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Hydrodynamic electron transport near charge neutrality
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We develop the theory of hydrodynamic electron transport in a long-range disorder potential for conductors
in which the underlying electron liquid lacks Galilean invariance. For weak disorder, we express the transport
coefficients of the system in terms of the intrinsic kinetic coefficients of the electron liquid and the correlation
function of the disorder potential. We apply these results to analyze the doping and temperature dependence of
transport coefficients of graphene devices. We show that at charge neutrality, long-range disorder increases the
conductivity of the system above the intrinsic value. The enhancement arises from the predominantly vortical
hydrodynamic flow caused by local deviations from charge neutrality. Its magnitude is inversely proportional
to the shear viscosity of the electron liquid and scales as the square of the disorder correlation radius. This is
qualitatively different from the situation away from charge neutrality. In that case, the flow is predominantly
potential and produces negative viscous contributions to the conductivity, which are proportional to the sum of
shear and bulk viscosities and inversely proportional to the square of disorder correlation radius.
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I. INTRODUCTION

There is mounting evidence that under certain conditions
hydrodynamic effects predicted by Gurzhi [1] play an im-
portant role in electron transport properties of semiconduc-
tors [2–6], and monolayer or bilayer graphene-based devices
[7–14] (see recent reviews [15–17] on these topics and ref-
erences therein). In addition to the transport measurements,
several imaging techniques [18–22] have been implemented to
directly map out profiles of electron flow in narrow graphene
channels and mesoscopic Ga(Al)As. Furthermore, possible
signatures of hydrodynamic electron flow have been identified
in transport measurements in quasi-two-dimensional delafos-
site metals PdCoO2 and PtCoO2 [23,24] and Dirac or type-II
Weyl semimetallic conductors [25,26]. This motivates further
studies of hydrodynamic effects in various systems including,
for example, one-dimensional electron liquids in quantum
wires [27–29] and electronic double-layers [30–33].

One of the most salient signatures of hydrodynamic effects
in electron transport is the violation of Matthiessen’s rule,
according to which the resistivity should be proportional to
the sum of momentum relaxation rates due to various scatter-
ing processes. Within this paradigm, momentum-conserving
electron-electron (ee) collisions should not affect the
resistivity.

In the hydrodynamic regime, the resistivity depends on the
rate of momentum-conserving ee scattering via the viscosity
and other dissipative characteristics of the electron liquid.
This dependence arises from correlations between ee scatter-
ing and the underlying disorder and/or confining potential,
which are ignored in the derivation of the Matthiessen’s rule.

Moreover, as the rate of ee scattering increases, the resis-
tance of the system often decreases. This effect, first pointed
out by Gurzhi, occurs not only in finite geometries, such as
the Poiseuille flow [2,3,34] or point contacts [10,35], but also
in the bulk [36–41].

On the other hand, disorder usually increases the resistiv-
ity. Indeed, away from charge neutrality, acceleration of the
liquid by the external electric field would result in vanishing
resistivity in the absence of disorder. In particular, for Galilean
invariant liquids the systems resistivity is proportional to the
disorder strength [37]. In the more general case [40,42–46], in
which the electron liquid does not possess Galilean invariance,
the resistivity of the system away from charge neutrality is
still enhanced by disorder, although the dependence of the
resistivity on the disorder strength is more complicated.

For systems at charge neutrality [47], whose resistivity
does not vanish even in the pristine disorder-free state [48,49],
the effect of disorder on the resistivity is not obvious. In
previous studies of hydrodynamic electron transport [42–45],
the system resistivity at charge neutrality was found to be
independent of disorder and equal to the intrinsic resistivity
of the electron liquid.

Here we show that in the hydrodynamic regime, long-range
disorder increases the conductivity of the system at charge
neutrality in comparison to the intrinsic conductivity σ0 of the
electron liquid. The enhancement of the conductivity by disor-
der is inversely proportional to the shear viscosity of the liquid
and has extremely nonlocal character—its magnitude grows
with increasing correlation radius of the disorder potential.
This is in stark contrast to the situation sufficiently far away
from charge neutrality [37,40] where the viscous contributions
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enhance the resistivity and their magnitude decreases as the
disorder correlation radius grows. This opposite effect on
the conductivity is caused by a qualitative difference in the
character of the flow caused by the passage of electric current
near and away from charge neutrality. We show below that
near charge neutrality, the flow has a predominantly vortical
character whereas away from charge neutrality the flow is
predominantly potential.

The vortical character of the induced flow and the reason
for the enhancement of conductivity by long-range disorder
can be qualitatively understood as follows. Consider a two-
dimensional system in the xy plane subject to the electric field
E0. In a pristine system at charge neutrality, electron transport
is mediated by the intrinsic conductivity in a stationary liquid.
In the presence of disorder, charge neutrality is satisfied only
on average, but locally the electron density δn(r) is nonzero.
The resulting force density, F(r) = eE0δn(r), with e being the
electron charge, exerted on the fluid by the electric field must
be compensated in a steady state by pressure gradients and
viscous stresses arising in the fluid. It is important to note that
only the potential part of the external force density, which is
caused by density variations along E0, can be compensated
by the pressure gradients. In contrast, the vortical part of the
external force that arises from density gradients perpendicular
to E0 must be compensated by viscous stresses. To understand
the effect of the density modulations perpendicular to the
electric field, let us assume E0 to be along the x axis and
consider for simplicity a density modulation of the form,
δn(y) ∼ δn0 cos(y/ξ ). The force of the electric field eE0δn(y)
induces an inhomogeneous flow along the x axis, with velocity
ux = u0 cos(y/ξ ). The velocity amplitude may be estimated
by balancing the force of the electric field eE0δn with the
divergence of the viscous stress tensor η∂2

y ux, where η is the
shear viscosity. This yields u0 ∼ ξ 2eE0δn/η. Due to correla-
tions of the induced hydrodynamic velocity with disorder, the
hydrodynamic flow gives a nonvanishing contribution to the
net current that enhances its magnitude. The corresponding
enhancement of the conductivity may be estimated as

δσ ∼ e2ξ 2

η
〈δn2〉, (1)

where ξ is the correlation radius of the disorder potential and
〈. . .〉 denotes averaging over disorder. For a checkerboard pat-
tern of density modulation, which better mimics the isotropic
long-range disorder, the calculated vortical flow pattern is
illustrated in Fig. 1. The contribution of the vortical velocity
variations in the induced hydrodynamic flow to the transport
properties of electron systems was ignored in previous consid-
erations, resulting in disorder-independent conductivity near
charge neutrality.

Below we develop a general theory of hydrodynamic
transport in a long-range disorder potential without assuming
Galilean invariance of the underlying electron liquid. For
weak disorder, we obtain general expression for the transport
coefficients of the system and apply our results to study
thermal and electric transport in graphene devices near charge
neutrality. Our consideration shows that the flow near charge
neutrality is predominantly vortical, in contrast to nearly
potential flow that arises away from charge neutrality. This has

FIG. 1. Illustration of the calculated vortical flow pattern induced
by the electromotive force in the x direction for a checkerboard
density modulation near charge neutrality, δn(r) = δn0[ cos(2π (x +
y)/ξ ) + cos(2π (x − y)/ξ )]. The stream-plot flow of velocity field
δu(r) is indicated by arrows superimposed on the color plot of
the density profile δn(r), with positive/negative density shown in
yellow/blue, respectively. The correlations of the flow velocity with
the density profile produce a macroscopic convective electric current
along the x direction, which enhances the conductivity.

a dramatic effect on the transport characteristics of the system.
In particular, the estimate in Eq. (1) for the disorder-induced
conductivity enhancement is borne out by the quantitative
treatment presented below.

The paper is organized as follows. In Sec. II, we present
the hydrodynamic description of electron transport in a long-
range disorder potential without assuming Galilean invariance
of the underlying electron liquid. In Sec. III, we apply this
description to the study of electron transport in the linear
response regime and obtain a general expression for the
transport coefficients of the system. In Sec. IV, we simplify
these results for the regime of weakly disordered systems with
long-range inhomogeneity. Next we apply this general theory
to graphene near charge neutrality in Sec. V. The summary
of our main results is given in Sec. VI. To complement our
analysis with additional useful details, various technicalities
are delegated to several Appendices.

II. HYDRODYNAMIC DESCRIPTION

The hydrodynamic equations express conservation of the
number of particles, energy, and momentum of the electron
liquid. Accordingly, the time derivatives of the number den-
sity n, energy density ε, and momentum density pi may
be expressed in terms of divergences of the corresponding
conserved fluxes, j, jε , and 	i j . In particular, the particle
number conservation is

∂n

∂t
= −∇ · j. (2)
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Here and in what follows we denote vector quantities by bold
face symbols and Cartesian indices by Latin subscripts.

In the presence of the external potentialU (r), the evolution
equation for momentum density has the form of Newton’s
second law:

∂ pi
∂t

= −∂ j	i j − n ∂i(eφ +U ). (3)

The electric potential φ here is related to the electron density
by the Poisson equation. Its presence in Eq. (3) reflects the
flow of momentum of the electron fluid due to long range
Coulomb interactions between electrons, whereas the tensor
	i j denotes the local part of the momentum flux.

The final hydrodynamic equation expresses energy con-
servation of the electron fluid. In addition to the density
of particles and momentum of particles, the energy density
depends on the entropy density of the liquid. Therefore, in hy-
drodynamics the energy conservation equation is traditionally
replaced by an equivalent evolution equation for the entropy
density [50]. The latter may be written in the form

∂s

∂t
= −∇ · js + ς, (4)

where js is the entropy flux,

js = 1

T
[jε − (μ + eφ +U ) j], (5)

and ς denotes the local rate of entropy production due to
electron-electron collisions.

A crucial ingredient of the hydrodynamic approach is
the assumption of local thermal equilibrium of the electron
liquid. Accordingly, the state of the liquid is characterized
by the local equilibrium parameters: temperature T , chemical
potential μ, and the hydrodynamic velocity u, whose values
are determined by the local densities of conserved quantities.
Furthermore, the fluxes of conserved quantities are described
in terms of the gradient expansion in equilibrium parameters.

Being interested in the linear response properties of the
system, we may write this gradient expansion in the form

j = nu + j′, (6a)

jε = (w + neφ + nU )u + j′ε, (6b)

	i j = Pδi j − σ ′
i j, (6c)

where n is the electron number density, w is the enthalpy
density, and P denotes the local pressure. The first terms
on the right-hand side in the above equations denote the
equilibrium components of fluxes of conserved quantities.
The primed quantities denote the dissipative fluxes that are
proportional to gradients of the equilibrium parameters. In
particular, σ ′

i j denotes the viscous stress tensor,

σ ′
i j = η(∂iu j + ∂ jui ) +

(
ζ − 2

d
η

)
δi j∂kuk, (7)

where η and ζ are, respectively, shear and bulk viscosities and
d is the dimensionality of space.

The entropy production rate ς in Eq. (4) can be expressed
in terms of the dissipative fluxes of conserved quantities in the

form (see Appendix A for a derivation)

ς = − j′s · ∇T + j′ · ∇(μ + eφ +U ) + ui∂ jσ
′
i j

T
. (8)

Here j′s denotes the dissipative part of the entropy flux in
Eq. (5), which is defined as

j′s ≡ js − su = j′ε − (μ + eφ +U )j′

T
. (9)

The last equality follows from Eqs. (6a) and (6b) and the
thermodynamic relation w = nμ + T s.

The hydrodynamic equations need to be supplemented by
the constitutive relations for the relevant fluxes in terms of the
gradients of the equilibrium parameters. To keep subsequent
expressions more compact, it is convenient to combine the
particle and entropy fluxes into a two-component column
vector:

�J =
(
j
js

)
. (10)

Throughout the paper, we indicate two-component column
vector quantities by arrows above them and use bold face
letters to denote the usual spatial vectors. Following the con-
ventions of Ref. [51], we denote densities of thermodynamic
variables by xi and the corresponding thermodynamically
conjugate quantities by Xi. Introducing the column vector
notations

�x =
(
n
s

)
, �X =

(−eE
∇T

)
, (11)

where

eE ≡ −∇(μ + eφ +U ) (12)

is the electromotive force, we can write the constitutive rela-
tions for the particle and entropy currents in the form

�J = �xu − ϒ̂ �X. (13)

Here ϒ̂ is the matrix of kinetic coefficients that characterizes
the dissipative properties of the electron liquid. It is given by

ϒ̂ =
(

σ/e2 γ /T
γ /T κ/T

)
, (14)

where κ is the thermal conductivity, σ is the intrinsic conduc-
tivity, and γ is the thermoelectric coefficient of the electron
liquid. Throughout the paper, we set the Boltzmann and
Planck constants to unity, kB = h̄ = 1.

The system of hydrodynamic equations and constitutive
relations presented in this section does not assume Galilean
invariance and provides a general description of the flow of
electron liquid in an external potential at small velocities.
For Galilean-invariant liquids j = nu, and σ = γ = 0. In this
case, the second term in the numerator of the right-hand side
of Eq. (8) vanishes and Eq. (8) reproduces the well-known
result for the energy dissipation rate in Galilean-invariant
liquids [50].

III. ELECTRON TRANSPORT IN LINEAR RESPONSE

We now use the hydrodynamic description presented in
Sec. II to study electron transport in the linear response
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regime. We consider the stationary (dc) situation and, being
motivated by applications to graphene systems, focus on the
two-dimensional (2D) geometry.

In linear response, we may neglect entropy production
and set ς → 0 in Eq. (4). Then in the stationary case, the
continuity Eq. (2) and the entropy evolution Eq. (4) reduce
to the continuity equations for the column vector current:

∇ · (�xu − ϒ̂ �X) = 0. (15)

Using Eq. (6c) along with an explicit form of the stress tensor
from Eq. (7), and the thermodynamic relation ∇P = n∇μ +
s∇T , the momentum balance Eq. (3) for a 2D case may be
expressed as

enE − s∇T + (∇ · η∇)u + ∇[ζ (∇ · u)] = 0, (16)

where the electromotive force eE is given by Eq. (12). In the
column vector notations, the force balance relation Eq. (16) is
cast in the form

−�xT �X + (∇ · η∇)u + ∇[ζ (∇ · u)] = 0, (17)

where we used the standard rules for multiplying the column
vector �xT = (n, s), with the superscript T indicating the
transposition, and the row vector �X.

In thermal equilibrium, the hydrodynamic velocity van-
ishes. Since both the temperature and the electrochemical po-
tential μ + eφ +U are spatially uniform, the thermodynamic
force �X vanishes. As a result, Eqs. (15) and (17) are trivially
satisfied.

Away from equilibrium, one needs to find a nonvanishing
spatial distribution of the hydrodynamic velocity u(r) and the
thermodynamic force �X(r) that solves the system of Eqs. (15)
and (17). In linear response, the number density and entropy
density in the column vector �x(r), as well as the dissipative
coefficients of the liquid, ϒ̂ , η, and ζ are given by their
equilibrium values. As follows from the definition in Eq. (11),
the column vector field �X must be purely potential. Thus the
problem of determination of transport properties of the system
reduces to solving the linear flow problem and calculating the
net particle and entropy fluxes averaged through the system.
For this purpose, we combine the macroscopic densities of
particle and entropy flux into a column vector current,

〈�J〉 = 〈�x(r)u(r) − ϒ̂ (r) �X(r)〉, (18)

where 〈. . .〉 ≡ 1
A

∫
dr (. . .) denotes spatial average over the

2D system with area A.
Mathematically, this problem is similar to the problem of

finding the spatial distribution of current in an inhomogeneous
conductor, where one needs to determine two vector fields:
one divergence-free, current density j(r), and one purely
potential, electric field E(r), which are related by the position-
dependent conductivity j(r) = σ (r)E(r) [52].

In the framework of the present approach, the disorder
potential manifests itself via the spatial dependence of the
equilibrium number and entropy densities, n(r) and s(r),
the matrix of kinetic coefficients of the liquid, ϒ̂ (r), and the
viscosities η(r) and ζ (r). Below we assume that these quanti-
ties are weakly inhomogeneous and use perturbation theory
in disorder to derive analytical results for the macroscopic
thermoelectric conductivity matrix ϒ̂e. The latter relates the

macroscopic particle and entropy currents, 〈�J〉 = 〈(j, js)T 〉, to
the average electric field and the temperature gradient in the
system, �X0 ≡ 〈�X〉:

〈�J〉 = ϒ̂e �X0. (19)

Its inverse, �̂ = [ϒ̂e]−1, defines the macroscopic thermoelec-
tric resistivity matrix.

The presentation in this section is organized as follows. We
begin by considering a uniform liquid in Sec. III A. Then in
Sec. III B, we develop perturbation theory about the uniform
solution. Finally, in Sec. III C we obtain general perturbative
expressions for the transport coefficients of the system.

A. Uniform liquid

In a uniform liquid with number density n0 and entropy
density s0, the charge and energy transport can proceed in two
ways: (i) via a hydrodynamic flow with a uniform hydrody-
namic velocity u0 and (ii) by transport relative to the liquid
driven by the thermodynamic forces �X0. The momentum
balance condition Eq. (16) implies that for a uniform liquid
a steady state can exist only if the uniform electric field E0
and temperature gradient ∇T0 satisfy the relation

en0E0 = s0∇T0. (20)

Under this condition, the force due to the external electric field
is balanced by the pressure gradient, so no acceleration of
the liquid occurs. The corresponding column force �X0 may
be expressed in the form

�X0 = eE0
s0

(−s0
n0

)
= − iτ̂y�x0

s0
eE0, (21)

where the column vector �x0 describes the particle and entropy
density in the uniform state, see Eq. (11), and τ̂y is the Pauli
matrix acting in the 2 × 2 column-vector space. Thus, the
steady-state current may be written in the form

�J0 = �x0u0 + ϒ̂0
iτ̂y�x0
s0

eE0. (22)

The first term describes the dissipationless transport in the
hydrodynamic mode caused by the uniform flow of the liquid
and the second term describes charge and energy transport
that occurs relative to the liquid at rest. We refer to the latter
as the relative transport mode below. For example, at charge
neutrality, charge transport is entirely due to the relative mode,
while the hydrodynamic mode corresponds to convective heat
flow and does not contribute to electric current. The entropy
production obtained from Eq. (8) by integrating over space,

T Ṡ =
∫

dr
(
eE0
s0

)2

(iτ̂y�x0)T ϒ̂0(iτ̂y�x0), (23)

is entirely due to the transport in the relative mode.
The dissipationless transport mode exists only in the ab-

sence of disorder. At finite disorder, the relative and the
hydrodynamic modes mix. This mixing and the viscous stress
arising in the inhomogeneous flow cause additional dissi-
pation. At weak disorder, this dissipation is expected to be
especially significant for the hydrodynamic transport mode
described by the first term in Eq. (22). However, as we will
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show below, transport in the relative (on average) mode can
also be significantly modified by the mixing between the
relative and hydrodynamic modes. In particular, at charge
neutrality the conductivity of the system may significantly
deviate from the intrinsic conductivity of the electron liquid.
As we show in Sec. V, this can occur even at weak disorder
provided its correlation radius is sufficiently long.

B. Perturbation theory in disorder

We now consider the situation in which the parameters �x(r)
and ϒ̂ (r) describing the equilibrium state of the liquid are
weakly inhomogeneous functions of position r (as we will
show, to second order in inhomogeneity the spatial variations
of the viscosities of the electron liquid may be neglected). To
this end, we write

�x(r) = �x0 + δ�x(r), ϒ̂ (r) = ϒ̂0 + δϒ̂ (r), (24)

where �x0 and ϒ̂0 denote the uniform components of and �x(r)
and ϒ̂ (r), respectively, while δ�x(r) 
 �x0 and δϒ̂ (r) 
 ϒ̂0

denote their spatial variations. We assume that the resulting
hydrodynamic velocity u(r) and the thermodynamic force
�X(r) are also nearly homogeneous,

u(r) = u0 + δu(r), �X(r) = �X0 + δ �X(r), (25)

with δu(r) 
 u0 and δ �X(r) 
 �X0.
The inhomogeneous components of the hydrodynamic ve-

locity δu(r) and the driving force δ �X(r) may be determined
using perturbation theory about the uniform solution. The
hydrodynamic equations to be solved consist of the continuity
equation for the column current, Eq. (15), and the momentum
balance equation, Eq. (17).

The solution strategy can be summarized as follows. We
determine the inhomogeneous part of the flow velocity field
δu and forces δ �X in terms of their uniform counterparts to
linear order in δ�x and δϒ̂ . This enables us to express the
spatial average of the currents Eq. (18) in terms of �X0 and u0
to second order accuracy in inhomogeneity. Furthermore, the
spatial average of the momentum balance Eq. (17) imposes
a linear relation between �X0 and u0. Using this relation we
express the macroscopic currents in the form of Eq. (19) and
thus determine ϒ̂e.

To implement this program, we switch to the Fourier
representation, defining the Fourier amplitudes of various
quantities O(r) in the standard way:

Oq =
∫

drO(r)e−iq·r. (26)

To linear order accuracy in the perturbations, we get for the
inhomogeneous Fourier components of the column current

�Jq = �xqu0 + �x0uq − ϒ̂q �X0 − ϒ̂0 �Xq. (27)

The continuity equations for the heat and particle currents,
Eq. (15), then become

�x0(q · uq) − ϒ̂0 (q · �Xq) = −�xq(q · u0) + ϒ̂q (q · �X0). (28)

The force balance Eq. (17) imposes the following relation on
the Fourier components of velocity and thermodynamic forces

with q �= 0:

ηq2uq + ζq(q · uq) + �xT0 �Xq + �xTq �X0 = 0. (29)

The system of Eqs. (28) and (29) determines the inhomo-
geneous components of the hydrodynamic velocity, uq, and
electric field/temperature gradient, �Xq, in terms of the macro-
scopic hydrodynamic velocity, u0, and macroscopic electric
field/temperature gradient, �X0. However, since the macro-
scopic flow is characterized by only two macroscopic currents
(particle and entropy flux, 〈j〉, 〈js〉), the average velocity u0 is
not independent from �X0. The relation between them can be
obtained by considering the uniform Fourier component of the
force balance Eq. (17), which can be written in the form

−�xT0 �X0 − 〈δ�xT δ �X〉 = 0. (30)

Substituting the solutions of Eqs. (28) and (29) into Eq. (30),
one can express average velocity u0 in terms of �X0 to second
order accuracy in disorder.

The solution of the system of linear Eqs. (28)–(29) is
given by

�Xq = q
q2λq

ϒ̂−1
0

{[
λq − �x0 ⊗ �xT0 ϒ̂−1

0

]
�xq(q · u0)

+[(
�x0 ⊗ �xT0 ϒ̂−1

0 − λq
)
ϒ̂q − �x0 ⊗ �xTq

]
(q · �X0)

}
,

(31a)

utq = − 1

ηq2
�xTq

[
�X0 − q (q · �X0)

q2

]
, (31b)

ul
q = −�xT0 ϒ̂−1

0 �xq
λq

q (q · u0)
q2

+
(
�xT0 ϒ̂−1

0 ϒ̂q − �xTq
)

λq

q(q · �X0)

q2
. (31c)

Here utq and u
l
q denote, respectively, the transverse and longi-

tudinal components of the hydrodynamic velocity and λq is a
function of momentum q given by

λq = (η + ζ )q2 + �xT0 ϒ̂−1
0 �x0. (32)

We indicate transposition of column vectors by superscript T
and use the standard notation for the direct product of two
vectors �a ⊗ �bT that defines a corresponding matrix.

Substituting the result Eq. (31a) for �Xq into the macro-
scopic momentum balance equation Eq. (30), we obtain the
following relation between u0 and �X0:

�xT0 �X0 = −u0
2

∫
q

[
�xT−qϒ̂

−1
0 �xq −

∣∣�xT0 ϒ̂−1
0 �xq

∣∣2
λq

]

+ 1

2

∫
q

[
�xT−qϒ̂

−1
0 ϒ̂q

] �X0

− 1

2

∫
q

[
�xT−qϒ̂

−1
0 �x0

][
�xT0 ϒ̂−1

0 ϒ̂q − �xTq
] �X0

λq
, (33)

where the factor 1/2 arises from the projection into the
longitudinal and transverse components that is specific to two
dimensions and, consequently,

∫
q . . . = ∫ ddq

(2π )d . . ., denotes an
integral over the wave vectors in d = 2.
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Equation (33) expresses force balance on spatial scales
large in comparison to the disorder correlation radius. Com-
paring this equation with Eq. (17), we see that the last two
terms on the right-hand side of Eq. (33) describe renormaliza-
tion of the effective densities of particle number and entropy
by disorder. In contrast, the first term on the right-hand side
of Eq. (33) describes the emergent friction force due to the
macroscopic flow of the electron liquid, F f = −ku0. Thus the
spatially uniform part of the force balance equation, Eq. (33),
can be written in the form

−�xTe �X0 − ku0 = 0. (34)

Here the column-vector �xe describing disorder-renormalized
particle and entropy densities is given by

�xe = �x0 − 1

2

∫
q

[
ϒ̂−qϒ̂

−1
0 �xq

− λ−1
q

(
ϒ̂−qϒ̂

−1
0 �x0 − �x−q

)
�xT0 ϒ̂−1

0 �xq
]
, (35)

and the friction coefficient k is given by

k = 1

2

∫
q
�xT−qK̂q�xq, (36)

where we introduced the matrix

K̂q = ϒ̂−1
0 − 1

λq
ϒ̂−1

0 �x0 ⊗ �xT0 ϒ̂−1
0 . (37)

The friction coefficient k is positive definite, as we show
below. Using the notations from Eqs. (35) and (36), the spatial
average of the hydrodynamic velocity u0 can be expressed in
terms of the average electric field and temperature gradient �X0

from Eq. (34).

C. Macroscopic thermoelectric conductivity matrix

We are now in a position to evaluate the transport coeffi-
cients of the system. This can be done in two equivalent ways:
(i) by expressing the macroscopic particle and entropy current
〈�J〉 in terms �X0 or (ii) by evaluating the entropy production
rate in terms of �X0. We continue by following the first route.
The second approach leads to the same result and is described
in Appendix B.

To this end, we express the macroscopic particle and
entropy currents, 〈�J〉, in terms of �X0 and u0. Rewriting next
Eq. (18) in terms of the integrals in reciprocal space of wave
numbers,

〈�J〉 = �x0u0 − ϒ̂0 �X0 +
∫
q
(�x−quq − ϒ̂−q �Xq), (38)

and using the linear response solutions from Eqs. (31), we can
express the macroscopic particle and entropy currents in the
systems in terms of �X0 and u0 in the form

〈�J〉 = �xeu0 − ϒ̂0 �X0 − 1

2

∫
q

[
1

λq
ϒ̂−qϒ̂

−1
0

(
�x0 ⊗ �xT0 ϒ̂−1

0

− λq
)
ϒ̂q − 1

λq

(
�x−q ⊗ �xT0 ϒ̂−1

0 ϒ̂q + ϒ̂−qϒ̂
−1
0 �x0 ⊗ �xTq

)

+
(

1

ηq2
+ 1

λq

)
�x−q ⊗ �xTq

]
�X0. (39)

Here the contributions proportional to u0 are expressed in
terms of the column vector of disorder-renormalized densities
defined in Eq. (35). Finally, substituting u0 from Eq. (34)
into the last equation, we obtain Eq. (19) with the matrix of
effective kinetic coefficients of the medium ϒ̂e given by

ϒ̂e = 1

k

(
�xe ⊗ �xTe

) + ϒ̂0 + 1

2

∫
q

[
1

λq
ϒ̂−qϒ̂

−1
0

(
�x0 ⊗ �xT0 ϒ̂−1

0

− λq
)
ϒ̂q − 1

λq

(
�x−q ⊗ �xT0 ϒ̂−1

0 ϒ̂q + ϒ̂−qϒ̂
−1
0 �x0 ⊗ �xTq

)

+
(

1

ηq2
+ 1

λq

)
�x−q ⊗ �xTq

]
. (40)

The matrix in the above expression is symmetric in agreement
with the Onsager symmetry principle of kinetic coefficients.

Let us now summarize the results of this subsection. Equa-
tion (40), together with Eqs. (32) and (35)–(37), express the
thermoelectric conductivity matrix of the system in terms of
the position-dependent matrix of kinetic coefficients of the
liquid, ϒ̂ (r), and densities of particles and entropy, �x(r), in
the equilibrium state. Note that the conductivity of the system
cannot be expressed in terms of local fluctuations of �x(r)
and ϒ̂ (r).

IV. LONG-RANGE DISORDER

In this section, we tailor the above general framework
to an experimentally relevant case of long-range disorder.
This situation can be realized in high mobility semiconductor
quantum wells with modulation doping and boron nitride
encapsulated graphene devices [6–13].

In this case, the expressions for the transport coefficients of
the system obtained in the previous section may be simplified
significantly by selecting the terms that scale as leading pow-
ers of the correlation radius ξ of the disorder potential. More
specifically, we assume that the correlation radius satisfies the
condition

ε ≡ 1

ξ 2

η + ζ

�xT0 ϒ̂−1
0 �x0


 1, (41)

and obtain the transport coefficients of the system to leading
order in ε.

It is important to note that when the condition Eq. (41)
is satisfied, the transverse component of the velocity in
Eq. (31b), which corresponds to the vortical flow, exceeds the
last term in Eq. (31c). The latter corresponds to the potential
component of the flow caused by the thermodynamic forces
�X0. This implies that in transport measurements dominated
by the relative mode, for which the macroscopic flow velocity
u0 is small, the inhomogeneous part of the flow induced on a
spatial scale of order of the correlation radius ξ is primarily
vortical. In particular, this situation is realized in charge trans-
port near the neutrality point, as was qualitatively discussed
in the Introduction. For transport measurements in which the
macroscopic hydrodynamic flow characterized by the velocity
u0 plays a substantial role, the first term in Eq. (31c) may
exceed the vortical contribution Eq. (31b) rendering the flow
mostly potential. This situation is realized for charge transport
sufficiently far away from charge neutrality [37,40].
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Below we obtain the transport coefficients that are valid
in the entire crossover region between these two regimes.
We work to leading order accuracy in the parameter ε in
Eq. (41). In this approximation, we may neglect the wave
number dependence of λq in Eq. (32), setting λq → λ0 in the
subsequent expressions of the previous section.

In particular, the matrix K̂q in Eq. (37) can be reduced to a
more compact expression:

K̂0 = 1

(iτ̂y�x0)T ϒ̂0(iτ̂y�x0)
(iτ̂y�x0) ⊗ (iτ̂y�x0)T

= 1
σ0
e2 s

2
0 − 2 γ0

T n0s0 + κ0
T n

2
0

(
s20 −n0s0

−n0s0 n20

)
. (42)

As a result, Eq. (36) for the friction coefficient simplifies to

k = 〈(s0δn − n0δs)2〉
2
(

σ0
e2 s

2
0 − 2 γ0

T n0s0 + κ0
T n

2
0

) . (43)

The friction coefficient k here is positive definite because the
denominator in Eq. (43) is positive. The latter statement fol-
lows from the fact that the matrix ϒ̂ of kinetic coefficients of
the liquid is positive definite. Furthermore, from the positivity
of k in Eq. (43), it follows that the friction coefficient in the
general expression of Eq. (36) is also positive definite [53].

Next, we note that in the long wavelength approximation
Eq. (41), the column vector of renormalized densities �xe in
Eq. (35) can be expressed using the matrix K̂0 in Eq. (42)
in terms of the local fluctuations of densities, δ�x and kinetic
coefficients, δϒ̂ , in the form

�xe = �x0 − 1

2
〈δϒ̂K̂0δ�x〉 − 1

2λ0
〈δ�x ⊗ δ�xT 〉ϒ̂−1

0 �x0. (44)

Let us now turn to the thermoelectric conductivity matrix.
Note that since the friction coefficient k is quadratic in the
disorder amplitude, the first two terms in Eq. (40) do not
vanish in the limit of weak disorder. In contrast, the remaining
terms in Eq. (40) are proportional to the variance of the
disorder potential and are generally small in comparison to the
first two. However, while most of these terms can be expressed
in terms of local correlators and are independent of disorder
correlation radius ξ , the first term in the last line of Eq. (40),
which is inversely proportional to the shear viscosity η, scales
as ξ 2. Therefore, for systems where the correlation radius of
disorder satisfies the condition Eq. (41), we may neglect all
terms in Eq. (40) that are proportional to the disorder variance
except for the first term in the last line. Doing so, we obtain

ϒ̂e = 1

k

(
�xe ⊗ �xTe

) + ϒ̂0 +
∫
q

1

2ηq2
(
�x−q ⊗ �xTq

)
. (45)

Here k and �xe are given, respectively, by Eqs. (43) and (44),
and within the accuracy of our approximation only terms of
zeroth and second order in the fluctuations should be retained
in (�xe ⊗ �xTe ). The matrix in Eq. (45) is obviously positive
definite.

As an application of Eq. (45), let us consider the electrical
resistivity ρ of the system at weak long-range disorder. It
can be expressed in terms of the 11 matrix element of ϒ̂e

in Eq. (45) as ρ = 1/e2[ϒ̂e]11. To leading accuracy in the
disorder strength and in the long wavelength limit, this yields

ρ ≈ k/(e2n20). Substituting here k from Eq. (43), we get

ρ = 1

2e2
T 〈[δ(s/n)]2〉

κ0 − 2γ0
s0
n0

+ T σ0
e2

(
s0
n0

)2 . (46)

This expression generalizes the result of Ref. [37] in the long
wavelength limit. Setting (σ0, γ0) = 0 in Eq. (46), we repro-
duce the Galilean-invariant result [37] in the long wavelength
limit.

The expressions for the effective friction coefficient,
Eq. (43), disorder-renormalized densities, Eq. (44), and ther-
moelectric conductivity matrix, Eq. (45), are the main results
of this section. They are applicable to systems with weak,
(δn, δs) 
 max{|n0|, s0}, long-range disorder whose correla-
tion length ξ satisfies the condition Eq. (41).

Note that the first term in Eq. (45) has the form of a pro-
jection operator on the column vector of effective densities of
particles and entropy in Eq. (44). This term may be identified
with disorder-renormalized hydrodynamic transport mode.
The corresponding conductivity is inversely proportional to
the friction coefficient k in Eq. (43), and diverges at vanishing
disorder. The remaining terms in Eq. (45) are associated with
disorder-renormalized transport mode relative to the liquid.
The first of these terms arises from the intrinsic transport rela-
tive to the liquid. The second term represents the contribution
of convective vortical flow of particles and entropy induced
on spatial scales of order of the correlation radius of disorder.
Although this contribution is proportional to the disorder
strength, it grows as ξ 2 as the correlation radius increases.
Therefore, the perturbative smallness is compensated in this
term by the large parameter 1/ε.

The conditions (δn, δs) 
 max{|n0|, s0} and Eq. (41) that
define the applicability of Eqs. (44)–(45) ensure that the
neglected nonlocal corrections to the hydrodynamic mode and
to the relative mode separately, are relatively small. However,
in a particular transport setup, both of these two modes
may provide a contribution. In this case our approximation,
which involves retaining the last two terms in Eq. (45) while
neglecting the nonlocal corrections to the first term, requires
further justification. Let us consider the electrical conductiv-
ity of the system as an example. The nonlocal corrections
to the main term in Eq. (45) come from two sources: (i)
corrections to the friction coefficient, and (ii) corrections to
the effective density. Using the form of the friction matrix in
Eq. (37), the nonlocal correction to the friction coefficient in
Eq. (36) can be estimated as δk ∼ 〈δn2〉[(η + ζ )n20]/(ξλ0)2.
This yields the correction to the conductivity δσk ∼
n20δk/k

2. The modification of conductivity due to nonlocal
corrections to the effective density are of the same order of
magnitude. On the other hand, the conductivity enhancement
due to vortical viscous flow that is determined by the third
term in Eq. (45) is estimated as δση ∼ ξ 2〈δn2〉/η. Thus the
last term in Eq. (45) exceeds the nonlocal corrections to the
first term, provided the following condition is satisfied:

n20 <
ξ 2kλ0√
η(η + ζ )

. (47)

Note here that to the leading order, k ∼ 〈δn2〉 per Eq. (43).
We will consider the implications of the above condition in
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greater detail in the next section where we analyze electron
transport in graphene near charge neutrality.

V. GRAPHENE NEAR CHARGE NEUTRALITY

We now apply the principal results of Sec. IV to study
the thermoelectric properties of graphene near the charge
neutrality point. Our perturbative approach assumes that the
variations of density are small, 〈δn2〉 
 s20 + n20. This condi-
tion can be satisfied in boron nitride encapsulated graphene
devices. Furthermore, it is easy to see that for graphene near
charge neutrality the condition Eq. (41) is satisfied in the
regime of applicability of the hydrodynamic approximation,
v/(T ξ ) 
 1. Therefore, transport properties of graphene de-
vices can be investigated using the long-range approximation
of Sec. IV. Indeed, near charge neutrality, we can estimate
ηq2 ∼ T 2/(vξ )2, where v is the band velocity in graphene
and ξ is the correlation length of the disorder potential.
Here we took η ∼ T 2/v2 [54] and suppressed all logarithmic
renormalizations in η which are beyond the accuracy of these
estimates.

One can further simplify the expressions of Sec. IV by
neglecting small terms of order n0/s0, which is valid in the
regime near charge neutrality, n0 
 s0. In this approximation,
the friction coefficient, k0 = k(n0 → 0), in Eq. (36) can be ex-
pressed in terms of the intrinsic conductivity and the electron
density variance as follows:

k0 = e2

σ0

〈δn2〉
2

. (48)

Furthermore, the expression Eq. (44) for the vector of renor-
malized densities simplifies to

�xe =
(

n0
s0 − e2

2σ0T
〈δnδγ 〉

)
. (49)

Substituting the expressions Eqs. (48) and (49) for the
friction coefficient and disorder-renormalized densities of
graphene into Eq. (45), we can express the thermoelectric
conductivity matrix in the form

ϒ̂e ≈ 2σ0

e2〈δn2〉
(

n20 n0s0
n0s0 s20

)
− 〈δnδγ 〉

T 〈δn2〉
(
0 n0
n0 2s0

)

+
(

σ0/e2 + χ γ0/T
γ0/T κ0/T

)
, (50)

where we introduced a dimensionless quantity:

χ = 1

2η

∫
d2q

(2π )2
|nq|2
q2

. (51)

The electrical conductivity of the system is defined by the
11 element of the matrix ϒ̂ in Eq. (50), and is given by

σ = σ0 + e2χ + σ0
2n20

〈δn2〉 . (52)

Note that long-range correlated disorder enhances the conduc-
tivity of the system at charge neutrality.

To obtain the thermoelectric properties of the systems,
we re-express the linear relation Eq. (19) with the matrix
coefficients Eq. (50) in a more familiar form [55]:

〈E〉 = ρe e〈j〉 + Qe〈∇T, 〉, (53a)

T 〈js〉 = 	ee〈j〉 − κe〈∇T 〉. (53b)

Here ρe and κe are the electrical resistivity and the thermal
conductivity of the system, and Qe and 	e are, respectively,
the Seebeck coefficient (thermopower) and the Peltier coeffi-
cient. The latter are related by the Onsager symmetry relation
	e = QeT .

For the Peltier and Seebeck coefficients, we obtain to
leading order accuracy in inhomogeneity:

Qe = 	e

T
= 1

e

2n0s0
〈δn2〉

1

1 + e2
σ0

χ + 2n20
〈δn2〉

. (54)

The Seebeck coefficient Qe is given by the entropy per unit
charge that is transported by the current. At relatively large
doping, n20 � 〈δn2〉, it approaches the value in the pristine
electron liquid, Q0 = 1

e
s0
n0

but is always reduced from it.
This reduction is especially strong near charge neutrality. The
doping dependence of the Seebeck coefficient is illustrated in
Fig. 2.

Finally, for the thermal conductivity, we obtain

κe = T
2s20

〈δn2〉
σ0
e2 + χ

1 + e2
σ0

χ + 2n20
〈δn2〉

. (55)

This yields the Lorentz ratio Le = κeρe/T in the form

Le = 2s20
e2〈δn2〉

1 + e2

σ0
χ[

1 + e2
σ0

χ + 2n20
〈δn2〉

]2 . (56)

The density dependence of the Lorentz ratio in Eq. (56) is
illustrated in Fig. 3.

Equations (50), (52), and (54)–(56) for the transport co-
efficients of graphene near charge neutrality represent the
main results of this section. Note that the disorder affects
the transport coefficients of the system in two qualitatively
different ways: (i) via the friction coefficient k in Eq. (48) and
(ii) via the parameter χ in Eq. (51).

(i) The first part of the dependence can be obtained
by introducing a friction force in the hydrodynamic equa-
tions [42–44,56–59]. This approach produces viscosity-
independent transport coefficients that correspond to setting
χ → 0 in our expressions. In particular, it yields the con-
ductivity at charge neutrality that is unaffected by disorder
and equal to the intrinsic conductivity of the electron liquid
[42–44]. The reason is that within such an approach, electron
transport at charge neutrality is decoupled from the hydrody-
namic flow.

(ii) The dependence of the transport coefficients on
the shear viscosity of the electron liquid is described
by the parameter χ in Eq. (51). Although χ is proportional
to the disorder strength, it scales with the correlation radius as
ξ 2, and thus is inversely proportional to the small parameter
ε in Eq. (41). This shows that the effect of the long-range
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FIG. 2. Upper panel: Density dependence of the Seebeck co-
efficient in Eq. (54) for several different values of the disorder
strength as quantified by a parameter � = √

1
2 〈δn2〉(1 + e2

σ0
χ ). Note

that � is strongly temperature dependent so the sensitivity to thermal
fluctuations are implicit (see further discussion in Sec. VI). The scale
of Q on the plot is normalized to a “quantum” unit of thermopower
QQ = π 2/3 (in full dimensional units it is π 2k2B/3e). Lower panel:
The same plot as above but with the different normalization of
the overall scale to the prediction of an ideal hydrodynamic limit
QQ → Q0. This plot emphasizes that as a function of density (or
temperature implicit in �), thermopower is enhanced as compared
to prediction of the Mott formula but stays below Q0.

disorder on hydrodynamic electron transport near charge neu-
trality is extremely nonlocal. This is qualitatively different
from the situation away from charge neutrality, where the
resistivity becomes independent of the correlation radius for
long-range disorder [37,40]. The dependence of the transport
coefficients on χ arises from the vortical component of the
inhomogeneous flow described by Eq. (31b). This vortical
flow gives a positive contribution to the conductivity of the
system, an enhancement factor e2χ in Eq. (52) that is inversely
proportional to the shear viscosity η.

Note that accounting for the dependence of λq on the
wave number q in our general expressions would also pro-
duce viscosity-dependent corrections to the resistivity of the
system. These corrections arise from the potential component
of the flow and scale as (η + ζ )/ξ 2, cf. Refs. [37,40,41]. Their
contribution to the electrical conductivity is proportional to

FIG. 3. Density dependence of the Lorentz ratio in Eq. (56)
(scaled with the Wiedemann-Franz value LWF = π 2/3e2) for three
different values of the disorder-induced density fluctuations as quan-
tified by the parameter � = √

1
2 〈δn2〉(1 + e2

σ0
χ ).

n20 and becomes essential away from charge neutrality. The
condition that these corrections are small in comparison to
the second term in Eq. (52) is expressed by Eq. (47). Using
Eq. (48) and the estimates at the beginning of this section,
it is easy to see that the applicability condition Eq. (47)
reduces to

|n0| � ξ

lT

√
〈δn2〉, lT = v

T
. (57)

This condition is satisfied in a parametrically wide range of
electron doping near charge neutrality, in which the viscous
contribution to resistivity is dominated by vortical flow at
spatial scales comparable to ξ . This flow produces a positive
contribution to the electrical conductivity of the system, which
is proportional to the square of the disorder correlation radius.
In contrast, sufficiently far from charge neutrality, the viscous
contribution to the conductivity arises predominantly from
the nonlocal corrections to Eq. (50) due to the momentum
dependence of λq in the general expression Eq. (40). They cor-
respond to the longitudinal component of the hydrodynamic
flow and give a positive contribution to the resistivity that is
proportional to the combination (η + ζ )/ξ 2 [37,40,41].

It is important to note that the dimensionless parameter χ

in Eq. (51), which can be estimated near charge neutrality as
χ ∼ (ξ lT )2〈δn2〉, may become large even at weak, 〈δn2〉 

s20, but sufficiently long-range disorder, ξ � lT . This imposes
additional constraints on the applicability of our results. They
may be obtained by considering an “isotropic” extension of
the toy model from the qualitative discussion in Sec. I with
a checkerboard pattern of inhomogeneous density, n(r) =
δn0[cos(y/ξ ) + cos(x/ξ )]. In this case, in addition to the
viscous force, an inhomogeneous flow will cause the friction
force, whose magnitude can be estimated from Eq. (48) as
ku0 ∼ u0(e2/σ0)δn20. Our results obtained in the long wave-
length approximation of Sec. IV apply as long as the friction
force is smaller than the viscous force, e2ξ 2〈δn2〉/η � σ0.
This imposes the following constraint:

χ � σ0/e
2 (58)
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on the applicability of our results. This implies that our results
remain valid as long as the enhancement of the conductivity
at charge neutrality does not exceed the intrinsic value in
Eq. (52). The constraint Eq. (58) on the applicability of our
perturbative results can also be verified by considering higher
order terms in the perturbation theory.

VI. SUMMARY

In this paper, we presented a hydrodynamic theory of
electron transport in the conductors with a long-range disorder
potential. It generalizes the approach of Ref. [37] to conduc-
tors in which the underlying electron liquid lacks Galilean
invariance.

For weak disorder, the matrix of kinetic coefficients of the
system defined by Eq. (19) can be expressed in terms of the
position-dependent densities of particles and entropy Eq. (11)
and intrinsic kinetic coefficients Eq. (14) of the liquid in the
form of Eq. (40).

For a long-range disorder potential, whose correlation ra-
dius satisfies the condition Eq. (41), the transport coefficients
may be expressed in a simplified form Eq. (45) in terms of the
friction coefficient Eq. (43), disorder-renormalized particle
and entropy densities, and an additional viscosity dependent
parameter χ defined in Eq. (51). The dependence of kinetic
coefficients on χ that we find represents the principal dif-
ference of our results from those of the previous treatments
[42–44,56–59]. The dependence of the transport coefficients
on χ arises from the vortical component of the hydrodynamic
flow. Importantly, this dependence has an extremely nonlocal
character; the parameter χ in Eq. (51) is inversely proportional
to the square of the disorder correlation radius. The results of
the previous treatments can be obtained by setting χ → 0 in
our expressions.

For graphene devices subject to long-range disorder, the
transport coefficients are described by Eqs. (52)–(56). Re-
markably, the conductivity at charge neutrality, n0 → 0 in
Eq. (52), is enhanced in comparison to the intrinsic conduc-
tivity of the electron liquid. This is in contrast to previous
results [40,42–44], which predict the conductivity at charge
neutrality to be unaffected by disorder and equal to the in-
trinsic conductivity of the electron liquid. The conductivity
enhancement arises from the convective charge transport by
the vortical component of the hydrodynamic flow.
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APPENDIX A: ENTROPY PRODUCTION RATE

In this Appendix, we derive the expression for the local
entropy production rate in Eq. (8). Assuming local thermal
equilibrium, we can characterize the state of the liquid by the
densities of conserved quantities: particle number n, energy
ε, and momentum p. The entropy density s is a function of
the conserved quantities and its differential is given by the
thermodynamic relation

ds = dε

T
− (μ + eφ +U )dn

T
− u · dp

T
, (A1)

where U is the external potential and the local equilibrium
parameters T , μ, and u are functions of n, s, and p which
depend on the band structure. The electric potential φ is
determined by the density of electrons and external charges:

eφ(r) =
∫

dr′ e
2[n(r′) + next (r′)]

|r − r′| . (A2)

Using the thermodynamic relation Eq. (A1), and the evolution
Eqs. (2) and (3) for the conserved quantities, we get

∂t s = − 1

T
[∇ · jε − (μ + eφ +U )∇ · j

−ui∂ j	i j − nu · ∇(eφ +U )]. (A3)

Using Eqs. (5) and (6c), we can rewrite the evolution Eq. (A3)
in the form of Eq. (4) where the expression for the local
entropy production rate ς is given by

ς = jε · ∇ 1

T
− j · ∇

(
μ + eφ +U

T

)

+u · ∇P + nu · ∇(eφ +U ) − ui∂ jσ
′
i j

T
. (A4)

As the next step, using the thermodynamic identity ∇P =
n∇μ + s∇T we can rewrite Eq. (A4) in the form

ς = − 1

T
[(js − su) · ∇T + (j − nu) · ∇(μ + eφ +U )]

− ui∂ jσ
′
i j

T
. (A5)

Substituting the definitions Eqs. (6a) and (9) of the dissipa-
tive particle and entropy fluxes we obtain the local entropy
production rate in the form of Eq. (8).

APPENDIX B: DERIVATION OF MACROSCOPIC
TRANSPORT COEFFICIENTS FROM ENTROPY

PRODUCTION

The macroscopic thermoelectric conductivity matrix de-
fined in Eq. (19) can be obtained by evaluating the entropy

075305-10



HYDRODYNAMIC ELECTRON TRANSPORT NEAR CHARGE … PHYSICAL REVIEW B 102, 075305 (2020)

production rate in the system,

T Ṡ =
∫

dr[ �XT ϒ̂ �X + σ ′
i j∂iu j], (B1)

and expressing it in terms of the macroscopic electric field and
temperature gradient, �X0, in the form

T Ṡ

A
= �XT

0 ϒ̂e �X0. (B2)

This procedure is equivalent to the consideration in the main
text.

To the second order in perturbation in disorder this yields

�XT
0 ϒ̂e �X0 = �XT

0 ϒ̂0 �X0 +
∫
q

[ �XT
−qϒ̂0 �Xq + 2 �XT

0 ϒ̂−q �Xq

+ ηq2(utq · ut−q) + (η + ζ )q2(ul
q · ul

−q)
]
. (B3)

Substituting Eqs. (31) into this equation, and using Eqs. (35)–
(37) we reproduce the result of Eq. (40) for ϒ̂e.

Finally, to establish a direct connection to the macroscopic
thermoelectric resistivity matrix, one can rewrite entropy pro-
duction rate in a different way, T Ṡ/A = 〈�J〉T �̂〈�J〉, Indeed,
one should simply recall that the matrix �̂ defines a linear
relation, 〈 �X(r)〉 = �̂〈�J〉, between the average currents 〈j〉, 〈js〉
and the average forces e〈E〉,−〈∇T 〉. This matrix must satisfy
the Onsager symmetry principle as can be readily verified
based on Eq. (40).
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