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This paper presents a novel 2-field finite element solver for linear poroelasticity on
convex quadrilateral meshes. The Darcy flow is discretized for fluid pressure by a
lowest-order weak Galerkin (WG) finite element method, which establishes the discrete
weak gradient and numerical velocity in the lowest-order Arbogast–Correa space. The
linear elasticity is discretized for solid displacement by the enriched Lagrangian finite
elements with a special treatment for the volumetric dilation. These two types of
finite elements are coupled through the implicit Euler temporal discretization to solve
poroelasticity problems. A rigorous error analysis is presented along with numerical tests
to demonstrate the accuracy and locking-free property of this new solver.
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1. Introduction

This paper concerns finite element methods for the Biot’s model for linear poroelasticity on a bounded domain Ω
during a time period [0, T ] as follows

{
−∇ · (2µε(u) + λ(∇ · u)I)+ α∇p = f,

∂t (α∇ · u + c0p)+ ∇ · (−K∇p) = s,
(1)

where u(x, t) is the unknown solid displacement, ε(u) = 1
2

(
∇u + (∇u)T

)
is the strain tensor, λ,µ are Lamé constants,

σ (u) = 2µε(u) + λ(∇ · u)I is the effective stress for the solid (here I is the identity matrix), f is a body force, p(x, t) is
the unknown fluid pressure, K is the hydraulic conductivity tensor, s is the fluid source (here sink is treated as negative
source), c0 ≥ 0 is the constrained storage capacity, and α (usually close to 1) is the Biot–Williams constant.

For the poroelasticity problem, we should consider the total stress

σ̃ (u, p) = σ − pI. (2)

Dirichlet and Neumann boundary conditions are posed as

u|Γ E

D
= uD, (σ̃n)|Γ E

N
= tN , (3)

and

p|ΓD

D
= pD, (−K∇p) · n|ΓD

N
= uN , (4)
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where n is the outward unit normal vector to ∂Ω , which has a non-overlapping decomposition ∂Ω = Γ E

D ∪ Γ E

N for solid
and another non-overlapping decomposition ∂Ω = Γ D

D ∪ Γ D

N for fluid. As for initial conditions, we have

p(x, 0) = p0, u(x, 0) = u0. (5)

Usually, u0 = 0, which means that there is no deformation for the elastic medium at the beginning of the simulation.
Modeling poroelasticity is of great importance in a wide range of science and engineering disciplines such as cell

biology, drug delivery, food processing, reservoir engineering, soil mechanics, and tissue engineering [1–4].
An early complete theory about poroelasticity was formulated in Biot’s consolidation model [5]. A more recent rigorous

mathematical analysis was presented in [6]. It is difficult to obtain analytical solutions for poroelasticity problems.
Therefore, solving poroelasticity problems relies mainly on numerical methods.

Numerical methods for poroelasticity can be classified based on what variables are being solved.

• 2-field: Solid displacement, fluid pressure; See [7–9];

• 3-field: Solid displacement, fluid pressure and velocity; See [10–13];

• 4-field: Solid displacement and stress, fluid pressure and velocity; See [14] for solvers that couple the Raviart–Thomas
pair for velocity and pressure and the Arnold–Winther pair for stress and displacement.

A main challenge in numerical simulations of poroelasticity is the poroelasticity locking [13,15], which often appears as
nonphysical pressure oscillations for low permeable or low compressible media. Although poroelasticity has been studied
to some extent by the computational mathematics community [5,8,10–12,16–23], new applications like those in [2,4]
raise new challenges that call for accessible efficient new numerical methods.

The simplicity of the 2-field approach is always attractive and hence pursued by this paper. The Darcy flow is
discretized for fluid pressure by a lowest-order weak Galerkin finite element method, which establishes the discrete weak
gradient and numerical velocity in the lowest-order Arbogast–Correa space [24]. The linear elasticity is discretized for
solid displacement by the enriched Lagrangian finite elements with a special treatment for the volumetric dilation [7,25].
These two types of finite elements are coupled through the implicit Euler temporal discretization to solve poroelasticity
problems on convex quadrilateral meshes. No stabilization is needed for this new solver. It has the least degrees of
freedom, compared to other existing solvers.

The rest of this paper is organized as follows. Section 2 presents a WG finite element discretization for Darcy flow.
Section 3 discusses discretization for linear elasticity based on the enriched Lagrangian finite elements. Section 4 develops
a 2-field finite element solver based on the aforementioned two types of finite elements and the backward Euler temporal
discretization. A complete rigorous analysis of this new solver is presented in Section 5. Section 6 presents numerical
experiments to demonstrate the accuracy and locking-free property of this new solver. Section 7 concludes the paper
with some remarks.

2. WG finite element discretization for Darcy flow

Compared to the continuous and discontinuous Galerkin methods, weak Galerkin finite element methods are relatively
new but have some noticeable features. For the Darcy equation, WG methods can be established based on the primal
formulation but possess local mass conservation and normal flux continuity [24,26,27]. WG methods use reconstructed
discrete weak gradients in certain subspaces that have desired approximation properties. This approach produces a
numerical Darcy velocity via post-processing based on a local L2-projection. It avoids the hybridization procedure used in
the classical mixed finite element methods. In this section, we briefly discuss the new WG method (P0, P0; AC0) for Darcy
flow on quadrilateral meshes [24].

2.1. Arbogast-Correa spaces AC0 on convex quadrilaterals

Compared to the classical Raviart–Thomas elements [28] or the Arnold–Boffi–Falk elements [29], the Arbogast–Correa
elements constructed recently in [30] for convex quadrilaterals have better approximation properties and less degrees of
freedom. The ACk(k ≥ 0) spaces are constructed using both unmapped vector-valued polynomials and rational functions
obtained via the Piola transformation.

Let E be a convex quadrilateral and k ≥ 0 be an integer. The local Arbogast–Correa space on E is defined as

ACk(E) = P2
k (E) + x̃Pk(E) + Sk(E), (6)

where P2
k (E) is the space of bivariate vector-valued polynomials defined on E with total degree at most k, P̃k(E) is the

space of bivariate homogeneous scalar-valued polynomials with degree exactly k, and Sk(E) is a supplementary space of
vector-valued rational functions obtained via the Piola transformation.

For convenience, we write Sk = PE Ŝk, where PE is the Piola transformation. Let (x̂, ŷ) be the coordinates in the reference
element [0, 1]2. According to [30], for k = 0,

Ŝ0 = span{curl(x̂ŷ)}. (7)
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For k ≥ 1,

Ŝk = span{curl((1 − x̂2)x̂k−1ŷ), curl(x̂k−1ŷ(1 − ŷ2))}. (8)

Roughly speaking, P2
k (E) accounts for the approximation of a vector field on a convex quadrilateral, x̃Pk(E) accounts for

the approximation of divergence, and Sk offers a divergence-free supplement.

Given these discrete spaces, we have

dim(P2
k ) = (k + 1)(k + 2), dim(̃Pk) = k + 1,

and

dim(Sk) = 1 if k = 0, dim(Sk) = 2 if k > 0.

If we set sk = dim(Sk), then

dim(ACk(E)) = (k + 1)(k + 3) + sk. (9)

Note that (k + 1)(k + 3) = dim(RTk), i.e., the dimension of the kth order Raviart–Thomas (RT) space on a triangle [28].

Thus, sk represents the additional degrees of freedom needed for augmenting the RT space on a quadrilateral [30].

However, in this paper, only the lowest-order space AC0 is used. More interestingly, a set of local basis functions for a

general quadrilateral are
[
1
0

]
,

[
0
1

]
,

[
X

Y

]
, PE

[
x̂

−ŷ

]
, (10)

where X = x−xc, Y = y−yc are the normalized coordinates with (xc, yc) being the element center, (x̂, ŷ) are the reference

coordinates in the reference element [0, 1]2, and PE is the Piola transformation (matrix).

We need a local projection operator Qh from L2(E) to the space AC0(E) for any quadrilateral E. Given v ∈ L2(E), find

Qhv ∈ AC0(E) such that

(Qhv,w)E = (v,w)E, ∀w ∈ AC0(E). (11)

Later on for error analysis in Section 5, we need also the global space AC0(Eh) on the whole mesh Eh and the global

interpolation operator Πh from H(div,Ω) to AC0(Eh).

2.2. WG(P0, P0; AC0) finite elements for Darcy flow

Weak Galerkin finite elements use separate basis functions in element interiors and on interelement boundaries. These

basis functions are different than those used in the continuous or discontinuous Galerkin methods. We call them discrete

weak functions.

Let k ≥ 0 be an integer and E be a convex quadrilateral with interior E◦ and boundary E∂ . Let Pk(E
◦) be the space of

polynomials defined in E◦ with degree at most k, and similarly, Pk(E
∂ ) be the space of piecewise polynomials defined on E∂

with degree at most k. Let ACk(E) be the space of vector-valued functions discussed in the previous subsection.

Let φ = {φ◦, φ∂} be a discrete weak function such that φ◦ ∈ Pk(E
◦) and φ∂ ∈ Pk(E

∂ ). Note that φ◦ is defined for the

element interior only; whereas φ∂ is defined on the element boundary only. We define ∇wφ ∈ ACk(E) by∫

E

(∇wφ) · w =

∫

E∂
φ∂ (w · n) −

∫

E◦

φ◦(∇ · w), ∀w ∈ ACk(E), (12)

or in slightly different notation

(∇wφ,w)E = ⟨φ∂ ,w · n⟩E∂ − (φ◦,∇ · w)E◦ . (13)

This paper focuses on the case k = 0. We deal with discrete weak functions that are constants separately defined in

element interiors and on edges. In this case, equation (13) is simply a size-4 SPD linear system for each quadrilateral. Its

solution contains 4 coefficients to be used for expressing ∇wφ as a linear combination of the local basis functions of AC0

stated in (10).

We shall also need a local L2-projection Qh = {Q ◦
h ,Q

∂
h }, where Q ◦

h is the L2-projection that maps a function in L2(E◦)

to a constant in E◦, whereas Q ∂
h is the L2-projection that maps a function in L2(e) to a constant on e for each edge e

on E∂ .

For convenience, we assume the Darcy flow is prototyped as
⎧
⎪⎨
⎪⎩

∇ · (−K∇p) ≡ ∇ · u = s, x ∈ Ω,

p = pD, x ∈ Γ D

D ,

u · n = uN , x ∈ Γ D

N ,

(14)

3



Z. Wang, S. Tavener and J. Liu Journal of Computational and Applied Mathematics 393 (2021) 113539

whereΩ is a polygonal domain, p is the unknown fluid pressure, K a 2×2 hydraulic conductivity matrix that is uniformly

symmetric positive-definite (SPD), s a known source, pD, uN Dirichlet and Neumann boundary data, respectively, n the

outward unit normal vector to ∂Ω that has a nonoverlapping decomposition Γ D

D ∪ Γ D

N .

WG scheme for pressure on a quadrilateral mesh. Assume Eh is a shape-regular convex quadrilateral mesh on Ω . Let Sh
be the space of discrete weak shape functions that are constants in the element interiors and also constants on the edges

in Eh. Let S
0
h be the subspace of Sh consisting of those shape functions that vanish on Γ D

D . Seek ph = {p◦
h, p

∂
h} ∈ Sh such

that p∂h|ΓD

D
= Q ∂

h (pD) and

Ah(ph, q) = Fh(q), ∀q = {q◦, q∂} ∈ S0h , (15)

where

Ah(ph, q) =
∑

E∈Eh

∫

E

K∇wph · ∇wq (16)

and

Fh(q) =
∑

E∈Eh

∫

E◦

f q◦ −
∑

e∈ΓD

N

∫

e

uNq
∂ . (17)

3. Linear elasticity discretization by enriched Lagrangian finite elements

In this section, we focus on discretization of linear elasticity, which is an important part of linear poroelasticity. We

shall elaborate on the discretization on convex quadrilaterals based on the enriched Lagrangian finite elements [25].

Recall that linear elasticity on its own takes the following form
{
−∇ · σ = f(x), x ∈ Ω,

u|Γ E

D
= uD, (σn)|Γ E

N
= tN ,

(18)

where Ω is a two- or three-dimensional bounded domain occupied by a homogeneous and isotropic elastic body, f is a

body force, uD, tN are respectively boundary data about displacement and traction posed on the Dirichlet and Neumann

boundaries Γ E

D and Γ E

N , and n is the outward unit normal vector to the domain boundary ∂Ω . As usual, u is the solid

displacement, ε(u) = 1
2

(
∇u + (∇u)T

)
is the strain tensor, and σ = 2µ ε(u)+λ(∇ ·u)I is the Cauchy stress tensor, where

I is the order-two or -three identity matrix. Note that the Lamé constants λ,µ are given by

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, (19)

where E is the Young’s modulus and ν is Poisson’s ratio.

A major challenge in development of numerical methods for linear elasticity is the Poisson-locking, which often appears

as loss of convergence rates in displacement and/or suspicious behaviors in other quantities such as stress when λ → ∞

or ν → 1
2
, namely, the material becomes nearly incompressible. It is well known that the linear Lagrangian elements Q 2

1

(for rectangles) or P2
1 (for triangles) suffer Poisson-locking [15,31]. Remedies have been sought [32–35].

In this paper, we adopt the method developed in [25]. This method is actually a continuous Galerkin type method but

free of Poisson-locking. It is realized by enriching the classical Q 2
1 Lagrangian elements by edge-based bubble functions.

Let E be a convex quadrilateral with vertices Pi = (xi, yi), i = 1, 2, 3, 4. Let ei be the edge connecting Pi−1 and

Pi, i = 1, 2, 3, 4. Of course, P0 is understood as P4, by the modulo convention. Let ni be the outward unit normal vector

on edge ei, i = 1, 2, 3, 4.

Let Ê = [0, 1]2 (the unit square) be the reference element. Let (x̂, ŷ) be the reference variables. A bilinear mapping

from Ê to E is established as{
x = a1 + a2x̂ + a3ŷ + a4x̂ŷ,

y = b1 + b2x̂ + b3ŷ + b4x̂ŷ,
(20)

where the eight coefficients ai, bi(i = 1, 2, 3, 4) can be directly calculated using the vertex coordinates:

a1 = x1,

b1 = y1,

a2 = x2 − x1,

b2 = y2 − y1,

a3 = x4 − x1,

b3 = y4 − y1,

a4 = (x1 + x3) − (x2 + x4),
b4 = (y1 + y3) − (y2 + y4).

We first consider four scalar basis functions defined on Ê:

φ̂1(x̂, ŷ) = (1 − x̂)(1 − ŷ), φ̂2(x̂, ŷ) = x̂(1 − ŷ), (21)

φ̂3(x̂, ŷ) = x̂ŷ, φ̂4(x̂, ŷ) = (1 − x̂)ŷ. (22)

4
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Let (x, y) ∈ E be the bilinear mapping image of (x̂, ŷ) ∈ Ê. We consider eight vector-valued Lagrangian Q1(E)
2 basis

functions on E:

φ2i−1(x, y) =

[
φ̂i(x̂, ŷ)

0

]
, φ2i(x, y) =

[
0

φ̂i(x̂, ŷ)

]
, i = 1, 2, 3, 4. (23)

Now we consider four more scalar basis functions defined on Ê:

ψ̂1(x̂, ŷ) = x̂(1 − x̂)(1 − ŷ),

ψ̂2(x̂, ŷ) = x̂(1 − ŷ)ŷ,

ψ̂3(x̂, ŷ) = x̂(1 − x̂)ŷ,

ψ̂4(x̂, ŷ) = (1 − x̂)(1 − ŷ)ŷ,

(24)

and accordingly four vector-valued edge-based bubble functions on E:

ψi(x, y) = ni ψi(x, y) = ni ψ̂i(x̂, ŷ), i = 1, 2, 3, 4. (25)

The classical Lagrangian space Q1(E)
2 is now enriched as

EQ1(E) = Q1(E)
2 + Span(ψ1,ψ2,ψ3,ψ4). (26)

Let Ω be a polygonal domain equipped with a shape-regular convex quadrilateral mesh Eh. Let Vh be the space spanned
by the previously discussed basis functions. Let V0

h be the subspace of Vh consisting of those shape functions that vanish

on Γ E

D . For v ∈ Vh, it is known that ∇ · v is not a constant on each element E. We shall consider its average ∇ · v on E.
This technique was known as reduced integration in the literature [32,36].

For the elasticity boundary value problem (18), we now establish a finite element scheme in the strain–div formulation
as follows. Find uh ∈ Vh such that uh|Γ E

D
= PhuD and

Ah(uh, v) = Fh(v), ∀v ∈ V0
h, (27)

where

Ah(uh, v) = 2µ
∑

E∈Eh

(ε(uh), ε(v))E + λ
∑

E∈Eh

(∇ · uh,∇ · v)E, (28)

Fh(v) =
∑

E∈Eh

(f, v)E +
∑

e∈Γ E

N

⟨tN , v⟩e, (29)

and

(PhuD)|e= P̃huD +

(∫

e

(uD − P̃huD) · n
/∫

e

ψe · n

)
ψe, e ∈ Γ E

D , (30)

with P̃h being the interpolation operator into Q1(e)
2.

More details on the analysis and implementation of this new solver for linear elasticity can be found in [25].

4. A 2-field FE solver for poroelasticity on quadrilateral meshes

In this section, we first discuss the variational formulation for the linear poroelasticity problem (1)–(4). Then we employ
the finite elements discussed in Sections 2 and 3 to develop a 2-field FE solver for the poroelasticity problem.

Let V = H1(Ω) and

V0

Γ E

D

= {v ∈ V : v|Γ E

D
= 0}. (31)

Similarly, let V = H1(Ω) and

V 0

ΓD

D

= {q ∈ V : q|ΓD

D
= 0}. (32)

The variational form for the linear poroelasticity problem (1)–(4) reads as: Seek u(·, t) ∈ V, p(·, t) ∈ V such that
u(·, t)|Γ E

D
= uD, p(·, t)|ΓD

D
= pD for any t ∈ (0, T ], and for ∀v ∈ V0

Γ E

D

and ∀q ∈ V 0

ΓD

D

, there holds

{
2µ(ε(u), ε(v)) + λ(∇ · u,∇ · v) − α(p,∇ · v) = (f, v) + ⟨tN , v⟩Γ E

N
,

∂t (α∇ · u + c0p, q) + (K∇p,∇q) = (s, q) − ⟨uN , q⟩ΓD

N
.

(33)

Assume the domain Ω is equipped with a quasi-uniform convex quadrilateral mesh Eh. Let Nt be a positive integer
and 0 = t0 < t1 < · · · < tn−1 < tn < · · · < tNt = T be a partition of the time period [0, T ]. Denote ∆tn = tn − tn−1 for
n = 1, . . . ,Nt .

5
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Recall the finite element spaces Vh,V
0
h (of vector-valued functions) discussed in Section 3. Recall also the finite element

spaces Sh, S
0
h (of scalar-valued functions) discussed in Section 2.

For 0 ≤ n ≤ Nt , let u
(n)
h ∈ Vh and p

(n)
h ∈ Sh be the finite element approximations at time tn to solid displacement

and fluid pressure, respectively. Applying the implicit Euler discretization, we establish a time-marching scheme. For the
initial step n = 0, we have

u
(0)
h = Phu0, p

(0)
h = Qhp0. (34)

For n ≥ 1, the solid and fluid Dirichlet boundary conditions are enforced as

u
(n)
h |Γ E

D
= PhuD, p

(n,∂)
h |ΓD

D
= Q ∂

h (pD). (35)

The time-marching scheme reads as⎧
⎨
⎩
A

E

h (u
(n)
h , v) − Bh(p

(n)
h , v) = F

E

h (v),

Bh(u
(n)
h , q) + A

D

h (p
(n)
h , q) = F

D

h (q),

(36)

for any v ∈ V0
h and any q ∈ S0h . This involves three discrete bilinear forms and two linear forms that are defined as follows.

First, the bilinear forms are

A
E

h (u
(n)
h , v) =

∑

E∈Eh

(
2µ
(
ε(u

(n)
h ), ε(v)

)
E
+ λ(∇ · u

(n)
h ,∇ · v)E

)
, (37)

A
D

h (p
(n)
h , q) =

∑

E∈Eh

c0

(
p
(n),◦
h , q◦

)
E◦

+∆tn

(
K∇wp

(n)
h ,∇wq

)
E
, (38)

Bh(u
(n)
h , q) =

∑

E∈Eh

α(∇ · u
(n)
h , q

◦)E◦ . (39)

Then the linear forms are

F
E

h (v) =
∑

E∈Eh

(f(n), v)E +
∑

e∈Γ E

N

⟨tN , v⟩e, (40)

F
D

h (q) =
∑

E∈Eh

∆tn(s
(n), q◦)E◦ + c0

(
p
(n−1),◦
h , q◦

)
E◦

+ α(∇ · u
(n−1)
h , q◦)E◦

−
∑

e∈ΓD

N

⟨uN , q
∂⟩e.

(41)

For any time step tn(n = 1, 2, . . . ,Nt ), the above 2-field finite element scheme results in a large-size sparse non-symmetric
linear system that has a unique solution.

This is also called the monolithic approach since the two main variables (solid displacement and fluid pressure) are
solved in a large-size single linear system, not solved through an iterative approach as compared to other finite element
methods.

In the next section, we shall show that this new finite element scheme has 1st order accuracy O(h + ∆t) in solid
displacement and fluid pressure as measured in appropriate norms.

5. Detailed error analysis

This section presents a complete rigorous error analysis for the finite element scheme developed in the previous
section.

First, we cite the following theoretical results in [13] about the regularity of the exact solutions, which will be used in
our error estimates.

Theorem 1. Let (u, p) be the exact solutions of the linear poroelasticity problem (1)–(5). There holds

sup
t∈[0,T ]

∥u(t)∥H2 + λ sup
t∈[0,T ]

∥∇ · u(t)∥H1

≲ C

(
sup

t∈[0,T ]

∥f(t)∥L2 + sup
t∈[0,T ]

∥s(t)∥L2

+∥∂t f∥L2(H−1) + ∥∂ts∥L2(L2) + ∥p0∥H1

)
,

(42)

where C > 0 is a constant that is independent of λ. Similar regularity results about ∂tu, ∂ttu can be established when further
assumptions are made about the right-hand sides of the PDEs, boundary conditions, and initial data. □

6
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Fig. 1. Commuting diagram for WG finite elements.

For ease presentation of the error analysis, we make the following assumptions.

• c0 = 0. Note that c0 corresponds to the mass term in our WG finite element discretization for Darcy flow. It does

not really affect solvability, stability, or condition numbers.

• A constant hydraulic conductivity K = κI.

• Homogeneous Dirichlet boundary conditions for both fluid pressure and solid displacement.

• A uniform temporal partition with ∆tn = ∆t = T/Nt .

5.1. Preliminaries: Operators and their properties

We shall need the following operators, assuming E is a typical convex quadrilateral element and Eh is the whole

quadrilateral mesh.

• Ph: The interpolation operator from H1(Ω) to the global EQ1 space on Eh;

• πh: Local projection into the space of elementwise constants;

• Qh = {Q ◦
h ,Q

∂
h }: Local L2-projection into WG(P0, P0), as previously defined;

• Qh: Local L
2-projection into local AC0 spaces, as previously defined;

• Πh: The interpolation operator from H(div,Ω) ∩ L2+ε(Ω)2 to the global AC0 space on Eh.

Lemma 1 (WG Commuting Identity and Diagram). For any p ∈ H1(E), there holds

∇w(Qhp) = Qh(∇p). (43)

This is illustrated as a commuting diagram in Fig. 1. See [24] also. □

Lemma 2. For any v ∈ H(div,Ω) ∩ L2+ε(Ω)2 and any φ = {φ◦, φ∂} ∈ S0h , there holds

∑

E∈Eh

(∇ · v, φ◦)E◦ = −
∑

E∈Eh

(Πhv,∇wφ)E +
∑

e∈ΓD

N

⟨(Πhv) · n, φ∂⟩e. (44)

See [24] Lemma 2. □

Lemma 3. For any v ∈ H1, there holds

(i) Firstly,

πh(∇ · Phv) = πh∇ · v. (45)

(ii) Secondly, for any q ∈ Wh,

(∇ · (v − Phv), q) = 0. (46)

Proof. See [37] Hypothesis (H2). □

Lemma 4. For any v ∈ H2, there holds

∥v − Phv∥k ≲ hm−k∥v∥m, 0 ≤ k ≤ 1, 1 ≤ m ≤ 2. (47)

Proof. See [37] Hypothesis (H2) and Lemma II.2. □

7
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Lemma 5. Let u(n) be the exact solution for displacement at time tn and v ∈ Vh. Then

(∇ · u(n),∇ · v) − (πh∇ · u
(n)
h , πh∇ · v)

= (∇ · u(n) − πh∇ · u(n),∇ · v) + (πh∇ · (Phu
(n) − u

(n)
h ), πh∇ · v).

(48)

Proof. We shall use the common technique of inserting appropriate terms. We apply Lemma 3 and the orthogonality
implied by the projection operator πh. Note that

LHS = (∇ · u(n),∇ · v) − (πh∇ · u
(n)
h , πh∇ · v)

=
(
(∇ · u(n),∇ · v) − (πh∇ · u(n),∇ · v)

)

+
(
(πh∇ · u(n),∇ · v) − (πh∇ · u(n), πh∇ · v)

)

+
(
(πh∇ · u(n), πh∇ · v) − (πh∇ · u

(n)
h , πh∇ · v)

)
.

The above 2nd group vanishes due to the orthogonality implied by πh. Now we have

LHS =
(
(∇ · u(n),∇ · v) − (πh∇ · u(n),∇ · v)

)

+
(
(πh∇ · u(n), πh∇ · v) − (πh(∇ · Phu

(n)
h ), πh∇ · v)

)

+
(
(πh∇ · Phu

(n)
h , πh∇ · v) − (πh∇ · u

(n)
h , πh∇ · v)

)
.

Interestingly, the above 2nd group vanishes also due to Lemma 3. The desired conclusion follows. □

Lemma 6 (Taylor Expansion). For a vectored-valued time-dependent function u, there holds

u(n) − u(n−1)

∆t
= ∂tu

(n) +
1

∆t

∫ tn

tn−1

(τ − tn−1)∂ttu(τ )dτ

=: ∂tu
(n) + R(u, tn),

(49)

where the remainder is also shortened as R for notational convenience. This formula can be found in [13]. A similar formula
can be established for the fluid pressure p as well. □

5.2. Error equations

Note that the displacement error u(n) − u
(n)
h can be split as the interpolation error η

(n)
u and the discrete error ξ

(n)
u that

are defined as follows

η(n)u = u(n) − Phu
(n), ξ (n)u = Phu

(n) − u
(n)
h . (50)

Likewise, we have the following quantities for pressure and pressure gradient:

η
(n)
p = p(n) − Qhp

(n), ξ
(n)
p = Qhp

(n) − p
(n)
h ,

η
(n),◦
p = p(n) − Q ◦

h p
(n), ξ

(n),◦
p = Q ◦

h p
(n) − p

(n),◦
h ,

η
(n)
∇p = ∇p(n) − Qh(∇p(n)), ξ

(n)
∇p = Qh(∇p(n)) − ∇wp

(n)
h .

(51)

Note that the commuting identity in Lemma 1 implies

ξ
(n)
∇p = ∇wξ

(n)
p . (52)

It is obvious that

u(n) − u
(n)
h = η

(n)
u + ξ

(n)
u , p(n) − p

(n)
h = η

(n)
p + ξ

(n)
p ,

∇p(n) − ∇wp
(n)
h = η

(n)
∇p + ξ

(n)
∇p, p(n) − p

(n),◦
h = η

(n),◦
p + ξ

(n),◦
p .

(53)

The main purpose of the error equations is to express the discrete errors (ξ
(n)
u , ξ

(n)
p , ξ

(n),◦
p , ξ

(n)
∇p) in terms of the interpolation

errors (η
(n)
u , η

(n)
p , η

(n),◦
p , η

(n)
∇p), which are determined by regularity of the exact solutions and the approximation properties

of the constructed finite element spaces.

Error Equation I. We shall first establish an error equation for displacement. Note that the finite element discretization
for displacement is conforming, in other words, Vh ⊂ V. Thus, we have, for any v ∈ V0

h ,

2µ
(
ε(u(n)), ε(v)

)
+ λ(∇ · u(n),∇ · v) − α(p(n),∇ · v) = (f(n), v). (54)

The finite element scheme (the 1st equation of (36)) yields, for any v ∈ V0
h ,

2µ(ε(u
(n)
h ), ε(v)) + λ(πh∇ · u

(n)
h , πh∇ · v) − α(p

(n),◦
h ,∇ · v) = (f(n), v). (55)

8
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Here, there is no need for taking the average of ∇ · v, since p
(n),◦
h is already a constant for the lowest order WG method.

Subtracting (55) from (54) and applying Lemma 5, we obtain

2µ
(
ε(u(n) − u

(n)
h ), ε(v)

)

+λ
(
(∇ · u(n) − πh∇ · u(n),∇ · v) + (πh∇ · (Phu

(n)
h − u

(n)
h ), πh∇ · v)

)

−α(p(n) − p
(n),◦
h ,∇ · v) = 0.

By the aforementioned error splitting and linearity of operators, we have

2µ
(
ε(ξ (n)u ), ε(v)

)
+ λ(πh∇ · ξ (n)u , πh∇ · v) − α(ξ (n),◦p ,∇ · v)

= −2µ
(
ε(η(n)u ), ε(v)

)
− λ(∇ · u(n) − πh∇ · u(n),∇ · v)

+α(η(n),◦p ,∇ · v),

(56)

which is the first error equation.

Error Equation II. Now we derive the 2nd error equation. At time tn, the 2nd PDE takes the form

∂t (α∇ · u(n)) + ∇ · (−K∇p(n)) = s(n). (57)

For each element E, we apply Lemma 6 (Taylor expansion) to get, for any q ∈ S0h ,

(s(n), q◦)E◦ = (∂t (α∇ · u(n)), q◦)E◦ + (∇ ·
(
−K∇p(n)

)
, q◦)E◦

= α(∇ · ∂tu
(n), q◦)E◦ + (∇ ·

(
−K∇p(n)

)
, q◦)E◦

= α

(
∇ ·

u(n) − u(n−1)

∆t
, q◦
)
E◦

− α(∇ · R, q◦)E◦ + (∇ ·
(
−K∇p(n)

)
, q◦)E◦ .

Summing the above result over the whole mesh and applying Lemma 2 (under the assumption there is no Neumann
boundary condition for pressure), we obtain

∆t
∑

E∈Eh

(s(n), q◦)E◦ = α
∑

E∈Eh

(∇ · (u(n) − u(n−1)), q◦)E◦

−α∆t
∑

E∈Eh

(∇ · R, q◦)E◦ +∆t
∑

E∈Eh

(Πh(K∇p(n)),∇wq)E .
(58)

Under the assumption c0 = 0, the 2nd equation in the finite element scheme (36) can be rewritten as, for any q ∈ S0h ,

∑

E∈Eh

(s(n), q◦)E◦ = α
∑

E∈Eh

(∇ · u
(n)
h − ∇ · u

(n−1)
h

∆t
, q◦
)
E◦

+
∑

E∈Eh

(
K∇wp

(n)
h ,∇wq

)
E
. (59)

Combining (59), (58), and the assumption K = κI, we have

α
∑

E∈Eh

(∇ · (u(n) − u
(n)
h ), q◦)E◦ +∆t

∑

E∈Eh

κ(Πh∇p(n) − ∇wp
(n)
h ,∇wq)E

= α
∑

E∈Eh

(∇ · (u(n−1) − u
(n−1)
h ), q◦)E◦ + α∆t

∑

E∈Eh

(∇ · R, q◦)E◦ .

We shall drop the notation for summation over the whole mesh. By splitting the errors as shown in (53), we obtain the

2nd error equation

α(∇ · (ξ (n)u − ξ (n−1)
u ), q◦) +∆t κ(ξ

(n)
∇p,∇wq)

= −α(∇ · (η(n)u − η(n−1)
u ), q◦) + α∆t(∇ · R, q◦)

−∆t κ(η
(n)
∇p,∇wq) +∆t κ(∇p(n) −Πh∇p(n),∇wq),

(60)

where Πh∇p(n) − ∇wp
(n)
h =

(
Πh∇p(n) − ∇p(n)

)
+
(
∇p(n) − ∇wp

(n)
h

)
has been applied.

The two error equations (56) and (60) will be used in error estimation for our 2-field finite element solver.

5.3. Error estimation: Part I

Applying the elementary inequality 2ab ≤ a2 + b2, we obtain 2a(a − b) ≥ a2 − b2, and hence two useful inequalities:

2
(
ε(ξ (n)u ), ε(ξ (n)u − ξ (n−1)

u )
)

≥ ∥ε(ξ (n)u )∥2 − ∥ε(ξ (n−1)
u )∥2,

2
(
πh∇ · ξ (n)u , πh∇ · (ξ (n)u − ξ (n−1)

u )
)

≥ ∥πh∇ · ξ (n)u ∥2 − ∥πh∇ · ξ (n−1)
u ∥2.

(61)

9
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In the first error equation (56), we take v = ξ
(n)
u − ξ

(n−1)
u to obtain

2µ(ε(ξ
(n)
u ), ε(ξ

(n)
u − ξ

(n−1)
u )) + λ

(
πh∇ · ξ

(n)
u , πh∇ · (ξ

(n)
u − ξ

(n−1)
u )

)

−α(ξ (n),◦p ,∇ · (ξ (n)u − ξ (n−1)
u ))

= −2µ(ε(η(n)u ), ε(ξ (n)u − ξ (n−1)
u )) − λ(∇ · u(n) − πh∇ · u(n), ∇ · (ξ (n)u − ξ (n−1)

u ))

+α(η(n),◦p ,∇ · (ξ (n)u − ξ (n−1)
u )).

(62)

For the first two terms on LHS, applying (61) leads to

µ

(
∥ε(ξ (n)u )∥2 − ∥ε(ξ (n−1)

u )∥2
)

+
λ

2

(
∥πh∇ · ξ (n)u ∥2 − ∥πh∇ · ξ (n−1)

u ∥2
)

−α
(
ξ (n),◦p ,∇ · (ξ (n)u − ξ (n−1)

u )
)

≤ −2µ(ε(η
(n)
u ), ε(ξ

(n)
u − ξ

(n−1)
u )) − λ

(
∇ · u(n) − πh∇ · u(n), ∇ · (ξ

(n)
u − ξ

(n−1)
u )

)

+α
(
η(n),◦p ,∇ · (ξ (n)u − ξ (n−1)

u )
)
.

(63)

In the 2nd error equation (60), we take q = ξ
(n)
p (and hence q◦ = ξ

(n),◦
p ) to get

α(∇ · (ξ (n)u − ξ (n−1)
u ), ξ (n),◦p ) +∆t κ(ξ

(n)
∇p,∇wξ

(n)
p )

= −α
(
∇ · (η(n)u − η(n−1)

u ), ξ (n),◦p

)
+ α∆t(∇ · R, ξ (n),◦p )

−∆t κ(η
(n)
∇p,∇wξ

(n)
p ) +∆t κ(∇p(n) −Πh∇p(n),∇wξ

(n)
p ).

(64)

By Lemma 3(ii) and the definition in (50), we have

(∇ · (η(n)u − η(n−1)
u ), ξ (n),◦p ) = 0.

We add (63) and (64) together to obtain a combined estimate

µ(∥ε(ξ (n)u )∥2 − ∥ε(ξ (n−1)
u )∥2) +

λ

2

(
∥πh∇ · ξ (n)u ∥2 − ∥πh∇ · ξ (n−1)

u ∥2
)

+∆t κ(ξ
(n)
∇p,∇wξ

(n)
p )

≤ −2µ(ε(η(n)u ), ε(ξ (n)u − ξ (n−1)
u ))

−λ
(
∇ · u(n) − πh∇ · u(n), ∇ · (ξ (n)u − ξ (n−1)

u )
)

+α
(
η(n),◦p ,∇ · (ξ (n)u − ξ (n−1)

u )
)
+ α∆t(∇ · R, ξ (n),◦p )

−∆t κ(η
(n)
∇p,∇wξ

(n)
p ) +∆t κ

(
∇p(n) −Πh∇p(n),∇wξ

(n)
p

)
.

(65)

For the above combined estimate, we shall sum from 1 to N and use the fact that ξ
(0)
u = 0. Many terms will be canceled.

Furthermore, we use the Korn’s inequality to get

µ∥ε(ξ (N)
u )∥2 ≥ KKorn∥ξ

(N)
u ∥2

1. (66)

Finally, after applying the identity (52), we arrive at

KKorn∥ξ
(N)
u ∥2

1 +∆t

N∑

n=1

κ∥ξ
(n)
∇p∥

2

≤ −2µ

N∑

n=1

(
ε(η(n)u ), ε(ξ (n)u − ξ (n−1)

u )
)

−λ

N∑

n=1

(
∇ · u(n) − πh(∇ · u(n)),∇ · (ξ (n)u − ξ (n−1)

u )
)

+α

N∑

n=1

(
η(n),◦p ,∇ · (ξ (n)u − ξ (n−1)

u )
)
+ α∆t

N∑

n=1

(∇ · R, ξ (n),◦p )

−∆t

N∑

n=1

κ(η
(n)
∇p,∇wξ

(n)
p ) +∆t

N∑

n=1

κ
(
∇p(n) −Πh∇p(n),∇wξ

(n)
p

)

=:

6∑

i=1

Ti.

(67)

It is interesting to notice that T1 involves solid strain, T2 involves solid dilation, T3, T4 deal with solid–fluid interaction,
and T5, T6 are about fluid pressure gradient.

10
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5.4. Error estimation: Part II

This part provides individual estimates for the six terms in (67). We shall frequently use the following two elementary

inequalities:

• Cauchy–Schwarz inequality: ab ≲ a2 + b2,

• A more general Young’s inequality (with δ > 0): ab ≲ δa2 + δ−1b2.

Here we have used the notation a ≲ b for the inequality a ≤ cb with c > 0 being a positive constant that is independent

of the mesh size h, time step size ∆t , the Lamé constant λ. But it may depend on µ, κ, α.

We shall also frequently use the technique of summation by parts:

N∑

n=1

an(bn − bn−1) = aNbN − a0b0 −

N∑

n=1

(an − an−1)bn−1. (68)

Estimation on T1. Note that µ can be absorbed into the absolute constants and we write

T1 =

N∑

n=1

(
ε(η(n)u ), ε(ξ (n)u − ξ (n−1)

u )
)
. (69)

Clearly, ξ 0u = 0. We apply summation by parts and Taylor expansion to obtain

T1 =
(
ε(η(N)

u ), ε(ξ (N)
u )

)
−

N∑

n=1

(
ε(η(n)u − η(n−1)

u ), ε(ξ (n−1)
u )

)

=
(
ε(η(N)

u ), ε(ξ (N)
u )

)
−

N∑

n=1

(
ε(∆tη(n)ut

+

∫ tn

tn−1

(τ − tn−1)ηutt dτ ), ε(ξ
(n−1)
u )

)

=
(
ε(η(N)

u ), ε(ξ (N)
u )

)
−

N∑

n=1

∆t

(
ε(η(n)ut

), ε(ξ (n−1)
u )

)

−

N∑

n=1

(∫ tn

tn−1

(τ − tn−1)ε(ηutt )dτ , ε(ξ
(n−1)
u )

)

=: S
(1)
1 + S

(1)
2 + S

(1)
3 .

By Young’s inequality, we have

S
(1)
1 =

(
ε(η(N)

u ), ε(ξ (N)
u )

)
≲ δ1∥ε(ξ

(N)
u )∥2 + δ−1

1 ∥ε(η(N)
u )∥2

≲ δ1∥ξ
(N)
u ∥2

1 + δ−1
1 ∥η(N)

u ∥2
1.

By Cauchy–Schwarz inequality, we have

S
(1)
2 = ∆t

N∑

n=1

(
ε(η(n)ut

), ε(ξ (n−1)
u )

)
≲ ∆t

N∑

n=1

(∥ε(η(n)ut
)∥2 + ∥ε(ξ (n−1)

u )∥2)

≲ ∆t

N∑

n=0

(∥η(n)ut
∥2
1 + ∥ξ nu∥2

1)

and

S
(1)
3 =

N∑

n=1

(∫ tn

t(n−1)

(τ − t (n−1))ε(ηutt )dτ , ε(ξ
(n−1)
u )

)

≲

N∑

n=1

(
(∆t)2

∫ tn

t(n−1)

∥ε(ηutt )∥
2dτ +∆t∥ε(ξ (n−1)

u )∥2

)

≲ (∆t)2
∫ T

0

∥ηutt ∥
2
1dτ +∆t

N∑

n=0

∥ξ nu∥2
1.

11
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Combine the estimates for S
(1)
1 , S

(1)
2 , S

(1)
3 , we obtain

T1 ≲ δ1∥ξ
(N)
u ∥2

1 + δ−1
1 ∥η(N)

u ∥2
1

+∆t

N∑

n=0

(∥ξ (n)u ∥2
1 + ∥η(n)ut

∥2
1) + (∆t)2

∫ T

0

∥ηutt ∥
2
1dτ .

(70)

Estimation on T2. We do need to keep λ in T2 but rewrite it as

T2 = λ

N∑

n=1

(
∇ · u(n) − πh∇ · u(n),∇ · (ξ (n)u − ξ (n−1)

u )
)
. (71)

We use the fact ξ
(0)
u = 0, summation by parts, and Lemma 6 to obtain

T2 = λ(∇ · u(N) − πh∇ · u(N), ∇ · ξ (N)
u )

−λ

N∑

n=1

(
∇ · (u(n) − u(n−1)) − πh∇ · (u(n) − u(n−1)), ∇ · ξ (n−1)

u

)

= λ(∇ · u(N) − πh∇ · u(N), ∇ · ξ (N)
u )

−λ∆t

N∑

n=1

(
∇ · u

(n)
t − πh∇ · u

(n)
t , ∇ · ξ (n−1)

u

)

−λ

N∑

n=1

(∫ tn

tn−1

(τ − tn−1)(∇ · utt − πh∇ · utt )dτ , ∇ · ξ (n−1)
u

)

=: S
(2)
1 − S

(2)
2 − S

(2)
3 .

For S
(2)
1 , we apply Young’s inequality and approximation properties to get

S
(2)
1 = λ(∇ · u(N) − πh∇ · u(N), ∇ · ξ (N)

u )

≲ δ2∥∇ · ξ (N)
u ∥2 + δ−1

2 λ2∥∇ · u(N) − πh∇ · u(N)∥2

≲ δ2∥ξ
(N)
u ∥2

1 + δ−1
2 h2λ2∥∇ · u(N)∥2

1.

For S
(2)
2 , the Cauchy–Schwarz inequality and approximation properties yield

S
(2)
2 ≲ ∆t

N∑

n=1

(
∥ξ (n)u ∥2

1 + h2λ2∥∇ · u
(n)
t ∥2

1

)
.

Term S
(2)
3 can be estimated similarly and one is led to

T2 ≲ δ2∥ξ
(N)
u ∥2

1 + δ−1
2 h2λ2∥∇ · u(N)∥2

1

+∆t

N∑

n=1

(
∥ξ (n)u ∥2

1 + h2λ2∥∇ · u
(n)
t ∥2

1

)
+ (∆t)2h2

∫ T

0

λ2∥∇ · utt∥
2
1dτ .

(72)

Estimation on T3. We assume α = 1 and write

T3 =

N∑

n=1

(
η(n),◦p ,∇ · (ξ (n)u − ξ (n−1)

u )
)
. (73)

Applying summation by parts and other similar techniques, we obtain

T3 ≲ δ3∥ξ
(N)
u ∥2

1 + δ−1
3 ∥η(N),◦

p ∥2

+∆t

N∑

n=0

(
∥ξ (n)u ∥2

1 + ∥η(n)pt
∥2
)
+ (∆t)2

∫ T

0

∥ηptt ∥
2dτ .

(74)

Estimation on T4. Similarly, we assume α = 1 and rewrite

T4 = ∆t

N∑

n=1

(∇ · R, ξ (n),◦p ). (75)

12
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By Cauchy–Schwarz inequality, we have

∆t∥∇ · R∥ =



∫ tn

tn−1

(τ − tn−1)∇ · utt (τ )dτ



≤



∫ tn

tn−1

(τ − tn−1)dτ





∫ tn

tn−1

∇ · utt (τ )dτ



≤ (∆t)
3
2

(∫ tn

tn−1

∥∇ · utt (τ )∥
2dτ

) 1
2

.

Then

T4 ≤

N∑

n=1

(∆t)
3
2

(∫ tn

tn−1

∥∇ · utt (τ )∥
2dτ

) 1
2

∥ξ (n),◦p ∥

=

N∑

n=1

∆t

(∫ tn

tn−1

∥∇ · utt (τ )∥
2dτ

) 1
2

(∆t)
1
2 ∥ξ (n),◦p ∥.

Applying Young’s inequality gives

T4 ≤

N∑

n=1

(
δ−1
4 (∆t)2

∫ tn

tn−1

∥∇ · utt (τ )∥
2dτ + δ4∆t∥ξ (n),◦p ∥2

)

≲ δ4∆t

N∑

n=1

∥ξ (n),◦p ∥2 + δ−1
4 (∆t)2

∫ T

0

∥∇ · utt (τ )∥
2dτ .

(76)

Estimation on T5. We ignore the negative sign in T5 and rewrite it as

T5 = ∆t

N∑

n=1

κ(η
(n)
∇p,∇wξ

(n)
p ). (77)

We apply Young’s inequality with δ5 = 1
4
and the fact ∇wξ

(n)
p = ξ

(n)
∇p to obtain

T5 ≲ ∆t

N∑

n=1

κ(δ5∥∇wξ
(n)
p ∥2 + δ−1

5 ∥η
(n)
∇p∥

2)

≲
∆t

4

N∑

n=1

κ∥ξ
(n)
∇p∥

2 + 4∆t

N∑

n=1

κ∥η
(n)
∇p∥

2.

(78)

Estimation on T6. Recall that

T6 = ∆t

N∑

n=1

κ
(
∇p(n) −Πh∇p(n),∇wξ

(n)
p

)
. (79)

We shall apply Young’s inequality with δ6 = 1
4
. We apply also the approximation properties of the global interpolation

operator Πh. Recall that ∇wξ
(n)
p = ξ

(n)
∇p . All these together lead to

T6 ≲ ∆t

N∑

n=1

κ
(
δ6∥∇wξ

(n)
p ∥2 + δ−1

6 ∥∇p(n) −Πh∇p(n)∥2
)

≲
∆t

4

N∑

n=1

κ∥∇wξ
(n)
p ∥2 + 4∆t

N∑

n=1

κ∥∇p(n) −Πh∇p(n)∥2

≲
∆t

4

N∑

n=1

κ∥ξ
(n)
∇p∥

2 + 4∆t h2

N∑

n=1

κ∥∇p(n)∥2
1.

(80)
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5.5. Error estimation: Part III

Now we combine (67) and the individual estimates on Ti(1 ≤ i ≤ 6) to obtain

(KKorn − δ1 − δ2 − δ3) ∥ξ
(N)
u ∥2

1 +
1

2
∆t

N∑

n=1

κ∥ξ
(n)
∇p∥

2

≲ δ−1
1 ∥η(N)

u ∥2
1 + δ−1

2 h2λ2∥∇ · u(N)∥2
1 + δ−1

3 ∥η(N),◦
p ∥2

+∆t

N∑

n=0

(
∥ξ (n)u ∥2

1 + ∥η(n)ut
∥2
1 + h2λ2∥∇ · u

(n)
t ∥2

1 + ∥η(n)pt
∥2
)

+(∆t)2
∫ T

0

(
∥ηutt ∥

2
1 + h2λ2∥∇ · utt∥

2
1 + ∥ηptt ∥

2
)
dτ

+δ4∆t

N∑

n=1

∥ξ (n),◦p ∥2 + δ−1
4 (∆t)2

∫ T

0

∥∇ · utt (τ )∥
2dτ

+4∆t

N∑

n=1

κ∥η
(n)
∇p∥

2 + 4∆t h2

N∑

n=1

κ∥∇p(n)∥2
1.

(81)

We need to relate the term ∥ξ
(n),◦
p ∥2 on the RHS to the term ∥ξ

(n)
∇p∥ on the LHS.

Lemma 7. For any 1 ≤ n ≤ N, there holds

∥ξ (n),◦p ∥ ≲ ∥∇wξ
(n)
p ∥ = ∥ξ

(n)
∇p∥. (82)

Proof. Since ξ
(n),◦
p ∈ L2(Ω), by [31] Lemma 11.2.3 via solving a Poisson equation, there exists w ∈ H1(Ω) such that

∇ · w = ξ (n),◦p , ∥w∥H1(Ω) ≲ ∥ξ (n),◦p ∥.

We shall use the interpolant Πhw from the global space AC0(Eh), Gauss divergence theorem, definition of the discrete

weak gradient, and also the fact that ξ
(n),∂
p = 0 on ∂Ω . All these together yield (first element-wise and then mesh-wise)

∥ξ (n),◦p ∥2 = (ξ (n),◦p , ξ (n),◦p ) = (ξ (n),◦p ,∇ · w) = (ξ (n),◦p ,∇ ·Πhw)

= ⟨ξ n,∂p , (Πhw) · n⟩ − (∇wξ
(n)
p ,Πhw) = −(∇wξ

(n)
p ,Πhw)

≤ ∥∇wξ
(n)
p ∥∥Πhw∥ ≤ ∥∇wξ

(n)
p ∥∥w∥ ≤ ∥∇wξ

(n)
p ∥∥w∥H1

≲ ∥∇wξ
(n)
p ∥∥ξ (n),◦p ∥.

The normal continuity and boundedness of Πhw along with Cauchy–Schwarz inequality have also been used. A cancella-

tion finishes the proof. □

Now we have

(KKorn − δ1 − δ2 − δ3) ∥ξ
(N)
u ∥2

1 +

(
1

2
−
δ4

κ

)
∆t

N∑

n=1

κ∥ξ
(n)
∇p∥

2

≲ δ−1
1 ∥η(N)

u ∥2
1 + δ−1

2 h2λ2∥∇ · u(N)∥2
1 + δ−1

3 ∥η(N),◦
p ∥2 +∆t

N∑

n=1

∥ξ (n)u ∥2
1

+∆t

N∑

n=0

(
∥η(n)ut

∥2
1 + h2λ2∥∇ · u

(n)
t ∥2

1 + ∥η(n)pt
∥2 + 4κ∥η

(n)
∇p∥

2 + 4h2κ∥∇p(n)∥2
1

)

+(∆t)2
∫ T

0

(
∥ηutt ∥

2
1 + h2λ2∥∇ · utt∥

2
1 + ∥ηptt ∥

2 + δ−1
4 ∥∇ · utt∥

2
)
dτ .

We denote

AN = δ−1
1 ∥η(N)

u ∥2
1 + δ−1

2 h2λ2∥∇ · u(N)∥2
1 + δ−1

3 ∥η(N),◦
p ∥2,

gn = ∥η(n)ut
∥2
1 + h2λ2∥∇ · u

(n)
t ∥2

1 + ∥η(n)pt
∥2 + 4κ∥η

(n)
∇p∥

2 + 4h2κ∥∇p(n)∥2
1,

A2 = (∆t)2
∫ T

0

(
∥ηutt ∥

2
1 + ∥∇ · utt∥

2 + h2λ2∥∇ · utt∥
2
1 + ∥ηptt ∥

2
)
dτ

(83)
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and choose δ1, δ2, δ3 small enough to ensure KKorn − δ1 − δ2 − δ3 > 0. We also choose δ4 appropriately to ensure

(1/2 − δ4/κ) > 0. Then we have

∥ξ (N)
u ∥2

1 +∆t

N∑

n=1

κ∥ξ
(n)
∇p∥

2
≲ ∆t

N∑

n=1

∥ξ (n)u ∥2
1 +∆t

N∑

n=0

gn + A2 + AN . (84)

By approximation properties and regularity of the exact solutions, we have

gn ≲ h2, A2 ≲ (∆t)2, AN ≲ h2. (85)

Applying Lemma 8 listed below, we obtain, for any N ≤ Nt ,

∥ξ (N)
u ∥2

1 +∆t

N∑

n=1

κ∥ξ
(n)
∇p∥

2
≲ h2 + (∆t)2. (86)

Lemma 8 (A Discrete Gronwall Inequality). Let an, bn, fn, gn be nonnegative sequences for n = 0, 1, . . . ,N. Let τ , B be

nonnegative also such that

aN + τ

N∑

n=0

bn ≤ τ

N∑

n=0

fnan + τ

N∑

n=0

gn + B, n = 0, 1, . . . (87)

Suppose τ fn < 1 for all n ≥ 0. Then for all n ≥ 0, there holds

aN + τ

N∑

n=0

bn ≤ exp

(
τ

N∑

n=0

fn

1 − τ fn

)(
τ

N∑

n=0

gn + B

)
. (88)

See [38] p.369. □

Lemma 9. Let (ξ
(n)
u , ξ

(n)
p , ξ

(n)
∇p) be respectively the discrete errors defined in (51). There holds

max
1≤n≤N

∥ξ (n)u ∥2
1 +∆t

N∑

n=1

κ∥ξ
(n)
∇p∥

2
≲ h2 + (∆t)2, (89)

where the absolute constant contained in the notation ≲ may depend on regularity of the exact solutions, the physical

parameters µ, κ, α, but not λ and the discretization parameters h,∆t. Note this is obtained by slightly rewriting the proved

estimate (86). □

Corollary 1. Let ξ
(n),◦
p be the discrete error defined in (51). There holds

∆t

N∑

n=1

∥ξ (n),◦p ∥2
≲ h2 + (∆t)2. (90)

Proof. This can be derived from Lemmas 9 and 7. □

Remark 1. Note that

κ ξ
(n)
∇p = Qh(κ∇p(n)) − κ∇wp

(n)
h , (91)

where −κ∇p(n) is the exact Darcy velocity and −κ∇wp
(n)
h is the numerical Darcy velocity. If we denote the exact Darcy

velocity by q and the numerical Darcy velocity by q
(n)
h , then the above formula can be rewritten as

κ ξ
(n)
∇p = q

(n)
h − Qh(q

(n)). (92)

Therefore, the estimate in Lemma 9 can be rewritten as

max
1≤n≤N

∥Phu
(n) − u

(n)
h ∥2

H1 +∆t

N∑

n=1

∥Qh(q
(n)) − q

(n)
h ∥2

L2
≲ h2 + (∆t)2. (93)

Theorem 2. Let (u, p) be the exact solutions of (1)–(5) and q = −K∇p be the Darcy velocity. Let (u
(n)
h , p

(n)
h ) be the numerical

solutions of the FE scheme (36) and q
(n)
h = Qh(−K∇wp

(n)
h ) be the numerical Darcy velocity obtained via post-processing. Then
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Table 1

Example 1: Convergence rates of the 2-field solver EQ1 + WG(P0, P0; AC0) on rectangular

meshes with ∆t = 0.5*h.

h ∥u − uh∥l∞(H1) Rate ∥p − p◦
h∥L2(L2) Rate ∥q − qh∥L2(L2) Rate

2−2 2.6861E−3 – 1.8885E−3 – 1.3004E−2 –

2−3 1.0937E−3 1.29 9.9499E−4 0.92 6.3866E−3 1.02

2−4 5.1356E−4 1.09 5.0394E−4 0.98 3.1830E−3 1.00

2−5 2.5396E−4 1.01 2.5318E−4 0.99 1.5954E−3 0.99

2−6 1.2660E−4 1.00 1.2685E−4 0.99 7.9963E−4 0.99

for any N ≤ Nt , there holds

max
1≤n≤N

∥u − u
(n)
h ∥2

H1 +∆t

N∑

n=1

∥p(n) − p
(n),◦
h ∥2

L2
+∆t

N∑

n=1

∥q(n) − q
(n)
h ∥2

L2

≲ h2 + (∆t)2.

(94)

Proof. The above combined error estimate is obtained by applying triangle inequalities and combining the error splitting
in (53), approximation properties of the constructed FE spaces, Lemma 9, Corollary 1, and Remark 1. □

6. Numerical experiments

This section presents three numerical examples for testing our 2-field finite element solver that utilizes the implicit
Euler for temporal discretization, the novel WG(P0, P0; AC0) elements for Darcy flow, and the enriched Lagrangian elements
EQ1 for linear elasticity.

Example 1 (Convergence Rates). This example is adopted from [39]. We have Ω = (0, 1)2, T = 1
2
, λ = 1, µ = 1, K = I,

c0 = 0, and α = 1. For convenience of reproducibility, we provide analytical expressions for displacement, pressure, Darcy
velocity, and the right-hand sides of the PDEs. First, an auxiliary function is needed

ψ(t) =
1

64π4 + 4π2

(
8π2 sin(2π t) − 2π cos(2π t) + 2πe−8π2t

)
.

We have the exact solution for solid displacement as

u =
ψ(t)

8π2

[
2π cos(2πx) sin(2πy)
2π sin(2πx) cos(2πy)

]

and the fluid pressure as

p = ψ(t) sin(2πx) sin(2πy).

It is interesting to see displacement, dilation, and velocity are related as

∇ · u = −p, q = −(8π2)u.

Accordingly, the body force is

f =
ψ(t)

8π2

[
16π3 cos(2πx) sin(2πy)(2µ+ λ)

16π3 sin(2πx) cos(2πy)(2µ+ λ)

]
+ αψ(t)

[
2π cos(2πx) sin(2πy)
2π sin(2πx) cos(2πy)

]

and the fluid source is

s = −
(
16π3 cos(2π t) + 4π2 sin(2π t) − 16π3e−8π2t

) sin(2πx) sin(2πy)

4π2 + 64π4

+ ψ(t) 8π2 sin(2πx) sin(2πy).

The boundary conditions are as follows. For solid, the domain right-side has a traction condition, the other three sides
are specified with displacement conditions; For fluid, all boundaries have Dirichlet boundary conditions.

Shown in Table 1 are results for Example 1. One observes 1st order convergence rates in displacement H1-norm,
pressure L2-norm, and velocity L2-norm.

Shown in Fig. 2 are results at the final time T = 0.5 with h = 1/32. The top panel shows fluid pressure and Darcy
(seepage) velocity. The bottom panel shows elementwise solid dilation along with a deformed mesh that is determined
by the nodal displacements. Since the displacement values are at the magnitude of 10−3, the deformation is magnified by
200 times for better visualization. These two panels together reveal the basic physical processes in linear poroelasticity.
We examine specifically the lower-left quadrant. As the solid is being compressed from the bottom and left sides, the fluid
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Fig. 2. Ex. 1: Numerical results at the final time T = 0.5 obtained on a rectangular mesh with h = 1/32 and ∆t = 0.5 ∗ h. Top: Profiles of fluid

pressure and velocity; Bottom: Nodal displacements and elementwise dilation along with the deformed mesh (magnified by 200 times for better

visual effect).

flows out from the bottom and left sides, which agrees with the pressure drop from domain interior to the peripheral.

The solid is shrinking with negative dilation due to the inward displacement from the peripheral.

Example 2 (Locking-free). This example is derived from [40,41]. Here Ω = (0, 1)2, T = 1, µ = 1, K = κI, c0 = 0, and

α = 1. The fluid pressure is

p = sin
(π
2
t

)π
λ

sin(π (x + y)),

the solid displacement is

u = sin
(π
2
t

)([ π
2
sin2(πx) sin(2πy)

− π
2
sin2(πy) sin(2πx)

]
+

1

λ

[
sin(πx) sin(πy)
sin(πx) sin(πy)

])
. (95)

It is interesting to see that

∇ · u = p.

We pose Dirichlet boundary conditions on the whole boundary for both fluid and solid. A noticeable feature is that

∇ · u → 0 as λ → ∞. This mimics the ‘‘nearly incompressible’’ property of an elastic material.

In numerical experiments, we set κ = 1 but test λ = 1 and λ = 106. A sequence of rectangular meshes are used along

with ∆t = h. The results in Tables 2 and 3 demonstrate the λ-independence of the convergence rates for this solver.
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Table 2

Example 2: Convergence rates of the 2-field solver EQ1 + WG(P0, P0; AC0) on rectangular

meshes with ∆t = h for the case λ = 1.

h ∥u − uh∥l∞(H1) Rate ∥p − p◦
h∥L2(L2) Rate ∥q − qh∥L2(L2) Rate

2−2 1.854E−00 – 5.504E−01 – 1.781E−00 –

2−3 8.574E−01 1.11 2.656E−01 1.05 8.422E−01 1.08

2−4 4.186E−01 1.03 1.296E−01 1.03 4.085E−01 1.04

2−5 2.080E−01 1.00 6.392E−02 1.02 2.011E−01 1.02

2−6 1.038E−01 1.00 3.172E−02 1.01 9.976E−02 1.01

Table 3

Example 2: Numerical results of the 2-field solver on rectangular meshes with ∆t = h

for the case λ = 106 .

h ∥u − uh∥l∞(H1) Rate ∥p − p◦
h∥L2(L2) Rate ∥q − qh∥L2(L2) Rate

2−2 1.782E−00 – 5.504E−07 – 1.782E−06 –

2−3 8.193E−01 1.12 2.656E−07 1.05 8.425E−07 1.08

2−4 3.991E−01 1.03 1.296E−07 1.03 4.086E−07 1.04

2−5 1.982E−01 1.00 6.392E−08 1.02 2.011E−07 1.02

2−6 9.894E−02 1.00 3.172E−08 1.01 9.976E−08 1.01

Fig. 3. Ex.3 (Mandel’s problem): Illustration.

Example 3 (Mandel’s Problem). This is a frequently tested benchmark that has known analytical solutions, although the

solutions are in the form of infinite series. See [8,16,21,42,43]. The problem involves a poroelastic rectangular slab with

extent 2a in the x-direction and extent 2b in the y-direction being sandwiched by two rigid plates at the top and the

bottom. Two forces of magnitude 2F , pointing to the slab, are applied at the top and bottom plates, respectively. Due to

the rigidity of the plates, the slab remains in contact with the two plates. This implies that the vertical displacement at the

top and bottom are uniform. The initial condition for displacement is u(x, y, 0) = 0. Based on symmetry in the problem, we

choose the center of the slab as the origin and consider the upper-right quadrant. Mathematically, the Mandel’s problem

is thus posed for the domain Ω = (0, a) × (0, b) for a certain time period [0, T ]. See Fig. 3 for an illustration.

The boundary conditions for the solid part are

(i) Symmetry or partial Dirichlet: u1 = 0 for x = 0; u2 = 0 for y = 0;

(ii) Neumann or traction-free: σ̃n = 0 for x = a;

(iii) Specially, for y = b (the top side), it is subject to the traction condition σ̃n = [0,−2F ] along with the ‘‘rigid plate’’

constraint, which requires u2 stays the same for the whole top side.

The boundary conditions for the fluid part are

(iv) Dirichlet: p = 0 for x = a (drained);

(v) Neumann or no-flow: (−K∇p) · n = 0 for x = 0, y = 0, y = b.
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It is non-trivial to implement condition (iii). However, we have known exact solutions for this problem. An easier but

essentially equivalent treatment would be imposing a partial Dirichlet boundary condition for u2 using the known exact

solution for displacement (to be presented later), as done in [42,43].

The physical parameters in this problem are as follows.

• ν is the Poisson ratio, E is the Young’s modulus, λ,µ are Láme constants;

• B is the Skempton’s coefficient;

• The undrained Poisson’s ratio is

νu =
3ν + B(1 − 2ν)

3 − B(1 − 2ν)
; (96)

• The hydraulic conductivity is K = κI;

• The consolidation coefficient is

cf = κ(λ+ 2µ). (97)

In addition, we have αn > 0 as the nth root of the nonlinear algebraic equation

tan(αn) =
1 − ν

νu − ν
αn, n = 1, 2, . . . (98)

and

An =
sin(αn)

αn − sin(αn) cos(αn)
, Bn =

cos(αn)

αn − sin(αn) cos(αn)
. (99)

For convenience, we use these two normalized variables

x̂ =
x

a
, t̂ =

cf

a2
t (100)

in the known analytical solutions for the problem.

• The exact solution for fluid pressure is known to be independent of y:

p(x, y, t)

F
a

B(1+νu)

3

= 2

∞∑

n=1

Ane
−α2n t̂

(
cos(αnx̂) − cosαn

)
=: p̂(x̂, t̂), (101)

where p̂(x̂, t̂) is interpreted as the normalized pressure.

• The analytical solution for solid displacement is

u1

F/a
=
( ν
2µ

−
νu

µ

∞∑

n=1

Ane
−αn t̂ cosαn

)
x +

a

µ

∞∑

n=1

Bne
−α2n t̂ sin(αnx̂) (102)

and

u2

F/a
=
(
−

1 − ν

2µ
+

1 − νu

µ

∞∑

n=1

Ane
−α2n t̂ cosαn

)
y. (103)

Note that u1 is independent of y and u2 is independent of x.

• For solid stress, it is known that σxx = σxy = 0 and

σyy

F/a
= −1 + 2

∞∑

n=1

Ane
−α2n t̂

(
cosαn −

B(νu − ν)

1 − ν
cos(αnx̂)

)
=: σ̂yy. (104)

Similarly, σ̂yy is interpreted as the normalized effective stress.

For numerical experiments, we set a = b = 1, F = 1, E = 104, ν = 0 or ν = 0.4, B = 1, and hence νu = 0.5.

Furthermore, κ = 10−6 and cf is calculated accordingly. We have also c0 = 0 and α = 1.
We test our solver on a rectangular mesh with h = 1/32 with ∆t = 10−1.

Fig. 4 demonstrates good approximation in pressure. The left panel is for Poisson ratio ν = 0 (a bit unusual though),

which has been frequently tested in the literature [8,42,43]. The right panel shows pressure profiles for ν = 0.4. One can

see relatively faster pressure drop. As ν gets closer to the limit value 0.5, the material is closer being incompressible, which

implies fast fluid drainage and hence faster pressure drop. This can also be deduced from the exact pressure expression

in Eq. (101). When other parameters are fixed, larger ν implies larger roots αn in Eq. (98) and hence faster decay of the

exponential terms in Eq. (101).
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Fig. 4. Ex.3 (Mandel’s problem): Pressure profiles. Left: ν = 0; Right: ν = 0.4.

7. Concluding remarks

In this paper, we have developed a finite element solver for linear poroelasticity aiming at reviving the 2-field approach.
Darcy flow is discretized by the novel weak Galerkin (P0, P0; AC0) finite elements [24,30] whereas linear elasticity is
discretized by the enriched Lagrangian elements (EQ1) [25]. Both types of finite elements apply to general convex
quadrilateral meshes. By coupling the elementwise averages of dilation (divergence of displacement) with the constant
pressure for element interiors, the FE scheme produces stable and accurate numerical solutions that are locking-free, as
validated by rigorous analysis and numerical experiments.

As demonstrated in this paper, the WG finite element methodology has some nice features.

• WG provides flexibility in construction of discrete weak gradients (or other operators) in certain spaces that
have the desired approximation properties. In particular for poroelasticity studied in this paper, we choose the
Arbogast-Correa spaces on quadrilaterals.

• The WG methodology holds some advantages over the classical MFEMs, since only the (elementwise) local bases are
needed in the construction of discrete weak gradients. On the contrary, MFEMs need to construct a global basis for
an H(div)-subspace, which is far from easy in certain cases.

• WG can be well integrated with other FEMs, e.g., the continuous Galerkin type enriched Lagrangian finite element
methods (adopted for linear elasticity in this paper).

The 2-field FE solver in this paper can be extended to three dimensions. Cuboidal hexahedral meshes will be used.
As 3-dim analogues of the ACk(k ≥ 0) spaces, the ATk(k ≥ 0) spaces [44] will be used. But they shall be used in the
WG framework for spatial discretization of Darcy flow. The WG methodology allows use of local bases for elementwise
ATk spaces and avoid arduous construction of a global basis for the ATk space for the whole mesh in the classical MFEM
approach. An open-access implementation of such a solver is currently under our investigation and will be reported in
our future work.

The FE solver developed in this paper considers a monolithic system that couples spatial discretizations of both fluid
pressure and solid displacement. An alternative approach is an iterative coupling of two independent solvers for Darcy
flow and linear elasticity, as investigated in [45]. This permits treatment of a stress-dependent permeability in nonlinear
poroelasticity [17]. This is currently under our investigation and will be reported in our future work.
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