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ABSTRACT

The growth history and formation mecha-
nisms of the Cenozoic Tibetan Plateau are
the subject of an intense debate with impor-
tant implications for understanding the kine-
matics and dynamics of large-scale intracon-
tinental deformation. Better constraints on
the uplift and deformation history across the
northern plateau are necessary to address
how the Tibetan Plateau was constructed.
To this end, we present updated field obser-
vations coupled with low-temperature ther-
mochronology from the Qaidam basin in
the south to the Qilian Shan foreland in the
north. Our results show that the region ex-
perienced a late Mesozoic cooling event that
is interpreted as a result of tectonic deforma-
tion prior to the India-Asia collision. Our re-
sults also reveal the onset of renewed cooling
in the Eocene in the Qilian Shan region along
the northern margin of the Tibetan Plateau,
which we interpret to indicate the timing of
initial thrusting and plateau formation along
the plateau margin. The interpreted Eocene
thrusting in the Qilian Shan predates Ceno-
zoic thrust belts to the south (e.g., the East-
ern Kunlun Range), which supports out-of-
sequence rather than northward-migrating
thrust belt development. The early Cenozoic
deformation exploited the south-dipping
early Paleozoic Qilian suture zone as indi-
cated by our field mapping and the existing
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geophysical data. In the Miocene, strike-slip
faulting was initiated along segments of the
older Paleozoic suture zones in northern Ti-
bet, which led to the development of the Kun-
lun and Haiyuan left-slip transpressional
systems. Late Miocene deformation and up-
lift of the Hexi corridor and Longshou Shan
directly north of the Qilian Shan thrust belt
represent the most recent phase of outward
plateau growth.

INTRODUCTION

Although establishing the evolution of the
Cenozoic India-Asia collision zone has pro-
found implications for deciphering the in-
tracontinental-deformation mechanisms (i.e.,
England and Houseman, 1986; Burchfiel and
Royden, 1991; Yin and Harrison, 2000; Roy-
den et al., 2008; Taylor and Yin 2009; Clark
etal., 2010; Yin, 2010; Ren et al., 2013; Clark,
2012; Fan and Murphy, 2021) (Fig. 1), the spa-
tiotemporal evolution of the Tibetan Plateau
remains a subject of debate (e.g., Tapponnier
et al., 2001; Yin et al., 2008a, 2008b; Wang
et al., 2020a). This debate has inspired research
activities in northern Tibet in the past decades
between the Eastern Kunlun in the south and
the Qilian Shan in the north (e.g., Meyer et al.,
1998; Yuan et al., 2013; Duvall et al., 2011;
Clark, 2012; Zheng et al., 2017; Zuza et al.,
2016, 2019; Li et al., 2019, 2020; Yu et al.,,
2019a, 2019b; An et al., 2020) (Fig. 2A),
which has centered on testing two end-member
tectonic models: (1) the compressional defor-
mation front migrated progressively on in a

stepwise jump northward from the Himalayan
collisional front in the south to the northern
plateau margin (e.g., England and Houseman,
1986; Burchfiel and Royden, 1991; Tapponnier
etal., 2001; Wang et al., 2014; Yu et al., 2019a,
2019b; Zheng et al., 2017; Wang et al., 2020a)
or (2) early phase India-Asia collision caused
compressional deformation along the northern
and southern margins of the plateau, and the
deformation zones progressively migrated in-
ward to the plateau interior (e.g., Yin and Har-
rison, 2000; Clark, 2012; Staisch et al., 2016;
Zuza et al., 2019, 2020; Li et al., 2019, 2020;
Chen et al., 2019a, 2019b; Cheng et al., 2019;
Wu et al., 2019a; Bian et al., 2020; Chen et al.,
2020). The two end-member models make spe-
cific predictions about the timing and style of
deformation that can be tested by combined
field observations and thermochronological
studies (Fig. 2A).

In this study we integrated systematic geo-
logic mapping, field observations, and apatite
fission-track (AFT) thermochronology across
key regions in the Qilian Shan and its fore-
land region to document the deformation-re-
lated exhumation history of the northeastern
margin of the Tibetan Plateau and region to
the northeast (Fig. 2B; Table S1!). We fo-
cused on AFT analysis and thermal history
modeling of 29 pre-Cenozoic granitoid and
sedimentary bedrock samples collected in
fault-bounded ranges to elucidate the cooling
history of this region since the late Mesozoic
and shed light on the basin range evolution
across the northeastern plateau that has since
experienced multiple phases of growth. We
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Figure 1. Fault map shows the central Asian orogenic system and the Tethyan orogenic system. Sources of information are from Ren et al.
(2013), Taylor et al. (2003), and Yin (2010). The white dashed box shows the location of Figure 2B.

further develop a deformation history model

of the Qilian Shan thrusts with detailed field

observations and AFT results from the Cre-

taceous samples.
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GEOLOGICAL SETTING

The northeastern Tibetan Plateau has an
average elevation of ~4.5 km, and this high

topography decreases rapidly to <1.5 km in
the Hexi Corridor foreland basin to the north
(Figs. 1 and 2A). The northern boundary of
the plateau is the Qilian Shan thrust belt and
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left-slip Haiyuan fault (e.g., Burchfiel et al.,
1991; Zhang et al., 1991; Gaudemer et al.,
1995; Guo et al., 2016) (Fig. 2A). The Ceno-
zoic thrust systems in northern Tibet appear

Figure 2. (A) Regional tec-
tonic map shows the northern
Tibetan Plateau and its adja-
cent regions (modified from
Gao et al., 2013; Zuza et al.,
2016; and Wu et al., 2017).
Major faults are denoted with
black lines (thrust), blue lines
(sinistral strike slip), yellow
lines (dextral strike slip), and
pink lines (normal). Underly-
ing base map is from www.geo-
mapapp.org (accessed January
2021; Ryan et al., 2009). (B)
Simplified geologic map of the
northeastern Tibetan Plateau
and its northern foreland and
cross section of A-A’. Loca-
tion is shown in Figure 1. The
geology was compiled from
Gansu  Geological Bureau
(1969), Qinghai BGMR (1991),
Pan et al. (2004), Gong et al.
(2013), and our own geologic
mapping. The thermochronol-
ogy data are shown in Table
S1 (see footnote 1) with data
from: 1—C.C. Liu et al. (2016);
2—]. Pang et al. (2019); 3—D.
Zheng et al. (2010); 4—X. Fang
et al. (2013); 5—Duvall et al.
(2013); 6—B. Qi et al. (2016);
7—D. Yuan et al. (2011); 8—B.
Li et al. (2019); 9—B.H. Zhang
et al. (2017); 10—Dupont-Nivet
et al. (2004); 11—S. Dai et al.
(2006); and 12—]J. Zhang et al.
(2015).

to be kinematically linked with the active
>1000-km-long, east-striking Haiyuan, Qin-
ling, and Kunlun left-slip faults (e.g., Taylor
and Yin, 2009; Zuza and Yin, 2016), which ac-
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commodated significant Cenozoic shortening
across northern Tibet (e.g., Gaudemer et al.,
1995; Meyer et al., 1998; Wang and Burchfiel,
2004; Yin et al., 2007a, 2007b, 2008a, 2008b;
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Zheng et al., 2010; Cheng et al., 2015; Allen
et al., 2017; Yang et al., 2018; Zuza et al.,
2019) (Fig. 1).

The early Paleozoic Qilian orogen, as sum-
marized by Song et al. (2013) and Zuza et al.
(2018), involved the collision of the Proterozoic
Qaidam microcontinent with the Archean—Pro-
terozoic North China craton to the north in the
Ordovician—Silurian (e.g., Wu et al., 2016, 2017;
Song et al., 2013; Zuza et al., 2018) (Fig. 2B).
Jurassic and Cretaceous extensional and trans-
tensional basin deposits are observed across
northern Tibet and the Qilian Shan, from Xin-
ing Basin in the south to the Hexi Corridor in
the north (e.g., Horton et al., 2004; Pan et al.,
2004; Fang et al., 2019), which might have been
associated with the closing of the Paleo-Tethys
and Meso-Tethys Oceans and slab rollback to
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the south (e.g., Huo and Tan, 1995; Vincent
and Allen, 1999; Chen et al., 2003; Yin et al.,
2008a, 2008b; Pullen et al., 2008; Zhang et al.,
2014; Wu et al., 2016, 2019b). The Cretaceous
strata consist of pink conglomerate, sandstone,
mudstone, and locally pyroxene andesite and
tuffaceous sandstone interbedded with a thin
layer of gypsum (e.g., Qinghai BGMR, 1991;
Pan et al., 2004; Zuza et al., 2018; Chen et al.,
2019a, 2019b), which are widely exposed near
the Ebo and Qilian cities along the Hei River in
the central Qilian Shan (Figs. 2B and 3).

The Qilian Shan has undergone tectonic de-
formation and uplift since the Eocene-Oligo-
cene after the India-Asia collision, which formed
the early Cenozoic Qilian Shan fold-thrust belt
(e.g., Yin et al., 2008a, 2008b; Zuza et al., 2019;
Li et al., 2019, 2020) (Fig. 2A). Northern Tibet

and its foreland region, which includes the Hexi
Corridor and the Longshou Shan regions, record
protracted cooling since the Early Cretaceous
(e.g., Jolivet et al., 2001; George et al., 2001; Li
et al., 2019, 2020; An et al., 2020) (Table S1).
This tectonic event reflects the enigmatic crustal
uplift and shortening in the Early Cretaceous,
which is consistent with the general absence
of Cretaceous strata in the Qilian Shan and
the occurrence of widespread early Cenozoic
coarse-grained, alluvial sediments in the Hexi
Corridor (e.g., Gansu BGMR, 1969; Vincent
and Allen, 1999; Pan et al., 2004; Chen et al.,
2019a, 2019b).

The Qilian Shan has undergone tectonic
deformation and uplift since the Eocene-Oli-
gocene after the India-Asia collision, which
formed the early Cenozoic Qilian Shan fold-
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Figure 3. Field photos show the eastern Qilian Shan and Longshou Shan Proterozoic-Paleozoic granitoids and bedrocks. (A) Leucogranite
dike intrudes the schist unit along the northeastern margin of the Xining Basin; the location of sample AZ(09-12-2014 [1c] is shown. (B)
Mesoproterozoic marble is thrust over Silurian slightly metamorphosed submarine sedimentary strata along a ~45° south-dipping fault
near Menyuan; the location of sample WC09-13-2014 (10) is shown. (C) The lower Paleozoic sandstone unit is intruded by the Ordovi-
cian granitoid that is cut by the mafic dike; the location of sample WC09-14-2014 [15] is shown. (D) The structural relationship among the
Ordovician, Carboniferous, and Cretaceous strata in the Qilian Shan; insets show the details as follows: (1) the Carboniferous strata inter-
bedded with a coal layer are thrust over the Cretaceous red-colored, coarse-grained sandstone and (2) the Cretaceous reddish sandstone
is tilted by the north-directed thrust; the location of sample WC072619 [3] is shown. (E-F) The Ordovician arc sequence is thrust over the
Cretaceous sedimentary strata; the location of sample AZ05-10-2012 [2] is shown. (G) A pink granitoid pluton is thrust over the Mesopro-
terozoic quartoschist and meta-sandstone unit with the occurrence of a fault gouge; the location of sample WC09-15-2014 [4b] is shown.
(H) A granite intrudes the schist unit in the eastern Longshou Shan; the location of sample WC09-16-2014 [5] is shown. (I) Devonian pink
granitoid intrudes the Silurian-Devonian metagraywacke in the central Longshou Shan; the locations of samples WC09-17-2014 [2a] and
WC09-17-2014 [2b] are shown.
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thrust belt (e.g., Yin et al., 2008a, 2008b; Zuza
et al., 2019; Li et al., 2019, 2020) (Fig. 2A).
The Cenozoic Qilian Shan thrust belt initiated
there shortly after the India-Asia collision in
the Eocene (e.g., Clark et al., 2010; Yin et al.,
2008a, 2008b; Duvall et al., 2011; Clark, 2012;
Qi et al., 2016; Yu et al., 2017). However, sig-
nificant exhumation and cooling in the Mio-
cene, tracked via low-temperature thermochro-
nology, suggests that Qilian Shan shortening
accelerated in the Miocene (e.g., Pang et al.,
2019; Yu et al., 2019b; Zheng et al., 2010, 2017;
Zhuang et al., 2018; Wang et al., 2020a) (Table
S1). The spatiotemporal deformation pattern
in the Qilian Shan, Hexi Corridor, and Long-
shou Shan from late Mesozoic to the Cenozoic
is poorly resolved; thus, it is necessary to im-
prove our understanding of how the northern
plateau developed (Fig. 2B). Due to a far-field
effect and an increase in crustal thickness of
the Tibetan Plateau during the India-Asia colli-
sion, the northern plateau has been interpreted
to have expanded from the Qilian Shan thrust
fault zone to the foreland region of the North
China craton since the Miocene, which has
been expressed by both thrusting and strike-slip
faulting (e.g., Yuan et al., 2013; Duvall et al.,
2013; Zuza et al., 2019; Chen et al., 2019a; An
et al., 2020; Li et al., 2019, 2020) (Fig. 2A).
Li et al. (2019) provided a direct initiation age
constraint for the Cenozoic left-slip Haiyuan
fault of 15-10 Ma based on a thermochronol-
ogy traverse across a restraining bend (Fig. 2B)
that formed by a ~20 km right step made by the
strike-slip fault.

GEOLOGIC CONTEXT OF THE
SAMPLING SITES

Our field observations show that the Protero-
zoic basement in the eastern Qilian Shan was
intruded by granitoid dikes (Fig. 4A), which
were thrust over the early Paleozoic submarine
sedimentary strata along a ~45° south-dipping
fault near Menyuan (Fig. 4B). An Ordovician
granite pluton has a U-Pb zircon age of ca.
462 Ma (Zuza et al., 2018), which was cut by
mafic dikes (Fig. 4C). Near the Ebo city, we
observe that the Ordovician arc sequence and
Carboniferous shallow marine sediments thrust
over the Cretaceous fluvial lacustrine deposits
(Fig. 4D), and the Cretaceous sandstone was
tilted northward by north-directed thrusting
(Fig. 4D). The structure may be associated with
the development of the Haiyuan fault system;
however, the deformation and exhumation his-
tory are unconstrained. Near the Qilian city, the
early Paleozoic arc sequence thrust over the
red-colored coarse sandstone and conglomer-
ate unit (Figs. 4E and 4F).

Cooling history of NE Tibet and foreland

The ~30-km-wide Longshou Shan is a north-
west-trending, ~300-km-long range located in
the Mesozoic—Cenozoic Hexi Corrdior foreland
basin, west of the city of Jinchang, that is sepa-
rate from the higher elevation Tibetan Plateau to
the south (Fig. 2B). The range primarily exposes
Proterozoic strata and metamorphic rocks that
are thought to represent the southwestern mar-
gin of the North China craton (e.g., Bai and Dai,
1996; Tang and Bai, 2000; Gong et al., 2013,
2016) (Fig. 2B). Upper Paleozoic strata were
deposited unconformably over Precambrian
basement rocks and slightly metamorphosed
Cambrian rocks (Zhang et al., 2016). Intra-con-
tinental foreland basin depositions were devel-
oped since the early Mesozoic. Proterozoic and
early Paleozoic granitoids are widespread along
the southern margin of the Longshou Shan (e.g.,
Zhang et al., 2016; Wang et al., 2020b), and were
thrust over the metamorphic basement (Fig. 4G)
or intrude Proterozoic metamorphic sedimen-
tary (Fig. 4H) and/or Paleozoic metagraywacke
(Fig. 4I). The present day range physiography
and exposures are controlled by northwest-
striking Cenozoic thrust faults. The northeast-
ern range-bounding fault is active, and there is
evidence for Cenozoic faulting throughout the
Longshou Shan, including several east-striking,
left-slip faults (Fig. 2B).

SAMPLES AND ANALYTICAL
METHODS

Samples

Our approach for AFT sampling was to get
diverse spatial coverage across the northeastern
margin of the Tibetan Plateau. Low erosion and
exhumation rates and a protracted Mesozoic—
Cenozoic deformational history (e.g., Jolivet
et al., 2001) complicates thermochronology
campaigns and can yield a diverse range of
ages. Therefore, this study conducted regional
sampling across different domains of strike-slip
and thrust-dominated fault structures (Fig. 2).
Specifically, our traverse spanned from Qinghai
Lake in the southwest, to the interior of the Qil-
ian Shan to the Longshou Shan in the northeast,
and off of the Tibetan Plateau. Samples were
collected from both high-relief ranges that were
presumably uplifting rapidly and intervening
valleys that may reveal an earlier exhumation
history. Previous studies focused on vertical
traverses of thrust-belt margin ranges tend to
get Miocene cooling ages (e.g., Zheng et al.,
2010, 2017; Wang et al., 2020a), as is expected
from rapidly exhuming active structures (Li
et al., 2020), but our intent was to probe the
prolonged Mesozoic—Cenozoic kinematic his-
tory of this region.
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Twenty-three samples were collected from
eastern Qilian Shan and Longshou Shan during
the autumn of 2014 (Figs. 2B and 5A). Six Cre-
taceous sandstone samples were collected from
the central Qilian Shan along the Hei River in dif-
ferent field campaigns in 2012 and 2019 (Figs. 3
and 5A). Samples, their locations, and specific
rock types are shown in Table 1. Two Devonian
samples WC 09-17-2014 (2a) and WC 09-17-
2014 (2b) were collected from the southern mar-
gin of the central Longshou Shan (Fig. 5B). A
Paleozoic granitoid sample WC 09-14-2014 (15)
is from the northern margin of the eastern Qilian
Shan (Fig. 5C), whereas volcanic sample AZ 09-
15-2014 (3) is from the Hexi Corridor (Fig. 5SD).
Samples AZ09-15-2014 (6), AZ09-15-2014
(4a), WC09-15-2014 (4b), WC09-16-2014 (1a),
WC09-16-2014 (1b), AZ09-16-2014 (3), AZ09-
16-2014 (5), WC09-16-2014 (7a), WC09-16-
2014 (7b), and AZ09-16-2014 (10) were col-
lected from the Paleo- and Meso-Proterozoic
basement rocks and Proterozoic intrusions at the
eastern end of the Longshou Shan near Jinchang
city (Fig. 5E). Proterozoic samples AZ(09-12-
2014 (la), AZ09-12-2014(1b), and AZ09-12-
2014(2b) were collected from the northeastern
margin of the Xining basin (Fig. 5F). The six
Cretaceous, red-colored, coarse sandstone
samples AZ 05-10-2012 (1A), AZ 05-10-2012
(1B), AZ 05-10-2012 (2), AZ 05-10-2012 (3),
WC072619(3), and WC072619(6) are from the
Hei River (Fig. 5G) and were part of the foot-
wall rocks of major Qilian Shan thrust faults.
Near Menyuan city, samples AZ 09-13-2014
(3), WC 09-13-2014 (7), WC 09-13-2014 (8c),
AZ 09-13-2014 (9a), and WC 09-13-2014 (9b)
were located at the hanging wall of the Me-
nyuan thrust, whereas the Paleozoic sandstone
sample WC 09-13-2014 (10) was in the footwall
(Figs. 4B and 5H).

AFT Analyses

Fission-track thermochronology is based
on crystal-lattice damage that is manifested as
linear tracks that developed as a result of the
constant spontaneous fission of trace levels of
238U in zircon and apatite grains. Fission tracks
in apatite are incompletely annealed over the
temperature range of ~60-120 °C, which
is termed the partial annealing zone (PAZ)
(e.g., Gleadow, 1981; Gleadow et al., 2002;
Ketcham et al., 2007). Cooling of a sample
through the partial annealing zone with time
is reflected by the distribution of lengths of
the partially annealed tracks. We conducted
apatite fission-track (AFT) analyses of 29
samples to determine the low-temperature
thermal history of the Qilian Shan-Longshou
Shan (Figs. 2B and 5).
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Figure 5. Satellite images of the eastern Qilian
Shan and Longshou Shan show (A) sample
locations of the apatite fission-track samples

(B) the central Longshou Shan, (C)

ing

lud
northeastern margin of the Qilian Shan, (D)

Hexi Corrdior, (E) eastern Longshou Shan,
(F) eastern margin of the Xining basin, (G)
Cretaceous sandstone samples along the Hei
River, and (H) area near Menyuan and the

northern margin of the Xining basin.

mc

<

AQNLS SIHLNOY4

Fission-track ages were measured using the
external detector method (Gleadow, 1981) and
calculated using the zeta calibration method

(Hurford and Green, 1983). Ages were calculat-
ed using the Zeta calibration method (Hurford

and Green, 1983; Hurford, 1990) with a Zeta

NVHS NVITIO ANV NYHS NOHSYNOT 3HL HO4 SITNS3Y TYIILATYNY MOVHL-NOISSIH 3111vdY | 379VL

value of 322.1 £ 3.6 (1 s). Apatite grains were
separated from ~5 kg of material from each

sample using standard mineral separation tech-
niques. Polished grain mounts were prepared

and etched to reveal spontaneous fission tracks.

Apatite grain mounts were etched in 6.6%

were irradiated at the China Institute of Atomic

HNO; at 25 °C for 30 seconds. All samples
Energy reactor facility, Beijing. Low-U mus-

covite external detectors covering apatite grain
mounts were etched in 40% hydrofluoric acid

at 25 °C for 20 min to reveal induced fission
tracks. To increase the number of observable

horizontal confined tracks, the samples were

exposed to 22Cf (Donelick and Miller, 1991).

(e.g., Laslett et al., 1987; Gleadow et al., 1986)

Horizontally confined fission-track lengths
were measured only in prismatic apatite crys-

tals because of the anisotropy of annealing of

fission tracks in apatite (Green et al., 1986).

Thermal History Modeling

Because fission-track systematics in apatite
are characterized by a PAZ approximately be-

tween 60 °C and 120 °C, AFT ages and mea-
sured fission-track length distributions can be

inverted to produce suites of compatible thermal

for apatite of Ketcham et al. (2007) that consid-

Ketcham (2005) and the kinetic annealing model

histories. We performed inverse modeling of the
AFT data using the HeFTy v1.9.1 software of

parameters. Goodness-of-fit (GOF) value was
used to estimate how well the modeled data fit
measured values (Ketcham, 2005). The paths
were accepted (green envelopes) when GOF
was > 0.05 and rated as good (pink envelopes)

ers the Dpar values and the angle with c-axis
for GOF > 0.5 (Ketcham, 2005). Inverse ther-

mal history modeling was run for 100,000 paths
for each sample, which in all cases resulted in at

least 1000 acceptable paths.
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We divide the samples into two groups for
discussion and thermal modeling based on their
geologic setting. The 23 analyses of Proterozoic—
Paleozoic samples from the eastern Qilian Shan
and Longhsou Shan were collected from rocks
that were mostly likely at depths >5 km prior to
the Mesozoic based on their geologic histories
and lithology (e.g., intrusions or even amphib-
olite-grade metamorphic rocks), and thus we
assume that the samples started at temperatures
equal to, or hotter than, the AFT PAZ (~60-120
°C). The Cretaceous strata from which six sam-
ples were collected have maximum thicknesses
of <1.4 km (e.g., Qinghai BGMR, 1991; Pan
et al., 2004; Zuza et al., 2018). Therefore, the
analyzed apatite grains in the Cretaceous sedi-
ments would have been deposited at depths shal-
lower than the AFT PAZ. For all samples except
the Cretaceous samples (i.e., the Proterozoic—
Paleozoic samples), initial time—temperature
conditions were set at above the AFT PAZ at a
time range of 200—50 Ma. This initial condition
is justified because all of these studied rock types
are thought to have originated from below the
uppermost crust. Therefore, the thermal model-
ing started with the AFT samples above the AFT
PAZ in the Cretaceous and sought to see what
temperature—time paths were permissible for the
samples studied and included the possibility of
reheating via post-depositional tectonic burial.
The thermal history model inputs for simulations
are in Table 2 (e.g., Flowers et al., 2015).

RESULTS AND INTERPRETATIONS
AFT Results

The results of AFT analyses of our Qil-
ian Shan-Longshou Shan samples are shown

in Table 1 and include AFT age, track length,
and Dpar information. We used the central

Chen Wu et al.

age of these samples. For the remaining AFT
samples that passed the chi-square test, pooled
AFT ages are reported (e.g., Sobel et al., 2006a,
2006b; Donelick et al., 2005; Cao et al., 2015;
Table 1). AFT ages from 23 Proterozoic—Paleo-
zoic samples from the eastern Qilian and Long-
shou Shan are spread over a wide range from
131 &+ 8 Ma (eastern Qilian Shan sample AZ
09-12-2014 [1a]) to 26 &+ 5 Ma (central Long-
shou Shan sample WC 09-17-2014 [2b]) with
Dpar values of 1.21-1.55 (Table 1). Twelve
Longshou Shan samples yield AFT ages rang-
ing from 95 &+ 5 Ma (sample WC 09-16-2014
[1b]) to 26 = 5 Ma (sample WC 09-17-2014
[2b]), whereas one Hexi Corridor sample AZ 09-
15-2014 (3) yields an AFT age of 120 &= 11 Ma
(Table 1). The other 10 eastern Qilian Shan sam-
ples yield AFT ages ranging from 131 + 8§ Ma
(sample AZ09-12-2014 [la]) to 61 &3 Ma
(sample WC 09-14-2014 [15]) (Table 1). The six
Cretaceous sandstone samples yield AFT ages
spanning 68 £ 4 Ma (sample WC072619[3]) to
10 & 1 Ma (AZ 05-10-2012 [3]) with Dpar val-
ues of 1.34-1.94 (Table 1).

The mean track lengths of our Proterozoic—Pa-
leozoic AFT samples range from 11.8 4= 2.2 pm
(samples WC 09-14-2014 [15] and WC 09-
16-2014 [1a]) to 13.4 = 1.8 pm (sample AZ
09-13-2014 [3]) (Table 1). The mean track
lengths of our Cretaceous AFT samples range
from 12.8 + 2.1 pm (sample AZ 05-10-2012
[3]) to 11.6 £ 2.5 pm (sample WC072619 [6])
(Table 1). These track-length distributions gen-
erally suggest that the tracks were shortened by
annealing, possibly during long-term annealing-
related residence in the PAZ (e.g., Gleadow
et al., 1986; Green, 1988). Almost all AFT ages
were significantly younger than their respective
crystallization or depositional ages (Table 1),
which suggests that samples have experienced
post-crystallization or post-depositional cool-

ing histories through the apatite PAZ (e.g., Gal-
braith and Laslett, 1993; Gallagher et al., 1998;
Yuan et al., 2006a, 2006b). Only Cretaceous
sample WC072619 (3) yielded an AFT age of
ca. 69 Ma, which was close to, but still younger
than, the depositional age for this sample (e.g.,
Qinghai BGMR, 1991; Pan et al., 2004; Zuza
et al., 2018).

Results from 16 of the AFT samples passed
the chi-square test (P (x2) > 5%; Fig. 6). Twelve
of the samples (i.e., samples AZ 09-13-2014
[9a], AZ 09-13-2014 [10], WC 09-14-2014 [5],
AZ 09-15-2014 [6], WC 09-16-2014 [1a], WC
09-16-2014 [7a], WC 09-16-2014 [7b] and five
Cretaceous sandstone samples; Table 1) failed
the chi-square test (P (x2) < 5%; Galbraith
and Green, 1990), which indicates significant
dispersion in the individual grain ages of these
samples (Fig. 6). The variable single grain ages
of the AFT samples have been observed in an-
other region of northern Tibet (e.g., Lin et al.,
2011; Craddock et al., 2014; Zheng et al., 2017;
He et al., 2018; Li et al., 2019, 2020; Yu et al.,
2019a, 2019b; An et al., 2020; He et al., 2020),
and age distribution probably reflects complex
structural locations (e.g., Cao et al., 2013, 2021).
All of our Cretaceous sandstone samples failed
the x2 test, which indicates their mixed grain
age distributions (Fig. 6).

The observed grain age distributions were
decomposed into different grain age compo-
nents for these samples using the DensityPlotter
program (Vermeesch, 2012; Fig. 7). The mod-
eled peak ages of these age components from
10 eastern Qilian Shan samples are grouped
into four populations based on their peak age

»

Figure 6. Apatite fission-track radial plots of
the study samples from RadialPlotter are by
Vermeesch (2009).

TABLE 2. THERMAL HISTORY MODEL INPUT FOR SIMULATIONS OF EASTERN QILIAN SHAN AND LONGSHOU SHAN APATITE FISSION TRACK (AFT) DATA

1. Apatite fission track data: Samples and data used in simulations

Data type

Data source

AFT single grain ages and individual track lengths

This study (Table 1)

Treatment: each bedrock sample was counted as a separated constraint in HeFTy
Error (Ma) applied in modeling: the 10 sample standard deviation of each sample was applied

2. Additional geologic information
Assumption

Explanation and source

Initial condition began at a high temperature of 160-200 °C

AFT ages were set through the apatite PAZ temperature range of 60—110 °C

Surface temperature of 20 + 5 °C was reached by0 Ma

3. System- and model-specific parameters
Modeling Code: HeFTy v1.9.1

Available AFT data indicated complete apatite annealing at this high
temperature
The AFT system is especially sensitive to this temperature range

(~60-110 °C; Gleadow and Duddy, 1981)
Average surface temperature is end-member minimum estimate.

FT annealing model: Multi-kinetic annealing model of Ketcham et al. (2007); the Dpar values and the angle with C-axis parameters were applied.
Statistical fitting criteria: GOF values > 0.05 for accepted fit; GOF values > 0.5 for good fit;

Number of t-T paths attempted: >10,000 for each sample
t-T path characteristics: reheating allowed after AFT age.

Note: deposit age was used as the initial condition at the surface temperature for samples AZ05-10-2012(1A), AZ05-10-2012(2), AZ05-10-2012(3), WC072619(3) and
WCO072619(6). PAZ—partial annealing zone; GOF—goodness of fit.
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Figure 7. Grain age distributions and kernel density estimates of apatite fission-track (AFT) ages of the study samples are shown. (A)
Proterozoic-Paleozoic samples from the eastern Qilian Shan and Longshou Shan; (B) Cretaceous sandstone samples in the footwall of the

Cenozoic thrust along the Hei River.

correlations, which are termed P1 (ca. 22.6 Ma),
P2 (ca. 59.6 Ma), P3 (ca. 87.1 Ma), and P4 (ca.
116.2 Ma), respectively. This demonstrates that
multi-phase cooling affected the eastern Qilian

Shan since the Early Cretaceous to Miocene
(Fig. 7A). Three AFT age populations are ob-
served from the 12 Hexi Corridor-Longshou
Shan samples with age peaks of ca. 65.2 Ma,
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ca. 86.9 Ma, and ca. 95.7 Ma, which supports a
cooling history that affected the Longshou Shan
during the Late Cretaceous (Fig. 7A). The five
Cretaceous strata yielded five age populations,




termed P1 (ca. 11 Ma), P2 (ca. 20 Ma), P3 (ca.
43 Ma), P4 (ca. 76 Ma), and P5 (ca. 125 Ma)
(Fig. 7B). The peak ages of every component in
each sample are younger than the correspond-
ing depositional ages, and all single-grain ages
and peak ages of decomposed components are
not regarded to reflect pre-depositional cool-
ing in their source terranes (e.g., van der Beek
et al., 2006; Lin et al., 2015; Li et al., 2019;
He et al., 2020). We combined the remaining
samples that failed the x? test, which displayed
age peaks of 62.0-66.1 Ma, 93.7-87.0 Ma, and
114.2-109.8 Ma. These age peaks demonstrate
that the multi-phase rapid cooling affected the
eastern Qilian Shan-Longshou Shan region dur-
ing the Cretaceous (Fig. 7A).

Thermal Modeling

Thermal history modeling of the AFT ages,
track lengths, and Dpar data is used to evaluate
the cooling processes and was conducted using
the HeFTy program to produce time—temperature
pathway models in this study (Ketcham, 2005;
Ketcham et al., 2007, 2009). Nineteen samples
yield good thermal modeling results, of which
seven are from the eastern Qilian Shan, five Cre-
taceous samples are from the central Qilian Shan,
and seven are from the Hexi Corridor-Longshou
Shan. These models provide constraints on the
exhumation history of the northeasternmost
plateau (Fig. 8). Ten samples were not modeled
because they were either missing mean track
length data (samples WC09-17-2014 [2b] and
AZ05-10-2012 [1b]) or did not yield any satis-
factory model paths (samples WC09-13-2014
[7], WC09-13-2014 [9b], AZ09-13-2014 [9a],
AZ09-15-2014 [6], WC09-16-2014 [7a], WC09-
16-2014 [7b], AZ09-16-2014 [3], AZ09-16-2014
[5], and WC09-17-2014 [2b]) (Table 1).

Three samples from the eastern margin of
the Xining basin (AZ09-12-2014 [1a], AZ09-
12-2014 [1b], and AZ09-12-2014 [2b]) were
cooled from a temperature above the upper limit
of the AFT PAZ during the Early—Middle Juras-
sic, followed by thermal stagnation in the PAZ
through its lower limit and accelerated cool-
ing at ca. 25 Ma to the surface (Fig. 8A). Two
samples collected from the northern margin of
the Xining basin (AZ09-13-2014 [3] and WC09-
13-2014 [8c]) had experienced initial cooling
into the AFT PAZ since the Middle Jurassic,
subsequent long-term tectonic quiescence in
the PAZ, and finally rapid cooling through the
lower limit of the PAZ since ca. 30 Ma (Fig. 8A).
Sample AZ09-13-2014 (10), collected from the
footwall of the Menyuan thrust fault (Fig. 4B),
cooled through the PAZ during the Jurassic and
has cooled from the PAZ to the surface since the
Early Cretaceous (Fig. 8A). One sample, WC09-
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14-2014 (15), collected from the northeastern
margin of the Qilian Shan, is characterized by
initial Late Cretaceous cooling, residence within
the PAZ, and finally a strong pulse of rapid cool-
ing through the lower limit of the PAZ since ca.
12 Ma (Fig. 8A).

All Cretaceous samples yielded Cenozoic
AFT ages except for sample WC072619 [3]
(Late Cretaceous, 68 4+ 4 Ma). Given that these
samples were deposited at depths of <1.4 km
in the Cretaceous (e.g., Qinghai BGMR, 1991;
Pan et al., 2004; Zuza et al., 2018), these most-
ly Cenozoic ages imply that the samples were
heated to AFT PAZ conditions (e.g., implied
burial depths of ~2—6 km based on 20-30 °C/
km geothermal gradients) after Cretaceous de-
position but prior to their middle—late Cenozoic
exhumation. The track length distributions for
these samples have wide and low amplitude,
which is consistent with reheating and/or long
residence within the AFT PAZ (Table 1; e.g.,
Gleadow et al., 1986; Green, 1988). Thermal
history modeling supports this overall inter-
pretation. All samples show required heating
to AFT PAZ temperatures in the late Mesozoic
or early Cenozoic and variable residence in the
PAZ (Fig. 8B). The time—temperature evolution
of this required late Mesozoic to early Cenozoic
reheating is entirely unconstrained especially
after deposition and before the AFT ages and
thermal models portray cooling out of the AFT
PAZ. The analyzed Cretaceous samples expe-
rienced cooling from the AFT PAZ to surface
temperatures in the Miocene to present time-
frame (Fig. 8B).

The Hexi Corridor Devonian sample AZ(09-
15-2014 (3) shows paths of rapid cooling
from a temperature above the upper limit of
the AFT PAZ during the Middle Jurassic, resi-
dence within the PAZ, and finally rapid cool-
ing through the lower limit of the PAZ since
the Late Cretaceous (Fig. 8C). The thermal
histories from four eastern Longshou Shan
samples (AZ09-15-2014 [4a], WC09-16-2014
[1a], WC09-16-2014 [1b], and AZ09-16-2014
[10]) reflect the variable cooling process from
the Early Jurassic to present (Fig. 8C). At ca.
200-180 Ma, a relatively rapid cooling stage
occurred with a corresponding crustal tem-
perature decrease of ~50 °C from ~170 °C
to ~120 °C and a cooling rate of ~2.5 °C/Ma.
The next stage, at ca. 180-90 Ma, experienced
a subsequent long-term tectonic quiescence in
the PAZ. The third stage displayed rapid cool-
ing from ca. 90 Ma to ca. 60 Ma with a com-
mensurate temperature decrease of ~90-60
°C and a cooling rate of ~1.0 °C/Ma and fi-
nally rapid exhumation from ca. 20 to pres-
ent, which was accompanied by a temperature
decrease from ~60 °C to the present surface
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temperature of ~20 °C with a cooling rate of
~2.0 °C/Ma. However, the footwall sample
WC 09-15-2014 (4b) reveals cooling in the
Jurassic to the Late Cretaceous to the bottom
of the AFT PAZ, which was followed by ther-
mal stagnation in the PAZ and cooling from
the PAZ to the surface since the early Ceno-
zoic (Fig. 8C). One graywacke sample AZ09-
17-2014 (2a) from the central Longshou Shan
exhibits cooling from a temperature above the
upper limit of the AFT PAZ during the Cre-
taceous and residence in the PAZ until it was
cooled rapidly through the lower limit of the
PAZ since 25 Ma (Fig. 8C).

DISCUSSION

In this study, the AFT data presented from
the Qilian Shan-Longshou Shan record the
cooling timing and rate of upper crust exhu-
mation and tectonic activity during the late
Mesozoic and Cenozoic (Figs. 8 and 9). With
detailed field observations and the structure
positions of these thermochronologic samples,
we further constrain the deformation history
of the northern Tibetan Plateau and foreland
region by exploring the structural and exhu-
mation histories. Most previous studies have
focused on Cenozoic deformation shortly
after the initial India-Asia collision at ca.
55-58 Ma, but the late Mesozoic exhuma-
tion history observed in this study has im-
portant implications for the growth history of
the northern plateau. Our AFT analyses and
thermal history modeling demonstrate that
the Qilian Shan and Longshou Shan experi-
enced a complex, multi-phase cooling history
through the late Mesozoic to the Cenozoic
(Figs. 8 and 9).

Thermal and Tectonic History of the
Eastern Qilian Shan

The thermal models of our eastern Qilian
Shan samples suggest three significant cooling
events since the Late Jurassic—Early Cretaceous,
during or since the Eocene, and since the middle
Miocene (Fig. 9A). The Late Jurassic—Early
Cretaceous cooling event recorded by our AFT
results in the eastern Qilian Shan corresponds

»
>

Figure 8. Apatite fission-track thermal his-
tory models and length distributions derived
using HeFTy software (Ketcham, 2005) are
shown. (A) Proterozoic—Paleozoic samples
in the eastern Qilian Shan; (B) Cretaceous
samples in the central Qilian Shan; (C) Pro-
terozoic—Paleozoic samples in the Longshou
Shan. PAZ—partial annealing zone.
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A Proterozoic-Paleozoic samples in the eastern Qilian Shan
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C Proterozoic-Paleozoic samples in the Longshou Shan
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with the low-temperature thermochronology
data sets across northern Tibet and the regional
unconformity across the northern plateau (e.g.,
Wu et al., 2011; Zuza et al., 2018). In addition,
Chen et al. (2019a) reported a contractional de-
formation system including a strike-slip duplex,
thrust nappe, and klippe structure in the north-
eastern Qilian Shan, which suggests a regional
tectonic uplift event. We interpret that this ex-

humation event may be driven by the far-field
response to the closure of the Paleo-Tethys and
Meso-Tethys Oceans and the collision between
the Lhasa and Eurasia continents from the Trias-
sic to possibly the earliest Jurassic (e.g., Pullen
et al., 2008; Zhang et al., 2014; Wu et al., 2016,
2017, 2019b; Kapp et al., 2007; Li et al., 2017b;
Kapp and DeCelles, 2019; Jolivet et al., 2015)
and the far-field effects on the late Mesozoic
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Hexi Corridor. The Cretaceous cooling history
is also widely observed in our AFT grain age
distribution results (Figs. 8A and 9A).

The discrete period of rapid cooling during
and since the Eocene is likely related to the far-
field effects of the India—Asia collision (e.g.,
An et al., 2020; Li et al., 2019, 2020; He et al.,
2020). Previous AFT ages and thermal history
modeling results suggested a rapid cooling of



the South Qilian Shan and the northern margin
of the Qaidam basin, which resulted from fault-
related uplift and exhumation of south-central
Qilian Shan thrusts at ca. 50-40 Ma (e.g., Jolivet
etal., 2001; Clark et al., 2010; Zuza et al., 2016;
Lietal., 2019, 2020). Furthermore, the northern
Altyn Tagh Range, northwestern Eastern Kunlun
Range, and the western end of the Qinling region
also exhibit the rapid cooling event in this pe-
riod (e.g., Clark et al., 2010; Duvall et al., 2011;
Jolivet et al., 2001; Yin et al., 2002; Ritts et al.,
2008; Mock et al., 1999; Wang and Burchfiel,
2004). Evidence from regional geologic studies
supports the early Cenozoic tectonic exhuma-
tion event in the Qilian Shan and includes the
deposition of coarse clastic deposits unconform-
ably overlying Cretaceous sedimentary rocks in
the northern Qaidam Basin (e.g., Ji et al., 2017;
Zhuang et al., 2011; Wu et al., 2019b; He et al.,
2020) and coarse clast-dominated sediment that
rapidly accumulated over the Cretaceous in the
Xining Basin during the early Eocene (Fang
et al., 2019).

The deformation of the Northern Qilian Shan
thrusts started at ca. 30-25 Ma, which is con-
sistent with a regional unconformable contact
between the Huoshaogou Formation and over-
lying Baiyanghe Formation in the Qilian Shan
and Hexi Corridor areas (i.e., Lin et al., 2011;
Lietal., 2019, 2020; An et al., 2020). Our ther-
mal history modeling results from eastern Qilian
Shan samples clearly show the stage of cooling
event in this period (Figs. 8 and 9A). That is,
the northeastward growth of the plateau in the
Qilian Shan was accommodated by slip along
a series of thrust faults. The cooling event since
the middle Miocene has been recorded by Paleo-
zoic granite sample AZ 09-14-2014 (15), which
may correspond to the reactivation of the North-
ern Qilian Shan thrust belt and the initiation of
the western segment of the Haiyuan fault (e.g.,
George et al., 2001; Zheng et al., 2010, 2017; Lin

Cooling history of NE Tibet and foreland

etal.,2011; Wanget al., 2011; Lease et al., 2012;
Yuan et al., 2013; Zhuang et al., 2018; Li et al.,
2019, 2020; Yu et al., 2019a, 2019b; Chen et al.,
2019b; Wang et al., 2020a) (Figs. 8A and 9A).

Thermal and Tectonic History Inferred
from the Cretaceous Samples

The AFT results from the Cretaceous sand-
stone samples suggest that following Creta-
ceous deposition, the samples were reheated
to ~80-100 °C, probably via burial, and then
cooled again (Fig. 9B). We interpret that the
samples were not reheated by simple sedimen-
tary burial because the thickness of Cretaceous
strata in the Qilian Shan (i.e., <1.4 km; Qing-
hai BGMR, 1991; Pan et al., 2004; Zuza et al.,
2018) is not enough to heat the samples to
AFT PAZ conditions. Therefore, we posit that
most of the Cretaceous samples were tectoni-
cally buried via thrusting in the Mesozoic or
early Cenozoic. The track length distributions
for these samples have wide and low ampli-
tude, consistent with reheating and/or long
residence within the AFT PAZ (Table 1; e.g.,
Gleadow et al., 1986; Green, 1988), which is
consistent with our model for thrust-related
burial of these samples (Fig. 10). Cretaceous
strata are commonly observed in fault contact
with older units (i.e., Ordovician or Carbonifer-
ous strata) (e.g., Zuza et al., 2018, 2019; Chen
et al., 2019a; Li et al., 2020; Figs. 4D—4F).
Zuza et al. (2019) documented a large thrust
fault, where Ordovician rocks were juxtaposed
over Cretaceous strata (Fig. 8A in Zuza et al.,
2019). The AFT thermal histories suggest that
these samples were exhumed from AFT PAZ
depths in the Miocene.

Field relationships in this study show Ordovi-
cian and Carboniferous rocks in thrust contact
with Cretaceous strata (Figs. 4D—4F), which is
consistent with the AFT-derived thermal histo-

ries. Cretaceous sedimentary rocks were first
deposited over upper Paleozoic strata (Fig. 10).
Sometime in the late Mesozoic to early Ceno-
zoic, a package of Carboniferous and younger
rocks was thrust over the Cretaceous strata,
which buried the apatite samples analyzed to
AFT PAZ depths (Figs. 4D and 10). Later, po-
tentially related to the initiation of left-lateral
transpression associated with the Haiyuan fault
(i.e., Lietal., 2019), renewed thrusting and uplift
juxtaposed Ordovician rocks with the Carbonif-
erous and Cretaceous strata and led to exhuma-
tion of these rocks, as is recorded in the AFT sys-
tematics (Figs. 4D and 10). Northward tilting of
the Cretaceous strata by north-directed thrusting
could have occurred during any of these events
(Figs. 4D and 10).

Alternative mechanisms to reheat the Creta-
ceous samples include: (1) internal burial via
intra-Cretaceous strata repetition rather than
the coherent thrust sheet discussed above, (2)
enhanced burial by additional early Cenozoic
sediments, or (3) reheating by proximal intru-
sions or fluids. We argue that the first mechanism
is similar to our proposed model (Fig. 10) with
respect to the broader interpretations, such that
early Cenozoic shortening affected the study
area. Known early Cenozoic sediments are
sparse and relatively thin in the central Qilian
Shan, which suggests that they could not have
significantly buried and heated these samples
(Qinghai BGMR, 1991; Pan et al., 2004; Fang
et al., 2019). If some unknown early Cenozoic
sediments did bury Cretaceous rocks enough
to reheat them, and have since eroded, the only
plausible geologic events to source such thick
sediments during this time would be contraction-
related uplift. This would imply early Cenozoic
deformation similar to our preferred interpreta-
tion. Lastly, there are no known or reported Ce-
nozoic volcanic rocks or intrusions in the Qil-
ian Shan to have heated the samples. It is also

(3) Middle Miocene
to present

(plus erosion)

(2) Early-middile
Cenozoic K
(1) Initial Pz,
Cc
K K

(4) Middle Miocene to present

Figure 10. A simple model
summarizes the deformation
history of the Cenozoic Qilian
Shan thrust.
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unlikely that these intrusions would only have
affected AFT analyses of Cretaceous sediments
(Li et al., 2020; this study). However, heating by
fluid flow through the high permeability sand-
stones is possible and perhaps could have been
enhanced by nearby faults and fracture-related
permeability. We did not observe alteration
or silicification near the samples studied, and
therefore our observations do not independently
support this model. All three of these alternative
scenarios may suggest some early Cenozoic tec-
tonic activity.

Thermal and Tectonic History of the
Longshou Shan in the Qilian Shan
Foreland

The thermal models of our Longshou Shan
samples suggest that three significant cooling
events took place since the Early—-Middle Ju-
rassic, during/since the Late Cretaceous, and
since the Miocene (Figs. 8C and 9C). The
cooling event since the Early-Middle Juras-
sic observed in the eastern Longshou Shan
samples may been associated with far-field
effects of the closure of the Paleo-Tethys and
Meso-Tethys Oceans in the south (e.g., Pullen
etal., 2008; Zhang et al., 2014; Wu et al., 2016,
2017, 2019b), the collision between the Lhasa
and Qiangtang continents at ca. 200-150 Ma
(Kapp et al., 2007; Li et al., 2017b; Kapp
and DeCelles, 2019), and/or the possible lat-
est Jurassic—earliest Cretaceous closure of the
Mongolia-Okhotsk ocean in the north between
the North China and Siberian cratons (e.g.,
Cogné et al., 2005; Van der Voo et al., 2015;
Jolivet et al., 2015). Our Longshou Shan AFT
samples are located at the hanging wall of the
Longshou Shan thrust (Figs. 2B and 5E), which
would have been active along the southwestern
margin of the North China craton. In addition,
Feng et al. (2017) reported the late Mesozoic
fault activity in the western margin of the North
China craton from a multi-chronometer study
involving apatite helium, apatite fission track,
and “°Ar/*Ar thermochronology. A Late Creta-
ceous rapid cooling event is rarely reported in
the western margin of the North China craton,
which possibly suggests that this was a rela-
tively local exhumation event. Although this
deformational process is not well contained, the
exhumation event is consistent with the absence
of the upper Cretaceous strata in the Longshou
Shan region (e.g., Gansu BGMR, 1969; Vincent
and Allen, 1999; Pan et al., 2004).

After relative tectonic quiescence during the
early Cenozoic in the Longshou Shan area, rap-
id cooling since the Miocene demonstrates the
far-field effects of intracontinental growth and
tectonic deformation on the northeastern margin

Chen Wu et al.

of the plateau with reactivation of the Longshou
Shan thrust (e.g., Duvall et al., 2013; Yuan et al.,
2013; Zuza and Yin, 2016; Feng et al., 2017;
Song et al., 2018; Li et al., 2019, 2020). In ad-
dition, Zheng et al. (2013) reported a ca. 2 Ma
thrusting event along the southern margin of the
Heli Shan northwest of Longshou Shan, which
should be reactivation rather than the rapid uplift
caused by initial thrusting.

Tectonic History

Our thermochronological results imply that
the northeastern Tibetan Plateau and foreland
region underwent regional late Mesozoic ex-
humation, including the western margin of the
North China craton. From our traverse, samples
collected above 2500 m elevation yield a range
of AFT ages from ca. 68 Ma to ca. 131 Ma
(Table 1) and thus were at PAZ temperatures
for most of the late Mesozoic (Fig. 9). These
analyses suggest that the eastern Qilian Shan-
Longshou Shan were not significantly deform-
ing or exhuming prior to the Cretaceous—early
Cenozoic.

Although the deformation mechanism for late
Mesozoic exhumation is not well constrained,
the regional event is generally interpreted to be
associated with the consumption of the Paleo-
Tethys and Meso-Tethys Oceans south of the
Qilian-Qaidam-Kunlun continent from the Tri-
assic to possibly the earliest Jurassic (Fig. 1). An
additional possible effect on the Longshou Shan
area is the Latest Jurassic—earliest Cretaceous
closure of the Mongolia-Okhotsk Ocean north
of the North China craton. Late Cretaceous ex-
humation is widespread in the northern Tibetan
Plateau (e.g., George et al., 2001; Jolivet et al.,
2001; An et al., 2020; Tian et al., 2020; Li et al.,
2019, 2020), and the scattered, synchronous,
coarse-grain, clastic molasse strata were depos-
ited in the Hexi Corridor (e.g., Liu et al., 2001;
Vincent and Allen, 1999). This tectonic event is
also shown in our AFT thermal modeling results
from the hanging wall of the Longshou Shan
thrust, i.e., the southwestern margin of the North
China Craton.

Of note, this pronounced, pre-Cenozoic cool-
ing signal implies deformation-related exhuma-
tion of northern Tibet prior to the India-Asia
collision (e.g., Jolivet et al., 2001; Chen et al.,
2019b). The extent and magnitude of late Meso-
zoic deformation remains poorly resolved, but
models of plateau growth and intracontinental
strain in the Himalayan-Tibetan orogen rarely
consider this phase of deformation. Cenozoic
structures may have reactivated earlier faults,
which makes teasing out this phase of deforma-
tion more problematic. However, recent studies
arguing that the Qaidam Basin was at or near sea
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level in the earliest Cenozoic (e.g., Kaya et al.,
2019) imply that pre-Cenozoic shortening in
northern Tibet was a relatively minor event that
did not significantly elevate topography.

Models for Cenozoic deformation in the Qil-
ian Shan as part of the Himalayan-Tibetan oro-
gen can be grouped into northward-propagating
deformation or early out-of-sequence shorten-
ing. The northward-propagating deformation
models predict the oldest deformation in the
Fenghoushan and Eastern Kunlun Range thrust
systems to the south, which is followed by more
recently initiated deformation in the Qilian Shan
as the orogen propagates in-sequence northward
(e.g., Pang et al., 2019; Yu et al., 2019b; Zheng
et al., 2010, 2017; Zhuang et al., 2018; Wang
et al.,, 2020a). Alternatively, deformation oc-
curred shortly after India-Asia collision in the
Qilian Shan, thus defining the northern bound-
ary of the Himalayan-Tibetan orogen early in
the Cenozoic (e.g., Clark, 2012), and subsequent
shortening has occurred within the orogen’s
interior.

Cooling recorded by our AFT observations
suggests that early Cenozoic deformation of
the Qilian Shan initiated in the Eocene, which
accommodated far-field compressional stress
transmitted from the early Cenozoic India-Asia
collision along the pre-existing tectonic sutures
(Fig. 1) (e.g., Zuzaetal., 2019; Bian et al., 2020;
Chen et al., 2020). Early deformation along the
northernmost margin of the plateau, overprinted
by later Miocene-to-present deformation, argues
for out-of-sequence thrusting rather than pro-
gressive, northward-propagating deformation
(Figs. 11A and 11B). The regional unconfor-
mity between the Eocene deposits and the lower
Cretaceous strata is developed in the Jiuxi basin,
which indicates the presence of the Late Creta-
ceous—Paleogene tectonic activity (i.e., Anetal.,
2020). Independent support for early Cenozoic
deformation initiation comes from the deforma-
tion record observed across the Qilian Shan. Es-
timates of minimum Cenozoic shortening across
the Qilian Shan are ~300-350 km, which is con-
sistent with required crustal thickening from av-
erage crustal thickness values of ~35 km. This
is consistent with near sea level elevations in
the earliest Cenozoic to ~60 km+ today (Zuza
et al., 2016, 2018; Cheng et al., 2015). A Mio-
cene initiation of shortening in the Qilian Shan
(e.g., Pang et al., 2019; Yu et al., 2019a; Zheng
et al., 2010, 2017; Zhuang et al., 2018; Wang
et al., 2020a) implies bulk average shortening
rates of >20 mm/yr, which is almost four times
the present day convergence rate (~5—6 mm/
yr) across the region (e.g., Zhang et al., 2004).
Conversely, an Eocene initiation age equates to
average shortening rates of ~8 mm/yr, which is
slightly higher than the present-day rates (e.g.,
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Figure 11. (A) Eocene-Oligocene fault deformation in the northeastern margin of the Tibetan Plateau and Hexi Corridor is shown. (B) Mio-
cene—present deformation in the northeastern margin of the Tibetan Plateau, Hexi Corridor, and Longshou Shan. The thermochronology
data are shown in Table S1 (see footnote 1). Data are from: 1—Yin et al. (2002); 2—D. Liu et al. (2017a); 3—Y. Wang et al. (2018); 4—Jolivet
et al. (2001); 5—He et al. (2017); 6—Li et al. (2020); 7—Yin et al. (2008a); 8—He et al. (2018); 9—F. Wang et al. (2017a); 10—Clark et al.
(2010); 11—Mock et al. (1999); 12—Duvall et al. (2013); 13—Duvall et al. (2011); 14—this study; 15—Wau et al. (2020); 16—Ritts et al.
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(2010); 28—Yu et al. (2017); 29—Yuan et al. (2011); 30—Li et al. (2019); 31—W. Wang et al. (2011); 32—Zheng et al. (2006); 33—Lease
et al. (2011); 34—Yan et al. (2006); 35—Craddock et al. (2011); 36—Craddock et al. (2014); 37—Yuan et al. (2006b); 38—Pang et al. (2019);
39—W. Wang et al. (2017b); 40—Zheng et al. (2010); 41—Zheng et al. (2017); 42—B. Qi et al. (2016).

Zuza et al., 2020) and consistent with faster In-
dia-Asia convergence rates in the early Cenozoic
(e.g., Copley et al., 2010).

Cenozoic deformation and uplift of the Hexi
Corridor and Longshou Shan regions north of
the Qilian Shan initiated in the Miocene (Figs. 9
and 10). The widespread tectonic deformation
along the northeastern Tibetan Plateau and Hexi
Corridor-Longshou Shan since the Miocene sug-
gests significant outward intracontinental growth
of the plateau and basin-range evolution with the
reactivation of thrusts and initiation of the Hai-
yuan transpressional fault system (Fig. 11B).

We suggest that the Miocene activities of the
Northern Qilian Shan thrusts and Longshou
Shan thrust represent a reactivation event rather
than initiation, and more than half of the Ceno-
zoic shortening and crustal thickening across
the northern plateau may have occurred prior to
the Miocene (e.g., Zuza et al., 2019, 2020; Li
et al., 2020) (Figs. 11A and 11B). Furthermore,
Miocene to present intracontinental growth and
deformation of the northern Tibetan Plateau are
mainly controlled by the Altyn Tagh strike-slip
fault and the Kunlun and Haiyuan transpres-
sional fault systems (Fig. 11B).
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CONCLUSIONS

Field observations, AFT analysis, and ther-
mal history modeling provide constraints on the
complex exhumation history from the late Me-
sozoic to Cenozoic in the eastern Qilian Shan,
central Qilian Shan, and Longshou Shan regions
of northern Tibet. The spatiotemporal cooling
patterns established by this study require the
multi-phase intracontinental growth history of
the northern Tibetan Plateau and its foreland
region. The regional late Mesozoic exhumation
event recorded across the northern plateau is in-



terpreted to be associated with the consumption
of the Paleo-Tethys and Meso-Tethys Oceans
south of the Qilian-Qaidam-Kunlun continent
from the Triassic to the earliest Jurassic. Another
driver for the Mesozoic cooling event recorded
in northern Tibet and its foreland region is the
latest Jurassic—earliest Cretaceous closure of
the Mongolia-Okhotsk Ocean that defines the
northern margin of the North China craton. The
Late Cretaceous cooling data are best explained
by a regional extensional event as reported by
earlier studies. Thrusting in the Qilian Shan may
have initiated in the Eocene as suggested by our
thermochronological data, which support out-
of-sequence rather than northward-migrating
plateau growth. The early Cenozoic structural
pattern was reorganized in the middle Miocene,
which is associated with the initiation of the Hai-
yuan left-slip fault system and its compressional
and extensional termination structures. Cenozoic
deformation and uplift of the Hexi Corridor and
Longshou Shan region directly north of the Qil-
ian Shan started in the Miocene and resulted
from outward growth of the plateau.
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