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Characteristics That Make Linear Time-Invariant
Dynamic Systems Difficult for Humans to Control
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Abstract—We present results from an experiment in which 55
human subjects interact with a dynamic system 40 times over a
one-week period. The subjects are divided into five groups. For
each interaction, a subject performs a command-following task,
where the reference command is the same for all subjects and
all trials; however, each group interacts with a different linear
time-invariant dynamic system. We use a subsystem identification
algorithm to estimate the control strategy that each subject uses
on each trial. The experimental and identification results are used
to examine the impact of the system characteristics (e.g., poles,
zeros, relative degree, system order, phase lag) on the subjects’
command-following performance and the control strategies that
the subjects learn. Results demonstrate that phase lag (which arises
from higher relative degree and nonminimum-phase zeros) tends
to make dynamic systems more difficult for humans to control,
whereas higher system order does not necessarily make a system
more difficult to control. The identification results demonstrate
that improvement in performance is attributed to: 1) using a
comparatively accurate approximation of the inverse dynamics in
feedforward; and2) using a feedback controllerwith comparatively
high gain. Results also demonstrate that system phase lag is an im-
portant impediment toa subject’s ability to approximate the inverse
dynamics in feedforward, and that a key aspect of approximating
the inverse dynamics in feedforward is learning to use the correct
amount of phase lead in feedforward.

Index Terms—Human behavior, human-in-the-loop (HITL)
systems, nonminimum-phase zeros, phase lag, relative degree.

I. INTRODUCTION

HUMANS learn to interact with and control a wide range
of dynamic systems. For example, humans learn to drive

automobiles, fly aircraft, and ride bicycles. From an automatic-
control-system perspective, the characteristics of a dynamic
system (e.g., poles, zeros, relative degree, systemorder, stability,
phase lag) often impact the choice of control strategy, and can
limit achievable performance [1], [2]. In contrast, the impact of
system characteristics on human-in-the-loop (HITL) behavior is
less well understood [3], [4].
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Human learning and motor control have been studied using
a variety of experimental methods (e.g., [5]–[9]). Furthermore,
a wide range of mathematical models for human learning and
motor control havebeenproposed (e.g., [10]–[20]). For example,
the internal model hypothesis proposes that the central nervous
system constructs models of the body’s interactions with the
physical world and that those models are continually updated
and used for control [21]–[23].
HITL behavior is also studied using system identification

approaches to obtain models of the human control behavior
using data from HITL experiments [24]–[39]. However, many
of these studies incorporate assumptions regarding the human’s
control strategy. For example, the models in [31] and [36] in-
corporate an assumed feedforward control strategy, specifically,
the feedforward controller approximates the inverse dynamics
of the system with which the human interacts. It is also worth
noting that many existing studies examine humans interacting
with relatively simple dynamic systems (often referred to as
controlled elements in the manual control literature). For exam-
ple, Pool et al. [31]–[35] considered systems that are either a
static gain, a single integrator, or a double integrator. Similarly,
Pool et al. [36]–[38] considered dynamic systems that consist
of a single integrator cascaded with a first-order low-pass filter.
However, these studies do not consider more complex dynamic
systems, for example, dynamic systems that have order greater
than two, relative degree greater than two, complex-conjugate
poles, and/or system zeros.
In [40], a subsystem identification (SSID) algorithm is pre-

sented, which can be used to identify the best-fit linear time-
invariant (LTI) model of the control strategy that a human uses
in an HITL experiment. This method does not require that a
specific control strategy is assumed a priori. Instead, the SSID
method identifies the LTI control strategy that is the best fit to
the data from the HITL experiment. In [41], this method is used
to model the feedforward and feedback control that subjects
use in an HITL experiment, where subjects interact with an
LTI system and perform a command-following (i.e., pursuit
tracking) task. The results in [41] demonstrate that subjects
learn to update the feedforward (i.e., anticipatory) control until it
approximates the inverse dynamics of the systemwith which the
subjects interact; this result supports the internalmodel hypothe-
sis [21]–[23]. However, Zhang et al. [41] examined only one LTI
system, which raises several questions. First, do humans learn
to approximate the inverse dynamics in feedforward for other
systems? Second, what system characteristics (e.g., poles, zeros,
relative degree, system order, phase lag) can make a dynamic
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system difficult for humans to control and why? Third, how do
system characteristics impact a human’s ability to approximate
the inverse dynamics in feedforward?
Understanding the impact of system characteristics on HITL

control behavior could have application to a variety of HITL
technologies, including human-operated vehicles and devices.
For example, higher relative degree can arise in structural
systems where sensors and actuators are not collocated [42].
Furthermore, nonminimum-phase zeros can arise in human-
operated vehicles (e.g., automobiles and aircraft). For example,
driving a car backwards (e.g., parallel parking) is a dynamic sys-
tem that often has real nonminimum-phase zeros [1]. Similarly,
an aircraft’s elevator-to-vertical-acceleration transfer function is
often nonminimum phase [43].
This article examines the impact of system characteristics

on HITL control strategies. We present results from an HITL
experiment, where 55 subjects interact with an LTI system 40
times over a one-week period. The subjects are divided into
five groups, where each group interacts with a different LTI
system. For each interaction, each subject performs a command-
following task, where the reference command (i.e., forcing
function) is the same for all trials and all subjects. We use an
SSID algorithm to identify the control strategy (feedforward,
feedback, feedback time delay) that each subject uses on each
trial. The results are used to examine the impact of the system
characteristics on the subjects’ performance and the control
strategies that the subjects learn.
This article is organized as follows. Section II describes the

experimental setup and approach. Section III examines the sub-
jects’ command-following performance in both the time domain
and frequency domain. The remainder of this article is dedicated
to explaining why the command-following performances differs
between the groups (i.e., between the different dynamic sys-
tems). Our approach is to estimate a model of each subject’s
control strategy on each trial, and use these models to help
explain the performance differences. Section IV presents the
SSID algorithm that is used to obtain the best-fit models to each
subject’s experimental data on each trial. Then, Sections V and
VI examine the identified feedforward and feedback controllers,
respectively. Finally, Section VII summarizes the results and
provides conclusions.

II. EXPERIMENTAL METHODS

In total, 55 people voluntarily participated in this study. At the
time of this study, the subjects were 18 to 35 years of age, and
they had no known motor control or neurological disorders. The
University of Kentucky’s Institutional Review Board approved
this study under IRB protocol 44649.
In this study, subjects use a single-degree-of-freedom rota-

tional joystick to affect the horizontal position of a controlled
object that is displayed on the screen of a computer. The position
of the joystick is denoted by u, which is the input to an LTI sys-
tem. The horizontal position of the controlled object is denoted
by y, which is the output of the LTI system. Another object
also moves on the computer screen, and its horizontal position

Fig. 1. Experimental setup. A subject uses a joystick to affect the horizontal
position y of a controlled object displayed on a computer screen. The joystick
position u is the input to an LTI system, and the controlled object’s position
y is the output of the LTI system. A reference object is also displayed on the
computer screen, and its position r is a 60-s chirp signal.

is denoted by r, which is independent of u. This object is called
the reference object. The signals u, y, and r are functions of time
t. Fig. 1 is a diagram of the experimental setup.
Prior to interacting with the experimental setup, each subject

is shown the computer screen and told that manipulating the
joystick moves the controlled object. Subjects are told that their
objective is to manipulate the joystick and attempt to make
the controlled and reference objects have the same horizontal
position at each instant of time. Thus, each subject’s objective is
to generate a control u that makes the magnitude of the error
e ! r − y as small as possible. Prior to the experiment, the
subjects have no knowledge of the LTI system relating u and
y, or the reference object’s trajectory r.

Each subject performs 40 trials of the experiment over 7 days.
A trial is an 60-s time period during which a subject operates
the joystick. Each subject’s trials are divided into 4 sessions, and
each session consists of 10 trials, which are completed within
a period of 20 min. No subject participates in more than one
session in a 12-h period.
For each session, a subject is placed in an isolated area, which

is free from distraction. The subject sits in a chair facing a
computer screen, which is located approximately 60 cm from
the subject’s eyes and measures 47.6 cm high by 26.8 cm
wide. The subject uses a hand of their choice to manipulate
the single-degree-of-freedom rotational joystick, which is a
Teledyne Gurley model number 8225-6000-DQSD.
The reference object’s position r is a 60-s chirpwith frequency

content between 0 and 0.5 Hz. Specifically, for t ∈ [0, 60],
r(t)!2 sin πt2

120 . The upper frequency limit of 0.5 Hz is selected
such that the reference r is within the frequency range of
achievable humanmotion. Note that [44, Ch. 21] states that well-
trained human subjects interacting with a static-gain system can
accurately track sinusoidal commands up to approximately 2Hz.
However, Yu et al. [45] indicated that for subjects interacting
with a single integrator, the upper frequency limit is significantly
less (approximately 0.6 Hz). For the more complicated LTI
dynamic systems considered in this study, experimental tuning
was used to determine the upper frequency limit of 0.5 Hz. We
note that this upper frequency limit is consistent with some of
the sinusoidal commands used in [46]. The units of the reference
r are hash marks (hm), which are vertical lines shown on the
computer screen to denote position. The distance between hash
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Fig. 2. Bode plots of Gm, Gn, Grd1, Grd2, and Grd3.

marks on the computer screen is 2.5 cm. The amplitude of the
reference r is 2 hm, and the range of motion displayed on the
computer screen is ±8 hm.
For t ∈ [0, 60], the controlled object’s position y satisfies the

LTI differential equation

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) (2)

where A ∈ Rnx×nx , B ∈ Rnx×1, C ∈ R1×nx , x(t) ∈ Rnx is
the state, and the initial condition is zero (i.e., x(0) = 0). It
follows from (1) and (2) that the transfer function from u to y
is G(s) ! C(sI −A)−1B. The dynamic system (1) and (2) is
simulated using a dSPACE DS1103 control board. The DS1103
board also measures u, and the ControlDesk software is used
to display the controlled and reference objects on the computer
screen. The joystick is connected to the dSPACE DS1103 con-
nector panel using a 10-pin encoder cable.
The 55 subjects are divided into 5 groups, where each group

has 11 subjects. The subjects interact with the LTI system (1)
and (2), where the system matrices (i.e., A, B, C) are selected
to explore the effects of different system characteristics. In
particular, each group interacts with the LTI system (1) and (2),
where the associated transfer function G is equal to one of the
following five transfer functions:

Gm(s) !
2(s+ 2.2)

s2 + 3.6s+ 4
, Gn(s) !

−2(s− 2.2)

s2 + 3.6s+ 4

Grd1(s) !
1.6(s+ 1)

(s+ 1.6)
Gm(s), Grd2(s) !

1.6

(s+ 1.6)
Gm(s)

Grd3(s) !
27.1

(s+ 2.2)(s2 + 3.6s+ 4)
.

These dynamic systems are selected to examine the impact of
system characteristics, including system zeros, relative degree,
system order, and phase shift. Fig. 2 shows the Bode plots for
Gm, Gn, Grd1, Grd2, and Grd3.

All five transfer functions have a pair of complex-conjugate
poles at −1.8± 0.872. However, the transfer functions differ
by the other poles and zeros. For example, Gm and Gn have the

same poles and the same dc gain. However, Gm is minimum
phase with a zero at −2.2, while Gn is nonminimum phase with
a zero at +2.2. The magnitude of Gm and Gn coincide, whereas
Gn has 180◦ more asymptotic phase lag than Gm. We examine
the impact of nonminimum-phase zeros by comparing subjects’
behavior with Gm to that with Gn.
We examine the impact of system order and relative degree by

comparing subjects’ control behavior with Gm (order 2, relative
degree one) to that with Grd1 (order 3, relative degree one) and
that with Grd2 (order 3, relative degree 2).
To examine the impact of phase lag, note that Gm and Gn

have the same magnitude but different phases. In contrast, Grd3

and Gn have the same phase but different magnitudes. Thus, we
examine the impact of phase shift by comparing the subjects’
control behavior with Gm, Gn, and Grd3.

The transfer functions are selected such that all poles and zeros
lie in the 0-to-π rad/s frequency range of the chirp r, which is
also within the frequency range of achievable human motion.
In addition, the magnitudes of all poles and zeros are separated
by at least 0.2 rad/s to ensure that the impact of poles and zeros
do not approximately cancel (i.e., to prevent approximate pole-
zero cancellation). First, the poles and zeros of Gm and Gn are
selected through experimental tuning. These poles and zeros also
determine the poles of Grd3, because Grd3 is selected to have the
same phase as Gn. Next, Grd2 is selected to have the poles and
zero of Gm and an extra pole at −1.6, which is selected to have
magnitude less than the magnitudes of the other poles and zero
of Grd2. This ensures that the extra pole at −1.6 has significant
impact over the 0-to-π rad/s. Finally, Grd1 is selected to have the
poles and zero of Grd2 and an extra zero at−1, which is selected
to have magnitude less than the magnitudes of the poles of Grd1.

The zero-frequency gain for each transfer function is selected
so that the joystick motion required to follow r is within the
comfortable range of human motion (i.e., wrist twist). Note
that Gm, Gn, Grd1, and Grd2 have the same zero-frequency gain
(i.e., Gm(0) = Gn(0) = Grd1(0) = Grd2(0) = 1.1). In contrast,
the zero-frequency gain Grd3(0) = 3.1 is higher than that of the
other transfer functions becauseGrd3 has relative degree3,which
results in more magnitude change over the 0-to-π rad/s range.
Thus, the zero-frequency gain is selected as Grd3(0) = 3.1 so
that the joystick motion required to follow r is within the
comfortable range of human motion (i.e., less than 180◦ of wrist
twist).
For each of the 2200 trials, we record r, u, and y with a

sample time of Ts = 0.02 s. The sampled data are denoted
by {rk}nk=1, {uk}nk=1, and {yk}nk=1, where n = 3000 sam-
ples. For k ∈ {1, . . . , n}, we define ek ! rk − yk, which is the
command-following error.

III. ANALYSIS OF COMMAND-FOLLOWING PERFORMANCE

A divergent trial is a trial in which for any k ∈ {1, . . . , n},
yk exceeds±8 hm display limits. As shown in Table I, there are
more divergent trials during the earlier trials than during the later
trials. For each group, there are no divergent trials over the last
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TABLE I
NUMBER OF DIVERGENT TRIALS

Fig. 3. Mean and standard deviation of ‖e‖ on each trial for each group. For
each group, the mean and standard deviation of ‖e‖ tend to decrease over the
trials. The ◦ is the mean, and the lines indicate standard deviation.

TABLE II
MEAN ‖e‖ AND CHANGE IN MEAN ‖e‖ FROM FIRST FIVE TO

LAST FIVE TRIALS

five trials. Divergent trials are omitted from the results reported
in the rest of this article.

A. Time-Domain Analysis

For each trial, we define the time-averaged error

‖e‖ ! 1

n

n∑

k=1

|ek| .

Fig. 3 shows themean and standard deviation of ‖e‖ on each trial
for each group, and Table II shows themean ‖e‖ on different sets
of trials for each group. For each group, the mean and standard
deviation of ‖e‖ tend to decrease over the trials. In particular, for
each group, themean ‖e‖ decreases by at least 42% from the first
five trials to the last five trials. The group with Gn has the largest
decrease (in absolute and percent) from the first five trials to the
last five trials. For all groups, the open-loop (i.e.,u = 0 and thus,
e = r) time-averaged error is approximately 1.2. By trial 40, the
mean ‖e‖ for each group is at least 50% better than the open
loop. We note that the mean ‖e‖ for each group could continue
to decrease with additional practice (e.g., trials). In particular,

the groupwithGn appears to have a downward trajectory inmean
‖e‖ over the last few trials in comparison to the other groups.
A one-way ANOVA comparing each group’s mean ‖e‖ over

the last five trials yields F4,11 = 23.7 and p < 0.001, thus
confirming a statistical difference between groups. A Tukey
post-hoc pairwise comparison yields p < 0.001 for all pairs
except (Gm,Grd2), (Grd1,Grd2), (Gm,Grd1), and (Gn,Grd3). The
p-values for pairs (Gm,Grd2) and (Grd1,Grd2) are p = 0.098 and
p = 0.093. In contrast, there is no statistical difference for pairs
(Gm,Grd1) and (Gn,Grd3).
Therefore, over the last five trials, the mean ‖e‖ with Gm

is smaller than that with Gn, which aligns with control theory
results showing that nonminimum-phase zeros can limit perfor-
mance [1], [2]. Table II also shows that over the last five trials,
the mean ‖e‖ with Gm is less than that with Grd2. Recall that
the only difference between Gm and Grd2 is that Grd2 has an
additional pole at −1.6. Thus, Grd2 is higher order and higher
relative degree than Gm, which suggests that higher system order
and/or higher relative degree could be impediments to a human’s
ability to control a dynamic system. However, the mean ‖e‖
with Grd1 over the last five trials is comparable to that with Gm;
both of which are smaller than the mean ‖e‖ with Grd2 over the
last five trials. Furthermore, the only difference between Grd2

and Grd1 is that Grd1 has an additional zero at −1. Together,
these observations suggest that higher relative degree can make
a system more difficult to control, whereas higher system order
does not necessarily make a system more difficult to control.
Both nonminimum-phase zeros and relative degree contribute

to phase lag. In particular, each nonminimum-phase zero and
each integer increase in relative degree causes 90◦ of asymptotic
phase lag. Thus, another interpretation of the abovementioned
observations is that phase lag can make systems difficult for
humans to control. Table II shows that over the last five trials,
the mean ‖e‖ with Gn and Grd3 are approximately equal but
greater than the mean ‖e‖ with Grd2, which is greater than the
mean ‖e‖ with Grd1 and Gm. Furthermore, over the 0-to-0.5 Hz
range, Gn and Grd3 have the same phase lag, which is greater
than the phase lag of Grd2, which is greater than the phase lag
of Gm and Grd1. These observations suggest that phase lag is
a key characteristic that makes systems difficult for humans to
control.

B. Frequency-Domain Analysis

For each trial, we calculate the discrete Fourier transform
(DFT) of {yk}nk=1 and {rk}nk=1 at frequencies ωi = π(i−
1)/30 rad/s, where i ∈ {1, 2, . . . , N}, which areN = 31 evenly
spaced frequencies over the 0-to-0.5 Hz range. Let ydft(ωi)
and rdft(ωi) denote the DFT of {yk}nk=1 and {rk}nk=1 at ωi,
respectively.
For each trial, define the frequency-averaged error in the

magnitude of the output

Em ! 1

N

N∑

i=1

∣∣∣∣ |ydft(ωi)| e∠rdft(ωi) − |rdft(ωi)| e∠rdft(ωi)

∣∣∣∣

which is the frequency-averaged magnitude of the difference
between the ydft and rdft assuming that the phase of ydft is
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Fig. 4. Mean and standard deviation of Em and Ep on each trial for each
group. For each group, the mean Em and Ep tend to decrease over the trials.
However, the mean Ep decreases more (in absolute and percent) than the mean
Em. The ◦ is the mean, and the lines indicate standard deviation.

TABLE III
MEAN Em × 10−2 AND CHANGE FROM FIRST FIVE TO LAST FIVE TRIALS

TABLE IV
MEAN Ep × 10−2 AND CHANGE FROM FIRST FIVE TO LAST FIVE TRIALS

equal to the phase of rdft. Similarly, for each trial, define the
frequency-averaged error in the phase of the output

Ep !
1

N

N∑

i=1

∣∣∣∣ |rdft(ωi)| e∠ydft(ωi) − |rdft(ωi)| e∠rdft(ωi)

∣∣∣∣

which is the frequency-averaged magnitude of the difference
between the ydft and rdft assuming that the magnitude of ydft
is equal to the magnitude of rdft. By comparing Em and Ep, we
can determine if difference between ydft and rdft is due more to
error in magnitude or error in phase.
Fig. 4 shows the mean and standard deviation of Em and Ep

for each group on each trial. Tables III and IV show themeanEm

andEp on different sets of trials for each group. These results are
similar to the time-domain results shown in Fig. 3 and Table II.
Specifically, the mean Em and mean Ep both decrease over the
trials. However, for each group, the meanEp is generally greater

Fig. 5. Model of the control strategy. The control strategy is modeled using the
feedforward transfer functionGff , feedback transfer functionGfb, and feedback
delay d.

than the mean Em, which suggests that the subjects’ command-
following error is a result of error in phase more than error in
magnitude.
A paired t-test of change inEm and change inEp from the first

five trials to the last five trials yields p < 0.05 for each group
exceptGrd3. Therefore, themeanEp decreasesmore (in absolute
and percent) than the mean Em. In particular, for Gm, Gn, Grd1,
Grd2, andGrd3, themeanEm decreases by 53%, 49%, 35%, 48%,
and 46% from the first five trials to the last five trials. In contrast,
the mean Ep decreases by 67%, 68%, 52%, 64%, and 48% in
the same order. This observation suggests that the improvement
in ‖e‖ is attributed more to improvement in matching the phase
of the reference than improvement in matching its magnitude.

IV. MODELING CONTROL STRATEGIES USING

SUBSYSTEM IDENTIFICATION

We discretize G using a zero-order hold on the input with
sample time Ts = 0.02 s, which yields the discrete-time transfer
function G. Thus, (1) and (2) imply that

ŷ(z) = G(z)û(z) (3)

where û and ŷ are the z-transforms of uk and yk. Let Gm, Gn,
Grd1,Grd2, andGrd3 denote the discrete-time transfer functions
obtained by discretizing Gm, Gn, Grd1, Grd2, and Grd3 with a
sample time Ts = 0.02 s and a zero-order hold on the input.
Thus,G is equal toGm,Gn,Grd1,Grd2, orGrd3 as appropriate.
Each subject’s control strategy is modeled by the LTI control

architecture shown in Fig. 5, which is given by

û(z) = z−dGfb(z)ê(z) +Gff(z)r̂(z) (4)

where r̂ and ê are the z-transforms of rk and ek;Gff is the feed-
forward transfer function;Gfb is the feedback transfer function;
and the nonnegative integer d is the feedback delay. Feedforward
is the anticipatory control determined solely from the reference
rk, whereas feedback is the reactive control determined from
the observed error ek. The feedback delay d can model sensory
and/ormotor time delay in the feedback path. Sensory time delay
in the feedback path arises from optical perception and process-
ing as a subject views the position rk of the reference object
and the position yk of the controlled object on the computer
screen, and compares those positions to determine the error ek.
Motor time delay in the feedback path indicates the time it takes
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the subject to execute a desired feedback control signal (i.e.,
Gfbê). We do not explicitly include feedforward time delay in
(4) because the same reference rk is used for each trial, and rk
is predictable (see [31], [47] for more discussion of predictable
signals). Thus, subjects are able to learn to compensate for
feedforward delay (which can arise from sensory and/or motor
time delay). Note that subjects may not completely compensate
for feedforward time delay on early trials; however, on these
early trials, the feedforward transfer function Gff can capture
some time delay (i.e., poles at zero) even though such poles are
not explicitly indicated in (4).
It follows from (3) and (4) that the closed-loop transfer

function from rk to yk is

G̃yr(z) !
G(z)

[
Gff(z) + z−dGfb(z)

]

1 + z−dGfb(z)G(z)
. (5)

We use the SSID algorithm in [40] and [41] to determine the
control strategy (i.e.,Gff ,Gfb,d) of the form (4) that is the best-fit
to the experimental data for each subject on each trial. Since yk
is bounded, we assume that G̃yr is asymptotically stable (i.e., its
poles are in the open unit disk of the complex plane). Thus, (5)
implies that Gff is asymptotically stable. The SSID algorithm
in [40] and [41] can be implemented in a computationally
efficient manner if Gff is finite impulse response (FIR). Thus,
we letGff be FIR, which does not significantly restrict the class
of feedforward behavior [40].
For each trial and for i ∈ {1, 2, . . . , N}, define the closed-

loop frequency-response data H(ωi) ! ydft(ωi)/rdft(ωi). The
objective of the SSID algorithm is to determine Gff , Gfb, and
d such that the modeled frequency response {G̃yr(eωiTs)}Ni=1

approximates the frequency-response data {H(ωi)}Ni=1. The
SSID algorithm aims to find Gff , Gfb, and d that minimize the
cost function

J(Gff , Gfb, d) !
N∑

i=1

∣∣∣∣∣G̃yr(e
ωiTs)−H(ωi)

∣∣∣∣∣

2

(6)

subject to the constraint that G̃yr is asymptotically stable. The
SSID algorithm is summarized as follows.
1) Select a feedback candidate pool that contains possible

models for Gfb and d. Every element in the feedback
candidate pool is such that G̃yr is asymptotically stable.

2) For each element in the feedback candidate pool, solve a
convex optimization to find the FIR feedforward controller
Gff that is the best fit to the frequency-response data
{H(ωi)}Ni=1.

3) Determine the triple (Gff , Gfb, d) that minimizes J over
all models in the feedback candidate pool.

For details of the SSID method (see [41, Appendix A]). For
an analysis of the algorithm’s properties (with d = 0), see [40].
The SSID algorithm is implemented on a supercomputer using
parallel processing such that the relatively large number of
convex optimizations (required in Step 2) can be performed in
a reasonable amount of time (see [40]).
For each trial, we identify the FIR feedforward controller

Gff , second-order strictly proper feedback transfer function
Gfb, and feedback delay d that minimize J . The feedforward
controller order is selected to allow Gff to approximate G−1

TABLE V
MEAN ‖GffG− 1‖1 AND CHANGE FROM FIRST FIVE TO LAST FIVE TRIALS

with approximately 0.1% error over the 0-to-0.5 Hz range of the
chirp command r. Thus, the feedforward controller orders are
2, 6, 5, 2, and 3 forGm,Gn,Grd1,Grd2, andGrd3, respectively.
See Appendix A in the supplemental material for the details of
the feedback candidate pool.
The SSID algorithm from [40] and [41] is used as opposed

to traditional system identification techniques (e.g., [48]–[52]),
because the unknown subsystem (4) is connected in feedback
withG, and traditional system identification algorithms applied
to closed-loop architectures can yield trivial solutions [53]–[55].
For example, Gff = G−1 and z−dGfb = −G−1 is a solution
with most classical system identification approaches. In con-
trast, Gff = G−1 and z−dGfb = −G−1 does not minimize the
SSID cost (6) and is not a solution with the SSID algorithm
from [40] and [41]. Nevertheless, if the identified feedback
controller satisfies z−dGfb ≈ −G−1, then the SSID results can
be ill conditioned. See Appendix B in the supplemental material
for more details and a conditioning analysis of the SSID results
presented in this article. Appendix B shows that the qualitative
results reported in this article are not impacted by ill-conditioned
results. In addition, Appendix C in the supplemental material
presents a validation analysis of the SSID results.

V. FEEDFORWARD IDENTIFICATION RESULTS

A. Learning to Approximate G−1 in Feedforward

The experimental study in [41] demonstrated that an impor-
tant aspect of humans learning to control a dynamic system
is updating the feedforward (i.e., anticipatory) control until it
approximates the inverse system dynamics. However, the ex-
perimental study in [41] used only one dynamic system (order
4, relative degree 2, minimum phase). Thus, we are motivated to
determine if humans learn to approximate the inverse dynamics
in feedforward for other systems.
For each identified feedforward controller, we define

‖GffG− 1‖1 ! 1

π

∫ π

0

∣∣Gff(e
ωTs)G(eωTs)− 1

∣∣ dω

whereG is equal toGm,Gn,Grd1,Grd2, orGrd3 as appropriate.
Thus, ‖GffG− 1‖1 is the magnitude of the difference between
the identified Gff and the inverse dynamics G−1 normalized by
the magnitude of G−1 and averaged over the 0-to-0.5 Hz range
(i.e., the 0-to-π rad/s range).
Fig. 6 shows themean and standard deviation of ‖GffG− 1‖1

on each trial for each group, and Table V shows the mean
‖GffG− 1‖1 on different sets of trials for each group. For each
group, the mean ‖GffG− 1‖1 decreases over the trials. Figs. 7–
11 are the Bode plots of the average identified feedforward
controller Gff over all 11 subjects on trials 1 and 40 for the
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Fig. 6. Mean and standard deviation of ‖GffG− 1‖1 on each trial. The
normalized difference between the identified Gff and G−1 tends to decrease
over the trials. The ◦ is the mean, and the lines indicate standard deviation.

Fig. 7. Average identified feedforward controller for the group with Gm on
trials 1 and 40. The shaded region shows the standard deviation.

Fig. 8. Average identified feedforward controller for the group with Gn on
trials 1 and 40. The shaded region shows the standard deviation.

group with Gm, Gn, Grd1, Grd2, and Grd3, respectively. For
each group, the average identified Gff approximates G−1 better
on trial 40 than on trial 1. Thus, by the last trial, subjects
learn an approximation ofG−1 and use the approximate inverse
dynamics in feedforward. This result agrees with the results
in [41] for a different experiment, and supports the internal
model hypothesis [21]–[23].

Fig. 9. Average identified feedforward controller for the group withGrd1 on
trials 1 and 40. The shaded region shows the standard deviation.

Fig. 10. Average identified feedforward controller for the group with Grd2
on trials 1 and 40. The shaded region shows the standard deviation.

Fig. 11. Average identified feedforward controller for the group with Grd3
on trials 1 and 40. The shaded region shows the standard deviation.

B. Differences in the Groups’ Approximations of G−1

Although the SSID results show that the subjects learn to
approximate G−1 in feedforward, Fig. 6 shows that on trial 40,
the subjects interacting with Gm, Grd1, and Grd2 approximate
the inverse dynamicsmore accurately than those interactingwith
Gn and Grd3. Specifically, mean ‖GffG− 1‖1 on trial 40 for
Gm, Gn, Grd1, Grd2, and Grd3 are 0.14, 0.22, 0.14, 0.13, and
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0.35, respectively. Table V shows similar results over the last
five trials.
A one-way ANOVA comparing each group’s mean ‖GffG−

1‖1 over the last five trials yields F4,11 = 7.33 and p < 0.001,
thus confirming a statistical difference between groups. A Tukey
posthoc pairwise comparison yields p < 0.05 for each of Gm,
Grd1, or Grd2 paired with either Gn or Grd3. Thus, the subjects
interacting with Gm, Grd1, and Grd2 learn to approximate G−1

in feedforward better than those interacting with Gn and Grd3.
This difference in the accuracy of the approximation of G−1 in
feedforward helps to explain why the mean ‖e‖ over the last
five trials forGm,Grd1, andGrd2 are less than those forGn and
Grd3.

One possible explanation for the difference in the accuracy
of the approximations ofG−1 is that the approximation tends to
be worse at frequencies where G has significant phase lag, and
that Gn and Grd3 have the most phase lag over the 0-to-0.5 Hz
range. Note that this conjecture is supported qualitatively by the
Bode plots in Figs. 7–11.
To examine this conjecture further, we consider a modified

version of ‖GffG− 1‖1 that focuses on the frequency ranges
over which each transfer function has the same amount of phase
lag. First, note that Grd1 has the least phase lag of the five
transfer functions over the 0-to-0.5 Hz range, and that phase
lag is θ ! ∠Grd1(eπTs) = −0.958 rad (or −54.9◦). For each
dynamic system, let ωθ ∈ [0,π] be such that

∠G(eωθTs) = θ

whereG is equal toGm,Gn,Grd1,Grd2, orGrd3 as appropriate.
Thus, ωθ is the frequency at which the transfer function G has
phase lag θ, which is the phase lag ofGrd1 at 0.5 Hz. Therefore,
ωθ is equal to π rad/s (or 0.5 Hz) for Grd1, and ωθ is less than
π rad/s for the other 4 transfer functions. Specifically,ωθ is equal
to 0.75π, 0.30π, 0.23π, and 0.23π rad/s for Gm, Grd2, Gn, and
Grd3, respectively.
Next, for each identified feedforward controller, define

‖GffG− 1‖1,[0,ωθ)] !
∫ ωθ

0

∣∣Gff(eωTs)G(eωTs)− 1
∣∣

ωθ
dω

where ωθ ∈ [0,π] satisfies ∠G(eωθTs) = θ, and G is equal
to Gm, Gn, Grd1, Grd2, or Grd3 as appropriate. Therefore,
‖GffG− 1‖1,[0,ωθ ] is computed by averaging over the frequency
range from 0 to ωθ, which is the range where the phase of G
is between 0 and θ. In other words, ‖GffG− 1‖1,[0,ωθ ] is the
magnitude of the difference between Gff and G−1 normalized
by the magnitude ofG−1 and averaged over the frequency range
where the phase of G is between 0 and θ. Similarly, for each
identified feedforward controller, define

‖GffG− 1‖1,[ωθ,π] !
∫ π

ωθ

∣∣Gff(eωTs)G(eωTs)− 1
∣∣

π − ωθ
dω

which is the magnitude of the difference between Gff and G−1

normalized by the magnitude of G−1 and averaged over the
frequency range where the phase of G is between θ and the
value it achieves at π rad/s.
Table VI shows the mean ‖GffG− 1‖1,[0,ωθ ] on different sets

of trials for each group, and Table VII shows the mean ‖GffG−

TABLE VI
MEAN ‖GffG− 1‖1,[0,ωθ ] AND CHANGE FROM FIRST FIVE TO

LAST FIVE TRIALS

TABLE VII
MEAN ‖GffG− 1‖1,[ωθ,π] AND CHANGE FROM FIRST FIVE TO

LAST FIVE TRIALS

1‖1,[ωθ,π] on different sets of trials for the groups with Gn and
Grd3. Table VI shows that over the last five trials, the error in
approximating G−1 in feedforward is approximately the same
for all groups over the 0-to-ωθ frequency range. In contrast,
Table VII shows that over the last five trials, the groups withGn

andGrd3 have significantly greater error in approximatingG−1

in feedforward over the higher frequency range. Thus, the groups
with Gn and Grd3 learn to approximate G−1 in feedforward
more poorly than the other groups at higher frequencies, where
Gn and Grd3 have significantly more phase lag. This provides
additional evidence that phase lag is an important impediment to
a human’s ability to learn to approximate the inverse dynamics
in feedforward.

C. Learning the Phase Versus Magnitude of G−1

Figs. 7–11 show that for each group, the average identified
feedforward controller on trial 1 has significant phase lag relative
to G−1, and that this phase lag is significantly reduced (or
eliminated) by trial 40. Thus, subjects learn to use phase lead
in feedforward over the trials. This observation suggests that
a key component of learning to approximate G−1 in feedfor-
ward is learning to use the correct amount of phase lead. To
examine this observation in more detail, for each trial, define
the frequency-averaged error in the magnitude ofGffG relative
to unity

Me(Gff) !
1

π

∫ π

0

∣∣∣∣
∣∣Gff(e

ωTs)G(eωTs)
∣∣− 1

∣∣∣∣ dω

which is the frequency-averaged magnitude of the difference
between GffG and 1 assuming that the phase of GffG is equal
to the phase of 1. Similarly, for each trial, define the frequency-
averaged error in the phase of GffG relative to unity

Pe(Gff) !
1

π

∫ π

0

∣∣∣∣e
j∠[Gff (eωTs )G(eTsω)] − 1

∣∣∣∣ dω

which is the frequency-averaged magnitude of the difference
between GffG and 1 assuming that the magnitude of GffG is
equal to the magnitude of 1. Now, we compare Me and Pe to
determine if difference between GffG and 1 is due more to
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Fig. 12. Mean and standard deviation ofMe on each trial. The meanMe tends
to decrease over the trials. The ◦ is the mean, and the lines indicate standard
deviation.

Fig. 13. Mean and standard deviation of Pe on each trial. The mean Pe tends
to decrease over the trials. The ◦ is the mean, and the lines indicate standard
deviation.

TABLE VIII
MEAN Me AND CHANGE FROM THE FIRST FIVE TO LAST FIVE TRIALS

TABLE IX
MEAN Pe AND CHANGE FROM FIRST FIVE TO LAST FIVE TRIALS

error in magnitude or error in phase. In other words, we use
Me and Pe to determine if the error in approximating the inverse
dynamics in feedforward is attributed more to error in matching
the magnitude or the phase of the inverse dynamics.
Figs. 12 and 13 show the mean and standard deviation ofMe

and Pe on each trial for each group. For each group, the mean
Me and mean Pe tend to decrease over the trials. Tables VIII
and IX show the mean Me and Pe on different sets of trials for
each group. A paired t-test of change in Me and change in Pe

Fig. 14. Mean and standard deviation of ‖z−dGfb‖1 on each trial. The mean
‖z−dGfb‖1 tends to increase over the first 20 trials. The ◦ is the mean, and the
lines indicate standard deviation.

TABLE X
MEAN ‖z−dGfb‖1

from the first five trials to the last five trials yields p < 0.05
for each group except Gm, which has p = 0.13. Thus, the mean
Pe decreases more (in absolute and percent) than the mean Me

from the first five trials to the last five trials. Specifically, for
Gm,Gn,Grd1,Grd2, andGrd3, the meanMe decreases by 58%,
65%, 27%, 61%, and 46% from the first five trials to the last
five trials. In contrast, the mean Pe decreases by 63%, 74%,
63%, 76%, and 63% in the same order. This observation suggests
that improvement in the approximation of G−1 in feedforward
is attributed more to improvement in matching the phase ofG−1

than improvement in matching the magnitude of G−1. Thus,
learning the phase lead of G−1 is a critical aspect of learning to
approximate G−1 in feedforward.

VI. FEEDBACK IDENTIFICATION RESULTS

For each identified feedback controller, we define

‖z−dGfb‖1 ! 1

π

∫ π

0

∣∣e−ωTsdGfb(e
ωTs)

∣∣ dω

which is the frequency-averaged magnitude of z−dGfb over the
0-to-0.5 Hz range. Note that ‖z−dGfb‖1 does not depend on
the feedback delay d. Fig. 14 shows the mean and standard
deviation of ‖z−dGfb‖1 on each trial for each group, andTableX
shows the mean ‖z−dGfb‖1 on different sets of trials for each
group. For each group, the mean ‖z−dGfb‖1 tends to increase
from trials 1–5 to trials 16–20 (although the increase for the
group withGn is comparatively small). These increases suggest
that the subjects learn to use more frequency-averaged feedback
gain over the first 20 trials. Thus, subjects learn to increase the
feedback gain in a manner that maintains closed-loop stability.
To examine this further, we compute the stability margins (i.e.,
upward gain margin and phase margin) associated with each
identified feedback controller.
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TABLE XI
MEAN UPWARD GAIN MARGIN (ABSOLUTE)

TABLE XII
MEAN PHASE MARGIN (DEGREES)

Tables XI and XII show the mean upward gain margins
and mean phase margins on different sets of trials for each
group. For each group, the mean upward gain margin and
mean phase margin decrease from trials 1–5 to trials 16–20.
Thus, over the first 20 trials, subjects learn to increase feed-
back gain by using controllers with smaller stability margins.
This observation suggests that through repeated interaction, the
subjects learn the system dynamics G well enough to use less
conservative feedback controllers without causing closed-loop
instability.
Note that the mean ‖z−dGfb‖1 and associated stability mar-

gins do not have a consistent trend over the last 20 trials.
However, during the last 20 trials, the feedforward control is
a comparatively accurate approximation of G−1, and (5) im-
plies that the closed-loop transfer function G̃yr is insensitive to
z−dGfb. Thus, for these trials, the identified Gfb may not be an
accurate representation of the feedback used by the subjects.
The average identified feedback time delay over all 40 trials

for groups with Gm, Gn, Grd1, Grd2, and Grd3 are 233, 299,
310, 241, and 310 ms, respectively. These results for human
time delay with visual feedback are consistent with [41]. There
is no apparent trend in the mean or standard deviation of the
identified feedback time delay.

VII. CONCLUSION

This article contains several new contributions. First, this
article determines characteristics that can make an LTI dynamic
system difficult for humans to control. Second and more impor-
tantly, this paper provides insights into why those characteristics
can make a system difficult for humans to control. Note that
many existing studies (e.g., [24]–[38]) focus on the human’s
steady-state control behavior (i.e., the behavior after practice). In
contrast, this work examines not only the steady-state behavior
but also how the subjects’ control behavior changeswith practice
(i.e., from the early to later trials).
This article shows that higher relative degree and

nonminimum-phase zeros tend to make dynamic systems more
difficult for humans to control, whereas higher system order
(without change in relative degree) does not necessarily make

a system more difficult to control (see Fig. 3 and Table II).
Together, these results demonstrate that phase lag is a key
characteristic that makes systems difficult for humans to control.
In addition, the frequency-domain analysis in Section III-B
shows that the subjects’ improvement in time-averaged error ‖e‖
over the trials is attributed more to improvement in matching
the phase of the reference than improvement in matching the
magnitude of the reference.
The feedforward identification results in Section V show that

approximating the inverse dynamics in feedforward is an impor-
tant component of learning to control each of the five dynamic
systems. This result agrees with previously reported results for
different experiments (e.g., [41]). The results also show that
subjects interacting with systems that have less phase lag (i.e.,
Gm, Grd1, Grd2) learn to approximate the inverse dynamics in
feedforwardmore accurately than those interactingwith systems
that have more phase lag (Gn, Grd3). This observation helps to
explain why the subjects’ interacting with Gm, Grd1, and Grd2

have smaller command-following error than those interacting
with Gn and Grd3.
The feedforward identification results provide new insights

into why system phase lag can make an LTI dynamic system
difficult for humans to control. For each group, the average
identified feedforward controller on the first trial has phase lag
relative to the inverse dynamics, and this phase lag is signifi-
cantly reduced or eliminated by the last trial (see Figs. 7–11).
Furthermore, for each group, the subjects’ improvement in
approximating G−1 in feedforward over the trials is attributed
more to improvement in matching the phase of G−1 than im-
provement in matching the magnitude of G−1 (see Tables VIII
and IX). Thus, a key aspect of learning to approximate G−1 in
feedforward is learning the phase of G−1 and learning to use
the correct amount of phase lead. However, results also demon-
strate that larger system phase lag is an important impediment
to a subject’s ability to approximate G−1 in feedforward (see
Tables VI and VII).
The feedback identification results show that the frequency-

averaged feedback gains tend to increase over the first 20 trials,
and these higher feedback gains correspond to smaller stability
margins. Thus, learning to use less-conservative feedback con-
trollers is another factor that contributes to the improvement in
‖e‖ over trials.
The results of this article provide new insights into the impact

of system characteristics (e.g., relative degree, system order,
zeros, phase lag) on HITL control behavior. These results could
have application to design and analysis for a variety of HITL
technologies, including active prostheses and exoskeletons, and
human-operated devices and vehicles.
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APPENDIX A
DESCRIPTION OF CANDIDATE POOL FOR SSID

For each trial, we use the SSID algorithm in [41, Algorithm
1] to identify the best-fit model of the subject’s control (4).
The controller orders are chosen sufficiently large to capture
different control approaches that lead to good command-
following performance. We select the controller orders to allow
for high gain in feedback as well as approximate dynamic
inversion in feedforward. Specifically, for all groups, Gfb is
modeled as a second-order strictly proper transfer function. We
select the feedforward controller order large enough to allow
G↵ to approximate G

�1 with approximately 0.1% error over
the 0-to-0.5 Hz range. For Gm, Gn, Grd1, Grd2, and Grd3, the
FIR feedforward transfer function is second order, sixth order,
fifth order, second order, and third order, respectively.
The candidate pool (denoted by � in [41, Algorithm 1])

is designed to capture a wide range of behavior over the
0-to-0.5 Hz range. The candidate pools for Gm, Gn, Grd1,
Grd2, and Grd3 contain approximately 0.9, 0.7, 0.8, 1.0, and
0.4 billion elements, respectively. The candidate pool satisfies
the following conditions:
C1) If � 2 C is a pole of Gfb, then |(ln�)/Ts|  31.5.
C2) If � 2 C is a zero of Gfb, then |(ln�)/Ts|  31.5.
C3) max!2[0,⇡]

��Gfb(e|!Ts)
��  30.5.

C4) If � 2 C is a pole of G̃yr, then |�| < 0.998.
C5) d 2 {4, 5, 6, . . . , 25}.
Conditions C1) and C2) constrain � to include only ele-

ments that have a significant impact on controller dynamics
over the 0-to-0.5 Hz range. Specifically, C1) and C2) state
that Gfb has continuous-time equivalent poles and zeros (that
is, poles and zeros obtained from the matched z-transform
mapping s = (ln z)/Ts) that have magnitudes between 0 and
31.5 rad/s. This condition arises because {H(!k)}Nk=1 is at
frequencies !1, . . . ,!N 2 [0,⇡] rad/s, which corresponds to
the frequency range of r. Thus, we seek to identify Gfb on
the interval [0,⇡] rad/s. The upper limit 31.5 rad/s on the
magnitude of the continuous-time equivalent poles and zeros
is one decade above the ⇡ rad/s limit on the chirp frequency.
A continuous-time pole or zero with magnitude greater than
31.5 rad/s has negligible effect on the Bode plot over the
frequency range [0,⇡] rad/s. Thus, we restrict the candidate
pool to elements that correspond to continuous-time equivalent
poles and zeros with magnitude between 0 and 31.5 rad/s.
Condition C3) states that the peak magnitude of Gfb over

[0,⇡] rad/s is no more than 30.5. We impose an upper limit on
the magnitude of Gfb because a human cannot use arbitrarily
high gain in feedback. See [41] for a description of the
experiment used to determine the 30.5 upper limit.
Condition C4) states that each closed-loop pole has mag-

nitude less than 0.998. A discrete-time pole with magnitude
0.998 and sample time Ts = 0.02 s has a settling time of
approximately 40 s. Thus, C4) restricts � to include only
elements that result in closed-loop transfer functions with
settling times less than 40 s. The behavior observed in this
experiment exhibits settling times significantly less than 40 s.
Condition C5) restricts the feedback time delay to the range

of [80, 500] ms.

The SSID algorithm is coded in C++ for parallel compu-
tation and implemented on the High Performance Computing
Cluster at the University of Kentucky. For each trial, it takes
approximately 0.3 h to run [41, Algorithm 1] on one compute
node; each node has 16 Intel E5-2670 @ 2.6 GHz cores.

APPENDIX B
CONDITIONING OF SSID RESULTS

We use the SSID algorithm from [40], [41] as opposed
to classical system identification techniques, because the un-
known subsystem (4) is connected in feedback with G, and
classical system identification algorithms applied to closed-
loop architectures can yield trivial solutions [55]. For example,
G↵ = G

�1 and z
�d

Gfb = �G
�1 is a solution with

most classical system identification approaches. In contrast,
G↵ = G

�1 and z
�d

Gfb = �G
�1 does not minimize the SSID

cost (6) and is not a solution with the SSID algorithm [41,
Appendix A]. However, if the identified feedback controller
satisfies z

�d
Gfb ⇡ �G

�1, then the denominator of (5)
is approximately zero. In this case, the SSID results are
ill conditioned. The feedback candidate pool is selected in
Step 1 to prevent z

�d
Gfb = �G

�1. Appendix A in the
Supplemental Material provides details on the SSID candidate
pools used in this paper. Although the feedback candidate pool
prevents z�d

Gfb = �G
�1, the SSID algorithm could yield ill-

conditioned results if z�d
Gfb ⇡ �G

�1 at some frequencies.
This appendix examines the conditioning of the SSID results
presented in this paper and shows that the qualitative results
reported in this paper are not impacted by ill-conditioned
results.
Define the condition number

C(Gfb, d) ,
1

⇡

Z ⇡

0

����
1

1 + e�|!TsdGfb(e|!Ts)G(e|!Ts)

���� d!,

where G is Gm, Gn, Grd1, Grd2, or Grd3 as appropriate.
Note that C(Gfb, d) is a measure of the conditioning of
the identified feedback controller z

�d
Gfb. A larger value

of C(Gfb, d) indicates a more poorly conditioned identified
z
�d

Gfb.
Figures 15–19 show C for each SSID result for the groups

with Gm, Gn, Grd1, Grd2, and Grd3, respectively. The SSID
results are organized from the largest to smallest C. For group
with Gm, the largest C is approximately 18.7, whereas the the
smallest C is approximately 0.106. For group with Gn, the
largest C is approximately 14.2, whereas the the smallest C is
approximately 0.986. For group with Grd1, the largest C is ap-
proximately 12.8, whereas the the smallest C is approximately
0.214. For group with Grd2, the largest C is approximately
32.0, whereas the the smallest C is approximately 0.066. For
group with Grd3, the largest C is approximately 10.3, whereas
the the smallest C is approximately 0.205. Figures 15–19 also
show that C is not closely correlated with trial number.
Figures 20–24 show the Bode plot of z�d

Gfb for the SSID
results from each group with the largest C. For the group with
Gm, this SSID result has a large C because z

�d
Gfb ⇡ �G

�1
m

from 0.3 to 0.45 Hz. However, z
�d

Gfb 6⇡ �G
�1
m below

0.3 Hz. For the group with Gn, this SSID result has a
large C because z

�d
Gfb ⇡ �G

�1
n from 0.2 to 0.3 Hz.



However, z�d
Gfb 6⇡ �G

�1
n below 0.2 Hz and above 0.3 Hz.

For the group with Grd1, this SSID result has a large C
because z�d

Gfb ⇡ �G
�1
rd1 below 0.1 Hz. However, z�d

Gfb 6⇡
�G

�1
rd1above 0.1 Hz. For the group with Grd2, this SSID result

has a large C because z
�d

Gfb ⇡ �G
�1
rd2 below 0.15 Hz.

However, z�d
Gfb 6⇡ �G

�1
rd2 above 0.15 Hz. For the group with

Grd3, this SSID result has a large C because z�d
Gfb ⇡ �G

�1
rd3

below 0.1 Hz. However, z�d
Gfb 6⇡ �G

�1
rd3 above 0.1 Hz.

Figures 20–24 also show the Bode plots of z�d
Gfb for the

SSID results from each group with the 111th largest C (i.e.,
25th percentile). For the groups with Gm, Gn, and Grd3, the
SSID results with the 111th largest C are such that z�d

Gfb is
approximately equal to �G

�1 at 0 Hz but not approximately
equal to �G

�1 at other frequencies over 0-to-0.5 Hz range.
For the group with Grd1, the SSID result with the 111th
largest C is such that z�d

Gfb is approximately equal to �G
�1
rd1

at 0.4 Hz but not approximately equal to �G
�1
rd1 at other

frequencies over 0-to-0.5 Hz range. For the group with Grd2,
the SSID result with the 111th largest C is such that z�d

Gfb is
approximately equal to �G

�1
rd2 at 0.5 Hz but not approximately

equal to �G
�1
rd2 at other frequencies over 0-to-0.5 Hz range.

We examine the sensitivity of the SSID results in Sections V
and VI to the conditioning of z�d

Gfb by removing the most
ill-conditioned 25% of the SSID results. Figures 25 and 26
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Fig. 15. Condition number C for the group with Gm.
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Fig. 16. Condition number C for the group with Gn.
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Fig. 17. Condition number C for the group with Grd1.
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Fig. 18. Condition number C for the group with Grd2.
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Fig. 19. Condition number C for the group with Grd3.

show the mean and standard deviation of kG↵G � 1k1 and
kz�d

Gfbk1 on each trial for each group. The trends observed
in Figs. 25 and 26 match those observed in Figs. 6 and 14.
The same trends hold if the most ill-conditioned 10%, 15%,
20%, 25%, or 30% of the results are omitted.
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Fig. 20. Bode plot of z�dGfb for the SSID results of the group with Gm

with the largest condition number and the 111th largest number.
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Fig. 21. Bode plot of z�dGfb for the SSID results of the group with Gn

with the largest condition number and the 111th largest number.
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Fig. 22. Bode plot of z�dGfb for the SSID results of the group with Grd1
with the largest condition number and the 111th largest number.

APPENDIX C
VALIDATION OF SSID RESULTS

For each trial, we obtain the validation data {yv,k}nk=1 by
simulating ŷv(z) = G̃yr(z)r̂(z), where all initial conditions
are zero; G̃yr is the closed-loop transfer function (5) obtained
from the identified G↵ , Gfb, and d; and ŷv(z) is the z-
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Fig. 23. Bode plot of z�dGfb for the SSID results of the group with Grd2
with the largest condition number and the 111th largest number.
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Fig. 24. Bode plot of z�dGfb for the SSID results of the group with Grd3
with the largest condition number and the 111th largest number.

transform of yv,k. For each trial, we compute the variance
accounted for (VAF), which is a measure of the accuracy of
the identified closed-loop transfer function and is given by

VAF , 1�
Pn

k=n1
|yk � yv,k|2

Pn
k=n1

|yk|2
,

where n1 = 26. The initial 0.5 s of data are omitted to reduce
the impact of nonzero initial conditions because the experi-
mental data may have nonzero initial conditions, whereas the
validation data is computed with zero initial conditions.
Figure 27 shows the mean and standard deviation of the

VAF for each trial. For each group, the mean VAF increases
over the trials, which implies that as the subjects learn,
their control behavior is more accurately modeled by the
relatively low-order LTI controller (4) used in this paper. This
observation suggests that the subjects’ control behavior tends
to become more linear as they learn, which is consistent with
the results in [32], [41].
Table XIII shows the mean VAF on different sets of trials

for each group. A one-way ANOVA comparing each group’s
mean VAF over the last 5 trials yields F4,11 = 16.6 and p <

0.001, thus confirming a statistical difference between groups.
A Tukey post-hoc pairwise comparison yields p < 0.05 for
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Fig. 25. Mean and standard deviation of kG↵G� 1k1 on each trial. Plots
omit the most ill-conditioned 25% of trials. The � is the mean, and the lines
indicate standard deviation.
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Fig. 26. Mean and standard deviation of kz�dGfbk1 on each trial. Plots
omit the most ill-conditioned 25% of trials. The � is the mean, and the lines
indicate standard deviation.

each of Gm or Grd1 paired with either Gn or Grd3. Thus, the
mean VAF over the last 5 trials with Gm and Grd1 is greater
than that with Gn and Grd3. Furthermore, Table II shows that
the mean kek over the last 5 trials with Gm and Grd1 is less
than that with Gn and Grd3.
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Fig. 27. Mean and standard deviation of VAF on each trial. The mean VAF
tends to increase over the trials. The � is the mean, and the lines indicate
standard deviation.

TABLE XIII
MEAN VAF AND CHANGE IN MEAN VAF FROM FIRST 5 TO LAST 5 TRIALS.

Trials Trials Trials Trials Trials Trials
1–5 6–10 11–20 21–30 31–35 36–40 Change

Gm 0.85 0.93 0.93 0.95 0.96 0.96 0.11
Gn 0.53 0.62 0.72 0.76 0.80 0.84 0.31
Grd1 0.91 0.92 0.92 0.92 0.94 0.94 0.03
Grd2 0.72 0.76 0.82 0.85 0.88 0.90 0.18
Grd3 0.52 0.60 0.62 0.68 0.71 0.74 0.22


