
ROSFuse: A High-modularity ROS to Firmware
Instrumentation Bridge for Robotic Sensors

Christopher Robinson, Student Member IEEE, Shamsudeen Abubakar Member IEEE,
Sumit K. Das Member IEEE, and Dan O. Popa, Senior Member IEEE∗

Abstract—In this paper we present a modular software
protocol for extending a variable dataspace within a micro-
controller firmware system (MCU) that allows robotic sensor
data to be streamed via the Robot Operating System (ROS)
architecture. This protocol copies the data formatting structure
inherent to ROS messages and implements a local DN bridge to
allow for asynchronous bi-directional data transport over any
communication channel. We implement a demonstration of this
system on a mobile robot test bed to manage communications
between the sensor data acquisition MCU and the primary
control computer, and use this test case to measure the efficacy
of the protocol through latency and packet loss, and tracking
validation by comparison to other measurement systems on the
robot.

Index Terms—data protocol, assistive robot, sensing protocol,
sensor suite

I. INTRODUCTION

In the course of development of large robotic systems,
direct access to lower level hardware assets can rapidly
become problematic [1]. Off-the shelf control hardware is
rarely equipped to communicate with pin-level hardware [2].
Typically, CPU systems expect interaction to occur above
the Hardware Abstraction Level (such as Ethernet, USB,
Serial, and other related common communication protocols).
Such interfaces can often be adapted to low-level sensors
and actuators. Access to these assets on a CPU is typically
in short supply compared to the span of instrumentation
implemented on a robot [3]. For instance, one rarely finds
more than 6-10 USB ports on a CPU, but this does not easily
support sensor numbers in excess of a dozen.

This issue could be approached by increasing port
availability- by using USB hubs or Ethernet switches for
instance- but this introduces problems as well. The reliability
of port expansion, management of network systems, and
the added bulk, complexity, and resource consumption are
all potentially intractable on certain projects. Beyond these
pragmatic concerns, there is also the effect on efficiency;
complexity introduced from multiple communication hubs,
added latency, and potentially significant computational over-
head all limit performance.

The natural and common response to these challenges is
to implement low-level tasks with an appropriately low-level
computation system and pass the resultant data to an interface
for the CPU. This is where a CPU/MCU based system
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becomes most attractive, and where an efficient, scalable
protocol for sharing data is essential.

Robots have utilized this approach for decades, and there is
a vast body of work associated with the equally vast number
of options, which are most commonly specific to the applica-
tion case. This is generally a matter of both expedience and
pragmatism- a purpose-built design is typically the fastest
and most reliable method of implementing communication
between hardware systems [4]. However, the principle design
issue these kinds of systems present is one of scalability [5].
When a system is designed optimally for a single use case,
it is often the work of a complete re-design to expand it to
accommodate changes.

In this paper, we are proposing a lightweight firmware-
to-software bridge protocol which handles data transport be-
tween MCUs and CPUs to address these issues. In particular,
due to the ubiquity of ROS as a fundamental design tool
for robotic software, we designed our system to integrate
with, and mirror the structure of, ROS. In constructing our
protocol this way, we garner many of the benefits of the ROS
architecture across an embedded system interface.
A. Prior Work

One method of achieving the same goal of interfacing
compliance is via a hardware-based interface device. A
widely adopted example of this is the National Instruments
roboRIO. The roboRIO is a dedicated hardware platform
carrying many embedded protocols and associated transport
software. One such similar application to our demonstra-
tor for ROSFuse is found in [6]. While highly efficient,
this example also highlights common weaknesses of these
hardware-focused interfaces. Though the roboRIO contains
a wide range of interfaces, custom hardware is still required
to bridge the gap between an atypical low-level sensor and
the roboRIO. Other concerns include the cost-to-benefit ratio.
With generalized hardware interfaces, there is often far more
systematic and cost overhead present than is appropriate for
an application case. When a dedicated microcontroller and a
small amount of support hardware is more fitting, solutions
like the roboRIO exhibit a low return on investment.

Alternative models have also been proposed which seek to
remedy this problem, most notably architectures to manage
communications across many devices. Below, we discuss
several of these and discuss how our approach compares.

In [7], H-ROS, an architecture was developed towards
achieving a ROS-compatible hardware standard. The archi-
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tecture builds on ROS and has software features that facilitate
access to the robot hardware and compartmentalization of
software in different modes. Interoperability, reusability and
reconfigurability are presented as the main benefits. However,
because it is targeted for industrial use, it is built with features
that limit wider adoption. One limiting feature is the Ethercat
Protocol used in the physical layer, which presents a whole
level of hardware integration beyond the base system being
used.

A driver to interface Arduino-based robots with ROS is
presented in [8]. Simulation and real-world navigation tasks
are used to show functionality of the driver. While demon-
strated to work well with different Arduino microcontrollers,
scalability is shown only by adding only three single-value-
output sensors to its test robot. Further, the authors indicate
that significant programming is required to integrate these
sensors to ROS via the driver, as is typical of such bespoke
systems.

By way of contrast, we also consider [9], in which in-
tegration to ROS of hardware systems is approached with
a hardware-level solution, implemented as a unified system
firmware on an FPGA. While this provides exceptional per-
formance, the usage of single system chips is highly limiting
with regards to modularity. Like with the system discussed
in [6], efficiency is very high, at the expense of the overhead
of programming an FPGA system.

A similar approach to our concept has also been applied
to the specific topic of sensor fusion in [10]. Herein the
authors leverage the natural modular nature of ROS nodes
to produce a generalised sensor fusion package which can
be interfaced with other ROS ecosystem members. As with
our methodology, the use of systematic design- relying on
the publisher/subscriber paradigm- allows for the generation
of scalable systems through ROS.
B. Contributions

Our protocol was designed to possess following advantages
over other frameworks:

- Scalability: Our protocol demonstrates strict linear re-
lations between packet length and delay, and provides a
mechanism for adding devices by editing only a configuration
file.

- Simplicity: our structure is designed specifically to copy
the ROS ethos of configuration, allowing changes to variables
to be made entirely independent of the source code

- Efficiency: we have made use of the ROS pub-
lisher/subscriber model for datasharing through message
types. This allows us to implement variable sharing with
minimal latency.

We illustrate the advantages of ROSFuse in an application
sensorizing a mobile manipulator robot in our lab. The robot
included 32 sensors, whose data is streamed to a central CPU
during environmental mapping and navigation. Results show
that sensorization using the ROSFuse system enables high-
speed transmission with a large number of sensors.

The paper is organized as follows: In section II we describe

Fig. 1. Firmware to ROS bridge process workflow

the ROSFuse protocol in detail; in Section III we outline the
systems used in the validation task; in section IV we analyze
data collected from the robot, and identify specific systematic
performance metrics; Finally, in Section V we present our
conclusions and discuss future work.

II. PROTOCOL DESCRIPTION

In this section, we detail the design of the ROSFuse
communication protocol. ROSFuse is structured to topically
mimic ROS’s publisher/subscriber framework, including the
use of message definition files to define data types. The
primary goal of the data share bridge is to make available
in the ROS namespace variables which are set within the
MCU, and vice-versa.

At the top level, this is achieved by a pair of processes:
a ROS node running on the CPU, and an interrupt-driven
process on the MCU. The ROS node retains a list of the topics
initialized for data sharing, and the MCU process transfers
data to and from variables internally. The ROS node sub-
scribes to topics shared with the MCU and publishes topics
shared from it, while the firmware interrupt routine parses
data into variables, and transmits shared variables. This full
workflow is illustrated in Figure 1, and the procedure for
message parsing in Algorithm 1.
A. Packet Structure

In order to implement any communication protocol, we
must first select a packet type for the transmission itself. We
select a simple string-based, delimited structure, as indicated
in Figure 2.

The advantages of using this format are three-fold:
I. Use of a string format simplifies parsing- though a nu-

merical formatting system would enable for lower-overhead
communication, the use of message namespace conventions
when coupling to ROS dramatically simplifies the process of
integration.

II. Messages formatted with start and end characters via the
native string type can be of functionally unbounded length

III. The use of the String type obviates the need for
a complex encoding protocol for carrying strings- because
packets are patched directly into a ROS topic, matching
packet names to topics is both convenient for readability and
identification.

As a further note, because the use of message type descrip-
tors is copied from ROS to the firmware, there need not be
any data included within the messages themselves to guide
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Algorithm 1
procedure ROSFUSE PARSE((Controls,Peripherals,Port))

if Port.available() then
while Port.next() 6= ”&” do Port.read()
packet← ””
while packet[−1] 6= EOL do

packet← packet+ Port.read()

Message← packet.split(”, ”)
for ∀peripheral ∈ Peripherals do

if peripheral.label ==Message[0] then
Current← peripheral

for datum ∈ peripheral do
if datum.type[a] == Float then

floatMembers[a] =Message[a]

if datum.type[a] == String then
stringMembers[a] =Message[a]

if datum.type[a] == Int then
intMembers[a] =Message[a]

for control ∈ Controls do
packet← ”&”
for datum ∈ control do packet ← packet +

String(datum)

packet← ”EOL”
Port.write(packet)

type selection, reducing packet size.
B. Message Definitions

In keeping with the design goal of matching the operational
characteristics of the data bridge to ROS, we define two
generic ROS message types to correspond to transmitted data.
Each message type contains variable length arrays to store
data, illustrated in Figure 3.

On initialization of the ROS bridge node, the configuration
file describing the message is read, generating instances
of these topics. This configuration file serves to replace a
concrete message definition for each data packet, enabling
broad scalability. Further, the parameters for the hardware
communication layer are within this configuration file.

Each message contains three primary fields- arrays for
containing floating point, string, and integer data. In both the
ROS and firmware packages, the data type field determines
which array a specific datum is stored in. For instance, if the
4th member of a packet is an integer, then it will be stored in

Fig. 2. Transport-layer packet structure

the 4th element of the integer member array, This indexing
structure lets the MCU side system store any data type within
a single object.
C. MCU Firmware

The primary component of the firmware side of the bridge
is a C package, which defines the object handlers for both
types of message, as well as a utility function for the
transmission layer.

Within this package, there is an allocation for master lists
of controls and peripherals. For controls, this list provides
access to the variable list associated with the transmission,
and for the peripherals the list of transmissions to be made.
Objects for each message are created within the main execu-
tion loop and populate the list at time of creation.

Each peripheral initializer takes as input the transmission
channel, name of the packet, number and type of data
members associated with the transmission. The constructor
for controls follows the same profile, where the process of
variable insertion is handled upon receipt of a serial packet.
Within the serial parser, a packet label is searched in the list
of packet names for the associated control object, and data
is placedinto the object’s corresponding data arrays.

The transmission read function required as input only a
pointer to the object handler, and therefor is suitable for use
within interrupt routines.
D. CPU Software

For the ROS implementation the task of reading, pars-
ing, and writing to the transmission is augmented by the
additional task of building and maintaining the ROS topic
space. The ROS node package defines object types for the
peripherals and controls, and packet parsing and variable stor-
age components are exact parallels of the used in the MCU,
just as the message structure and corresponding objects are
analogous.

The ROS component begins with the configuration file, an
example of which is illustrated in Figure 4. This file defines
the ROS topics and subscribers. It begins a subscriber topic
for each control, and a publisher for each peripheral. The
primary operation loop of the script alternately reads the
transmission queue, collects peripheral reports and publishes
them into the ROS topic space.

By contrast, control topics for the MCU are attached to

Fig. 3. ROS messages corresponding to Controls and Peripherals
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Fig. 4. Example of the configuration file for building a set of publishers
and subscribers in the ROS bridge node, structured so that each message
does not require a custom MSG definition in ROS

the corresponding subscribers. When one of these topics is
published, the subscriber collates the data from the publica-
tion, formats it into the transmission format, and writes it to
the transmission medium.

III. IMPLEMENTATION SYSTEM

To experimentally evaluate the performance of the proto-
col, we apply the above defined software components to the
instrumentation of low-level sensors on a robotic platform.
A. MCU hardware

We have built a custom interface board based on the PJRC
Teensy 3.6 Arduino-compatible microcontroller. This MCU
was selected for its high clock rate and large amount of IO,
which considerably simplifies the PCB design.

Several of the sensors communicate over multi-device
protocols, with 32 total devices reporting a total of 56
measurements. In our application, the sensors are arranged
in 4 blocks of 8 each, with the control outputs being routed
through individual terminal lines on the board.
B. Transmission Medium

For this system, we are using the built-in USB/Serial
connection for transmission. The Teensy USB/Serial adapter
always communicates at the USB limit of 12 Mbit/s, but we
enable the standard hardware serial as well, enabling alternate
baud rates for testing the effect of transmission speed on
queuing loads and data rates.
C. Sensors

The sensor set was chosen to implement navigational
assistance, making for a particularly diverse set of sensors.

Fig. 5. Image of the ARNA mobile robot, with the locations of the two
front-side sensor blocks and the LIDAR highlighted

This is useful for testing as it enables increasing the number
of sensors, variation in the data types, and the proportion
thereof. As mentioned, the sensors are arranged in four
’blocks’. Each block contains three ultrasonic distance sen-
sors, two button based contact sensors, two IR distance
sensors for cliff detection, and one 9-DOF IMU.
D. Testbed Validation

To validate the efficacy of ROSFuse in a working context,
we implement it on the Adaptive Robot Nursing Assistant
(ARNA) platform, performing a navigation task. On this
robot (seen in Figure 5), ultrasonic sensors are used for
obstacle avoidance, and a LIDAR range scanner is used
for autonomous navigation. In order to demonstrate that
the protocol is working effectively, utilize the range of the
LIDAR scan corresponding to the sensing region of ultrasonic
sensors in the same area. We compare these measurements
as a function of time- one collected via the protocol and one
independent of it.

To properly correlate the regions, we collected both LI-
DAR and ultrasonic readings during a mapping exercise.
Three of the 12 ultrasonic sensors on the robot share range
with the LIDAR sensor, and within the LIDAR sweep, certain
regions (θL1, θR1, θR2, ) correspond to their visibility range,
as Illustrated in Figure 6. We average the distance readings
from the LIDAR scan across these areas.

The combined data set for these four sensors is plotted
in Figure 7, where the LIDAR data is divided into the three
averaged regions corresponding to each ultrasonic sensor. On
this graph, we can see that the Ultrasonic readings track well
with the LIDAR data, staying at each time step within about
a 15% margin of the LIDAR data, which is well within the
measurement uncertainty of the ultrasonic sensors.

One notable observation is that there is no ultrasonic
tracking periods of distances greater than approximately
3.2m. This is due to hard-coded limits on the timing period
of the ultrasonic sensor readings which limit their detection
range to 27 (128) inches.

IV. DATA COLLECTION & ANALYSIS

In this section, we present diagnostic data illustrating the
performance of the protocol under varying loads. In partic-
ular, we examine effectiveness using observations of these
trends to predict behavior over a wider range of conditions.

Fig. 6. Illustration of the placement of the LIDAR and ultrasonic sensors,
with relative sensing ranges shown (not to scale), and the corresponding
angle in the scan range to ultrasonic L1, θL1
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Fig. 7. Plot of data from LIDAR corresponding region and Ultrasonic
sensors mounted on the mobile robot as a function of step time (100 ms
increments). In this figure, solid lines are the LIDAR readings, and single
points are ultrasonic readings.

A. Transmission speed
To evaluate transmission speed, we implemented an

interrupt-based timing check via the internal clock counter
on the MCU, and the microsecond precision system clock
on the CPU. For each of these assets, we collected interval
period data across a range of transmission delays from 1ms to
80ms, and packet sizes from 1 to 10 random floating point
numbers. Figure 8 illustrates this averaged timing data. In
this plot, we can observe the trending across both time- and
data-density.

The first, and most important, observation we can make
about these curves is that all are linear across both data
density and period of transmission, with the correlation
coefficient σ ≥ 0.98. Further, each loading curve possesses
an intercept within 3% of the average, indicating that the
offset due to execution of ROSFuse is nearly constant with
respect to packet size.

Second, the latency curves, illustrates that the overhead
induced by ROSFuse is constant across period and load,
fixed at 187 µs. Further, the high correlation across different
periods indicates a well-fit latency curve, as transmission lag
does not vary with transmission period.

Figure 9, similarly, illustrates the relationship between
transmission time and packet size across the same period
delays as measured for the MCU side of the protocol. In
addition to bearing the same linear relationship, there is a

Fig. 8. Loading Profile for the MCU side protocol, illustrating the linear
profile, with the fit curve revealing the processing overhead limit of 187 µs
and the per-datum rate of approximately 55µs. Note that this is the upper
bound of latency, not loop-back, timing

Fig. 9. Loading Profile for the CPU side protocol, illustrating the clear
linearity as a function of packet size, across all sampled transmission periods

consistent change in slope with each cange in delay period,
indicating that the rate change in transmission speed is
constant with respect to the delay, meaning that the overhead
latency is indeed constant, and due to factors on the MCU
side, which in this case bolsters the argument towards non-
length dependent overhead. This is to say that changes in
packet size influence the transmission latency only by virtue
of demanding longer transmission timesb
B. Packet Loss

To examine packet losses, we slow the transmission clock
to 9600 baud, focusing on the MCU reception side. The
CPU is easily able to outpace the MCU, even at maximal
data rates. Conversely the CPU is capable of overwhelming
the processing of the MCU at this lower transmission speed,
with periods from 1ms to 20ms all bearing some degree of
packet loss. The packet sizes at which loss occurs spans from
nearly all at 1ms to only intermittent losses at 20ms. The data
representing these losses is shown in Figure 10, along with
a parallel comparison to a direct data transmission via ROS
Serial with no special handling, for comparison.

We also note that packet losses occurring at measurable
rates have a consistent local peak loss around the middle of
the data rate sweep. We interpret this as actual transmission
time varying little between packet sizes and processing time
generally being faster than transmission time- therefor, short
packets are processed faster, but more frequently, while long
packets have an effective transmission delay, allowing the

Fig. 10. Illustration of packet transmission as a function of transmission
period and average throughput over packet size, showing the functional
inverse relationship between packet information density and transmission
throughput, and comparing losses between the bridge protocol and brute-
force ROS Serial
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MCU enough time to parse the data before the next packet
finishes arriving.

Under these adversarial load conditions, we still receive
a significant proportion of the transmitted data, with the
average packet retention rate being around 13.7% for a single
datum transmission at a 1 ms period. For a scope comparison,
at 9600 baud, each character is allowed approximately 1.04
ms to transmit, meaning the 1ms period consumes 96% of the
available transmission time. By contrast, a direct transmission
with bare ROS serial retains only 4% of packets under these
conditions.

The critical factor underwriting this relatively low loss
rate is the rapid packet checking. When a malformed packet
Arrives at the bridge, it is discarded as soon as the error
is detected, freeing buffer space. ROSFuse may then catch
the next packet before buffer overflow occurs. Given that the
latency overhead is known to be 187 µs, the 1-datum latency
56µs, and the transmission bound of 1040µs, the available
time for packet transmissions is 1040µs−187µs

56µs , fitting 15.5
transmissions per period. At the 96% consumption rate for
1 kHz transmissions, this yields a 14.9% upper bound for
retention. Marginally more than our observed rate, but packet
discard naturally cannot occur before some portion of the
bandwidth is used reading the packet.

V. CONCLUSION

In this paper, we have presented and evaluated the perfor-
mance of ROSFuse, a low-overhead, highly robust variable
data-share system for integrating low-level hardware systems
with ROS. We have described how this system offers benefits
over other extant solutions to the problem of ROS integration
by being more flexible and scalable than other software,
lower overhead than framework models which seek to impose
a design strategy, and sufficiently robust and efficient to out-
perform the native ROS protocols. Further, we illustrated the
ease of implementation by utilizing the same definition file
setup as ROS packages. This eliminated the need for source
code changes to implement new hardware or modifications
to old hardware. We also illustrated through experiments
that the performance of the system remains effective un-
der increasing loads. These experiments also demonstrated
scalability, with the same hardware and software being used
to test the 32 sensor board and the 10 reading performance
experiment, observing high rate communication of 56 values
with low latency (as tracked by the LIDAR comparison to
the ultrasonic readings) directly into the ROS topic space.

Between the non-coding modular implementation for
adding or changing data types, the paired bi-directional,
medium-agnostic nature of the protocol, and the consistently
low latency and linearity of speed over load, we believe that
ROSFuse meets the standard of modular adaptability and
scalability of ROS itself.

One issue relating to protocol stability is the relative
processing speeds of the two processors. We would, going
forward, like to examine the parameters bounding commu-
nication between two MCUs and two CPUs to investigate
symmetric performance optimizations

Additionally, ROSFuse supports a single ROS master
with multiple peripheral devices, however we have not, as
yet, performed any testing under these conditions. It would
be beneficial for the adoption of the protocol to parametrize
the performance of the ROS node under multiple channel
processing- current experiments do not incorporate any
timing data associated with device level switching.
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