \in F, \ell 2  - \ell 1 \in C\} \subset \Lambda \times \Lambda .

Here, set C is a random subset of \BbbZ M , such that

(13) C = D \cup ( - D) \setminus \{ 0\} \subset \BbbZ M with 1D(m) \sim i.i.d. B
\Bigl( 
1, d \mathrm{l}\mathrm{o}\mathrm{g}MM

\Bigr) 
,

that is, D \subset \BbbZ M is constructed at random, so that every m \in \BbbZ M is chosen to be an element
of D independently with probability d \mathrm{l}\mathrm{o}\mathrm{g}M

M for some parameter d > 0.
The measurement frame \Phi \Lambda and the set of vectors for additional measurements \Phi E are

then given by

\Phi \Lambda = (g,\Lambda ), g \in \BbbC M uniformly distributed on \BbbS M - 1 \subset \BbbC M ,

\Phi E =
\bigl\{ 
\pi (\lambda 1)g + \omega t\pi (\lambda 2)g

\bigr\} 
(\lambda 1,\lambda 2)\in E, t\in \{ 0,1,2\} with \omega = e2\pi i/3.

For our numerical simulations, we consider noisy phaseless measurements

b\lambda = | \langle x, \pi (\lambda )g\rangle | 2 + \nu \lambda , \lambda \in \Lambda ,

b\lambda 1\lambda 2t = | \langle x, \pi (\lambda 1)g + \omega t\pi (\lambda 2)g\rangle | 2 + \nu \lambda 1\lambda 2t, (\lambda 1, \lambda 2) \in E, t \in \{ 0, 1, 2\} ,

where \nu \lambda , \nu \lambda 1\lambda 2t \sim i.i.d. \scrN (0, \sigma ) are independent normally distributed additive noise compo-
nents. Theorem 4.7 then gives the following bound on the reconstruction error of Algorithm
3:

(14) | | \~x - ei\theta x| | 22 \leq C
\surd 
M | | \nu | | 2,

where the constant C depends on the spectral gap of the graph of measurements G and on
the parameter

\Delta = min
\Lambda \prime \prime \subset \Lambda ,

| \Lambda \prime \prime | \geq 2/3| \Lambda | 

\sigma 2
\mathrm{m}\mathrm{i}\mathrm{n}(\Phi 

\ast 
\Lambda \prime \prime ).
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Reconstruction error of Algorithm 3
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Reconstruction error of Algorithm 3
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Figure 4. Dependence of the reconstruction error of Algorithm 3 (left) and the error to noise ratio (right) on
the ambient dimension M . Here the noise vector is random, such that it has independent normally distributed
entries with variance \sigma = 10 - 3. The black dashed lines on the plots show the average (over several simulations
with different noise realizations) values of the reconstruction error and the error to noise ratio, respectively.
These numerical results suggest that the error to noise ratio does not depend on the signal dimension and is
bounded above by a numerical constant.

Singular values of the analysis matrices of Gabor frames with random windows are studied
in [31]. In particular, it has been shown that the smallest singular value of the analysis
matrix \sigma 2

\mathrm{m}\mathrm{i}\mathrm{n}(\Phi 
\ast 
\Lambda \prime \prime ) of a randomly selected subframe (g,\Lambda \prime \prime ) of a Gabor frame (g,\Lambda \prime \prime ) is bounded

from below by c | \Lambda 
\prime \prime | 

M for a suitably chosen numerical constant c > 0 with high probability.
Unfortunately, no uniform bounds, similar to the parameter \Delta defined above, are known to
the date for Gabor frames. We formulate the following conjecture.

Conjecture 5.1. Consider a Gabor frame (g,\Lambda ) with g uniformly distributed on \BbbS M - 1 and
\Lambda \subset \BbbZ M \times \BbbZ M , such that | \Lambda | = O(M log\alpha M) (where the parameter \alpha \geq 0 has to be specified).
Then, for any \varepsilon \in (0, 1),

\Delta (p) = min
\Lambda \prime \prime \subset \Lambda ,

| \Lambda \prime \prime | \geq p| \Lambda | 

\sigma 2
\mathrm{m}\mathrm{i}\mathrm{n}(\Phi 

\ast 
\Lambda \prime \prime ) \geq c

| \Lambda | 
M

with probability at least 1 - \varepsilon , where c > 0 is some numerical constant that depends only on p
and \varepsilon .

To illustrate Theorem 4.7, we consider two sets of simulations. For the first one, we let
the dimension of the signal vary and explore the reconstruction error of the algorithm for a
random normally distributed noise vector with independent entries and fixed variance. On
Figure 4 we show the obtained results, which suggest that the error to noise ratio does not
depend on the signal dimension, unlike the bound (14) obtained in Theorem 4.7. In fact, the
ratio between the reconstruction error and the norm of the noise vector appears to be bounded
above by a numerical constant close to 3.

For the second set of simulations, we explore the dependence of the reconstruction error
and the error to noise ratio on the noise variance for a fixed signal dimension. The obtained
results, shown on Figure 5, illustrate that the reconstruction error grows linearly with the
magnitude of noise.D

ow
nl

oa
de

d 
03

/2
2/

21
 to

 1
72

.1
13

.2
51

.2
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

754 G\"OTZ E. PFANDER AND PALINA SALANEVICH

Reconstruction error of Algorithm 3
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Figure 5. Dependence of the reconstruction error of Algorithm 3 (left) and the error to noise ratio (right)
on the variance \sigma of the entries \nu \lambda , \nu \lambda 1\lambda 2t of the noise vector \nu , which are selected independently from the
normal distribution \scrN (0, \sigma ). The ambient dimension here is M = 100. The black dashed lines on the plots
show the average (over several simulations with different noise realizations) values of the reconstruction error
and the error to noise ratio, respectively. These numerical results suggest that the reconstruction error grows
linearly with the magnitude of noise.

On both Figures 4 and 5, we show the average values of the reconstruction error and
the error to noise ratio (over several simulations with different noise realizations) using black
dashed lines. In other words, the black dashed lines on the plots show (an approximation of)
the expected values of the corresponding quantities. We note that, on both figures, the average
error to noise ratio appears to be smaller than 1, which means that noise reduction takes place
during signal reconstruction. This can be explained in the following way. Assuming that the
graph of measurements G is sufficiently well connected, that is, spg(G) is sufficiently big,
the phase of a frame coefficient can be propagated to the corresponding vertex using various
different paths. In Algorithm 3, we use the angular synchronization algorithm, which utilizes
relative phase information coming to a vertex \lambda \in \Lambda from all edges (\lambda , \lambda \prime ) \in E incident to \lambda .
Since in the simulations we considered noise with independent entries and zero mean, it tends
to cancel itself at a vertex.

The reason why the plots on Figures 4 and 5 look quite spiky is that different realizations
of the random graph of measurements G are used for the simulations. As we mentioned
before, the reconstruction error bound (14) of Algorithm 3 depends on the spectral gap of G,
which might differ from one realization to another. In particular, the bigger the cardinality
of the random set C is, the better are the connectivity properties of G, and the smaller is the
reconstruction error.

The cardinality of the set C and, thus, the reconstruction error of the algorithm depend
on the parameter d, as formula (13) shows. More precisely, it follows from Lemma 3.3 that,
provided d > 36,

spg(G) \geq 1 - 6\surd 
d

with overwhelming probability. We now investigate the dependence of the reconstruction error
of the algorithm on the parameter d numerically.D
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Reconstruction error of Algorithm 3
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Figure 6. Dependence of the reconstruction error to noise ratio of Algorithm 3 on the papameter d in
(13) for various dimensions. Here, values of high error to noise ratio are color coded darker then those with a
low ratio. Parameter d controls the connectivity properties of the graph of measurements G. These numerical
results suggest that, starting at approximately d = 3, the error to noise ratio does not exceed 4, and also does
not depend on the ambient dimension M . This observation allows us to reduce the multiplicative constant in
the number of measurements required for the reconstruction.

Numerical results presented on Figure 6 show the dependence of the ratio between the
reconstruction error of Algorithm 3 and the norm of the noise vector on the parameter d
(vertical axis) for the varying ambient dimension (horizontal axis). One can see that starting
approximately at d = 3, that is, much earlier than the value d = 144, predicted by Theorem
4.7, this ratio does not exceed 4.

6. Conclusions. For most of the existing phase retrieval algorithms, including
PhaseLift [11, 12] and the Wirtinger flow algorithm [15], recovery and robustness guaran-
tees are proven for the case of a random measurement frame with independent frame vectors.
One of the main reasons for this is that properties of such frames are sufficiently well studied.
Moreover, such frames appear to have optimal properties in the sense of being ``well spread,""
which is formalized in different ways for different reconstruction algorithms.

In this paper, we use the idea of polarization [18] to design the first phase retrieval algo-
rithm for time-frequency structured frames \Phi with | \Phi | < M2. An investigation of properties of
Gabor frames, that is, frames consisting of vectors which are time and frequency shifts of the
random window and, thus, are not independent, allow us to conclude recovery and robustness
guarantees for the postulated phase retrieval algorithm. In particular, Theorem 4.1, which
describes the order statistics of frame coefficients for a Gabor frame with a random window,
allows us to obtain robustness guarantees in Theorem 4.7.

The numerical results presented in section 5 suggest that the theoretical bound (14) on
the reconstruction error of the proposed phase retrieval algorithm can be further improved by
a factor of

\surd 
M . Thus, one of the important tasks for future research is to understand the gap

between theoretically predicted robustness guarantees and results obtained numerically. We
hope that a further study of properties of Gabor frames with random windows will allow us to
not only remove the factor of

\surd 
M from the reconstruction error bound (14), but also to prove

the following conjecture, which states the uniform robustness guarantees for Algorithm 3.D
ow

nl
oa

de
d 

03
/2

2/
21

 to
 1

72
.1

13
.2

51
.2

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

756 G\"OTZ E. PFANDER AND PALINA SALANEVICH

Conjecture 6.1. Consider the measurement procedure (11) with | F | and d sufficiently large.

If the noise vector satisfies | | \nu | | 2
| | x| | 22

\leq C1
M for some C1 small enough, then there exists a numerical

constant C > 0 such that with overwhelming probability, for every x \in \BbbC M , the estimate \~x
produced by Algorithm 3 satisfies

min
\theta \in [0,2\pi )

| | \~x - ei\theta x| | 22 \leq C| | \nu | | 2.

We note that one of the main ingredients of the proof of Theorem 4.7 is Theorem 4.1,
which gives bounds on the frame order statistics of a Gabor frame with a random window
(see section 4.1). Similarly, the main missing ingredient of the proof of Conjecture 6.1 is a
uniform version of Theorem 4.1.

Appendix A. Proof of Theorem 4.1. Here we prove Theorem 4.1 which is formulated as
follows.

Theorem. Fix x \in \BbbS M - 1 \subset \BbbC M and consider a Gabor frame (g,\Lambda ) with \Lambda \subset \BbbZ M \times \BbbZ M and
a random window g uniformly distributed on the unit sphere \BbbS M - 1. Then the following holds.

(a) For any c > 0 and k > 0, with probability at least 1 - 1
k2
, we have\bigm| \bigm| \bigm| \bigm| \biggl\{ \lambda \in \Lambda , s.t. | \langle x, \pi (\lambda )g\rangle | < c\surd 

M

\biggr\} \bigm| \bigm| \bigm| \bigm| < | \Lambda | (c2 + kc).

(b) For any K > 0 and k > 0, with probability at least 1 - 1
k2
, we have\bigm| \bigm| \bigm| \bigm| \biggl\{ \lambda \in \Lambda , s.t. | \langle x, \pi (\lambda )g\rangle | > K\surd 

M

\biggr\} \bigm| \bigm| \bigm| \bigm| < | \Lambda | 

\Biggl( 
8

\pi 
e - K2

+ k
2
\surd 
2\surd 
\pi 
e - 

K2

2

\Biggr) 
.

Proof. (a) For x \in \BbbS M - 1 fixed, we set

G\delta (x) = \{ \varphi \in \BbbS M - 1 \subset \BbbC M , s.t. | \langle x, \varphi \rangle | < \delta \} .

We are interested in the distribution of the random variable

Zx = | G\delta (x) \cap (g,\Lambda )| =
\sum 
\lambda \in \Lambda 

1\{ \pi (\lambda )g\in G\delta (x)\} ,

where 1\{ \varphi \in G\delta (x)\} is the characteristic function of the event \{ \varphi \in G\delta (x)\} . In words, Zx is the
number of small measurements of the fixed signal x with respect to the Gabor frame (g,\Lambda )
with a random window g.

First, note that for each \lambda \in \Lambda , \pi (\lambda )g is also uniformly distributed on \BbbS M - 1, that is, the
random vectors \pi (\lambda )g, \lambda \in \Lambda , are equally distributed. Indeed, consider a random vector h,
such that h(m) \sim i.i.d. \BbbC \scrN (0, 1

M ). Then it is well known that h/| | h| | 2 is uniformly distributed
on \BbbS M - 1, since random vector h/| | h| | 2 almost surely has unit norm and its distribution is
rotation invariant [32]. In other words, we can write g = h/| | h| | 2. As such, we have

\pi (\lambda )g = \pi (\lambda )h/| | h| | 2 = \pi (\lambda )h/| | \pi (\lambda )h| | 2,D
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since both modulation and time shift are unitary operators. The coordinates of h are i.i.d.
random variables, thus translation Tk, which is just a permutation of the vector coordinates,
preserves the distribution of h. For the modulation we have M\ell h(m) = e2\pi im\ell /Mh(m) is also
normally distributed, with

\BbbE (e2\pi im\ell /Mh(m)) = e2\pi im\ell /M\BbbE (h(m)) = 0,

Var(e2\pi im\ell /Mh(m)) = \BbbE (e2\pi im\ell /Mh(m)e - 2\pi im\ell /M\=h(m)) = Var(h(m)) =
1

M
.

Thus the distribution of h is preserved by both modulation and time shift, and \pi (\lambda )g =
\pi (\lambda )h/| | \pi (\lambda )h| | has the same distribution as g = h/| | h| | 2.

Since \pi (\lambda )g has the same distribution as g, we have

\BbbP \{ | \langle x, \pi (\lambda )g\rangle | < \delta \} = \BbbP \{ | \langle x, g\rangle | < \delta \} 

for all \lambda \in \Lambda . Thus

(15) \BbbE (Zx) =
\sum 
\lambda \in \Lambda 

\BbbP \{ \pi (\lambda )g \in G\delta (x)\} = | \Lambda | \BbbP \{ | \langle x, g\rangle | < \delta \} .

Let R be an orthogonal matrix, such that x = Re1, where e1 = (1, 0, 0, . . . , 0)T is the first
vector of the standard basis. Then

| \langle x, g\rangle | = | \langle Re1, g\rangle | = | \langle e1, R\ast g\rangle | .

By the rotational symmetry of the distribution of g, we obtain

\BbbP \{ | \langle x, g\rangle | < \delta \} = \BbbP \{ | \langle e1, g\rangle | < \delta \} = \BbbP \{ | g(0)| < \delta \} .

Let us identify the complex unit sphere \BbbS M - 1 \subset \BbbC M with the real unit sphere \BbbS 2M - 1
\BbbR \subset 

\BbbR 2M , using the map \scrI : \BbbS M - 1 \rightarrow \BbbS 2M - 1
\BbbR given by

(16) \scrI (z0, . . . , zM - 1) = (\Re (z0),\Im (z0), . . . ,\Re (zM - 1),\Im (zM - 1)).

Since g is uniformly distributed on \BbbS M - 1, \~g = \scrI (g) is uniformly distributed on \BbbS 2M - 1
\BbbR . Thus

\BbbP \{ | g(0)| < \delta \} = \BbbP \{ \~g(0)2 + \~g(1)2 < \delta 2\} =
S<\delta 

S1
,

where S1 = 2\pi M

(M - 1)! is the surface area of \BbbS 2M - 1
\BbbR , and S<\delta is the surface area of the set

\{ z \in \BbbS 2M - 1
\BbbR , s.t. z20 + z21 < \delta 2\} :

S<\delta =

\int \delta 

 - \delta 

\int \surd 
\delta 2 - z20

 - 
\surd 

\delta 2 - z20

2\pi M - 1

(M  - 2)!
(1 - z20  - z21)

2M - 1
2 dz1dz0 <

2\pi M\delta 2

(M  - 2)!
,

that is, \BbbP \{ | g(0)| < \delta \} \leq \delta 2(M  - 1). Now, setting \delta = c\surd 
M

for c sufficiently small, we obtain

(17) \BbbP 
\biggl\{ 
| \langle x, g\rangle | < c\surd 

M

\biggr\} 
\leq c2.D
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Using (15) and (17), we obtain

(18) \mu = \BbbE (Zx) = | \Lambda | \BbbP 
\biggl\{ 
| \langle x, g\rangle | < c\surd 

M

\biggr\} 
\leq | \Lambda | c2.

Similarly, using (17), for the variance of Zx we obtain

\sigma 2 = Var(Zx) = \BbbE (Z2
x) - (\BbbE (Zx))

2 \leq \BbbE (Z2
x) = \BbbE 

\left(  \Biggl( \sum 
\lambda \in \Lambda 

1\{ \pi (\lambda )g\in G c\surd 
M

(x)\} 

\Biggr) 2
\right)  

= \BbbE 

\left(    \sum 
\lambda \in \Lambda 

12\biggl\{ 
\pi (\lambda )g\in G c\surd 

M
(x)

\biggr\} +
\sum 

(\lambda 1,\lambda 2)\in \Lambda 2,
\lambda 1 \not =\lambda 2

1\biggl\{ 
\pi (\lambda 1)g\in G c\surd 

M
(x)

\biggr\} 1\biggl\{ 
\pi (\lambda 2)g\in G c\surd 

M
(x)

\biggr\} 
\right)    

=
\sum 
\lambda \in \Lambda 

\BbbP 
\Bigl\{ 
\pi (\lambda )g \in G c\surd 

M
(x)
\Bigr\} 
+

\sum 
(\lambda 1,\lambda 2)\in \Lambda 2,

\lambda 1 \not =\lambda 2

\BbbP 
\Bigl\{ 
\pi (\lambda 1)g, \pi (\lambda 2)g \in G c\surd 

M
(x)
\Bigr\} 

\leq (| \Lambda + (| \Lambda | 2  - | \Lambda | ))| \BbbP 
\biggl\{ 
| \langle x, g\rangle | < c\surd 

M

\biggr\} 
\leq c2| \Lambda | 2,(19)

that is, \sigma \leq c| \Lambda | . Then, using the Chebyshev inequality and bounds (18) and (19), we have

\BbbP \{ Zx \geq | \Lambda | (c2 + kc)\} \leq \BbbP \{ Zx \geq \mu + k\sigma \} \leq \BbbP \{ | Zx  - \mu | \geq k\sigma \} \leq 1

k2

for any k > 0. In other words, if we delete the | \Lambda | (c2+kc) smallest phaseless measurements, for
the remaining measurements with probability at least 1 - 1

k2
we would have | \langle x, \pi (\lambda )g\rangle | \geq c\surd 

M
.

This concludes the proof of (a).
The proof of (b) follows the same steps. Let K be a constant and consider the following

random variable

Ux =
\sum 
\lambda \in \Lambda 

1\{ | \langle x,\pi (\lambda )g\rangle | >K/
\surd 
M\} .

Since, for each \lambda \in \Lambda , \pi (\lambda )g has the same (uniform on \BbbS M - 1) distribution as g, we have
\BbbP \{ | \langle x, \pi (\lambda )g\rangle | > K/

\surd 
M\} = \BbbP \{ | \langle x, g\rangle | > K/

\surd 
M\} for all \lambda \in \Lambda . As above, we have

\BbbP \{ | \langle x, g\rangle | > K/
\surd 
M\} = \BbbP \{ | \langle e1, g\rangle | > K/

\surd 
M\} = \BbbP \{ | g(0)| > K/

\surd 
M\} .

Using the map \scrI : \BbbS M - 1 \rightarrow \BbbS 2M - 1
\BbbR defined in (16), for \~g = \scrI (g) we obtain

\BbbP 
\biggl\{ 
| g(0)| > K\surd 

M

\biggr\} 
= \BbbP 

\biggl\{ 
\~g(0)2 + \~g(1)2 >

K2

M

\biggr\} 
=

S>K/
\surd 
M

S1
,

where S1 = 2\pi M

(M - 1)! is the surface area of \BbbS 2M - 1
\BbbR and S>K/

\surd 
M is the surface area of the setD
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\{ z \in \BbbS 2M - 1
\BbbR , s.t. z20 + z21 > K2

M \} :

S>K/
\surd 
M =

\int 
| z0| \leq 1

\int \sqrt{} 
K2

M
 - z20<| z1| <

\surd 
1 - z20

2\pi M - 1

(M  - 2)!
(1 - z20  - z21)

2M - 1
2 dz1dz0

= 8
2\pi M - 1

(M  - 2)!

\int K\surd 
2M

0

\int \surd 
1 - z20\sqrt{} 

K2

M
 - z20

(1 - z20  - z21)
2M - 1

2 dz1dz0

+ 8
2\pi M - 1

(M  - 2)!

\int 1\surd 
2

K\surd 
2M

\int \surd 
1 - z20

z0

(1 - z20  - z21)
2M - 1

2 dz1dz0

\leq 16\pi M - 1

(M  - 2)!

\surd 
2M

K

\int K\surd 
2M

0

\int \surd 
1 - z20\sqrt{} 

K2

M
 - z20

z1(1 - z20  - z21)
2M - 1

2 dz1dz0

+
16\pi M - 1

(M  - 2)!

\surd 
2M

K

\int 1\surd 
2

K\surd 
2M

\int \surd 
1 - z20

z0

z1(1 - z20  - z21)
2M - 1

2 dz1dz0

\leq 8\pi M - 1

(M  - 1)!

\Biggl( \biggl( 
1 - K2

M

\biggr) 2M+1
2

+
M

2K2

\int 1\surd 
2

K\surd 
2M

4z0
\bigl( 
1 - 2z20

\bigr) 2M+1
2 dz0

\Biggr) 

\leq 8\pi M - 1

(M  - 1)!

\Biggl( \biggl( 
1 - K2

M

\biggr) 2M+1
2

+
1

2K2

\biggl( 
1 - K2

M

\biggr) 2M+3
2

\Biggr) 

\leq 8\pi M - 1

(M  - 1)!

\biggl( 
e - 

K2

M
2M+1

2 +
1

2K2
e - 

K2

M
2M+3

2

\biggr) 
\leq 16\pi M - 1

(M  - 1)!
e - K2

.

Here, we used the symmetry of the domain of integration, the fact that z20 + z21 < K2

M implies
max\{ | z0| , | z1| \} > K\surd 

2M
, and the inequality 1  - x \leq e - x. Using the computed bound for

S>K/
\surd 
M , we obtain \BbbP 

\Bigl\{ 
| g(0)| > K\surd 

M

\Bigr\} 
\leq 8

\pi e
 - K2

. Then

(20) \mu = \BbbE (Ux) =
\sum 
\lambda \in \Lambda 

\BbbP 
\Bigl\{ 
| \langle x, \pi (\lambda )g\rangle | > K\surd 

M

\Bigr\} 
\leq 8

\pi 
e - K2 | \Lambda | .

Similarly, for the variance of Ux we obtain

\sigma 2 = Var(Ux) \leq \BbbE (U2
x) = \BbbE 

\biggl( \Bigl( \sum 
\lambda \in \Lambda 1\{ | \langle x,\pi (\lambda )g\rangle | >K/

\surd 
M\} 

\Bigr) 2\biggr) 
=
\sum 

\lambda \in \Lambda \BbbP 
\Bigl\{ 
| \langle x, \pi (\lambda )g\rangle | > K\surd 

M

\Bigr\} 
+
\sum 

(\lambda 1,\lambda 2)\in \Lambda 2,
\lambda 1 \not =\lambda 2

\BbbP 
\Bigl\{ 
| \langle x, \pi (\lambda 1)g\rangle | , | \langle x, \pi (\lambda 2)g\rangle | > K\surd 

M

\Bigr\} 
\leq | \Lambda | \BbbP \{ | \langle x, g\rangle | > K/

\surd 
M\} + (| \Lambda | 2  - | \Lambda | )\BbbP \{ | \langle x, g\rangle | > K/

\surd 
M\} \leq 8

\pi e
 - K2 | \Lambda | 2,(21)

that is, \sigma \leq 2
\surd 
2\surd 
\pi 
e - 

K2

2 | \Lambda | . Then, using the Chebyshev inequality and bounds (20) and (21),

we obtain

\BbbP 

\Biggl\{ 
Ux \geq | \Lambda | 

\Biggl( 
8

\pi 
e - K2

+ k
2
\surd 
2\surd 
\pi 
e - 

K2

2

\Biggr) \Biggr\} 
\leq \BbbP \{ | Ux  - \mu | \geq k\sigma \} \leq 1

k2D
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for any k > 0. In other words, if we delete the

| \Lambda | 

\Biggl( 
8

\pi 
e - K2

+ k
2
\surd 
2\surd 
\pi 
e - 

K2

2

\Biggr) 
largest phaseless measurements, with probability at least 1  - 1

k2
for the remaining measure-

ments we would have | \langle x, \pi (\lambda )g\rangle | \leq K\surd 
M
.
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