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ABSTRACT
Robot-assisted healthcare could help alleviate the shortage

of nursing staff in hospitals and is a potential solution to as-
sist with safe patient handling and mobility. In an attempt to
off-load some of the physically-demanding tasks and automate
mundane duties of overburdened nurses, we have developed the
Adaptive Robotic Nursing Assistant (ARNA), which is a custom-
built omnidirectional mobile platform with a 6-DoF robotic ma-
nipulator and a force sensitive walking handlebar. In this paper,
we present a robot-specific neuroadaptive controller (NAC) for
ARNA’s mobile base that employs online learning to estimate the
robot’s unknown dynamic model and nonlinearities. This con-
trol scheme relies on an inner-loop torque controller and fea-
tures convergence with Lyapunov stability guarantees. The NAC
forces the robot to emulate a mechanical system with prescribed
admittance characteristics during patient walking exercises and
bed moving tasks. The proposed admittance controller is im-
plemented on a model of the robot in a Gazebo-ROS simulation
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environment, and its effectiveness is investigated in terms of on-
line learning of robot dynamics as well as sensitivity to payload
variations.

INTRODUCTION
According to the US Bureau of Labor Statistics [1], regis-

tered nurses will be the largest labor pool in the US by 2022,
and more than 1.1 million nursing positions have to be filled by
then in order to avoid additional shortage. Robots are a poten-
tial solution in healthcare environments to assist with safe pa-
tient handling and mobility, thereby reducing the likelihood of
workplace injuries. In recent years, robots have been used in
hospitals to assist with surgical procedures, to deliver medica-
tions, to monitor patients, and to assist with daily hygiene [2].
For instance, nursing assistant robots with a human form factor
have been employed to provide patient lift assistance to nurses
and, hence, prevents lifting-related musculoskeletal injuries [3].
Other endeavors in the literature to assist nursing staff with phys-
ical tasks in healthcare environments include robotic patient lift
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FIGURE 1: ADAPTIVE ROBOTIC NURSING ASSISTANT
(ARNA) INCLUDING AN OMNIDIRECTIONAL MOBILE
PLATFORM, A 6-DOF MANIPULATOR, AND AN INSTRU-
MENTED HANDLEBAR.

and transfer [4] and robot-assisted dressing of patients [5].
In an attempt to off-load some of the physically-demanding

tasks and automate mundane low-level duties of overburdened
nurses, we have developed the Adaptive Robotic Nursing Assis-
tant, ARNA, which is a service robot capable of navigating in
cluttered hospital environments and performing automated nurs-
ing tasks. ARNA is a heavy-duty omnidirectional mobile robot
constructed in-house with a customized 6-DoF robotic manipula-
tor (Fig. 1). In this paper, we have developed a physical human-
robot interaction (pHRI) strategy for the ARNA robot that inter-
prets the force/torque readings from the instrumented handle bar
and controls its motion based on a model-free admittance control
scheme.

Admittance and impedance control are popular classes of
implicit force control, and have been extensively studied in terms
of stability and performance in robotic contact tasks [6, 7]. The
preliminary goal in this control technique is to provide a sta-
ble contact by the robot’s end effector during robot-environment
contact or to prepare a natural physical human-robot interaction
(pHRI), by regulating the mechanical compliance of the robot
[7,8]. In general admittance control, the tracking error dynamics
are forced to follow a prescribed admittance model with virtual
mass, stiffness, and damping coefficients, and, thereby enabling
the robot to behave compliantly [9–11]. The admittance con-
trol technique, however, typically depends on a known dynamic
model of the robot as well as the robot-environment contact char-
acteristics [12]. In the case of ARNA, however, the system suf-
fers from a highly-perturbed dynamics as the robot is subject to
diverse slopes as well as uncertain and heavy payloads (e.g., hos-
pital beds with bariatric patients atop, and riders with unknown
weight). Furthermore, these payloads are exerted at different
sides of the robot (e.g., heavy bed in the front, human rider at
the back, and medical equipment around the robot). Such unbal-
anced payload distribution results in an unknown, time-varying
center of gravity and, ultimately unbalanced load and frictional

forces on each actuator. Additionally, nonlinearities caused by
inherent flexibility/uncertainty in the handlebar-user linkage in-
crease the overall model’s perturbations. In the presence of these
inaccuracies, relying on model-based controllers lead to perfor-
mance deterioration and hence safety hazards (e.g., collision),
unless conservatively-high controller gains are employed.

For guaranteed trajectory tracking in robots with nonlineari-
ties and model uncertainties, various adaptive control algorithms
have been employed based on, for instance, feedback lineariza-
tion and computed torque control [13]. There also exist a number
of efforts in the literature that successfully implemented neuroad-
aptive schemes to control robotic manipulators with modeling
inaccuracies [14]. The pioneering work by Lewis [12] and col-
leagues proposed a neural network (NN) controller that tuned pa-
rameters of the closed-loop system’s error dynamics to approach
a desired dynamic model.

In this paper, we propose a robot-specific adaptive admit-
tance controller for the ARNA robot’s omnidirectional base that
employs NN-based learning to online approximate the robot’s
unknown model and to cancel out its nonlinearities. This control
scheme relies on an inner-loop torque controller that forces the
robot to emulate a mechanical system with desired admittance
characteristics, with convergence guarantees, in response to op-
erator input forces/moments applied to ARNA’s handlebar. The
proposed admittance controller, which requires no prior informa-
tion about the task or trajectory, enables a consistent performance
of the robot from the operator’s point of view, despite directional
and dynamic nonlinearities of the robot. As such, this controller
obviates the need for the operator to learn and compensate for
task-specific model and uncertainties of the robot, thereby re-
ducing the operator’s cognitive and physical load.

SYSTEM DESCRIPTION
The ARNA robot has been developed to assist nursing staff

through cooperation during physical activities (bed and cart
pushing, item fetching, etc.) and to improve their productivity
through automation of repetitive non-physical tasks (patient ob-
servation, vital signs measurements, etc.).

Omnidirectional Mobile Platform
ARNA’s drive-train is composed of four Mecanum wheels,

arranged in a longitudinal symmetrical layout [15], and are
driven by four independently-controlled servo motors with an-
gle, velocity, and torque feedback. The servo motors are cou-
pled with the Mecanum wheels through right-angled high-ratio
gearboxes, and are mounted to the four corners of the robot
chassis (Fig. 2). This drive-train allows omnidirectional mobil-
ity and enables simultaneous and independent translational (for-
ward/backward, sideways) and rotational maneuvers from any
configuration, obviating the need for non-holonomic path plan-
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FIGURE 2: SCHEMATIC OF THE MOBILE PLATFORM
WITH FOUR MECANUM WHEELS.

ning and control. Such omnidirectional mobility truly yields the
user’s navigational intent and is ideal for collision avoidance and
navigating through congested hospital corridors in close proxim-
ity of humans.

Mecanum wheels are fairly traditional wheels which include
a few rollers mounted around their perimeter. The rollers may be
installed with various bias angles but they are usually mounted at
a 45◦ angle to the plane of the wheel in contact with the ground.
With a zero-roller-ground-slippage assumption, the inverse kine-
matics of the platform moving on a horizontal plane can be for-
mulated as:

Vw =


ω1
ω2
ω3
ω4

= J.V =
1
R
=


1 −1 −(LX +LY )/2
1 1 (LX +LY )/2
1 1 −(LX +LY )/2
1 −1 (LX +LY )/2


vX

vY
ω

 (1)

where Vw is the wheels’ velocity vector, J is the Jacobian ma-
trix, V = [vX ,vY ,ω]T is the generalized velocity vector of center
point of rotation [16]. In this equation, R is the Mecanum wheel
radius, and LX and LY are two parameters associated with the
layout of the platform as shown in Fig. 2.

Instrumented Handlebar
At the rear end of the mobile platform, ARNA incorporates

a handlebar. When ARNA is used as an ambulatory assistive
device, this handlebar provides a physical support for patients
to hold onto and maintain their balance while walking with the
robot. In addition, this handlebar serves as ARNA’s main human-
machine interface (HMI) as it is instrumented with an industrial
6-axis force/torque sensor. When a patient holds onto this han-
dlebar and applies force and moments, ARNA’s main control unit
interprets the force/torque measurements for his/her navigational
intent, and moves the mobile platform accordingly based on an
admittance controller scheme (as explained in the following sec-
tion). This instrumented handlebar, along with the underlying
admittance controller, provide an intuitive HMI for ARNA and

a natural pHRI between ARNA and its users. Through this han-
dlebar, a nurse can control the robot’s motion when, for instance,
manually moving heavy items, such as hospital beds and carts.

CONTROLLER FORMULATION
In an admittance controller, the objective is to produce

robot’s movement in response to sensed forces/torques. Admit-
tance of a compliant mechanical structure is typically represented
as a transfer function, G, which is the ratio of the structure’s ve-
locity to the forces/torques applied to the structure [17], as

G(s) =V (s)F−1(s), (2)

where F is the input forces/torques, V is the output velocity,
and s is the complex frequency. A mechanical structure with
a large admittance is easily set in motion with the application
of small forces and torques; while a structure with a small ad-
mittance requires large acting forces and torques. In this study,
an admittance-based interaction control scheme is developed for
ARNA’s mobile platform. In this scheme, ARNA moves in re-
sponse to forces and torques applied by a user to its handlebar,
and emulates a dynamic system with desired compliant charac-
teristics. As depicted in Fig. 3, this control scheme includes a
feed-forward admittance model and a closed-loop neuroadaptive
controller. The admittance model generates the reference motion
of the mobile platform in response to the human force/torque in-
puts, which is then converted to reference motion of each wheel
using the robot’s inverse kinematics given in (1). Finally, the neu-
roadaptive controller ensures the reference motion of each wheel
is tracked, even in the presence of nonlinearities and uncertain-
ties. The neuroadaptive inner-loop controller used in this study
does not rely on any information about the feed-forward admit-
tance model, enabling a decoupled design of the task-specific
admittance model.

Prescribed Admittance Model
ARNA’s mobile platform has three degrees of freedom

(DoF); longitudinal, lateral, and rotational motions. Therefore, a
3-DoF decoupled mass-damper admittance model was developed
for its motion, as below, prescribing its compliance behavior in
each respective direction.

V (s) = G(s)F(s) = diag(Gx(s),Gy(s),Gω(s))F(s) =

diag(
1

(sMx +Dx)
,

1
(sMy +Dy)

,
1

(sMω +Dω)
)

 fX
fY
τω

 (3)

where fx and fy are the forces applied to the handlebar in
the x and y directions, respectively, and τz is the torque in the
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FIGURE 3: ADMITTANCE CONTROLLER INCLUDING FEED-FORWARD ADMITTANCE MODEL AND INNER-LOOP NEU-
ROADAPTIVE CONTROLLER.

rotational direction. In this equation, Mi and Di, i ∈ {x,y,ω}, are
the virtual inertial and damping coefficients of the admittance
model, respectively, that are prescribed to achieve desired char-
acteristics for force-to-motion conversion in each direction. For
instance, the steady-state response of the admittance model in
the longitudinal direction when a constant force fx is applied to
the handlebar is fx/Dx. In other words, to achieve a steady-state
forward velocity of vx,ss, a constant pushing force of Dxvx,ss is
required. Following this logic, the damping coefficients (i.e., Dx,
Dy, and Dω ), determine the user’s burden necessary for a tar-
get velocity in different directions. Similarly, the time constant
of these transfer functions is Mi/Di, i ∈ {x,y,ω}. Therefore, by
adjusting these virtual coefficients, we can alter both transient
and steady-state response of the system, and arbitrarily shape the
human-robot interaction dynamics. In practice, these design pa-
rameters are adjusted such that the velocities reach equilibrium
as quickly as possible without oscillation, while minimizing the
physical burden on the human user in order to offer maximal
power assistance.

Time-domain output of this transfer function in response to
the force/torque measurements is solved in real time and set as
the desired velocities of the mobile platform. By solving the in-
verse kinematics of the mobile platform, presented in (1), we can
obtain the desired actuator velocities. Such an admittance control
scheme emulates a dynamic system with a desired, linear behav-
ior, and induces a feeling in the user as if they are interacting
with a mechanical system with those prescribed characteristics.

Neuroadaptive Controller
The origin of NNs-based system identification and closed-

loop control systems goes back to the early 1990s through the
seminal work by Narendra and Parthasarathy [18], where multi-
layer and recurrent networks, along with back-propagation tech-

niques, were successfully used to control nonlinear dynamic sys-
tems. Since then, numerous studies have investigated internal
stability and tracking performance guarantees of NNs-based con-
trol systems [19–21]. In the current study, we extend the neu-
roadaptive controller initially presented by Lewis and colleagues
[14,20] to ARNA’s mobile base in a joint trajectory tracking task.
Below the formulation of this neuroadaptive controller, in the
joint space, is discussed in short.

The robot’s dynamics in the joint space is

H(θ)θ̈ +C(θ , θ̇)θ̇ +F(θ̇)+G(θ)+ τd = τ + τh, (4)

where θ is the robot’s joint angles, H is the inertial/mass matrix,
C is the Coriolis matrix, τd is the disturbance vector, τ is the
control torque, τh is the user input, and F summarizes the friction
forces.

The admittance model block, followed by the robot’s inverse
kinematics, determines the desired trajectory of each actuator
(i.e., in the joint space) in response to the user forces and torques
exerted to the ARNA’s handlebar. Assuming the reference tra-
jectory in the joint space, θr, is known, the trajectory-following
error, e, and the sliding-mode error, r, are defined as

e = θ −θr, (5)

r = ė−Λe, (6)

where Λ is a symmetric, positive-definite design matrix. Incor-
porating (5) and (6) in (4), the sliding-mode error dynamics is
achieved as

H(θ)(θ̈r− ṙ+Λė)+C(θ , θ̇)(θ̇r− r+Λe)+F(θ̇)+

G(θ)+ τd = τ + τh,
(7)
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or more concisely as

H(θ)ṙ+C(θ , θ̇)r+ψ(x)+ τd = τ + τh, (8)

where x = [eT ėT θ T
r θ̇ T

r θ̈ T
r ], and ψ is a nonlinear function that

depends on the robot’s uncertain parameters, defined as below.

ψ(x) = H(θ)(θ̈r +Λė)+C(θ , θ̇)(θ̇r +Λe)+F(θ̇)+G(θ) (9)

As can be seen in (9), ψ is not a function of the pre-
scribed admittance model parameters defined in (3), i.e., Mi
and Di, i ∈ {x,y,ω}, which is different from typical admittance
control schemes that rely on a model-following error as their
trajectory-following objective [22].

The adaptive control scheme used in this study works based
on an approximator that online-estimates the nonlinear ψ func-
tion given in (9) using a two-layer NN [23] as

ψ(x) =W T
σ(V T x)+ ε, (10)

where W and V are the ideal weights, σ is the activation function
vector, and ε is the approximation error of the NN approximator.
If the approximated function is denoted by ψ̂ , a control law can
be formulated as

τ = ψ̂ +Kvr− v(t), (11)

where Kv > 0 is a diagonal design parameter matrix, and v(t) is a
term added for robustification against inaccuracies, variabilities,
and unstructured disturbances in the robot’s model. If we define
Z as

Z =

[
Ŵ 0
0 V̂

]
, (12)

where Ŵ and V̂ are the approximate NN weights, the signal v(t)
can be defined as

v(t) =−Kz(ZB +‖Ẑ‖F)r (13)

where Kz > 0 is a scalar gain, ‖.‖F is the Frobenius norm opera-
tor, and ZB is a constant positive scalar bound on the NN weights
such that ‖Ẑ‖F ≤ ZB.

Incorporating (11) in (8) yields the sliding-mode error dy-
namics as

H(θ)ṙ+C(θ , θ̇)r+Kvr = ε + v+ τd (14)

In practice, the ideal NN weights, W and V , are not known
a priori, hence the following tuning algorithms are used in this
study to compute and update Ŵ and V̂ online.

˙̂W = Aσ̂rT −Aσ̂
′V̂ T xrT −κA‖r|Ŵ (15)

˙̂V = Bx(σ̂
′TŴ r)T −κB‖r‖V̂ (16)

σ̂
′ = diag{σ(V̂ T x)}[I−diag{σ(V̂ T x)}] (17)

In these update equations, A and B are two positive definite
matrices, σ(.) is the sigmoid activation function, and κ > 0 is a
small design parameter. Based on a rigorous Lyapunov argument
in [14], it has been formally proven that the error signal defined
in (5) converges zero when (15)-(17) are used as the tuning algo-
rithm for the NN approximator. For in-depth discussion on the
learning performance and proof of stability, refer to [14, 19, 20].

SIMULATION ENVIRONMENT
In order to investigate its effectiveness, the proposed con-

troller was implemented on a numerical model of ARNA in
Gazebo simulator. Gazebo is an open-source software capable of
dynamic simulation of sensors, robots, and their interaction with
the environment based on multiple physics engines. In Gazebo,
a robot and its environment are typically defined using a Unified
Robot Description Format (URDF) file written in XML format.
To develop the Gazebo model of ARNA, we first created ARNA’s
CAD model in SolidWorks R© and utilized a plugin to convert it to
a URDF format. In this model, the Mecanum wheels were sim-
ulated using Gazebo’s planar move plugin. Another plugin was
also developed that computes propulsion forces/torques exerted
on the robot chassis by the wheels in each simulation step. Sub-
sequently, in order to obtain realistic dynamic behavior of the
model, we tuned its physical parameters including mass/inertia
of different elements and joint viscous/coulomb frictions, as well
as the friction between the Mecanum wheels and the ground. Fig-
ure 4 depicts ARNA’s model in Gazebo simulator.

To implement the admittance controller on the ARNA
model, the Gazebo simulator was interfaced with Robot Oper-
ating System (ROS). ROS is a software framework for robot
software development, and it provides services such as hard-
ware abstraction, low-level device control, message-passing, and
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FIGURE 4: GAZEBO SIMULATION ENVIRONMENT IN-
CLUDING ARNA, HOSPITAL BED, AND AN IV POLE.

package management. In this study, Gazebo 8.6 with ODE
physics engine and ROS Kinetic on Ubuntu 16.0 were used. The
Gazebo ros control plugin was utilized to facilitate communi-
cation between ROS packages by providing interfaces for robot
joint actuation and robot data feedback. The Gazebo-ROS with
the admittance controller was ran at 1 kHz.

RESULTS AND DISCUSSION
For the sake of safety, velocity of the ARNA mobile plat-

form is electronically limited to 0.4 m/s, 0.4 m/s, and 0.2 rad/s, in
longitudinal, lateral, and rotational directions, respectively. Con-
sidering these limits, the virtual inertia and damping coefficients
of the admittance model were defined as tabulated in Tab. 1.
These numbers were chosen so that the robot can start and stop
gently, and reach the aforementioned desired steady-state val-
ues in each respective direction, without excessive burden (forces
and torque) required from a human user. For example, with 15 N
force applied by the user in the longitudinal direction, the robot
gently reaches the steady-state longitudinal velocity of 0.4 m/s in
2.5 s. The overall compliance behavior of the robot, however, de-
pends on the bandwidth of both the prescribed admittance model
and the neuroadaptive controller. Therefore, in this study, the
parameters of the inner loop controller were tuned such that its
bandwidth was at least twice that of the admittance model, and
hence, it could respond to the user input. These control parame-
ters are summarized in Tab. 1.

The presented admittance controller was implemented in our
ROS-Gazebo simulation environment. The NN used had 2 lay-
ers, 21 inputs including bias, sigmoid activation functions, 15
neurons in the hidden layer, 4 outputs, and the weight matrices
initialized with small random entries. The simulations included
two set of experiments to examine efficacy of the proposed ad-
mittance controller and its inner-loop neuroadaptive controller.

In the first set, two scenarios were implemented in which

TABLE 1: CONTROLLER PARAMETERS.

Parameter Value

Mx, My 18.75 kg

Dx, Dy 37.5 Ns/m

Mω 3 kgm2

Dω 6 Nm/rad

Kv 5 I4
∗

Kz 0.005

κ 0.07

ZB 100

A 100 I4
∗

B 50 I4
∗

∗ I4 is a 4x4 identity matrix

ARNA moved in response to user force/torque inputs either (i)
with no payload or (ii) while a 250-kg hospital bed was fastened
to the robot front panel. The first scenario simulates a patient
walking exercise or when a nurse operator docks the robot to a
corner. In this scenario, the user input force/torque profile was
defined such that ARNA moved along a circular path. In the
second set of experiments, the robot moved along another path
either (i) with no payload or (ii) with a 100-kg payload placed on
the robot, which simulated a user riding the robot on its rear-end
footrests. In all simulations, the robot was commanded to move
starting from a standstill condition. Figures 5 and 6 illustrate the
corresponding results including reference and actual velocities in
joint space, and the control torques for each actuator.

The velocity tracking results in each of Figs. 5 show a good
tracking performance. There are oscillations that settle within
the first second of motion from rest in the with-payload condition
in all the two motion profiles that do not occur in the no payload
condition. These oscillations on the front wheels of the robot (i.e.
wheel 1 and wheel 2 in Fig. 3, where the payload is connected)
are larger than the oscillations at wheel 3 and wheel 4 (at the
back of the robot). Based on the rigidity of ARNA robot mobile
base, this observation suggests slipping of the wheels. Hence,
the apparent oscillations do not entirely transfer to the user. This
coupled with the fact that the oscillations are low-amplitude and
short-duration suggest a smooth user experience for the user in
the with-payload condition using NAC.

One limitation of this work is the absence of simulating the
performance of the controller for complex reference wheel veloc-
ity trajectories with simultaneous components in all 3 Cartesian
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FIGURE 5: INDIVIDUAL JOINT VELOCITIES AND CONTROL TORQUE IN RESPONSE TO FORCE APPLIED TO THE HAN-
DLEBAR IN LONGITUDINAL DIRECTION, I.E., fx = 10N (RIGHT PANEL), and LATERAL DIRECTION, I.E., fy = 10N (LEFT
PANEL). THE DASHED LINE IS THE OUTPUT OF THE ADMITTANCE MODEL FOR EACH JOINT. THE BLUE TRAJECTO-
RIES ARE FOR THE NO-PAYLOAD CONDITION, AND THE RED TRAJECTORIES ARE FOR THE WITH-PAYLOAD CONDI-
TION.

axes. This was not done because of the Gazebo limitations in
simulation of sideways motion of Mecanum wheels. To solve
this problem, we intend to implement this simulation and the
controller in V-REP [24], which is a simulation suite that facili-
tates simulation of such motion.

Generally, the results show the feasibility of the use and ben-
efits of the NAC for the control of a mobile robot base. While
there has been some work showing use of the NAC for a robotic
arm [25,26], we believe this is the first use with a mobile robotic
base. The use of NAC for a mobile base as presented here also
provides a good platform for the integration of other machine
learning based control approaches for use in multiuser pHRI in a
clustered environment [27].

CONCLUSION
In this paper, we introduced the Adaptive Robotic Nursing

Assistant, designed to assist nurses with some of their physically-
demanding tasks. ARNA has several human-machine interfaces,
such as a custom-built tablet interface as well as a handlebar in-
strumented with a 6-axis force/torque sensor. In this paper we pa-

per investigated the characteristics of the physical HRI between
users and the ARNA through its handlebar that is enhanced by
a NNs-based admittance controller which offers guaranteed sta-
bility and convergence. This admittance controller is designed
in two decoupled steps; (i) a feed-forward admittance model that
prescribes the compliant behavior of the robot in response to hu-
man efforts, and (ii) a neuroadaptive inner-loop controller that
learns and compensates the nonlinearities and un-modeled dy-
namics of the robot online. Through ROS-Gazebo simulations,
we verified the effectiveness of the admittance controller in re-
ducing sensitivity to the robot nonlinearities and inaccuracies, as
well as the perturbations caused by substantial variation in pay-
load condition.

In the future, we will implement the presented admittance
controller on the actual robot and run experiments with human
users with diverse physical and cognitive abilities.
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