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kinetic theory and elucidate its effective viscosity and thermal
conductivity. In particular, we derive decay times of arbitrary
harmonics of the distribution function and reveal its correspond-
ing super-diffusive relaxation on the Fermi surface. We further
consider several applications of this theory to magneto-transport
properties in the Hall-bar and Corbino-disk geometries, relevant
to experiments. In our analysis we allow for general boundary
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type nonlinearity. As a result, the non-equilibrium distribution
function has a shock-wave structure in the energy domain. The
consequence of this behavior for the Fano factor of the noise
is investigated. In conclusion we discuss connections and limi-
tations of our results in the context of recent electron-phonon
drag measurements in Dirac and Weyl semimetals, and layout
directions for further extensions and developments.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Hydrodynamic effects of electronic transport in quantum materials are of significant current
interest in condensed matter physics; see reviews [1,2] and references therein. Various transport
measurements in electrostatically defined wires in the two-dimensional electron gas in Ga(Al)As
hetero-structures [3-7], monolayer and bilayer graphene [8-15], quasi-two-dimensional delafos-
site metals PdCoO, and PtCoO, [16-18], Dirac semimetal PtSny [19,20], type-Il Weyl semimetal
tungsten phosphide WP, [21,22], and antimony Sb [23], provided substantial evidence for viscosity-
dominated electronic response. Recently, direct imaging techniques, employing scanning gate
microscopy [24,25], a nanotube single-electron transistor [26], and quantum spin magnetometry
realized with nitrogen vacancy centers in diamond [27,28], revealed signatures of the Poiseuille
profile of electron flow in narrow graphene channels and mesoscopic Ga(Al)As. While experimental
findings of electronic hydrodynamics in solid-state systems are mounting, the conceptual questions
remain in particular in regard to different microscopic scattering mechanisms that govern transition
to the hydrodynamic regime in different materials, and how they manifest in transport coefficients.

Typically the description of electronic conduction processes in solids requires a kinetic theory
that is based on the formalism of the Boltzmann equation [29-31]. In this framework, microscopic
scattering processes of momentum and energy relaxation are captured by collision terms between
electrons and impurities, phonons or other relevant excitations. The electrical and thermal conduc-
tivities are then related to these microscopic length and time scales for momentum and energy
relaxation. In contrast, a hydrodynamic description relies on the existence of locally conserved
quantities. In this regime momentum and energy conserving electron-electron (ee) collisions are
frequent and occur on shortest length and time scales. In this picture, the resistance, for example,
can be related to the electronic viscosity and the thermal conductivity [32-34]. More generally,
for conductors in which the underlying electron liquid lacks Galilean invariance the resistivity is
determined by the entire thermoelectric matrix of the intrinsic kinetic coefficients [35-39].

Since electronic scattering lengths are strongly temperature dependent and highly sensitive to
the type of scattering, one often argues that the hydrodynamic regime sets in at intermediate
temperatures. Indeed, at lowest temperatures when the electron-electron and electron-phonon
scattering mean free paths diverge, the electronic momentum is relaxed by scattering with impuri-
ties and boundary inhomogeneities. At higher temperatures, when phonon excitation branches are
activated, electron-phonon scattering is the main mechanism that relaxes both momentum and
energy of the electronic system. In between these two limits, and provided samples of sufficient
purity, there is a range of temperatures where the electron fluid attains local equilibrium on the
length scale of electron-electron collisions, which is short compared to the scales at which the
conservation laws break down. Then the dynamics of the electron fluid can be treated hydro-
dynamically. This is certainly the scenario that occurs in graphene [1,2,40,41] and perhaps very
high mobility semiconductor hetero-structures of moderately-strongly correlated electrons at low
densities [6,42].

The above assertion that electron-phonon scattering is destructive for establishing electronic
hydrodynamic regime by relaxing electronic momentum relies on a crucial assumption that the
phonons are in thermal equilibrium. This transport situation has been considered in multiple
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Hydrodynamic electron-phonon drag flow with velocity u(r)

Fig. 1. [Left panel]: When the total momentum of an interacting electron-phonon system decays slowly, a coupled out-
of-equilibrium state - the electron-phonon fluid - emerges. As a result, a joint flow-velocity u (r) emerges as a collective
hydrodynamic variable. Such a state displays viscous flow, super-diffusion in phase space and gives rise to shock-wave
phenomena in the energy domain. In the figure we indicate the flow of the coupled electron wave and the moving ions
that indicate the spread of acoustic waves. [Right panel]: Swirling magneto-flow profile of u (r) for a Corbino disc in an
applied magnetic field, discussed in Section 3.3.

works and much is known about momentum and energy relaxation rates from the solution of the
Boltzmann equation, see for example Refs. [43-46]. Recently detailed ab initio calculations provided
firm results for the relevant electron-phonon scattering processes in semimetals accounting for
complexities of their Fermi surfaces and microscopic details of electron-phonon coupling [47].
However, it was pointed out by Peierls [48] early on that in fact the non-equilibrium nature of
the current-carrying electronic distribution should lead, through electron-phonon scattering, to a
phonon distribution that is also out of equilibrium. As a consequence, the total quasi-momentum
of a combined electron-phonon systems would be conserved in the absence of umklapp processes.
The electrons and phonons would then drift along together, maintaining their nonzero crystal
momentum and also a nonzero current, see Fig. 1 for the schematic illustration. The drift velocity
can be treated as an emergent hydrodynamic soft mode whose relaxation occurs at the longer time
scale of umklapp scattering due to phonon nonlinearities or assisted by scattering with electrons.

The transport theory of this phonon drag effect was developed by Gurevich in the context of
thermoelectric phenomena [49]. Later Gurzhi [50], Nielsen and Shklovskii [51], and Gurevich and
Shklovskii [52], and Gurevich and Laikhtman [53] put forward hydrodynamic description of phonons
in dielectrics and coupled electron-phonon liquids in metals and semiconductors (see also a detailed
review [54]). Of particular relevance to our work, Steinberg [55] and Gurzhi and Kopeliovich [56]
considered the problem of electric conductivity of pure metals with an account of phonon drag. The
electron viscosity was determined in Ref. [55], while Ref. [56] analyzed the case of a metal with open
Fermi surface consisting of large electron (or hole) groups interconnected arbitrarily by a narrow
necks. In this situation the dominant cause of the low-temperature resistance is due to umklapp
events occurring in collisions between electrons and phonons which remains effective down to
lowest temperatures. Because of the kinematic constraints of momentum and energy conservations
in scattering, the change of electron momentum in each act of collision is small and scattering occurs
preferentially at small angles. As a result, electrons effectively diffuse in momentum space. This
enables one to reduce the full kinetic equation to a form of a Fokker-Planck type and account for
umklapp processes by imposing periodic boundary conditions on the non-equilibrium distribution
function.

In this work, we in large parts develop alternative derivations of the classic works [55,56], which
allow us to make extensions or draw additional conclusions for the behavior of electron-phonon
fluids. For example, we consider a complimentary scenario of a Peierls mechanism of umklapp
scattering mediated by phonon-phonon collisions. The rate of these processes is exponential in
temperature whereas the rate of normal electron-phonon collisions is a power-law. The interplay
between the two leads to a pronounced peak in the temperature dependent thermopower that can
be observed as one lowers the temperature. This feature is considered as one of the hallmarks of
strong electron-phonon interactions as recently seen in semimetals [19,20]. Even though we face
similar technical aspects of the problem as was already considered in Refs. [55,56], we perform a
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somewhat different route to analyze the problem. We do not expand the collision integrals in the
limit of small momenta but rather choose to work directly with the fully coupled collision integrals.
While it will not be possible to solve these equations analytically, it is nevertheless possible to
extract the main qualitative predictions from them in particular with regard to the temperature
dependence of the drag viscosity and thermal conductivity of the coupled electron-phonon fluid.
Furthermore, we believe that our approach may be more suitable if one wants to quantitatively
describe realistic materials with a more complex shape of the Fermi surface. The rich physics
that emerges if one includes such effects and anisotropies of the underlying crystal was recently
elucidated in Refs. [57,58].

Candidate materials for electron-phonon fluid behavior are clearly the delafossite metals PdCoO,
and PtCoO, [16-18]. The temperature dependence of the bulk resistivity observed in Ref. [59] is
fully consistent with phonon-drag behavior, i.e. inelastic scattering at low T has an exponential
temperature dependence, rather the Bloch-Griineisen behavior p oc T> that occurs without phonon
drag. In addition, hydrodynamic flow always requires strong momentum-conserving collisions. If
collisions in the delafossite metals would be due to electron-electron scattering, their large Fermi
surface would immediately give rise to equally strong umklapp processes. Hence, it seems that these
systems have weak electron-electron scattering but are governed by electron-phonon scattering
with phonon drag. In addition, evidence for electron-phonon fluid behavior was reported for the
semimetal PtSny [20], another material that displays very low resistivity at low temperatures and
shows a pronounced phonon drag peak in the low temperature thermopower [19].

The remainder of the paper is organized as follows. In Section 2 we formulate the generic kinetic
theory of coupled integro-differential equations for non-equilibrium distributions of electrons and
phonons. We linearize these equations and study parity properties of the collision kernel. We
also estimate rates of electron-phonon and phonon-electron collisions. Even though they originate
from the same matrix elements, the respective mean free paths are parametrically different due
to distinct phase space restrictions for fermions and bosons. As a methodological exercise, we
illustrate how Bloch’s law for the electron-phonon resistivity follows from the solution of the
integral Boltzmann equation when phonons are taken at equilibrium, and discuss how this solution
is violated when complete dragging of phonons is imposed. Analyzing the conservation laws of
the problem, we demonstrate how a joint drift velocity of the coupled electron-phonon system
emerges as hydrodynamic variable, even though both constituents of the fluid have vastly different
quasiparticle velocities. We finally consider a partially equilibrated case of phonon drag with
rare momentum relaxing collisions and derive the hydrodynamic equation of motion for the flow
of the coupled electron-phonon liquid. This analysis reveals the intrinsic viscosity and thermal
conductivity in the drag regime. In Section 3 we apply this hydrodynamic description to several
practical examples of viscous resistive effects and the Gurzhi effect in particular [60]. We consider
flows in different geometries of a Hall bar, a quantum wire, a Corbino disk, and allow for boundary
conditions with arbitrary slip length that enables us to cover the crossover from no-slip to no-
stress regimes. We also consider effects of a magnetic field, and the Hall viscosity, in particular
for the viscous magnetoresistance and study finite-frequency responses in the context of the
skin effect. Lastly we briefly touch upon the non-equilibrium thermometry of electron-phonon
collisions via shot noise in the diffusive regime. We summarize our findings in Section 4 and discuss
open questions and directions for future research. Various technical calculations are delegated
to several supplementary appendices that expand on properties and methods of analysis of the
electron-phonon collision operator.

2. From Kkinetic to hydrodynamic theory
2.1. Electron-phonon interaction

In many practical situations and for a broad range of temperatures, the electron-phonon inter-
action is dominated by processes with single-phonon emissions or absorptions [29]. Two-phonon

processes could become important when one-phonon processes are forbidden or suppressed by the
conservation laws or by symmetry restrictions for the transition matrix elements [31]. We restrict



A. Levchenko and J. Schmalian / Annals of Physics 419 (2020) 168218 5

our attention to single-phonon processes exclusively. Furthermore, we will treat only the situation
of scattering by long-wavelength acoustic phonons with a single electronic band.

For spatially inhomogeneous and time-dependent conditions the coupled kinetic equations for
non-equilibrium electron n(p, r,t) and phonon N(q, r, t) distribution functions read (hereafter
h=ks=1):

on on of

i + va + evE% = Step{n, N} + Stei{n}, (2.1)
AN 0N

o tse, = Stpe{n, N} + St {N} + St {N}. (2.2)

Here v = dye and s = 94w are electron and phonon group velocities, and E is an external electric
field. A finite magnetic field or temperature gradient will be added later in the text when we
consider applications where this becomes necessary. In the steady-state regime the explicit time
derivatives on the left hand sides vanish. In equilibrium, the fermionic and bosonic distributions
are the usual Fermi-Dirac and Bose-Einstein functions

fo = [expl(ep — ep)/T1+ 117", b, = [exp(wq/T) — 117" (2.3)

The primary focus of our attention will be the electron-phonon (St.,) and phonon-electron (Stpe)
collision integrals. The other terms such as electron-impurity Ste;, and phonon-phonon collisions,
both normal type via phonon nonlinearities St’[\,’p and umklapp type Stgp, are kept for generality but
their explicit forms will not be needed.

The electron-phonon collision integral consists of two contributions corresponding to emission
and absorption of a phonon:

Step{n, N} = fW(p|p/q)5(eq — &y — wg)lny(1 — np)Ng — np(1 — nyy (14 Ny)l
q

+ / W(pqIp')3(sp + wq — ey )ny(1 — np)(1 4+ Ng) — np(1 — 1y )Ng1. (2.4)
q

These two terms take care of the out-scattering and reverse in-scattering processes. In equilibrium
the difference between these processes is nullified as dictated by the detailed balance condition.
The momentum conservation in the first term implies p = p’ + q + g, while in the second
P+ q = p + g where g is reciprocal lattice vector. The phonon-electron collision integral counts
the overall difference between the number of phonons emitted by electrons with momenta p, as
allowed by the conservation laws, and number of phonons absorbed by electron with momenta p':

Stpe{n, N} =2 f W(pIp'q)8(eq — &y — wq) [np(1 — np)(1 4 Ng) — 1y (1 — np)Ng] . (2.5)
p

A factor of two accounts for the electron spin in these processes, and momentum conservation is
implicit and fixes the momentum p’. At the level of the leading Born approximation, the probabilities
of scattering for direct and reverse processes are equal to each other W(p|p'q) = W(pq|p’). Further-
more, for the deformation potential interaction and in the long-wavelength limit, the transition
probability is linearly proportional to phonon momentum W o |q|. In what follows, we will
concentrate on low-temperature processes below the scale of Debye energy, namely T < wp.

2.2. Linearized collision kernels and scattering rates

In general, it is not possible to solve the coupled nonlinear Boltzmann equations (2.1) and (2.2).
An analytical analysis is often restricted to the linear-response regime and uses solely the linearized
form of the collision terms. For this purpose we assume that the distribution functions are close to
their equilibrium expressions with small corrections n = f + én and N = b + §N. To determine
the collision terms in Eqgs. (2.4) and (2.5) up to linear order in non-equilibrium corrections, it is
customary to parametrize them as follows

of ab

n=f(1—f) =-T—y, 6N=b(1+b)p=-T—0¢. (2.6)
oe dw
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This form of dn and N makes it convenient to employ the detailed balance conditions under the
integral. In addition, the expression for the entropy production in the system becomes a symmetric
quadratic form in terms of ¥ and ¢, which is very useful for the variational formulation of the
Boltzmann equation.

We begin with Stpe in Eq. (2.5) as it is simpler in structure, but the same sequence of steps
will apply to the remaining collision terms. We follow the presentation given in Ref. [29] including
the notation. In the brackets of Eq. (2.5) that account for statistical occupations we take out the
product (1 — np)(1 — ny )(1 4+ Ng) and then perform a variation of this expression with respect to
the equilibrium state, which gives

8 Stpe{n, N} =2 / W(pIp'q)d(eq — ey — @g)(1 = fe, X1 — fe,, 1 + bay)
p

n Ny N,
) P___? 1. (2.7)
1—np 1—ny 1+ Ny

Next we observe that

n on f N SN b
b = = lp, ) = = d)v (2'8)
1—n (1—f2 1-f 1+N (1+b2% 1+b
and use well-known properties between equilibrium Fermi and Bose functions (also making use of
the energy-conserving delta function):

fap(l _fspqu) = [fspqu _fap]bqu fepqu(] _fsp) = [fspqu _fsp](1 + bu)q) (29)
As a result we find

8 Stpe{Vr, ¢} =2 f K-(p, q) [¥p — Y — ¢4] (2.10)

p

with the kernel

K:F(pv q) = W(plp/q)bwq(l + bwq)[fsl,:qu _fs,,]‘s(gq — & F wq)- (2.11)
In complete analogy we find for the linearized version of Eq. (2.4) the following expression

3 Step{vr, ¢} = /K,(p, q) [wp’ —Ypt+ (bq] - /I<+(p7 q) [%/ —VYp— ¢q] . (2.12)

q q

The important property of these collision kernels is that they preserve the parity ¢ — —q or
p — —p of the distribution functions. It then follows that even and odd modes of the non-
equilibrium distributions are decoupled and relax on parametrically different time scales. To see
this explicitly let us estimate these rates from Egs. (2.10) and (2.12). The form of the out-scattering
term in each of the linearized kernels suggests introducing the following rates:
s T3

IelT) = f K(p. @)~ hep ST, [p(T) = f K(p. @) ~ hep s (2.13)

P VF q Wp

We suppressed here plus/minus subscript in K(p, q) as phonon absorption and emission processes
have the same kinematics. Here, Ae, = 2Dopr/(svr) is the dimensionless electron-phonon coupling
constant while Dy is a constant related to the deformation potential. In what follows we estimate
the given, rather distinct, T-dependencies of these two rates.

At low temperatures below the scale of the Debye temperature, T < wp, we have wg ~ T and
ep —er ~ T, so that f; ~ b, ~ 1. Furthermore, the typical scale of the phonon momentum is
q ~ T/s, which is small compared to electronic momentum pr, where s is the sound velocity. For
this reason, the delta-function in the kernel of the collision term can be simplified 6(ep £ wq—&p) ~
ﬁS(cos Opq £ s/vF). Since s/vp <« 1 it is clear that 6,4 ~ m/2 so that the phonon propagates
in a direction that is almost perpendicular to the direction of the electronic momentum. In the
phonon-electron scattering rate, the momentum d°p integration is taken over the volume of a layer
with thickness ~ T/vr along the Fermi surface, so that fp — vfdsd.Q where the solid angle
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is df2 = 2w sinfdh and v is the density of states at the Fermi level (v = mpr for a 3D metal
with spherical Fermi surface). The angular average brings a factor 1/(vgq) ~ s/(Tvr) from the delta
function. Another factor of T comes from de and another T from w, in the scattering probability
W~ Do(wq/wp). As a result Ipe ~ Dou(s/ve)(T/wp). The electron-phonon relaxation rate is
estimated in exactly the same fashion, the only difference is that the integration goes over the phase
space of a phonon such that fq gives a factor (T /s)3. Combined with the factor 1/(vpq) from the delta

function, and a factor wq/wp from the scattering probability, this gives Izp ~ DoT3/(vps?wp). The
rate I, defines the typical relaxation scale for even modes e.g. the energy relaxation. With the
above given definition of )¢ this yields our estimates for the distinct relaxation rates of electrons
and phonons given in Eq. (2.13).

The electronic momentum is relaxed on a different scale. This is not immediately clear from the
form of I, itself but rather dictated by kinematic considerations. Indeed, during a given scattering
event, the angle between the momenta of the incoming and outgoing electron is small, Opy ~
q/pr ~ T /wp, and the change in electron momentum is 8p ~ q?/pr < pr. Thus electrons effectively
diffuse in momentum space. We can easily estimate the corresponding diffusion coefficient B from
the Einstein relation p*> ~ Bt, where 7 ~ Fegl is the typical time scale between two consecutive
collisions. This gives for B o T°. The corresponding mean-free time for momentum relaxation,
namely the time needed to change the momentum from to its initial value, is then ‘L'EB] ~ B/ p,z: ~
wp(T /wp)’. We can estimate the frequency of collisions of phonons with electrons in the same
manner, we only need to account for the ratio between the number of electrons and the number
of phonons in the region of Fermi function smearing which is of the order ~ (T/ep)(T/wp)>.
This implies the collision frequency per phonon occurring with the rate rp‘e‘ ~ wp(T/eF). Hence,
phonons are short-lived compared to electrons which can, for example, be used as a justification to
integrate out the lattice degrees of freedoms as fast intermediate excitations. Such phononic states
are therefore tied to the out-of-equilibrium dynamics of the electrons.

2.3. Bloch law and its violation under complete drag

As a first step in our analysis, it is useful to revisit the solution of the linearized Boltzmann
equation for the case of equilibrium phonons (namely neglecting the drag effect). This computation
contains all the technical elements that appear in the general calculation and is helpful method-
ologically. When phonons are assumed to be in equilibrium, we can set ¢4 to zero in the linearized
collision integral & St{yr, ¢} of Eq. (2.12). Thus we are looking for a solution of the following linear
integral equation

0
evE% = /K,(p, q) [%' - 1pp] - /I<+(p, q [%' - 1pp:l . (2.14)
q q

The fact that the left-hand-side is odd in momentum and that kernels preserve the parity of the
function tells us that ¥, must be odd as well. Since Ev contains only one (first) spherical harmonic
we chose a trial solution of the form
evEt

Up = x(mp). mp = (ep —er)/T, (2.15)
where time tp is introduced to have correct dimensionality which happens to be the characteristic
relaxation time of electron-phonon collisions at T ~ wp. The terms with v, and ¥y have different
angular structure because the electric field has to be projected onto the initial or final momentum
respectively. To resolve this difficulty we proceed as follows. Let us choose the integration z-axis
in momentum space to be along the initial momentum p. Then in the terms ¥ o (p'E)x(ny) we
can rewrite p'E = p,E, + p’ E, which implies an angular decomposition

COS Oy = COS Oy COS Opg + SIN Oy SiN Opg COS PpE (2.16)

where ¢, is the angle between projections of p’ and E on the plane perpendicular to the direction
of p. Note that conservation of momentum and energy fixes the relationship between the angles 6y
and 6,4. Upon integration over the angle ¢ the second term vanishes since we have assumed that
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kernels K. are isotropic and x(n,) does not depend on the direction of momentum by construction.
As a result, we accumulate an extra term o< cos6py ~ (1 — Qlfp, /2) in the differential scattering
cross-section. This is noting else but the usual angular factor in the transport scattering time. After
the angular part of the integration is done, the integration over the absolute value of momentum q

can be brought to a dimensionless form. Combining contributions from both K_ and K, we arrive
at

cosh2(1/2) = —3 / Ko(n. )% (n') + 930 / KaCn. )X (') + 03 / Ko, n)x (). (2.17)
n’ n' n'

where ¥p = T/wp, and 9 = T /e, while

Ki(n.n') = (n —n'YK(n.n') (2.18)

for k=0, 1,2 and also
(n—n')

(1+e)(1+e)er —er'|’
The semi-equality sign ~ in above Eq. (2.17) implies that we kept the main parametric and
functional dependences on the right-hand-side, but we suppressed all the numerical pre-factors
of the order of unity in each of the three terms. Retaining these numerical factors will be done in
Appendix A.1. Without the last two terms in Eq. (2.17) this equation has no solution for x(#). This is
the consequence of the symmetry of the kernel and the fact that uniform solution is not orthogonal
to the left hand-side which is easy to check. The solution can be then found by perturbation theory

treating the last two terms as corrections. The term with K; does not contribute to the leading order,
as it is odd, while the second term gives

x(n) = ¢/} (2.20)

with the constant ¢ is determined by the double integral c=' = 1 [ Ky(n, n')dndn’. With this
solution at hand we can compute the electrical current

K(n,n') =

(2.19)

e’t,
i=5" | wE), (1 f),)x(ny) = o5E. (2.21)
P

with o = ne*ry/m, and ;' ~ A¢pT°/wj, where dimensionless coupling constant of the electron-
phonon interaction A, was introduced earlier in the text below Eq. (2.13). An alternative derivation
of the above formula based on the variational analysis of the functional corresponding to the
Boltzmann equation (2.14) is presented in Appendix A.1. This approach rather easily allows to fix
the numerical pre-factor in op and can be naturally generalized for the calculation of other kinetic

coefficients, such as thermal conductivity for example.
As the next methodological step, it is instructive to investigate an opposite extreme limit of
complete drag when the non-equilibrium electronic and bosonic distributions are locked together.

For this case we need to solve two coupled equations

evE% = §Step{Vr, ¢}, 8 Stpelyyr, ¢} = 0. (2.22)

From the second of these equations we can find bosonic function explicitly as an integral over the
fermionic function [see Eq. (2.10)]

bq K_(p. q)[¥p — V] (2.23)

e P
and insert it back into the first equation. Then repeating all the same steps as above we obtain
instead of Eq. (2.17)

cosh?(1/2) = —0 / Ko(n 1)) + 93 f Ka(n. 1) — Kar, 1/ (). (2.24)
n n
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where a contribution with 9 was omitted for brevity as it only gives a sub-leading corrections. The
crucial new piece is the drag kernel which has the following form

; 641 e
Kqg = |§| / . (2.25)
77+] el +en( e’ + e~ e + ef)

It can be shown that f [K; — Kq] = 0 where the integration could be either over n or n’. We can
now integrate both sides of Eq. (2.24) over n to demonstrate that it has no solution. Physically this
is the regime of infinite conductivity that can only be stabilized by momentum-relaxing collisions.

2.4. Super-diffusive dynamics in phase space

The same technique that we used to analyze the resistivity can be applied to determine the
viscosity, as we show in the subsequent section. The scattering time 7, listed below Eq. (2.21)
is basically tep discussed earlier. The subscript | = 1 was introduced to emphasize that this
time corresponds to the relaxation of a particular harmonic of the distribution function. We will
determine below the viscosity that is determined by a parametrically similar time scale but that
corresponds to a relaxation of the different harmonic [ = 2. In Appendix A.4 we analyze in some
detail the relaxation t; of arbitrary [ by performing the angular momentum expansion of the collision
term. We obtain

[(I+ 1) 240¢ (5) AepT? /0y if T < wp/l
= 24¢ (3) hepT? /) if wp/l €T <K wp (2.26)
(1=3810) (2 = 811) AepT if T>> wp

where the intermediate regime only exists at large I. One has to be careful with the behavior above
the Debye energy as we neglected drag corrections in the source terms and collision integrals that
might correct for the numerical coefficient 2A¢p for [ > 2.

These results tell us that at lowest temperatures or for small angular momentum the collision
operator can be written as an angular Laplacian (%71_ 1Lz), which corresponds to a diffusion on the
Fermi surface. However, at any finite temperature there are angular momentum modes where we
get super-diffusion. The temperature dependence of the rate of super-diffusion for T > wp is given
by the phonon scattering rate I, T3, introduced in Eq. (2.13).

We remind that the term super-diffusion is commonly used in the literature to describe the
anomalous diffusion equation

“*n(p, t) = (2.27)

with the exponent u < 2, whereas the case u > 2 is typically termed sub-diffusion. The fractional
derivative should be understood via the action of |p|*/? in Fourier space. In our case we have y = 2
at lowest temperatures while highest angular momentum states ultimately behave as u — 0.
Notice, here diffusion takes place in phase space as a consequence of collisions. Such behavior is
of importance if one analyzes the relaxation of focussed electron beams or the time dependence of
heat pulses [61-64]. Related behavior was previously discussed in the context of two-dimensional
Fermi liquids [61-63] and for graphene at the neutrality point [64]. With electron-phonon fluids
we have identified three-dimensional systems that should display superdiffusive dynamics in phase
space.

—-D|4,

2.5. Emergent drift velocity and conservation laws

In this section we use the conservation laws of the system without umklapp and impurity
scattering to establish that a joint drift velocity emerges as hydrodynamic variable. The reason for
the joint drift velocity is rather transparent. Only the total momentum Py is conserved, which gives
rise to only one canonically conjugate hydrodynamic variable, the drift velocity u (r).
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We start from the second law of thermodynamics as it enters the Boltzmann theory in the
context of the H-theorem. To this end, we consider the entropy per degree of freedom expressed
in terms of the distribution functions:

sy =—[npInny + (1—np)In(1—np)]. 2" = —[NgInNg — (14 Ng)In(1+ Ng)]. (2.28)
This allows to determine the total entropy production

sel 4 h T\ 9m 1 INg
o= =g ([ [a)=[m(5-1) 52+ [m (Nq+1) Mo )

We can use the Boltzmann equations, Egs. (2.1) and (2.2), to express
it follows after a few steps that

Q= —/m (l - 1) (Step {n, N} + Stej {n}) — /ln (i + 1) (Stpe {n, N} + Styp {N}) > 0,
p \'p g \Ng

(2.30)

ar and . For closed systems

where the last inequality reflects the fact that the entropy of the system cannot decrease. In addition
we used Stpp (N} = St {N} + St {N} which combines normal and umklapp phonon-phonon
processes.

Next we summarize the well-known implications of conservation laws. For charge conservation
we sum Eq. (2.1) over p and obtain the continuity equation

ap
s +
since f (Step {n, N} + St {n}) = 0. Here we have the charge density p (r, t) = e/ 1, (r, t) and the

current density j (r,t) = e f vpn, (P, t). To analyze energy conservation we mtroduce the energy
density and energy current of the combined system:

V.-j=0 (2.31)

e(r,t) = 2/g,,n,, () +/qu., r, o), (2.32)
p q

Jjo(r.t) = Z/v,,e,,n,, r.t)+ /s.,w,,N,, (r.t). (2.33)
p q

Multiplying the Boltzmann equations by the electron and phonon energies and integrating over
momenta, we obtain

ap . . .
a: e = 2/(p-vp)np+/(q-sq)Nq. (2.34)
14 q

If there is no work done by or at the system (p - v, = q - sq = 0) this corresponds to the continuity
equation for the energy. It is a consequence of the fact that the sum of fp &p (Step {n, N} + St {n})

and f o (Stpe {n, N} 4 Styp (N }) vanishes. Finally we consider the momentum density and momen-
tum current:

g(r$t):zfpnp(rat)+quq(r5t)7
p q

Tup (r,t) =2 /pav,gnp r, 0+ /qasﬂNq r, ). (2.35)
P q

In the absence of impurity and umklapp scattering, i.e. for Ste; {n} = StU {n,N} = Stgp {N} = 0. We
obtain

aga aTaﬁ / /
o «Ngs 2.36
at 8xﬂ Pallp + [ qulNg ( )
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which becomes the momentum continuity equation in the absence of external forces (p = ¢ = 0).
. . . N N N
The continuity equation follows because the sum of fp p (St}, {n.N}) and fq q (St} {n, N} 4 St} {N})
vanishes.
Let us now search for distribution functions that yield a constant entropy. Under the given
conservation laws the entropy production Q, as given in Eq. (2.30), vanishes for the distributions

1
In (rT - 1) =—B@pum)+p@e—pmu)-p,
14
In (i + 1) — By - MU -q (237)
N‘l

with same g (r) an u (r) in the two equations. This gives rise to local equilibrium with Fermi-Dirac
distribution function for the electrons

1

= 2.38
Np (T) eﬂ(")(é‘p*ﬂ-(")*"(r)'l’) 11 s ( )
and Bose-Einstein distribution for the phonons
1
Ng(r) = (2.39)

P (wg—u@mp) _ 1’

Obviously we have the usual interpretation of 8(r), u (r) and u (r) as local inverse temperature,
chemical potential of the electrons, and flow velocity, respectively.

Just like the conservation of the total energy gives rise to a joint temperature of the electrons
and phonons, does the conservation of the total momentum yield a joint drift velocity u (r). While
the local equilibrium is only a solution of the Boltzmann equation in the limit where the collision
terms dominate, they do represent a natural starting point in the limit of small Knudsen number -
i.e. the ratio of the momentum conserving mean free path and the typical length scale of applied
forces or geometric confinement - as employed by the Chapman-Enskog method [65].

The hydrodynamic flow is protected by the conservation of the total momentum

Py = P +Pph (2.40)

and must be understood as a combined electron-phonon fluid. However, in Appendix A.2 we
demonstrate that the primary mechanism by which the flow gradient couples to the electron-
phonon fluid is by directly affecting its electron component. In addition we show that while phonon
drag is crucial to give the viscosity a true hydrodynamic interpretation, perhaps counterintuitively,
it is not important for the actual value of the viscosity. Finally, because of the larger value of the
Fermi velocity and because of the different phase space nature of degenerate electrons and acoustic
phonons, it holds that the momentum current is also dominated by the electronic system.

2.6. Hydrodynamic electron-phonon drag viscosity

Provided that momentum-conserving electron-phonon collisions are the most frequent, the
regime of phonon drag can be characterized by an emergent hydrodynamic mode, which is the
drift velocity of electrons and phonons. Indeed, both collision terms Step{n, N} and Stpe{n, N} are
simultaneously solved by a distribution function with the finite boost n(p, r) = f(gp — pu(r)) and
N(p, r) = b(wq — qu(r)). In the previous sub-section we discuss the origin of the joint drift velocity
as conjugated variable to the conserved total momentum in some detail.

To determine the equation of motion for u(r) we follow the approach of Gurzhi [50] who solved
the kinetic equations by the method of consecutive approximations. The accuracy of the method is
controlled by the ratio between momentum-conserving and momentum-relaxing scattering lengths.
We seek the non-equilibrium distribution functions in the form of a formal series expansion:
n=f+dén;+8ny+---...and N = b + 6Ny + 8N;,. To the first order we obtain two equations:

3 ab
v% = 8Stepldn1, N1}, 87 = 8 Styeldny, SN ), (2.41)
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where linearized collision kernels are given by Egs. (2.10) and (2.12). The contribution from the
collision term with normal phonon processes, governed by & St¥{SN;}, can be neglected as it has
a subdominant temperature dependence in comparison with phonon-electron collisions. Since the
spatial dependency of the distribution is contained in the velocity field u(r) we search for a solution
of the form

ou; of
ony = —vipjafrjng(wD/T)z’X(’?p), (2.42)
ou; ob
8Ny = —squa—r?ro(T/msz)£¢(;.,), (2.43)
1

where {; = wq/T. Again repeating all the same technical steps from the previous section, where
we discussed Bloch’s solution of the linearized kinetic equations, we find two coupled integral
equations for the non-equilibrium distributions v and ¢:

cosh™2(/2) ~ —/

n

KO(T)JI/)X(U/)‘Fﬁgf Kz(n,n’)x(n')—ﬁ%/ Ki(n, n")p(n —1'), (2.44)
n n

/

c/(e8 = 1) = 958%(8)+ (1—952%) | QL. ¢x(¢)), (2.45)
t/

where
(e — 1)(e" — 1)
(6 + 1)(ef + e’ )(ef +e¢')

We were unsuccessful in finding an analytical solution of these equations. However, exploring the
smallness of ¥p < 1 it is possible to show that x(n) ~ 13‘52.
At the second order of the expansion, the set of equations takes the form

Q.= (2.46)

38 3
v a:] +evE£ = 6 Step (SN, SNy} + 8 Stalf). (2.47)
35N
S—— = §Stpe{ny, SNy} + 8 StY {b}. (2.48)
or pp

It is important to emphasize at this point that § Stei{f} o¢ u(r) and similarly & Stgp{f} o u(r) as

these two terms capture momentum-relaxing collisions and as such will define the relaxation of
u. Finally, we use the explicit form of én; from Eq. (2.42), multiply Eq. (2.47) by p and integrate
both sides over momentum. Similarly we use §N; from Eq. (2.43) in Eq. (2.48), multiply by q and
integrate both sides. We then add together these equations and obtain the desired hydrodynamic
equation for u(r) (see also Refs. [50,56]):

vV + eE/m = u/Tyr. (2.49)

Here momentum-relaxation time 7,z = 7 '+7, ' is given by the sum of two terms due to electron-
impurity and phonon umklapp scattering. While the former is temperature independent, the latter
has steep exponential behavior 7, ' o (T/wp)*(zy,) ™", with (z;,)"! oc exp(—ywp/T) and y ~ 1. The
kinematic viscosity of the electron-phonon fluid v = n.,/mn in Eq. (2.49) is expressed in terms of

the corresponding shear viscosity in a standard way:
1
Nep = gmnvgrz, 7, " = 1440¢ (5)hepT° /0y, (2.50)

For the detailed derivation of Eq. (2.50) see Appendix A.2. Notice that the functional form of
Eq. (2.49) is formally identical to the equation of motion of an electron fluid where the hy-
drodynamic regime is established by electron-electron collisions. The difference is only in the
temperature dependence of the viscosity, i.e. of the relaxation time t,. The electron-phonon
collisions that give rise to a T> Bloch-Griineisen law in the resistivity of the kinetic regime are
the same processes that determine the viscosity ne, o« T~ in the hydrodynamic regime. This
parallels the electron-electron hydrodynamic regime where the T? term in the resistivity translates
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into nee o« T2 for the electron viscosity [66]. In closing this section we also wish to draw
attention to an analogy between phonon drag viscosity and recently studied Coulomb drag viscosity
contribution [67], and its relation to hydrodynamic drag resistivity in the transport properties of
interactively coupled double-layers [68].

2.7. Thermal conductivity and the Lorentz ratio in a drag regime

The theory of thermal conductivity in the hydrodynamic regime of a phonon gas was put
forward in pioneering works of Callaway [69] and Gurzhi [70] (the classical review on the topic
can be found in Ref. [71], whereas a concise summary of the field with the modern perspective
can be found in Ref. [72]). These authors carefully analyzed the interplay of various scattering
processes including (i) sample boundary scattering, described by a constant relaxation time;
(ii) three-phonon nonlinearities, whose relaxation time is a power-law of temperature; (iii) impurity
scattering; (iv) umklapp processes with an exponential relaxation time. The resulting thermal
conductivity was shown to exhibit fairly complicated non-monotonic behavior. Recently phonon-
mediated heat diffusion in insulators received a renewed attention and interest triggered by a
realization of apparently universal bound controlled by the Plankian time scale, 7p; ~ (h/kgT),
quantum mechanical bound on sound velocity [73,74], and generalization of Fourier’s law into
viscous heat equations [75]. In this section we consider the problem of thermal conduction from the
perspective of mutual electron-phonon drag and reveal its distinct properties. The corresponding
electron-phonon bound on thermal diffusion can be analyzed in a similar spirit as it was done
recently in the context of the Coulomb drag problem [76].

The starting point of our treatment is the same set of linearized coupled integro-differential
Boltzmann equations as used in the case of conductivity and viscosity calculations in previous
sections. The only difference is that we are looking now at the response to the temperature gradient
V., T, thus we have

&p 0 wq 0b

—?"é(v,,vrr) = 8 Step{dn1, SNy}, _TqT%(S“V’T) = 8 Stpe{dn1, SN1}. (2.51)

It is clear that in the linear response analysis the non-equilibrium corrections to electron and

phonon distribution functions are proportional to the thermal bias, namely {énq, N;} o VT.

Provided that a solution is found, the heat current can be computed in accordance with the usual
kinetic formula

Jj. = fv,,e,,&m + /sqa)q(SM = —kep Vi T, (2.52)
P q
that thus defines the electron-phonon drag thermal conductivity kep. Just like in the case for the
electron viscosity calculation, discussed in Appendix A.2, we can first solve for the non-equilibrium
phonon distribution 6N; in terms of yet unknown &nq, and insert the result into the Boltzmann
equation for the electrons. This yields then purely electronic Boltzmann equation of the type

Ry, - VT = Ster{én1}. (2.53)

The source term on the right-hand-side R, = —vp(ep/T)(0f /dep)+ SRy is renormalized by the drag
effect. The collision term & St{én;} also contains an additional correction. The analysis of the second
term SR, yields the conclusions that it can be neglected at temperatures T < wp. The subsequent
analysis of the collision term is analogous to the one for the viscosity and yields for the thermal
conductivity the result (see Appendix A.3 for further details)

1
Kep = 5ufcel(r)rE, 7, | = 480¢(5)hep T /0h, T <K wp, (2.54)

with the electronic heat capacity ce|(T). For higher temperatures it holds that 7 T AepT. With the
linear low-T heat capacity ce; =~ 5T, where y; is the usual Sommerfeld coefficient, it follows for the
thermal conductivity «e, o< 1 /T?. This is distinct from the thermal conductivity of a Fermi liquid
kKee ¢ 1/T [66] and would naturally lead to a temperature dependent Lorentz ratio, L(T) = « /o T,
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Fig. 2. [Left panel]: Spatial profile of the hydrodynamic flow field in the slab geometry for d/Ic = 4 in the crossover
regime from no-slip to no-stress boundary conditions. [Right panel]: Dependence of the resistivity as a function of the
channel width normalized to the Gurzhi length plotted for several different values between Gurzhi length and slip length.

quite distinct from the universal Sommerfeld bound of 72/3e? in the Wiedemann-Franz law. We
note that thermal conductivity has been measured recently in Refs. [16,20] in a phonon drag
regime driven by normal electron-phonon scattering processes. The scaling consistent with T~2-
behavior in the intermediate range of temperatures was indeed observed in PtSng [20]. Additionally,
hydrodynamic features due to electron viscosity accompanied by the size-dependent departure from
the Wiedemann-Franz law, expected in the hydrodynamic picture, were observed in recent thermal
resistivity measurements in semi-metallic antimony Sb [23]. Similar thermal transport anomalies
were also reported in WP, [21] and analyzed theoretically in Ref. [77].

3. Applications
3.1. Gurzhi resistance at arbitrary slip length

As a first application let us consider hydrodynamic flow in a two-dimensional slab geometry
of width d where the flow occurs in the x-direction such that the velocity field u (r) = (u(y), 0)
has a nontrivial profile along the y-direction, where the electric field E = (E,, 0) is directed along
x-direction. The equation of motion (2.49) then becomes

2
u

vW+eEx/m=u/rMR. (3.1)

This equation should be supplemented by a boundary condition. We use a generic one allowing for
an arbitrary slip length Is [78,79]

du u(+d/2)

Y/ y==+dj2 S
Solving this linear differential equation we find a flow profile
(1+p)e””? + (1 —p)e " y
(1+p)le” —(1—pye™ le|

Here we introduced the characteristic steady state velocity ug, the Gurzhi length I, and two
dimensionless parameters p, w:

(3.3)

u(y) = up [1 —2p

eExTvr

Up = m lc =Vvtmr, p=1I/ls, w=d/l. (34)

The no-slip boundary condition corresponds to the limit where p — oo, whereas the opposite limit
p — 0 defines the no-stress regime. The flow profiles at different values of p are illustrated in Fig. 2.
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We introduce the average flow velocity across the channel

_ 1
= | u(y)dy. (35)
—d/2

This expression enables us to find current density j, = enu and consequently resistance along the
channel

N 4p (1+p)e”? +(1—ple"? w
P =P - — — sinh — |,
w (1+p)Pe —(1—p)Pev 2

(3.6)

where ,00_l = e’ntyr/m is the familiar formula of the Drude resistivity. This result simplifies in the
limit of no slip p — oo [60,80]

_ - 2 w
pXX1 = pO 1 [] - E tanh 2] . (3.7)

For a wide channel, d > [, the resistance saturates to its bulk value py which is governed by the
momentum-relaxing time. In contrast, for a narrow channel, d « g, the resistivity is determined
by momentum conserving electron-phonon collisions and inversely proportionally to the channel
width as expected for the Poiseuille flow py =~ (pr/e*n)(luc/d)?. This defines the regime of the
Gurzhi effect [60] when the resistance drops with increasing temperature as controlled by the
momentum conserving length scale Iyc = v Tep.

As the next step, we briefly investigate the sensitivity of these results to the geometry of the
conducting channel. For this purpose we look at the quantum wire (cylindrical geometry) of radius
d. Using the Laplacian in radial coordinates the equation of motion and boundary condition take
the form

1d du u
- (rdr) g = eB/me. (/i = —u(@)/is, (38)

where u (r) = (u(r), 0, 0). This equation is solved in terms of the modified Bessel functions of zero
index. However, for a bounded solution at the origin we must retain only Iy function but not Kp.
Recalling then the property of the derivative that Ij(z) = I1(z) we find

Io(r/1
u(r) = g [1 - p"(r/c)] . (3.9)
Li(w) + plo(w)
Averaging this expression over the wire cross-section and recalling the integral property
z
/ rlg(r)dr = zl1(z) (3.10)
0

we find wire resistivity in the form
_ _ 2p Li(w) :|
1 1
= 1-——-]. 3.11
P = F0 [ w Ty (w) + plo(w) G.11)

The flow profile is analogous to that of a slab presented in Fig. 2 with the only difference that it
looks flatter at the center of the wire. The resistance also exhibits the same dependency on the ratio
d/Is. The only difference is numerical coefficients of the order unity that occur in the respective
asymptotic limits.

3.2. Magnetoresistance and Hall resistance

In the presence of an external magnetic field we need to add the Lorentz force as well as a Hall
viscosity vy into the equation of motion. For a steady flow we thus have [80-84]
vV2u 4+ vy[VZu x eg] + e(E + [u x B])/m = u/ Ty, (3.12)

where eg is the unit vector along the magnetic field. In the semiclassical approximation, the Hall
viscosity can be derived in a manner similar to the classical work of Steinberg [55] (see also the
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recent discussions by Alekseev [80] and Scaffidi et al. [81]). The difference is that for our case
it is assumed that the kinematic viscosity is dominated by electron-phonon collisions instead of
electron-electron collisions.

For a Hall bar strip geometry with magnetic field along the z-axis there is no flow in the
y-direction due to the build up of an electric field that compensates for the Lorentz force in the
classical Hall effect. The resulting equations of motion read

2 2

Uy Uy
v a2 + eEx/m = Uy/ TR, _deT/z + eEy/m = wcly, (3.13)
where w, = eB/m is the cyclotron frequency. The first equation is structurally unchanged as

compared to the case of no field, so is solved exactly as in the previous section. To find E, in the
second equation, we integrate this equation over the strip width and get

d d
M <ﬂ) - <ﬂ) + eEy/m = w.ly (3.14)
d 4y /y—ap 4y Jy——ip

From the boundary conditions, we can express derivatives of the velocity field in terms of the
velocity itself and the slip length

2vy eEy
—u(d/2)+ — =
dls x(d/2) + o
This equation yields the Hall field (and voltage) and thus gives us the transverse resistivity

H(p, w)] R (3.16)

weily (3.15)

VH
d?w,

= 1-— .
Pxy = PH |: en

The dimensionless function H(p, w) = 2pwu,(d/2)/u, can be found from the longitudinal flow
profile of the velocity field and is given by

1 —2pP(p, w)cosh(w/2)

H(p, w) =2 - , 3.17
(P 0) = 2P )P, w) sinh(w,2) (3.17)
where
1 w/2 1— —w/2
P(p, w)=( Pt 4 (1 = ple . (3.18)
(‘l +p)2ew _ (‘l _ p)Zefw
The Hall resistance takes a particularly simple form in the no-slip limit where
2w tanh(w/2
H— _ 2wtanh(w/2) (3.19)

11— (2/w)tanh(w/2)’

In the weak-field limit, taking vy >~ v(w.tmc), Where Ty is the momentum conserving time scale,
given by electron-phonon collisions in our case, we estimate the correction to the Hall resistivity
to be of the form

8oy _ () (2d/lc)tanh(d/2lc)
ou <7> 1— (2l¢/d)tanh(d/2lc)’

d

We remind that the underlying assumption for the length scales is such that Iy < d < lyr. Note
that the Gurzhi length can be equivalently presented as I = «/Iuclvr such that, in principle, the
relationship between d and [; can be arbitrary. Having this in mind we conclude that the correction
8pxy is universal in the narrow channel when d < I where §p,,/on = —(Imc/d)? while it scales as
8pxy/Pu = —lec/le in the opposite limit. The field dependence of both, the diagonal and the Hall
resistivities in the semiclassical limit is illustrated in Fig. 3 for different aspect ratios of the Hall bar
channel and different ratios of the channel width and the Gurzhi length, respectively.

(3.20)




A. Levchenko and J. Schmalian / Annals of Physics 419 (2020) 168218 17

Pxx(B)/pxx (0) Pxy (B)pH

1.00-
1.0

0.8 0.98

0.6 - 0.96 -

0.4r .94 — wea

0.2
0.92

. . | T I
1 2 3 4 5 1 2 3 4

; weMC

Fig. 3. [Left panel]: Field dependence of the diagonal resistivity for different channel width aspect ratios. [Right panel]:
Field dependence for the Hall resistivity normalized to the classical Hall resistance.

3.3. Stokes-to-Ohm crossover in a swirling magneto-flow

The 2D cylindrical geometry of a Corbino disk with inner radius r; and outer radius r, also
attracts considerable attention. It was recently suggested that the electronic shear viscosity can
be measured with this device in the response to an alternating magnetic flux that generates a
measurable (dc) potential drop, induced between the inner and the outer edge of the disk [85].
It also offers new opportunities to experimentally determine the Hall viscosity [86] and the
hydrodynamic magnetoresistance that is dominated by the field-induced vorticity of the flow rather
than by the field dependence of the kinetic coefficients [87]. Here we elaborate on the latter
example focusing on the magnetoresistance in the crossover region of the Gurzhi effect from the
Stokes-to-Ohmic flow.

The centro-symmetry of the Corbino disk suggests the use of polar coordinates. For the purpose
of MR calculation we need to project the Navier-Stokes equation (3.12) into the radial (u,) and
azimuthal (u,) components of the flow field. The corresponding components of the Laplacian
operator are given by [88]

(V) = V2, — = 2% gy 2y, Mo 2 Ot (321)

For an isotropic system with magnetic field perpendicular to the plane of the flow, both components
of the flow velocity depend only on the radial coordinate such that terms like 9dyu, 4 vanish.
Consequently, for the corresponding components of the electrical current we find the two equations

LAy + enE +jsB = ponejr. = Aj, + enEy — B = ponejj. (322)

where we introduced radial operator A = V2 — 1/r? and expressed the kinematic viscosity
v = n/(mn) in terms of shear viscosity 5. In the current setup there is no azimuthal component of
the electric field E, = 0, but there is a freely circulating current j,. The situation here is opposite
to that of the Hall bar, with a transversal field but no current. Furthermore, from the continuity
equation, current conservation in the radial direction implies

J(r)=1/2xr), (3.23)
which gives an equation for the azimuthal current
2 1d 1 1 ne IB
A—Ijp=|—=+-——=+5)lip=——. 3.24
( ¢ Vo [dr2 + rdr <r2 + Ié)]]dj n 2nr (3:24)

This equation coincides with the canonical form of the differential equation for the modified Bessel
function of the first order, which thus gives us two linearly independent solutions I4(r/lg) and
Ki(r/Ig). The special solution due to the right-hand-side can be tried in the form j, = C(I/r) where
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Hydrodynamic stream plot of the flow velocity u(r)/ug Hydrodynamic stream plot of the flow velocity u(r)/ug
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Fig. 4. The stream plot of the viscous flow was generated in polar coordinates for u(r) = u,(r)cos¢ — uy(r)sing and
uy(r) = u.(r)sing + uy(r)cos ¢ based on the solution from Egs. (3.23) and (3.25). The velocity field was normalized in
units of uy = I/(2menry) for the aspect ratio a = r, /r; = 5. The strength of the external field that controls the distribution
of the flow pattern between electrodes in the bulk is characterized by a dimensionless parameter q = nr?/(2nl2), where
Is = /1/eB is the magnetic length. This parameter measures the relative strength of the Lorentz and viscous Stokes forces
and determines the number of turns the flow makes between the electrodes. On the left panel we took q = 0.55 while
on the right panel g = 3.55 for comparison, the aspect ratio was kept the same in both cases.

C is a yet unknown constant. By observing that A(1/r) = 0 we easily deduce that C = —B/(2w pone).
As a result, the general solution takes the form

IB
T on pone

Je(r) |:C1 Li(r/lg) + G Kq(r/lg) — :] . (3.25)

The integration constants C; and C; can be determined from the boundary conditions. For simplicity,
we apply no-slip boundary conditions jg(r1) = js(r2) = 0. To visualize viscous effects we deduced
the flow pattern from the obtained solution and plotted u(r) in Fig. 4.

As next step in our analysis we use the components of the stress tensor [88]

ouy 10u,  duy uy 10uy  uy
=2n——", =n|l-7—F+——-—, =2n{-—7-+—), 3.26
o Tor 0 n(r 0¢ * or r O T\¥ 0¢ * r (3.26)

to determine energy dissipation rate due to viscous friction
1 2
W= 3 XU: opdv. (3.27)

The latter gives us resistance R = W/I2. As a result we find
R =Ry +Rs. (3.28)

The zero field part of the resistance Ry comprises of Ohmic and Stokes contributions. The Ohmic
part is determined by the momentum-relaxing scattering time in the bulk of the flow and is given
by a standard expression

RO™ — % In(ry /7). (3.29)

This form of the resistance can be readily seen from the Navier-Stokes equation itself by noticing
that Aj, = 0 yields for the radial component of the electric field E; = pqj,, with the corresponding
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Fig. 5. A dimensionless scaling function Eq. (3.32) that describes Stokes-to-Ohm crossover in the magnetoresistance
equation (3.31) for Corbino device with different choice of aspect ratios a = 2, 4, 8.

voltage drop V = fr :2 E.dr. This immediately yields Eq. (3.29). The viscous, Stokes contribution to
the resistance is given by

Rotokes — (1 1), (3.30)

7 (ne)? E B g

but its physical origin is much more subtle and to some extent paradoxical as explained in the recent
insightful work [87]. To gauge the relative importance of these two terms one should notice that
for the large disk, r, > rq, the viscous term saturates. The Ohmic part, however, grows in this limit
very slowly and the ratio between the two is Rgh"‘ /Rf,“’keS ~ (r1/lg)? In(ry/r1), which means that
the Ohmic part could in principle dominate, even when the Gurzhi length is large. As explained in
Ref. [87] the result for Rg“’kes originates from the voltage drop at the electrodes. In the Ohmic regime,
the impact of contact resistance was analyzed in the context of the electronic thermal transport:
Lorenz number measurements and Wiedemann-Franz law in particular [89].
The field dependent part of the resistance can be presented in the form

B?Ina

:W[l _f(a, b)], a:rz/ﬁ, b:rz/lc. (331)

Rp

The dimensionless function

faby—1— L [ o) = lo(b/a)lita/b)Ku(h) — (1/b)Ki(b/a)]
T Ina I1(b/a)K1(b) — I1(b)K;(b/a)
[Ko(b) — Ko(b/a)][(a/b)l1(b) — (1/b)lx(b/a)] }
li(b/a)Ki(b) — I1(b)Ki(b/a)

describes the crossover from the Stokes to the Ohmic regime. This function is plotted in Fig. 5 for

several different values of the aspect ratio a. Asymptotic limits of this function can be relatively

easily extracted. In the Ohmic regime, b > 1, f is a decaying function of b such that to leading

order holds:

(3.32)

2
ohm _ B“Ina

=—— B, N>l 3.33
B 27 po(ne)? MR, T2 2> g (3.33)



20 A. Levchenko and J. Schmalian / Annals of Physics 419 (2020) 168218

In the opposite, viscosity-dominated limit, where I >> ;1 ,, we can expand the Bessel functions at
small argument b < 1 such that

B2r2 1 421n’a B?
RStokes — 2 1— — 1—-—m—m | x— <Ll 3.34
B 1677 a2 (a> — 1) wme - 334

This result coincides with the earlier conclusion of Refs. [34,87] that in the hydrodynamic regime
the MR is inversely proportional to the viscosity. This, in principle, enables measurements of the
temperature and density dependence of the viscosity from magneto-transport experiments. On the
theoretical side it should be possible to extend these results to cover the ballistic-to-hydrodynamic
crossover in the magneto-transport, as was recently done for the geometry of narrow channels [90].
It is also of special interest to consider magneto-thermoelectric phenomena in Corbino geometry,
and Nernst effect in particular [91].

3.4. Hydrodynamic surface impedance in a viscous skin effect

In terms of the response to an electromagnetic field, the hydrodynamic regime of an electron-
phonon fluid is not limited to (dc) transport properties but occupies a finite domain of the
frequency-momentum (w, q) parameter space which is bound by the conditions wze;, < 1 and
glep < 1. Finite frequency properties of viscous electrons have attracted significant theoreti-
cal interest in recent years with interesting predictions ranging from nonlinear electrodynamics
[92,93] (e.g. second-harmonic generation), resonant phenomena [94] (e.g. viscous cyclotron motion)
to nonlocal effects in pulsating flows [95,96]. The optical conductivity and the transmission of
electromagnetic waves through thin ultra-pure metals have been considered in Refs. [97,98] under
the condition that hydrodynamic regime is governed by fast electron-electron collisions. Quantum
critical hydrodynamics in the dc conductivity of graphene at the neutrality point was predicted
in Ref. [40] and recently observed experimentally in Ref. [99]. In this section we briefly consider
a related problem of the skin-effect (SE) for the strongly coupled electron-phonon liquids. An
observable of interest, discussed in the context of electron hydrodynamics already by Gurzhi in
Ref. [50], is the frequency-dependent surface impedance [30].

Consider a skin-effect geometry when a monochromatic electromagnetic wave of frequency w is
incident on a metal surface (xy-plane). It is assumed that the metal occupies a semi-infinite volume
z > 0 with the vacuum on the other side z < 0. From a pair of Maxwell equations

[V x E] = —(1/c)3.H, [V x H] = (47 /c)j (3.35)

we can establish a self-consistent relation between the electrical field and the induced current in
the medium

V2E = (4 /ch)dyj. (3.36)
In the linear regime, the current is proportional to the drift velocity of the liquid

j =enu, (3.37)
which obeys our hydrodynamic equation of motion

ot = vV2iu + eE/m — u/Tyg (3.38)

that includes a time-dependent inertia term. By passing to Fourier space in frequency E(r,t) =
Re {Ewem’[} and eliminating u(r, t), one easily obtains a single linear differential equation for the
spatial dependence of the field. For the described geometry one finds

37E, — I3 (w)d2E, + il *E,, = 0. (3.39)
Here we introduced the frequency-dependent Gurzhi length

lo(w) =lg/vV/ 1+ ioTyr (3.40)
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and also another frequency-dependent length scale

ly = \Jvpdiluc/w, 8§ = mc?/(4mne), (3.41)

where §p is the familiar London penetration depth in the clean limit. The surface impedance
is defined as the ratio between the electric field on the metal surface and the current density,
integrated over the volume

_E(0)
2@) = 0 [iz)dz

The impedance is a complex function of frequency and its real part determines the energy dissipated
by the field. To find Z we look at the characteristic equation of Eq. (3.39), E,, o e, whose roots
follow as solutions of a bi-quadratic equation

1
K (w) = 3 [1G2 + /I - 4il;4} ) (3.43)

This equation gives four different roots and one needs to select two of them k; and k, that have
negative real part. These solutions correspond to a decaying field into the bulk of the sample. The
spatial profile of the field is then given by a linear superposition of two exponentials: E,(z) =
Aoe1? + Byek??. Two coefficients are determined by the boundary conditions E,(0) = Ay + By and
[02E,(2)];=0 = —(1/Is)[82E,(2)],=0, Where Is is again the slip length [78]. The second boundary
condition corresponds to the linear relationship between E and u and follows directly from Egs.
(3.2) and (3.36). Solving the linear algebraic equations we find

k2 Bk3
k2 — pK*’ k2 — Bk?

where 8 = (1 + kyls)/(1 + kyls). For the case of no-slip boundary condition (8 — 1) one can
expresses Z in terms of roots kj » as follows

= —(iw/c)[Ew(0)/9;E,(0)]. (342)

Ao = E,(0) By = —E.(0) (3.44)

iw ki + ky

Z(w) = (3.45)
c  kiky
In the opposite case of no-stress (8 — ki/k;) surface impedance takes the form
iw k2 + kiky + k2
Z(w) = — “’w. (3.46)

¢ kika(ky + k)

It turns out that both limits exhibit the same frequency dependence (modulo numerical factors
of the order of unity). Indeed, there are two special cases of interest that one can analyze. First
is the regime when I, > Ig, which implies a bound on the range of frequencies w < w,, where
wy, = (TMr/TMc) wq is determined by the frequency wq ~ 1651(80 /lvr)?, where usually the skin effect
crosses over to the anomalous skin effect. For w < w, it is easy to see from Eq. (3.43) that one of the
roots is parametrically larger than the other: for example kq > k;, with ky ~ I Vand ky ~ S ! The
length scale §s = Ii/lc = 8o/+/wTvr emerges, which is nothing else but the usual skin penetration
depth, since E,(z) oc e~(1+12/~25s The impedance in this frequency range is identical to the one in
the normal skin effect

) X
Zw)~ X | Lol <, (3.47)
C YV TMR

In the opposite, viscous regime w > w, the Gurzhi length is large compared to I,,. Now there are two
parametrically identical roots k; = —ik, = —I1e=""/8 of Eq. (3.43), and the scale of skin penetration
depth is controlled by I, only, such that §s oc 1//w. In this case the impedance is given by

8o [ veluc
Z(w)~ L LUMC 3ings g, (3.48)
c 52 7
0
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Fig. 6. [Left]: Sketch of the frequency dependence of the normal and anomalous skin effect in the log-log scale where w,
is the crossover frequency between the normal and anomalous skin effect. One only expects the anomalous skin effect
in sufficiently clean samples. On the plot 8o = c/wp and w, = (c/vp)zr]\;;/(wplrw)z where wy, is the plasma frequency.
[Right]: Sketch of the skin effect including the intermediate regime of viscous skin effect behavior with w, >~ (tmg/Tmc)wa.

which is solely determined by momentum-conserving electron-phonon collisions. This is the result
for no-slip boundary conditions. In the opposite limit, with no stress boundary conditions, one
obtains a result where Z(w) of Eq. (3.48) is multiplied by a factor i/2. This gives rise to a measurable
phase shift in the impedance. Whether no-slip or no-stress boundary conditions are appropriate
depends on frequency. The former is correct for v < w, (I /ls)* while the latter is appropriate
in the opposite limit. In the regime where the Gurzhi length I is larger than the slip length
Is, which is clearly fulfilled for diffuse scattering at the interface [78], this frequency-dependent
crossover between distinct boundary-scattering effects should be observable and may serve as tool
to determine the slip length.

In complete analogy with the Gurzhi effect in the resistance, where the momentum-relaxing
scattering rate drops out from the expression for the resistivity, this regime can be termed as
hydrodynamic skin effect [50]. The upper bound on frequency that determines the regime of the
viscous skin effect is set by the usual hydrodynamic condition I, > Iyc. It is worth emphasizing that
this hydrodynamic limit is conceptually different from the high-frequency anomalous skin effect
where 85 o« 1/.%w and Z & w?*/>. Fig. 6 summarizes the frequency dependence of the surface skin
depth in different regimes.

3.5. Noise thermometry of electron-phonon scattering

Johnson noise thermometry provides fruitful experimental tools to study electronic thermoelec-
tric conductivity in solids. Most recently these methods were applied to study electronic conduction
of a monolayer graphene over a wide range of temperatures, charge densities, and magnetic
fields [100]. In this section we discuss the role of strong electron-phonon scattering on the noise
spectra of current fluctuations in mesoscopic conductors. The question itself is not new and has
been discussed by multiple authors employing various approximations and methods of kinetic
theory. The comprehensive summary of known results is given in the review article by Blanter
and Biittiker [101], see specifically section 6.3.2 page 122. Perhaps the most concise and elegant
summary of work that has been done on this topic is presented in the experimental paper of
Steinbach et al. [102], see specifically their Fig. 1. To place our approach in the context of existing
studies we first briefly summarize key results and acknowledge main contributions.

The interest in the problem of current noise in mesoscopic conductors was triggered by works
of Beenakker and Biittiker [103] based on scattering matrix formalism, and Nagaev [104] who
employed the stochastic Boltzmann-Langevin kinetic equation (see also book of Kogan [105] on
electronic noise and fluctuations in solids for an in-depth overview). These authors showed that
the celebrated result of Schottky for a Poisson process of the shot noise, namely the zero-frequency
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current power spectrum of fluctuations, S = 2elF is suppressed by a Fano factor F = 1/3. This
is a single-particle effect that can be understood from the Dorokhov statistics of transmission
eigenvalues in disordered conductors. In the current literature this regime is called shot noise of
cold electrons. The subsequent studies focused on the role of inelastic processes. Frequent electron—
electron collisions lead to rapid equilibration. Shot noise survives in this limit and has the same
structural form as in the case of noninteracting particles but is described by a different Fano
factor F = \/§/4. This result was demonstrated by Kozub and Rudin [106], and de Jong and
Beenakker [ 107] using a semiclassical approach. These authors assumed that inelastic processes lead
to a local equilibrium, described by a Fermi distribution with spatially varying temperature T(r) and
derived an effective diffusion-like equation for the non-equilibrium (voltage-dependent) profile of
T(r). This regime is called shot noise of hot electrons. The crossover between the two and extensions
to full-counting statistics was developed by Bagrets [108] and Gutman et al. [109]. The influence
of strong electron-phonon collisions was addressed by Gurevich and Rudin [110], Nagaev [111],
and Naveh et al. [112]. In the first of these papers the electron-phonon collision integral was
treated perturbatively, whereas in the other two papers a two-temperature model of the electron-
phonon out-of-equilibrium state was assumed and an equation for the electronic temperature
profile derived. Naveh [113] also performed direct numerical calculations of the integral equation
with a phenomenological ansatz for the distribution functions.

Unlike the calculation of the electron-phonon drag viscosity, where diffusion in momentum
space is important, noise is primarily affected by the energy relaxation. For this reason it will be
convenient and technically advantageous to average the distribution function over the Fermi surface
such that it will depend on the energy and real-space coordinate

Mﬂzlfwwwwwﬂ (3.49)
p

v

where v is the density of states. With this notation, the collision integral due electron-phonon
scattering in Eq. (2.4) can be rewritten as follows

ﬁamm=/Mmdwmmm—mwfmm—mwm+mn

[ M 0l = 1)1+ M) = 11 = RN, (350)
where the Eliashberg kernel is of the form
1
M(e,¢',w)=— | W@IP'q)S(c — &p)3(¢" — & )8(w — wy). (3.51)
V Jpq

Its ¢, ¢’ dependence is pinned to energies at the Fermi level, whereas the energy transfer depen-
dence on w is strong. Apparently, its functional form in the disordered conductors at frequencies
below the scale of Debye energy was subject of certain controversy with multiple conflicting results
(this is discussed by Belitz [114]). We will discuss a generic model

M(®) = Aepk(w/wp)/2, k> 1 (3.52)

and show that main results are only weakly dependent on the exponent k. Here we use the
same convention for the dimensionless coupling constant of electron-phonon interaction e, as
introduced below Eq. (2.13). To proceed we regroup terms in the collision integral by separating
spontaneous emission contributions, namely pieces independent of the bosonic occupation function,
and terms proportional to N,. Thus we have

Step{n’ N} = / M(w){[nerw(l - ne) - ns(l - nsfw)] + Nw[ns+w + Ne_p — Zne]}- (353)

At this point we apply a Fokker-Planck approximation to this integral operator by expanding
fermionic occupation factors over the frequency transfer up to quadratic order

Neto & Ne £+ @30, + (0?/2)820,. (3.54)
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Inserting this back into the collision integral we find
B
Step{n, N} &~ A(1 — 2n,)d.n, + Eafns, (3.55)

where the expansion coefficients are
A= hep / oM(®) = ahep@d, B = hep / @’M(w)(14 N,) = bepwy, (3.56)

with a ~ b being model-specific numerical pre-factors of order of unity. In this estimation we
assumed T < wp so that N, <« 1 and cut off the integral at the Debye energy. In general, B(r) is
weakly coordinate dependent which is ignored in the analysis below. The advantage of the Fokker—
Planck approximation is threefold: (i) it is not limited to near-equilibrium problems; (ii) it reduces
the collision term to a local differential form; (iii) it preserves the nonlinearity of the collision
operator. Curiously, the nonlinearity of Eq. (3.55) is of the Burgers type and known in the theory of
nonlinear waves [115,116].

Consider a quasi-1D geometry of a wire of length L subject to the voltage bias V. In the diffusive
approximation, the distribution function obeys the following kinetic equation (see Eq. 221 in
Ref. [101])

DV?n,(x) + Step{n} = 0 (3.57)

with the collision term taken from Eq. (3.55). Provided that n.(x) is known the general semiclassical
expression for the shot noise power of current fluctuations can be expressed in terms of a non-
equilibrium steady-state distribution function as follows:

4 L/2 +00

S=— dx/ n:(x)[1 — ny(x)]de, (3.58)

RLJ 1p —00
where R is the wire resistance. It will be useful to rescale the coordinate | = x/L and energy
€ = ¢/wp, and introduce the Thouless energy Er, = D/L?. In these dimensionless variables it follows

a2 +AEPETh a1 = 2n) e+ 5 e
This non-linear partial differential equation is of the Burgers type [115,116], which is a prototypical
equation to develop discontinuities such as shock waves. Recall that the Fokker-Planck approxi-
mation implies strong local equilibration, thus in the current context this means a short relaxation
length scale as compared to the wire length L > lep. This practically corresponds to an infinite
wire limit. Exploring an analogy to nonlinear waves we can attempt searching for a solution in the
form of a “propagating soliton” n.(I) — n(e — ul), where the speed is governed by the voltage,
namely u = eV /wp. This is also physically justified; we simply assume that the energy dependence
is governed by the local electrochemical potential. The result reads
(eV /wp)*Em

ne(x) = [exp (B(e — eVx/L)/wp) + 117", B~' = ———— +b/2a, (3.60)
akepwp

92 an  bo?
n “p [ n "} —0 (3.59)

and corresponds to a highly non-thermal state with voltage dependent temperature. This is also
the point where, perhaps, the Fokker-Planck approach overlaps with previous approximation, in
particular a model with a coordinate and voltage dependent electronic temperature. From Eq. (3.58)
it then follows that the current noise in this regime is described by the voltage-dependent Fano
factor

S =2elF, F = eVEm/Aepwh. (3.61)

The Fano factor drops as F o 1/L? in this regime that corresponds to a suppression of shot noise by
inelastic processes. This is in qualitative agreement with Fig. 1 of Ref. [102] in the long L asymptote.
It is also in a qualitative agreement with other previous conclusions [112,113] albeit obtained under
different approximations.
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4. Summary and outlook

In this work we have considered several examples of hydrodynamic effects that can occur in
electron liquids under the condition of strong phonon drag. Electrons and phonons form a combined
fluid with an emergent joint drift velocity as hydrodynamic variable. The effect is caused by the fact
that the relaxation of the total momentum P + Py, is much slower than the momenta P or Ppy
of electrons or phonons alone. This is guaranteed for clean samples with weak or kinematically
forbidden umklapp scattering processes. We have studied coupled kinetic equations for electrons
and phonons, and inferred the effective viscosity of this strongly-coupled transport regime as well
as its thermal conductivity. The situation happens to be analogous to the viscous flows in the regime
of electron-electron dominated collisions with the only difference that momentum-conserving
mean free path has a different temperature dependence. This difference propagates to numerous
observables such as the viscous resistance, the Hall resistance, or the surface impedance.

While our work was primarily motivated by recent experiments, the delafossite metals PdCoO,
and PtCoO,, studied in Refs. [16-18] and PtSn4 of Refs. [19,20] in particular, we have not yet tried to
tailor this analysis to the case of a multi-band conductors or systems with complex Fermi surfaces.
Hydrodynamic transport theory of electron-phonon liquids in 3D Weyl or Dirac semimetals is yet
to be fully developed. The first required step towards this direction would be to consider a minimal
two-band model of a non-compensated metal. The generalized kinetic scheme has to be developed
then for a coupled kinetic equations for electron, holes, and phonons. Another interesting possibility
is to consider the possibility of a hydrodynamic regime in Luttinger semimetals [117,118] with the
inclusion of electron-phonon scattering. In addition, in these systems an electron-hole imbalance
mode is not restricted so severely like in graphene so that an unusual transport regime is possible.
To the best our knowledge, electron-phonon drag of imbalanced liquids has not been addressed in
the previous studies.
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Appendix

A.1. Variational solution of the Boltzmann equation for Bloch-Griineisen conductivity

In this section we present a method to solve the linearized Boltzmann equation, which is based
on the variational formulation of the kinetic theory. We begin from Eq. (2.14) and rewrite it by
combining both terms on the right-hand-side together, which gives

af 1
Vp o — vey T // D(p, p/)[vp’gp’ — Upgp] Z ey —ep+owpp), (A1)
p o=+

where we took a parametrization of the form
g(gp)
=ev ,
Yp T
and, after few algebraic steps, reorganized kernels K. to make the result manifestly symmetric with
respect to interchange of momenta. This way we arrived at

flep)f(ep)
D Y= D —p|—"
(p.p") = Dolp — Pl e r /T — eeplT]

(A2)

(A3)

It is easy to see that Eq. (A.1) can be obtained from the variational derivative of the following
auxiliary functional

1 , of
Qrlgl = 4T / D(p,p )[vp’gp’ - vpgp]2 Z (S(gp’ — &+ Uwp—p’) - /vlz,gp§~ (A4)
o=+ p 14

Thus solving Eq. (A.1) is fully equivalent to minimizing Eq. (A.4). Of course, this is not an easy
task either. However, one can try to postulate a variational ansatz for g, and then extremize the
functional, which is often a simpler computation. To this end, suppose that g, = g is a constant,
which is the leading contribution for temperatures small compared to the Fermi energy, we have

Qrlgl = prg — Brg, (A5)

where

1 , 2 Of
Ap = E D(p,p )[vp/ - vp]z 022;:8(81;’ — &+ Ua)‘,,‘,/), Bp = / v dep UIEV' (A6)

Here in the integral for Bp we introduced density of states v at the Fermi energy. The extremal Qp
is determined by g = Bp/Ap. This allows us to determine the conductivity as

af 2¢? (v2v )
Oup = 2e —/v,,w,,;;( 9e ) ? 11;13 80,/3 =038a;37 (A7)

thus finding temperature dependence of the Bloch-Griineisen conductivity op(T) is reduced to the
computation of the Ap(T). For the latter we have

v; of (e)f (e') ,
AT = /dede dwFs(e, w)m ;8(8 — e+ ow), (A8)
Fo(e, &', w) = ng’ / (vp — vy )28(@ — wp_p)8(e — £p)S(e" — ep). (A.9)
Vg Jpp

Since electronic momenta are close to Fermi momentum, and the phonon momentum is small, the

following approximations apply: (vp — vy )? &~ 2v2(1 — cos Oy ) and wp_p ~ ~/25pp./1 — COS Gy
This implies that to the leading order F(e, ¢/, w) is independent of ¢, ¢’ so that

T
Fp(e, €, w) = Dyv? / d6 sinf(1 — cos 0)8(w — v/2spp+/1 — cos6)
0
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DO VZ
 2spr

3

O(2spr — w) (w) . (A.10)
SPr

where ©(x) is the Heaviside step function. Next, we observe that under the approximation that Fp

only depends on w, the energy integrations in Ap(T) can be performed in the closed form. Indeed,

it can be readily verified that

, flerE) ~ o
Gzi/dsds mt?(s _8+0w)_W' (A11)

Finally, combining everything together as a result we obtain with wp =~ 2spg
x>dx

_ (A12)
coshx — 1

T !
Ap(T) = 16Dgv* vEprG (—) . G(t)= ts/
@p 0

As it was done in the main text, we can define the electron-phonon scattering time of momentum
relaxation 7, via Bloch-Griineisen conductivity oz = e’nt;/m with

480;(5)%132—?1 t<1
D
DepT t>>1

77 = 20phepG(t) = : (A.13)
This is the well-known Bloch-Griineisen behavior. As we saw, the implicit assumption of the

analysis is that the phonons remain in equilibrium such that the total momentum conservation
is violated.

A.2. Detailed calculation of the electron-phonon drag viscosity

In the phonon-drag regime, where the total momentum conservation is respected, the conduc-
tivity is infinite (without umklapp and impurity scattering), yet the joint electron-phonon fluid has
a common flow viscosity. To this end, we analyze the problem for a finite shear flow with velocity
gradient such that

oy
Tyy = . A14
Xy n dy ( )
By starting out from the linearized coupled Boltzmann equations
af Ay ab oy
- — =4St , 0}, —— — =4St , b}, A.15
25 yPx oy p{V, 9} bon yx 3y pe{V, @} (A.15)
we first solve for the phonon distribution
1 db iy 1
bg= — Sy — =— | DD Wy —Vp) Y 086y — e+ 00)y_pioq  (A16)
q yqawqyxay 274 Jow p p(;i P P q)0p' —p+oq
where
1 4
o= > / D(p, P)S(ep — €p + 0wg)Sp—qroq- (A17)
o=+ 24

It holds that ¢4 = ¢_q. We can now insert this solution into the expression for the electronic
collision operator and obtain the effective purely electronic Boltzmann equation

oty ,

Rp? = f D(p,p )(Wp’ — ¥p) Z ey —&p+0owp_p)
v Jw ot

3 / D(p. p')D(k. k')
kk'p’

(Y — ¥p) Z 00'd(ey — &p +0wpp)S
2Yp-p

oo'=%

x (k' — &k + 0 Dp_p )y preic- (A.18)
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It contains now the renormalized source term

of D(p,p') 0b(wp—p) ,
Rp=—| 5 wpet f ai”s,,,,,/,y(px —p)) ey —gptompy)|  (A19)
&p r Vr-r Wp—p/ ot

and the collision term captured by the second contribution on the right-hand-side of Eq. (A.18). Let
us estimate the second (integral) term of R, that we denote in the following as 6R,. First we notice
that with the help of Eq. (A.11) y4 defined in Eq. (A.17) can be reduced to the following form

Do\) Wq
= (22 ok —q)——21 A20
Ya <4vF> 2k = ) S/ T) = 1 (A.20)

Next we notice that due to kinematics wy,_j = ~/25pr+/1 — C0S O & SPrOge SO that

SRy = —4vpr / d6 sinf[sin ¢ — sin(0 + @)][cos ¢ — cos(0 + ¢)]

X [cosh(wy /T) — 1]a (A.21)

ow —ep/T _ ef(g‘,—rm)g)/” ’

b(wy) Z flep)f(ep — ows)
v i le

where we took p = pr(cos ¢, sing) and p’ = pr(cos(gp + 6), sin(¢ + 0)). The integral is dominated

by the small angle of scattering # = w/spr < 1, so that recalling that e/"f(¢) = 1 — f(s), summing

over o = =, using Eq. (2.9), and expanding over w to leading order we get

of [ wid b, w1 th(w/2T
(SR‘,%4vaSin<pCOS(p—f/ u[cosh(a)/T)—l]—w[ +,CO (w/ )]e_“’/ZT (A22)
dep Jo  (spr)? dw  2sinh(w/2T)
which yields
af 16m* (T \*
(SR,,:—vxpy—f il (7) . (A23)
dep 15 SDF

It is clear that at low temperatures we can ignore the second term in R, compared to the first one.
The primary mechanism by which the flow gradient couples to the electron-phonon fluid is by
directly affecting its electron component. By the same token one can estimate the renormalization
piece of the collision integral, namely the second integral term on the right-hand-side of Eq. (A.18).
It happens to be smaller than the first term and can be also dropped. In the end, we arrive at the
much simplified Boltzmann equation

of Jlly

— T WDk = / D(IL p,)(l/fp/ - 1p[fp) Z 8(51)’ —&p + Uwp—p’)7 (A24)
88p 8y 4 o

which is essentially the Boltzmann equation without taking into account that the phonons are not
equilibrated. Hence, momentum conservation, while important for the hydrodynamic interpretation
of the viscosity is not important for its actual value. To proceed with the solution of Eq. (A.24) we
can follow an analysis that is essentially the same as the one we used to determine the resistivity
within the Bloch-Griineisen limit. We can in fact perform this analysis for a distribution function
o cos(l0), where [ is the angular momentum. The resistivity corresponds to [ = 1 while the viscosity
to | = 2. This yields the scattering rate for arbitrary I, and for viscosity in particular

dx (A25)

2
B T5 [on/T x? (1 — ;7)(2)
7, = 6hep— —Db 7
wp Jo cosh(x) — 1

The asymptotic behavior in the low-temperature regime gives Eq. (2.50) in the main text.
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A.3. Detailed calculation of the electron-phonon drag thermal conductivity

For the sake of thermal conductivity calculation we can make the following ansatz for the
non-equilibrium distribution function of electrons

of p 8(&p)
smy :‘TaT,,‘”"’ Yp = (V. T)2 =

Then, the Boltzmann equation for g, be obtained from the variational analysis of the functional

(A.26)

1 &y &p71? &2 of
Qlgl = T /pp/ D(p.p') [vp/gp’% - ”pgp?p] ;5(%’ —&ptowpp)— /p vzzrgp-r%@‘
(A27)

The analysis here parallels with that of Bloch-Griineisen calculations with the only difference that
we have now some extra energy factors as we seek the results for the thermal current in response to
applied temperature gradient. At temperatures small compared to the Fermi energy we can assume
that g(ep) = g is a constant and we obtain

1
Qlgl = SAsg” — Beg, (A.28)
where
1 /
Ap = ﬁf D(p, P )[vp ey — vpepl” Z 8(ep — &p +owp_p),
pr’ o=
* (A.29)
1 a
Be=— [ v? 2 _ VETCy(T).

v
2 | “p°p
T2 Jp dep

In the analysis of the coefficient A¢(T) we can introduce the corresponding function Fg(e, &', w):

2 ’
UF / / a)f(s)f(s ) /
AR(T) = T / dede’dwFs(e, & ,w)m ;8(8 —e4ow), (A.30)
’ Do 2 ’
Fe(e, &', w) = —— [vpepy — vpepld(w — wp_p )5(e — €p)8(e" — &y ). (A.31)
T2v; Jpp
Next we notice that
[vyep — Vpepl? ~ vi(e — &')? — 2vee’(1 — €OS Oy ), (A.32)

where the second term contains the usual transport scattering cross-section factor (1 — cos 6py),
however unlike in the case of conductivity, here it gives only a subleading correction for the energy
relaxation, and can be neglected. As a result one finds

I\ 2
Fole. &', ) ~ FrepS <8 —° ) (3) . (A33)

wp T wp

Owing to the energy conserving delta-function in A; one can replace (¢ — ¢')> — «? in the final
integrations. Finally, calculating the energy current from Eq. (2.52)

2
j.=— / 0p(0p Y, T) (‘%") Fo(1 = f)gp = —kepVT, (A34)
p

with g, = Bg/Ag, we determine that the time scale g, that defines thermal conductivity kep in
Eq. (2.54), is given by

2\ “D Sd
o= ze"/ wto (A35)
wpT3 Jo  cosh(w/T) — 1
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A.4. Spectral properties of the collision integral and super-diffusion on a Fermi surface

In the context of electron liquids when the electron-electron interaction establishes a hydrody-
namic regime it is known that there is a fundamental difference between the relaxation of even and
odd modes of the distribution function which is specific to the two-dimensional case. As first shown
by Gurzhi and coauthors [61,62] the ratio of corresponding decay rates is yodd/Veven ~ (T/Er)? < 1
and physically comes from the kinematics of head-on collisions. This problem was recently re-
analyzed in the work by Ledwith et al. [63] where special attention was paid to the dependence of
these rates on the angular momentum. It was found that (¥)even ~ (T?/Er)Inl whereas (¥})oqq ~
(T*/E)* Inl for 1 < I < Imax ~ +/E¢/T. In the context of graphene with electron-electron Coulomb
interaction, it was recently shown that the corresponding rate behaves as y; o (e?/vg)?T |I|. The
non-analytic dependence with respect to the angular mode [ gives rise to super-diffusion on the
Dirac cone and Lévy-flight behavior in phase space, described by a Fokker-Planck equation in phase
space with a fractional Laplacian [64].

It is perhaps surprising, but to the best of our knowledge, a similar analysis has not been carried
out for electron-phonon liquids. We are aware of two related studies. In the work by Kabanov and
Alexandrov [45] the lowest eigenmode of the electron-phonon collision operator corresponding to
the energy relaxation was found. This result was obtained by a Fourier transform of the linearized
Boltzmann equation that thus can be reduced to an auxiliary problem to an effective Schrédinger
equation in the Pdschl-Teller potential. In the work by Gurevich and Laikhtman [53] energy and
momentum transport in fluids was analyzed in the regime dominated by phonon-phonon collisions.
It was shown that at low enough temperatures the relaxation is primarily governed by near-
collinear scattering between acoustic phonons. Globally, however, the relaxation is hierarchical.
These collisions first thermalize unidirectional modes on fast scale leading to angle-dependent
temperature, which is followed by a slower relaxation process of angular diffusion on a 2D sphere
in 3D momentum space. Below we present general results for the electron-phonon collisions
applicable for any angular harmonic of non-equilibrium distributions and carry out the analysis
for the 3D case where we reveal the super-diffusive character of the relaxation.

We aim to solve the linearized Boltzmann equation

3 af 3
(E + vV,) (—Tagp) Yp(r, t) = 8 Step{¥f} + Sp (A.36)

with the source term Sp, by expanding the non-equilibrium distribution function into angular
momentum eigenmodes of the spherical harmonics

Vo= Yim(Bp. @p)im(ep. 1. 1). (A.37)

Im
In the limit of degenerate fermions we can ignore the |p| dependence of ¢;,. Then we multiply the
Boltzmann equation with the mode expansion by Y ,(6p, ¢p) and integrate over momenta with the
usual prescription fp — 4= [ dsp [ ds2, where the solid angle measure is d$2, = sin 6,df,dgp,. Then

it follows after the spacetime Fourier transform
(—iw + T[_l)d)lmall’(sm,m’ + irq(amdy 141 + bimdy 1-1)PimOm,m = Sim (A.38)

where
Tl_l = /Ylm(epa §0p)‘s St{Yim}, Sim= lem(pr @p)slr (A.39)
p p

Here we used that r,‘l should not depend on m if the system is rotation invariant. The coefficients

are ay, = % and by, = %. By using the explicit form of the collision integral,

the decay rates (inverse relaxation times) for the given angular harmonic can be presented as
follows
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_ 1 ,
'= § f D(p, p )[Ylm(ep, ‘Pp) - Ylm(eph (ﬂp’)]z § 5(811 — &y + ow,,,,,/).
2121+ 1) ~ Jop' ot

(A.40)
The summation over the azimuthal components of the angular momentum can be completed
explicitly with the help of the well known formula from the theory of spherical functions
1

1
m Z Ylm(ep» (pp)ylm(ep’, Qﬂp’) = EPI(COS Qp,p/), (A41)
m

where Py(x) are the Legendre polynomials. This leads to the following result for the matrix elements
of the collision operator as function of angular momentum:

1 / wf (€)f () ,
V= 55 / dede'dwF(e, &, a))m ;3(8 —e+ow), (A42)
’ DO ,
File, e’ @)= o— | [1=Pilcosfpp)Id(e — ep)3(e" — ep )8 — wpp). (A43)
v

Adopting the same reasoning as explained in Appendix A.1, we can ignore the ¢, ¢’ dependency of
F, for small fermionic energies. The result then simplifies considerably and gives for w < wp

c _‘MepS(fv>< _ ( _(w>2)>
1 (w) = 1-P (1 , (A.44)
wp wp wp

with the same convention for the electron-phonon coupling constant A, as used earlier. This yields

uepT /* ( (1 B (E)zxz» . (A45)

cosh (x) — 1

For I = 1 and | = 2 we recover, of course, the known results for the scattering rates relevant in the
resistivity without drag

_ 480 (5) AepT?/wp i T K wp
- { AepT ifT > wp’ (A.46)
and for the viscosity
vz = {2)/1 ifT>wp- (A.47)

To analyze the rate for arbitrary I we first use 1 — P (1 —y?) ~ 21+ 1)y* (1+ O (I?y?)). This
expansion is sufficient for temperatures T < wp/I and yields after a few steps y; = %l I+ 1y
The situation is more subtle in the regime wp/l < T < wp. To analyze the large-I behavior we split
v = §yo — 8y where

2
o X3P (L) x2
2xepr3 f D

cosh(x) — 1

(A.48)

Notice that §y; < 8)/0 for [ > 1. Next, we employ the identity

ad 1
p1-)tl= — — (A.49
Z ' ) V(t =12+ 2tx? )
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and obtain for the generating function

2hepT?
BV(t)—ZSV:t— ==

=0 / \/(t—l) +2t( ) xz(cosh(x)—l)

The behavior of §y (t —1-0" ) determines the large-I asymptotics of §y;. The generating function
has a well defined limit as t — 1 with leading corrections that are linear in 1 — ¢. This implies that
8y, cannot decay slower than [=2. Hence in the regime T < wp/I follows that

_ o _J2ac TP/} T < op
Vieoo = 0Y0 = { 20T if T > wp

x3

(A.50)

(A51)

This analysis reveals that the behavior at low temperatures and for a sufficiently small angular
momentum modes [ can be captured via diffusion processes on the Fermi surface. However, at any
finite T, high angular modes with angular momentum [ > wp/T undergo super-diffusion. These
results are further discussed in Section 2.4 in the main text.
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