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Abstract: Superhard boron-rich boron carbide coatings were deposited on silicon substrates by
microwave plasma chemical vapor deposition (MPCVD) under controlled conditions, which led to
either a disordered or crystalline structure, as measured by X-ray diffraction. The control of either
disordered or crystalline structures was achieved solely by the choice of the sample being placed
either directly on top of the sample holder or within an inset of the sample holder, respectively.
The carbon content in the B-C bonded disordered and crystalline coatings was 6.1 at.% and 4.5 at.%,
respectively, as measured by X-ray photoelectron spectroscopy. X-ray diffraction analysis of the
crystalline coating provided a good match with a B5gCp-type structure in which two carbon atoms
replaced boron in the a-tetragonal Bs, structure, or in which the carbon atoms occupied different
interstitial sites. Density functional theory predictions were used to evaluate the dynamical stability
of the potential B5oC; structural forms and were consistent with the measurements. The measured
nanoindentation hardness of the coatings was as high as 64 GPa, well above the 40 GPa threshold
for superhardness.

Keywords: ceramics/coating materials; chemical synthesis; vapor deposition; mechanical properties;
crystal structure; computer simulation

1. Introduction

Materials based on the light elements of carbon, nitrogen, oxygen, and boron with strong covalent
bonds comprise some of the hardest known materials [1-3]. These light elements can form short bond
lengths with each other and are inclined to form directional covalent bonds, making the structures
they form difficult to compress or distort. Boron carbide is the third hardest material after diamond
and cubic boron nitride. Elemental boron can form base structures consisting of Bj, icosahedra,
B¢ octahedra, linear atomic chains, and/or atomic clusters in a three-dimensional network [4-7].
There are multiple possible arrangements of icosahedra, together with additional structural elements,
that can form during material processing routes [3,8,9]. The common stoichiometry of boron carbide
includes B13Cy, B12C3, and B4C, as well as some structures that are similar to B1,Cs [3,8]. Some notable
boron carbide crystal structures are tetragonal, including BsoCy, B5oC, B4gCs, B51C, and B4oCs [9,10].
Several theoretical and experimental studies have suggested that, as the boron to carbon ratio varies,
the atomic bonding, electron density, mechanical properties, and lattice constants of boron carbide
change significantly [11-15]. Thermodynamically, the most stable forms of boron carbide are the
a-tetragonal and rhombohedral crystal structures [11,16]. Boron-rich carbides are most known for
their high hardness, extreme abrasion resistance, high melting point, thermal stability, high mechanical
strength, high neutron absorption, and their ability to function in extreme conditions of pressure,
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temperature, and corrosive environments [11,16-21]. These properties make boron carbide suitable
in refractory applications, medical applications, fast breeders, lightweight armors, ballistic armors,
as cutting tools, as an abrasive powder, and for high-temperature thermoelectric conversion. Depending
on the growth process, a wide range of boron carbide stoichiometries can be created with desirable
chemical and electrical properties, opening the door to other potential applications.

Several techniques and experimental conditions have been used to synthesize boron carbides
using a variety of boron precursors [22,23]. The preparation of novel boron-rich boron carbide
was reported from high-pressure high-temperature (HPTP) cells which yield very small volumes of
material [22]. These methods are not scalable for producing coatings for large areas and it can be
difficult to control impurities. Instead, chemical vapor deposition (CVD) has proven to be a scalable
technology for synthesizing a wide range of coating materials including boron carbide with large area
uniformity [23,24]. A primary challenge of CVD is to find the optimum conditions that are favorable
for the growth of the desired phase.

The objective of this work is to investigate deposition conditions leading to superhard boron-rich
boron carbide coatings, to evaluate their structure experimentally and by density functional theory,
and to demonstrate control of boron carbide crystallinity by the appropriate choice of sample height in
the plasma. To this end, superhard boron-rich boron carbide coatings were synthesized by microwave
plasma chemical vapor deposition (MPCVD), using conditions of chamber pressure and microwave
power that we found led to copious amounts of atomic boron plasma emission [9,25]. Reactant gases
for the growth of the boron carbide coatings include H; and B,Hg, but little is known of the plasma
species and underlying the spectroscopic aspects responsible for boron carbide growth in its various
structural forms. Investigation of the excited state plasma species from optical emission spectroscopy
in our MPCVD system shows that emission from atomic boron is highest at low chamber pressure and
high microwave power [25,26]. Copious amounts of atomic boron in the plasma may be beneficial
under some growth conditions for producing high hardness boron-rich carbides, such as B5¢C», B5oC,
B4gCs3, B51C, B49C3, or many other forms of boron-rich carbide. The enhanced atomic boron emission in
the plasma with the MPCVD conditions used in the current study yielded a higher boron content in the
boron carbide coatings with measured superhardness (i.e., hardness greater than 40 GPa). In addition,
we report that with very modest changes in the sample stage design (and thus the proximity of the
sample to the plasma), the degree of crystallinity in the coating could vary significantly.

2. Materials and Methods

2.1. MPCVD Process

Boron carbide coatings were grown in a microwave plasma chemical vapor deposition (MPCVD)
system, as shown in Figure 1 (Wavemat Inc. Plymouth, MI, USA). The sample surface was heated
by direct contact with the plasma. Both the sample stage and outer resonance cavity jacket were
water cooled. A quartz bell jar isolates the low-pressure plasma environment from the resonance
cavity. N-type (100)-oriented silicon substrates with 525 um thickness were placed on the surface of
a 0.5” diameter molybdenum screw placed along the central axis of the bell jar. Sample substrates
were cleaned in acetone, methanol, and distilled water. The microwave power was 1 kW and the
chamber pressure was 15 Torr. Hydrogen (H;) was used as the carrier gas and a diborane mixture
(90% Hjy, 10% ByHg, and ppm carbon) as the reactive gas. Low levels of residual carbon have been
found to appear consistently in high-boron deposited films. The gas flow rates were: 500 standard
cubic centimeters per minute (SCCM) of hydrogen and 1 SCCM of the diborane mixture. Two types
of samples were grown at an average substrate temperature of 825 °C with the same experimental
conditions, with the exception of how the silicon substrate was positioned in/on a flat molybdenum
screw, as shown in Figure 1. For samples designated as BC-1, the silicon substrate rested on the flat
surface of the molybdenum screw, whereas for samples designated as BC-2, the silicon substrate rested
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FEG scanning electron microscope (Thermo Fisher Scientific, Hillsboro, OR, USA) at 20 kV beam
voltage. Hardness was measured using an MTS Nanolndenter XP with a Berkovich diamond tip
(nominal radius 50 nm). The calibration of the indenter area function before and after hardness
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(Thermo Fisher Scientific, Hillsboro, OR, USA) at 20 kV beam voltage. Hardness was measured using
an MTS Nanolndenter XP with a Berkovich diamond tip (nominal radius 50 nm). The calibration of the
indenter area function before and after hardness measurements was tested for the fused silica standard
(accepted Young’s modulus of 72 GPa) to confirm that the tip geometry did not change during the
testing of all samples. All indents, including those on silica, were made to a maximum depth of 150 nm.
The measured hardness was determined at maximum load. The range of measured silica before/after
Young’s modulus values was found to be consistent with the accepted value, and therefore the indenter
tip area function was determined not to have changed significantly during actual sample testing.

2.3. Density Functional Theory

Density function theory (DFT) [27,28] calculations were performed with the Vienna ab initio
simulation package (VASP) version 5.4.4 [29,30], using plane-wave basis sets and the pseudopotential
method. The projector augmented wave (PAW) method [31,32] and Perdew—-Burke—Ernzerhof
generalized gradient approximation (GGA) functional [33] were chosen to conduct the DFT calculations.
The wavefunctions were expended with a kinetic energy cutoff of 600 eV. A I'-centered 10 x 10 x
6 Monkhorst-Pack grid [34] was used in the Brillouin zone sampling. In the structural relaxation,
all structures were relaxed until the force on each atom was less than 10~3 eV/A. The convergence
criterion of the electronic loop was set to be 107 eV/unit cell. The phonon calculations were performed
using the VASP and PHONOPY [35] packages. The force constants were obtained by density
functional perturbation theory implemented in VASP. By Fourier transforming the force constants,
PHONORPY can construct the dynamical matrix at an arbitrary g-vector. The phonon dispersion in
turn can be calculated by diagonalizing the dynamical matrices. For mechanical properties, the elastic
constants were computed directly by VASP. The bulk and shear moduli were then derived by the
Voigt-Reuss-Hill averaging method. The theoretical Vickers hardness was then calculated by Chen’s
model [36]. The structural visualization and XRD patterns were obtained by VESTA software version
3.4.3 [37].

3. Results

3.1. X-ray Photoelectron Spectroscopy

The XPS of the BC-1 sample showed that the surface is composed of 88.1% B, 8.7% C, and 3.2% O
(rel. at%) with no other elements present. A small amount of surface contamination due to adventitious
carbon is generally present in samples that have been exposed to air. The complete peak assignments
with binding energy is given in Table 1. The high-resolution Bls scan in Figure 2b shows that 75% of
the boron is B-C bonded and the remaining 25% is B-B bonded [38,39]. The high-resolution C1s scan in
Figure 2c shows that 9% of the carbon is C-O bonded and the high-resolution O1s scan also shows
C-O bonding in Figure 2d [40,41]. Figure 2c also shows that 22% of the carbon is C-C bonded and the
remaining 69% is B-C bonded [38,39]. Using this information, our XPS measured carbon content in
the B-C bonded BC-1 sample is 6%. The XPS of the BC-2 sample shows that the surface is composed
of 81.0% B, 12.6% C, 4.4% O, and 2.0% N (rel. at%). The complete peak assignments with binding
energy is given in Table 1. The high-resolution Bls scan in Figure 3b shows that 39% of the boron is
B-C bonded, 48% of the boron is B-B bonded, 10% of the boron is B-N bonded, and the remaining 3%
of the boron is B-O bonded [38,39]. Corresponding peak deconvolution for Ols and N1s reveals B-O
and B-N bonding in Figure 3d,e, respectively. [42]. The high-resolution Cl1s scan in Figure 3¢ shows
that 26% of the carbon is C-O bonded and the high-resolution Ols scan also confirms C-O bonding in
Figure 3d [40,41]. According to the high-resolution C1s scan of the BC-2 sample in Figure 3c, 38% of the
carbon is C-C bonded and the remaining 36% is B-C bonded [38,39]. Using this information, our XPS
measured carbon content in the B-C bonded BC-2 sample is 4.5%. The stoichiometric ratio for BsyCp
should be 96% B, 4% C, and the estimated carbon content in the part of the sample that contains B-C
bonding is 4.5%, which is close to the 4% expected.
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Table 1. X-ray photoelectron spectroscopy compositional analysis and fitted parameters of Bls, Cls,
Ols, and N1s of BC-1 and BC-2 samples. “Data from reference [38—43].”

Sample Peaks Binding Energy Peak Area (%) Assignment
Bls 186.2 75 B-C
Bls 187.4 25 B-B
Cls 283.3 69 C-B
BCA Cls 284.9 22 Cc-C
Cls 286.5 9 C-O
Ols 533.3 100 c-0
Bls 187.0 39 B-C
Bls 188.5 48 B-B
Bls 190.5 10 B-N
Bls 192.0 3 B-O
Cls 282.0 26 C-B
BC-2 Cls 284.5 36 C-C
Cls 287.0 38 C-O
Ols 532.3 90 c-O
Ols 533.6 10 B-O
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Figure 3. X-ray photoelectron spectroscopy survey scans of (a) the BC-2 coating with an elemental
composition of 81.0% B, 12.6% C, 4.4% O, and 2.0% N. Panels (b), (¢), (d), and (e) show high-resolution
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3.2. E—my Diffraction

The crystal structure of the prepared coatings was evaluated using glancing angle X-ray diffraction
(XRD). Figure 4a,b shows XRD patterns for BC-1 and BC-2, respectively. The BC-1 sample shows
several broad peaks. The broadened peaks for the BC-1 sample suggest a disordered or nanocrystalline
nature for this boron carbide coating. The XRD pattern for the BC-2 sample shows sharp peaks located
at the same positions as the centers of the broad peaks of the BC-1 sample. The BC-2 sample also reveals
a broad background superimposed onto the sharp peaks. Rietveld refinement was used to analyze the
pattern for BC-2, as shown by the blue line in Figure 4b. The experimental pattern was matched to
the stoichiometric composition of BpsC with the chemical structure of B5gC, with lattice parameters
a=8721A,c=5058 A, as determined using HighScore Plus software, resulting in a weighted profile
R-value (Rwp) of 10.248. It should be noted that existing XRD databases are not exhaustive for the wide
range of boron-rich carbide structures (including those of B5yCy) and several novel structures are still
being reported experimentally or via computational approaches [9,20,44]. For this reason, the lattice
constants determined from the performed Rietveld refinement are provided only for comparison with
potential structures (e.g., tetragonal vs. orthorhombic B5yC,) modeled by DFT calculations.
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3.5. Scanning Electron Microscopy (SEM)
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Figure 10a shows the structure of BsyC,-8h” (obtained by fully relaxing B5oC,-8h), which becomes
orthorhombic with lattice parameters a = 8.6772 A, b = 8.7237 A, and ¢ = 5.0517 A. This structure
has the lowest energy in our study (with a formation energy = 0 meV/atom). In B5,C»-8h’, the two
interstitial boron atoms relax from 8h (0, 0.5, 0.8557) to 8h’ (0, 0.5, 0.79588), and the two carbon atoms
from 2b (0, 0, 0.5) to 2b” (0, 0, 0.5033). Since no negative mode exists in the phonon dispersion in
Figure 9b, B5gC,-8h’ is dynamically stable. Figure 10c compares the XRD patterns of the theoretical
Bs59Cy-8h” structure and the BC-2 sample, which also shows a good theory—experiment agreement.
The DOS calculations for BspC,-8h” in Figure 10d indicate its metallicity. The theoretical bulk and shear
moduli, as well as Vickers hardness for BsyC,-8h’, were computed to be 213 GPa, 172 GPa, and 29 GPa,
respectively. These values are similar to those for the B5yC,-8i" structure in Figure 9a.
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as BuC and can also make carbon-boron-carbon (CBC) chains [56,57]. As the atomic percentage of
carbon decreases below 20% to around 13.3%, boron preferentially replaces carbon in the icosahedron
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Broadened peaks in the Raman spectra throughout the entire range investigated indicates disorder in
the By; icosahedra. Such broadening can be due to structural defects, such as micro-twinning [22].

The BC-2 sample does show the two sharp Raman peaks around 481 cm™! and 534 cm™!
associated with vibrations related to the CBC chain, along with broadened peaks throughout the entire
wavenumber range. It is notable that the SEM of this sample shows microstructural twinning on
crystalline facets as well as very fine-grained material between facets. This may explain the broad base
to the peaks in the XRD data (Figure 4b). Different stoichiometric boron carbide structures, such as
B4C and Bs(Cy, result in distinctly different locations of boron atoms in the unit cell. Boron atoms in
B4C belong to an icosahedron with a carbon chain in B4C or one boron atom in the icosahedron can be
substituted by a carbon atom and form a C-B-C chain. In contrast, some of the boron atoms in B5yCp
are in single atom form and take positions in interstitial sites, with carbon being isolated [7].

In the literature, two separate studies from Ploog et al. [52] and Will et al. [53] have reported two
tetragonal structures with different lattice parameters. Ploog’s structure has lattice parametersa =b
=8.722 A and ¢ = 5.080 A, while Will’s structure has a = b = 8.753 A and c = 5.093 A. In our DFT
calculations, the phonon spectra of both structures show negative phonon modes, indicating their
dynamical instabilities. In our calculations with fixed lattice parameters but relaxed Wyckoff positions,
the boron atoms at 8h (0, 0.5, z) change dramatically from z = 0.8557 to z = 0.7580, while those at 8i
(x, 0, 0) move only slightly from x = 0.4334 to 0.4363. However, these structures are still dynamically
unstable even with relaxed Wyckoff positions.

In our subsequent DFT calculations that fully relax both lattice parameters and Wyckoff positions,
the structure B59C,-8i" (Figure 9a) remains in the tetragonal symmetry, with the lattice parameters
change to a = b = 8.6906 A and ¢ = 5.0827 A. The Wyckoff positions of two boron atoms move to
8i’ (0.4395, —0.0019, —0.0091) and two carbon atoms to 2b” (0, 0, 0.4855). However, this fully relaxed
tetragonal structure BsyC,-8i” still shows negative phonon modes. In short, a tetragonal B5oC, appears
dynamically unstable in DFT calculations.

On the other hand, for B5yC,-8h” (Figure 10a), the crystal symmetry changes to orthorhombic
(a=8.6772 A, b=87237 A, c =5.0517 A), with the two boron atoms located at 8h’ (0, 0.5, 0.79588)
and two carbons at 2b’ (0, 0, 0.5033). Importantly, this orthorhombic structure is dynamically stable.
This B5gCp-8h’ is also the most stable structure (formation energy = 0 meV/atom) in DFT. Experimentally,
an effective tetragonal phase might be observed due to a statistical average, as the two interstitial boron
atoms could be randomly placed onto any two of the 8h sites.

In our MPCVD system, we find that higher atomic boron and BH emissions were measured by
optical emission spectroscopy (OES) at lower pressure and higher power. We used this fact in order to
grow the boron-rich coatings in this study. In addition, subtle changes in the sample location within the
plasma (determined by the molybdenum screw design, as shown in the inset of the Figure 1), which has
a substantial effect on the shape of the plasma near the sample surface and on the corresponding
coating structure. The control of the coatings” degree of crystallinity was achieved by manipulating the
sample stage design (and thus the proximity of the sample to the plasma). Presumably, this affects the
active growth species nearest the sample and allows for the control of the film structure. Future work
will involve an investigation of spatially resolved optical emission spectroscopy to identify the spatial
variation of excited state species near the growth surface. It is therefore very important to acknowledge
and further investigate the strong influence that even very minor adjustments in sample proximity to
the plasma have on the resulting film structure by MPCVD. Given that all other controlled deposition
parameters were held fixed in this study (including substrate temperature to within 25 °C), we believe
this allows a new parameter space to be carefully explored. In the current study, we have synthesized
two boron-rich carbide structures yielding very different growth morphology and structural forms,
with all other deposition parameters being equal. We plan to further take advantage of this parameter
space that involves sample proximity to the plasma to create other unique superhard boron structures,
such as BCZN, B2C3N, B4C5N2, and B5C3N.



Materials 2020, 13, 3622 14 of 17

In the studies of boron-rich materials, there exists a known discrepancy between experiment and
theory, which was dubbed the metal/insulator problem by Uemura et al. [61]. Basically, band theory
predicts several boron-rich materials like 3-boron and B13C; to be metallic. In experiments, however,
these materials are found to be semiconductors [62]. This problem is related to the lack of ordering
in interstitial atoms residing between Bj, icosahedra [61]. Such structures have been regarded as
geometrically frustrated systems. In DFT, as long as the two carbon atoms are placed at the 2b sites,
Bs59C; is metallic. One possible way to open an energy gap at the Fermi level is to insert one carbon
into one of the four By icosahedra [9]. Such metastable structures have formation energies around
15 meV/atom above the ground state, which is still well below the thermal energy scale during synthesis
(825 °C~100 meV/atom). Therefore, from the viewpoint of thermodynamics, several different stable and
metastable B5gCy phases could possibly exist to various extents during the chemical vapor deposition.
However, resolving the metal/insulator problem is beyond the scope of our current research.

5. Conclusions

Superhard boron-rich carbide coatings were deposited in a microwave plasma chemical vapor
deposition (MPCVD) system. The control of the coatings’ degree of crystallinity was achieved by
manipulating the sample stage design (and thus the proximity of the sample to the plasma). Amorphous
boron-rich carbide coatings were grown on a flat sample holder, whereas crystalline boron-rich carbide
coatings were formed on a sample holder with a shallow inset. XRD, Raman spectroscopy, and SEM
were used to identify and characterize the amorphous or crystalline nature of boron-rich carbide
coatings. Rietveld refinement of the crystalline sample led to the prediction of a B5gCy-type structure.
Hardness values of the amorphous sample are as high as 64 GPa. Nanoindentation measurements yield
hardness values that vary considerably from point to point on the surface, so future work can focus
on improving the homogeneity of the coatings. In our DFT calculations, tetragonal BsoC, structures
were found to be dynamically unstable. The only dynamically stable structure, which is also the
lowest energy structure, has an orthorhombic symmetry. In theory, unless carbon atoms are inserted
directly into the By, icosahedron, B5oC, crystalline phases are metallic. The ability to better control and
understand the morphology, structure, and electronic property of B5gCy by microwave plasma chemical
vapor deposition will enable further applications with superhard boron-rich boron carbide materials.
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