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Abstract

The results of a human-in-the-loop experiment are used to investigate the control strategies that
humans use to interact with nonlinear dynamic systems. Two groups of human subjects interact with a
dynamic system and perform a command-following task. The first group interacts with a linear time-
invariant (LTI) dynamic system. The second group interacts with a Wiener system, which consists
of the same LTI dynamics cascaded with a static output nonlinearity. Both groups exhibit improved
performance over the trials, but the average of the linear group’s performance is better on more than
three-fourths of the trials. A new nonlinear subsystem identification algorithm is presented and used
to identify the feedback and feedforward control strategies used by the subjects in both groups. The
identification results for the linear group agree with prior studies suggesting that adaptive feedforward
inversion is a primary control strategy used by humans for command-following tasks. The main results
of this paper address an open question of whether a similar control strategy is used for nonlinear
systems. The identification results for the nonlinear group suggest that those subjects also use adaptive
feedforward inversion. However, the static output nonlinearity inhibits the human’s ability to approximate
the inverse.
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1. Introduction

Humans are often the least-understood component of a human-in-the-loop (HITL) system.
There are many engineering principles and analysis techniques that can be used to predict
and design the behavior of dynamic systems, such as aircraft, construction machinery, haptic
devices, and telerobotic systems. Predicting how humans will interact with those systems is
more challenging. An improved understanding of human control strategies is likely to yield
significant advancements in HITL technologies.

Many HITL systems can be modeled using the control architecture shown in Fig. 1. The
human interacts with a dynamic system through the control input u, which is generated
based on available feedback y and a command signal . The human’s goal is to interact with
the dynamic system in a manner that makes the magnitude of the command-following error
e =r —y small.

A human’s control response is complex and depends on the properties of the dynamic
system and command, as well as many other factors, such as experience, effort, and ability.
Although no model captures all aspects of human-control behavior, it is often possible to
identify control strategies that approximate typical human behavior over a limited period of
time [1-3]. Such models can be used to predict closed-loop behavior of HITL systems.

The review paper [4] provides an account of research on modeling human-control behavior.
Much of the early human-control literature is based on studies of compensatory behavior,
where the human only has access to the error e for feedback instead of both r and y [5-7].
The well-known crossover model and precision model provide fundamental principles that can
be used to predict human compensatory behavior [8—10]. Alternatively, as discussed in [4],
there is significantly less work on HITL models for command-following.

It has long been suggested that humans may rely on models for control. The internal model
hypothesis of neuroscience suggests that the brain constructs models (i.e., internal models)
of the dynamic systems with which it interacts, and uses those models to generate control
signals [11-17]. Forward and inverse internal models have been proposed [18-28]. Support
for the internal model includes evidence of predictive behavior and qualitative comparisons
with models [29-40].

More direct evidence of model-based control strategies by humans is provided in [41],
which analyzes command-following interactions with linear time invariant (LTI) dynamic sys-
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Fig. 1. A control architecture for HITL systems.
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tems. In those studies, the human control response is modeled by the feedback-feedforward
control architecture shown in Fig. 1. The feedback control is based on e and models the
human’s reactive control response; the feedforward control is based only on r and models the
human’s anticipatory control response. Subsystem identification (SSID) techniques are used
to determine best-fit linear models of the feedback and feedforward models. The results in
[41] suggest that a primary command-following strategy used by humans is adaptive feedfor-
ward inversion. Specifically, if the LTI system is represented by the transfer function G, then
over repeated interactions the human updates its feedforward controller until it approximates
G~!. SSID results suggest that feedforward inversion is used for many LTI systems, provided
that the command is predictable or a preview of the command is available [42.43].

The extent to which humans use adaptive feedforward inversion for control is unknown.
Recent results suggest that for some nonminimum-phase LTI systems, the human’s feedfor-
ward controller does not converge to an approximation of the dynamic system’s inverse, but
rather a different type of model-based control strategy is used [44]. Thus, it is unclear whether
feedforward plant inversion is a primary human-control strategy, even for LTI systems. Hu-
man interactions with nonlinear dynamic systems is also an open question. Some studies have
investigated HITL interactions with static nonlinear systems and provide some evidence for
feedforward inversion [45-51]. However, they do not explicitly identify the controllers used
by the human subjects. Moreover, the nonlinear systems used in [45-51] are only static, and
thus human control strategies for nonlinear systems having dynamics remains unclear.

The main motivation of this paper is an improved understanding of the command-following
control strategies that humans use to interact with nonlinear systems. We present results and
analysis of an experiment in which two groups of human subjects interact with two different
dynamic systems to perform a command-following task. The first group interacts with a LTI
system, and the second group interacts with a Wiener system, which consists of the same
LTI dynamics cascaded with a static output nonlinearity. Each subject’s command-following
behavior is modeled by a discrete-time control architecture consisting of a feedback time
delay, a linear feedback controller, and a nonlinear feedforward controller. We compare the
time-domain performance and control behavior of these two groups.

This paper provides several new contributions. First, the experimental results suggest that
the presence of static output nonlinearities tends to make dynamic systems more difficult
for humans to control. Second, we present a new discrete-time nonlinear SSID technique to
identify control models that approximate the subjects’ command-following behavior. In con-
trast to existing frequency-domain SSID techniques used in [41,52-55], the SSID technique
presented in this paper is performed in the time domain and can accommodate static-input
nonlinearities in the feedforward controller. Finally, the identification results are used to ad-
dress open questions on the impact of dynamic-system nonlinearities on the control strategies
that humans use in command-following tasks.

2. Experimental methods and performance data

Twenty-two people voluntarily participated in this study, which was approved by the Uni-
versity of Kentucky’s Institutional Review Board under IRB protocol 44649. The subjects
were 18 to 35 years old and had no known neurological disorders. Subjects use a rotational
joystick (Teledyne Gurley model 8225-6000-DQSD) to control the motion of an object that is
displayed on a computer screen. A frial is a 60-s time period during which a subject operates
the joystick, and a session consists of 10 consecutive trials completed within a period of
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Fig. 2. Subjects use a rotational joystick to control the position y of the bottom marker displayed on the computer
screen. The subjects’ objective is to make y follow the command r, whose position is displayed on the computer
screen by the top marker. The joystick’s angular position u is the control input of an unknown dynamic system,
which is simulated by a computer, and the dynamic system’s output is y.

20 min. Subjects completed 4 sessions over a 7-day period, but no more than one session in
a 12-hour period.

The experimental setup is shown in Fig. 2. The computer monitor displays two thin rectan-
gular markers, one above the other. The top rectangular marker is called the reference object
and its horizontal position is denoted r. The bottom rectangular marker is called the control
object and its horizontal position is denoted y. The reference object follows a predetermined
path, which is the same for all subjects and all trials. Alternatively, the control object’s po-
sition is dependent on the joystick’s angular position, which is denoted by u. The subjects
are provided no information about how the joystick affects the motion of the control object.
Subjects are instructed to use the joystick to make the control object mimic the motion of
the reference object. More specifically, their objective is to generate a control u that makes
the magnitude of the command-following error e £ r — y as small as possible.

The reference object’s position for all ¢ € [0, 60] is

2

(1) £ 25in 2 (1)
= Sin ——
d 120°

which is a 60-second chirp signal with frequency content between 0 and 0.5 Hz. For all
t € [0, 60], the relationship between the subject’s control u and the controlled object’s position
y satisfies the differential equation

X(t) = Ax(t) + Bu(1), ()
v(t) = Cx(1), 3)
(&) = h(v(1)), 4)

where x(t) € R" is the state, x(0) = 0 is the initial condition, v(¢#) € R is the output of the
linear dynamics (which is not accessible to the subjects), y(¢) € R is the output, A € R"™*",
BeR™ CeR™  and h:R — R is a continuous and one-to-one function. It follows from
Eqgs. (2) and (3) that the transfer function from u to v is G(s) £ C(sI — A)~'B. The units of r
and y are hash marks (hm), which are equally-spaced vertical lines displayed on the computer
screen. The distance between hash marks is 2.5 cm, and the range of motion displayed on
the computer screen is £8 hm.
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Fig. 3. The reference ry, output y, and error e; for the median subject’s Ist and 40th trial.

The 22 subjects were randomly divided into two groups of 11 subjects. Both groups
interacted with the dynamic system (2)—(4), where A, B, and C are the same for both groups.
However, & is different for the two groups. The function % is used to explore the effects of
nonlinearity on performance and control strategy. For both groups, the transfer function from
utovis

2s +4.4
s24+3.6s+4

which has a zero at —2.2 and a pair of complex-conjugate poles at —1.8 & ;0.872. For the
first group, A(v) is the identity function (i.e., 2(v) = v), in which case the system (2)—(4) is
LTI. We refer to the first group as the linear group. For the second group, A(v) is the unique
real root of the polynomial 0.1s* —0.2s> +0.5 s — v. Note that since y = h(v), it follows
that

G(s) =

h'(y) = 0.5y — 0.2y* + 0.1y,

which is a cubic nonlinearity. We refer to the second group as the nonlinear group.

For all trials, the experimental time signals r, y, and u are recorded with sample time
T, =0.02 s and N; = 3001 samples. The sampled data yield the discrete signals {rk}f:]s:l,
{yk}iv;l, and {uk}iv;l. The sampled command-following error is e Ly — Yk, and the time-
averaged error is

N,
1 S

lell £ = > lexl-
S k=1

A divergent trial is a trial in which the magnitude of y; exceeds 8 hm, that is, the controlled
object’s position exceeds the range of motion displayed on the computer screen. There was
only one divergent trial in this study, and it is omitted from the results.

Fig. 3 shows r, i, and e on the first and last trial for the median performer in the linear
and nonlinear groups. The median performer of each group is the subject whose ||e|| on the
last trial is the median (i.e., 6th best) of all subjects in their group. The median subject for
both groups performs better on the last trial than the first trial. All subjects in both groups

5



JID: FI [m1+;February 20, 2021;4:13]

S. Koushkbaghi, J.B. Hoagg and T.M. Seigler Journal of the Franklin Institute xxx (xxxx) xxx

- ® Linear Group
¥ Nonlinear Group

0 1 1 1
1 10 20 30 40
Trial
Fig. 4. The performance of both linear and nonlinear groups improves over 40 trials. The symbols o and x indicate

the mean of the 11 subjects for linear and nonlinear group respectively and the vertical lines show one standard
deviation above and below the mean.

exhibit improved performance from their first to last trial. Similar results are observed for all
other subjects.

Fig. 4 shows the mean and standard deviation of ||e|| on each trial. For both the linear
and nonlinear group, the mean and standard deviation tend to decrease over the trials. The
average ||e|| of the linear group is smaller than the average ||e|| of the nonlinear group on
77.5% of the trials. This suggests that the nonlinear system is more difficult to control than
the linear system. However, the linear group exhibits a larger variance in performance on all
trials. We note that the variance of the nonlinear group is small compared with the results of
several similar experiments [41,44,55]. The reason for this small variance is unclear, but it
may be a small-sample effect or possibly caused by some feature of the nonlinearity.

3. Modeling human control behavior

We model each subject’s control strategy by the discrete-time control architecture shown
in Fig. 5. The dynamic system consists of the pair (G, h), where G(z) is the discrete-time
transfer function that is obtained by discretizing G(s) using a zero-order hold on the input
with sample time 7;. The human controller consists of a feedback transfer function Gy, (z); a
feedback delay d, which is a nonnegative integer (the feedback time delay in seconds is d7;);
feedforward transfer functions G (z), ..., G, p(2); and basis functions fi,..., f, : R — R.

The feedback delay d models physiological limitations associated with visual processing
and neuromuscular response. The feedback transfer function Gy, models the subjects’ reactive
control response, which is based on the observed command-following error e;. The feed-
forward transfer functions Gy 1, ..., G, and basis functions fi, ..., f, model the subjects’
anticipatory control response, which is based solely on the command r;. The basis functions
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Fig. 5. A time-invariant system, where the input r¢, the output y;, and the signals v; and u; are accessible, but all
internal signals are inaccessible.

fi, ..., fp allow for static-input nonlinearities in the feedforward controller. Feedforward de-
lay is not included in the control model because the chirp command (1) is predictable and the
same for all trials. Physiological interpretations of feedback and feedforward control processes
are given in [25].

The SSID problem is to estimate the feedback pair (d, Gy,) and feedforward transfer func-
tions (Gy 1, ..., Grr,p) from knowledge of G and h, basis functions fi, ..., f,, and discrete-
time signals r; and vx. We note that SSID techniques for modeling HITL systems with LTI
systems are given in [54,56-59]. Those techniques are not applicable to the feedback struc-
ture of Fig. 5, because of the dynamic-system and controller nonlinearities. To address the
nonlinear aspects of this SSID problem, we introduce a new approach that uses concepts
from [54] and [60]. Specifically, [60] uses a feedforward architecture similar to Fig. 5 for
Hammerstein-model identification, and [54] introduces a convexification approach that in-
volves gridding on the parameters of the feedback pair (d, Gy,).

The following assumptions and notation are used for the rest of this section. Unless other-
wise specified, all references to the subscript j are for all j € {1, ..., p}. Let N and D be the
coprime polynomials of degree n, and d, satisfying G = ND~'. The feedback transfer func-
tion Gy, has the factorization Gy, = NfbD;bl, where N, and Dy, are polynomials of degree ng,
and dp,, where dy, > ngp,. The feedforward transfer function Gy ; is order ng finite impulse
response (FIR), which implies that it can be expressed as Gy ; =z~ "Ny ;, where Ny ; is
a polynomial of degree ng. The FIR assumption does not significantly restrict the range of
feedforward behavior relative to an infinite impulse response (IIR) transfer function, since a
sufficiently large order FIR transfer function can be used to approximate an IIR transfer func-
tion to arbitrary accuracy. Next, the discrete signals r; and v; have Ny samples and sampling
time 7;. Finally, the operator q denotes the forward shift operator (i.e., if x; is a sequence,
then qx; = Xg41)-
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Let v(z) and ii(z) denote the z-transforms of v, and wuy, and it follows that:
V(z) = G(2)u(2). (%)

The control based on the architecture of Fig. 5 is

p

i(z) = Gp(2)76(2) + Y _ Gy j(2)§;(2). (6)
j=1

where é(z) is the z-transform of e, = ry — h(vy), and §;(z) is the z-transforms of fj(ry).

Combining Eqs. (5) and (6) yields

p

¥(z) = G(2)Gp ()2 e(z) + G(2) Z Gir,j(2)$;(2). (N
j=1

Substituting the polynomials N, D, Ng,, Dg,, and Ng ; into Eq. (7) and multiplying through

by DDzt yields

P
D(2)Dp ()79 (2) = N(@)Nw (2)2"72(2) + N (2)D(2)2* Y Nir ;)5 (). ®)
j=1

We seek feedback and feedforward parameters that make the left and right side of Eq. (8) ap-
proximately equal. Specifically, we seek Nyt 1, ..., Ni ,, Npp, D, and d that minimize the
cost function

1 Ns_[d p
J(d, N, Dy, Nig 1, - - -, Nigp) = 3 k12@ |N(q)be(q)qd jZIfo.j(q)fj(rk)

—1—t, =

n " 2
+ N(q)Ntb(q)q Ter — D(q)Dﬂ)(q)qd—t— Ty

where €; £ d + ng + dy + dgp. To identify Ng j, Ny, Dgp, and d, we first generate a candidate
pool that contains N, possible models of the feedback pair (d, Gg,). The cost J is convex
in the coefficients of Ny ;. For each feedback pair (d, Gp,) in the candidate pool, a convex
optimization is solved to determine the best-fit Ny ; that minimizes J(Nj ;). This computation
generates N, models of (d, Ny, Dy, Nir,j), from which we select the element that minimizes
J(d, Ng,, Dgp, Nir ;). A detailed description of the SSID algorithm is given in Appendix A.
Properties of this SSID algorithm can be derived using analyses similar to those given in
[54], which shows that if the data noise is sufficiently small and the feedback candidate pool
is sufficiently dense, then the identified control parameters are arbitrarily close to the true
parameters. Appendix C provides numerical examples that demonstrate the application and
effectiveness of this SSID method.

’

4. Potential human control strategies

We consider control strategies that are possible solutions of the SSID algorithm of Sec-
tion 3. The focus of this section is on control strategies for the nonlinear group. For the rest
of this section, we assume that the pair (G, &) in Fig. 5 is that of the nonlinear group. For
the linear group, there is a wide range of linear-control strategies that can be used to achieve
closed-loop stability and good command-following performance. Some of these linear-control
strategies and their limitations for HITL applications are discussed in [41].
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Fig. 6. Two different control strategies that make the magnitude of the error small for the nonlinear group: (a) High
gain in feedback; (b) Approximate inverse dynamics in feedforward.

First, consider a pure feedback control strategy. For all j € {1,..., p}, let G ; =0. In
this case, the control architecture of Fig. 5 reduces to a Lur’e system. One possible control
strategy is high gain in feedback, which makes the Bode magnitude large at frequencies of
the command r;. High-gain in feedback yields good command-following performance for
LTI systems, provided that the closed-loop is asymptotically stable. Closed-loop stability and
performance for the nonlinear system (G, i) is more difficult to evaluate. Since the slope of
the magnitude of % is bounded, there are several classical nonlinear stability results that apply
[61]. For example, the circle criterion implies that the closed-loop system is absolutely stable
if GG is asymptotically stable and its Hy, norm is sufficiently small [61, Theorem 5.2].

Consider the feedback transfer function Gg, = 6.67z/(z2 —0.07z + 0.8). Let the feedback
delay be d =5, which corresponds to a feedback time delay of 100 ms. Fig. 6 shows the
resulting closed-loop output y; and error ¢;. The time-averaged error corresponding to Fig. 6 is
0.24, which is smaller than time-averaged error for all 40th trial experiments of the nonlinear
group (cf. Fig. 4).

There are some practical limitations for using high-gain in feedback for manual command-
following tasks. Humans cannot use arbitrarily high gain due to physical limitations in speed
and range of motion. Moreover, a human’s ability to use high gain in feedback is limited by
their feedback time delay, which can cause closed-loop instability if the gain in feedback is
too large.

Another possible control strategy is feedforward inversion. Let p =3, fi(rx) = 0.57,
fz(rk) = —0.21']%, f3(rk) = O.lr,?, and fo,j = G_l for all ] (S} {1, 2, 3} If in addition Gfb = 0,
then the closed-loop response is é = [ — G~'G]# = 0, which implies that the command-
following error is zero. Similar performance results can also be obtained by approximate feed-

9
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forward inversion, where the feedforward controllers are approximations of G~'. Fig. 6 shows
the resulting closed-loop output y; and error e; for the case that for all j € (1,2, 3}, Gg,;
is the matched z-transform mapping of 22 G~'(s)/(s + 22), which is a proper approximation
of G™'. We note that the approximate feedforward inversion controller yields a better per-
formance than the median-performer’s 40th-trial results shown in Fig. 3. The time-averaged
error corresponding to Fig. 6 is 0.09, which is smaller than time-averaged error for all 40th
trial experiments of the nonlinear group (cf. Fig. 4).

As with high gain in feedback, there may also be practical limitations with feedforward
inversion. In particular, a human’s ability to approximate the dynamic-system inverse may be
limited by various features, such as relative degree, time delays, and nonminimum-phase zeros
[55]. Nonlinearities may also inhibit accurate approximation of the dynamic-system inverse.

There are many other control strategies of the form (6) that yield good command-following
performance. Another possible strategy is a combination of high gain in feedback and feedfor-
ward inversion. For example, humans may use high-gain feedback at lower frequencies, where
they have more control authority and the effects of feedback time delay are less pronounced;
and then at higher frequencies, humans may utilize their predictive capabilities to implement
feedforward inversion to mitigate the effects of reduced control authority and increased phase
lag due to time delay.

5. Results and discussion

The SSID method described in Section 3 is applied to the experimental data of the linear
and nonlinear groups. For each subject and each trial, we identify a feedback transfer func-
tion Gy, feedback delay d, and feedforward transfer functions Gy i, ..., G p. The candidate
pool I' contains approximately 50 million candidate pairs (d, Gg,) and captures a wide range
control behavior over the 0-to-0.5 Hz frequency range of the command (1). The candidate
feedback transfer functions Gy, are second order relative degree one with monic denomina-
tor (i.e., np, = 1, and dp = 2). More specific details on the candidate pool are provided in
Appendix B. The feedforward transfer functions Gy 1, ..., Gy, are each Sth-order FIR, and
forief{l,...,5}, fi(n) = r,i. The SSID algorithm is implemented using parallel computa-
tion on a supercomputer. A validation analysis of the identification results is presented in
Appendix D.

We first present identification results of the feedback pair (d, Gg,). For each identified
feedback transfer function, we define

Gl £ max |G (™),
wel0,7]

which is the peak magnitude of the feedback transfer function over the 0-to-0.5 Hz range of
the command r. For each trial, we compute the average |G| and average time delay d of
all 11 subjects in each group. Figs. 7 and 8 show the trial-by-trial averages for the linear and
nonlinear groups. The subjects in the nonlinear group consistently use a lower feedback gain
and a larger time delay than the subjects in the linear group. The larger time delay suggests
that the nonlinear-group subjects are more hesitant to react to command-following errors than
the linear-group subjects. The larger time delay for the nonlinear subjects limits the amount
of gain they can use in feedback to maintain a stable closed-loop response. In contrast, the
linear-group subjects have a smaller time delay and are thus able to use larger feedback gain.

Next, identification results are presented for the feedforward controllers. For all k €
{1, ..., N}, define the identified feedforward control signal us x £ 5:1 Nir i (q) fi(ri). We

10
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Fig. 7. The feedback controller’s peak magnitude for the nonlinear group is smaller than that of the linear group over
all 40 trials. The symbols o and x indicate the mean of the 11 subjects for linear and nonlinear group respectively
and the vertical lines show one standard deviation above and below the mean.
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Fig. 8. Subjects in the nonlinear group have more feedback delay over the 40 trials compared to subjects in the
linear group. The symbols o and x indicate the mean of the 11 subjects for linear and nonlinear group respectively
and the vertical lines show one standard deviation above and below the mean.
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Fig. 9. The time-averaged difference between u ; and uj; , for the linear and nonlinear group decreases over 40
trials. The symbols o and x indicate the mean of the 11 subjects for linear and nonlinear group respectively and the
vertical lines show one standard deviation above and below the mean.

compare ug; with the feedforward-inversion control signal ug ., which is the zero-initial-

condition solution of ug £ G7'(q)h~' (). For each identified feedback controller, the av-
erage difference between ug ; and u;‘f ¢ 1s defined as

NS

1
ug — uy| = N Z |uage o — u;‘f’k|.
S k=1

A smaller ||Mff — uj; || indicates that the feedforward controller more closely approximates
feedforward inversion. Fig. 9 shows the average |ug — uj;| of the 11 subjects in the linear
and nonlinear groups for each trial. For both groups, the average of ||uff — Uy H decreases over
the 40 trials. The linear group’s feedforward control is on average a better approximation of
feedforward inversion than the nonlinear group. This difference may account for some of
the difference in performance between the two groups (see Fig. 4). Specifically, the dynamic
system’s static output nonlinearity may make it more difficult for the subjects to accurately
invert the dynamics in feedforward, thus yielding decreased performance.

The results in Fig. 9 suggest that both groups of subjects learn to approximate the
dynamic system’s inverse in feedforward. To distinguish between the learning of G~!
and h~! for the nonlinear group, we use each subject’s identified controller to derive a
Hammerstein-model approximation of their feedforward controller. Specifically, we compute
a pair (f, Gg) where f:R — R is an input nonlinearity, Gy is a FIR transfer function,
and Gg(q)f(rr) is the Hammerstein-model approximation. Note that the identified feedfor-
ward control Z§=1 Gir,j(q) fj(rr) is a Hammerstein model if for all j € {1,..., p}, there
exists scalar ¢; such that Gg ; = ¢;Gr. The Hammerstein model structure is more restric-
tive feedforward control model than that of Fig. 5. However, when the feedforward controller

12
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approximates feedforward inversion, then a Hammerstein model pair (f, Gg) can approximate
this behavior and provide a direct comparison with the components of the exact feedfoward
inversion pair (h~',G™h.

Replacing the feedforward controller in (8) with the Hammerstein model (f, Gg) yields

D(2)Dpp (2)27™5(2) = N(2)Np (2)2"é(2) + N (2) D (2)2 G (2)3(2), (&)
where §(z) is the z-transform of f(ry). Let f be defined by f(r;) £ ?:1 a;fj(ry), where
ai, ..., o, € R are unknown coefficients. We assume that the linear behavior of the identified

feedforward controller is primarily captured by its linear component Gt 1(q) f1(rx), and we let
Gg = O%fo-l- Thus, the Hammerstein model can be expressed as G (q) f (rx) = Gr.1(q) f (1),
where

fr) 2 A+ A0 - fLla,

and @ £ [%2 ... ZE]T. We use (9) along with the identified control components d, Gy, and

Gy to find a best-fit @ For all k € {1 — £g, ..., Ny — £4), define

my 2 N(@)Dp (N1 (@[ () -+ fp(ro],
ne £ D(Q)D(q)q" " v — N(Q)N (q)q"ex — N(q) D (qQ)Ngr,1(Q)q” f1 (i),

where d, Np, Dgp, and Ny are identified parameters. For all k =1, ..., Ny, let oy L (k-
1) /30 rad/s, which are Ny = 31 evenly-spaced frequencies over the 0-0.5 Hz range. Let
mgs (wr) and ngg (wy) denote the discrete Fourier transforms of the sequences {mk_gd}k’\’;1 and
{nk—e, }2’;1. We seek « that minimizes the cost function

Tu(@) = Z Imag (wr)@ — nag (wp) 1.

wr€lwr,on]

The cost Jy is convex in the elements of «. The method of least squares is used to determine
the best-fit @ that minimizes Jg.

The Hammerstein-model pair is (o f , Gg1/0t1), where o is unknown. Note that for any
nonzero o, ailef,l(q)al f (rr) = Ggr.1(q) f (rx). Thus, «; is an arbitrary with regards to the
input-output response. To compare (f, Gg) with (h~!, G™!), we let

L VI el
Y, Ziv;l |];(Vk)|2

which enforces the condition that {f (rk)}kN“=1 and {h‘l(rk)}iv“=1 have the same ¢, norm.

For each subject and each trial, we identify a best-fit Hammerstein model pair (f, Gg).
The following discussion compares the subjects’ identified feedforward components f and
Gy with the ideal feedforward inversion components 4~! and G~!.

First, we compare f with A~!. Fig. 10 shows the average f for all subjects on the first
and last trials of the linear and nonlinear groups. For both groups, the average f is a better
approximation of 2~! on the last trial than on the first trial. The nonlinear group has a more
significant change in f from the first to the last trial. To further compare f with A~!, define

10)

(241

e LS £ = h 7 )
ey == =1
Hf H 2 kZI: |h*1(rk)|

13
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Trial 1 Trial 40 Trial 1 Trial 40

---hY(2) - --h7!(x)

-2 0 2 -2 0 2

(a) Linear group (b) Nonlinear group

Fig. 10. The average basis function f is a better approximation of 2 on the last trial than the first trial. The shaded
region shows one standard deviation above and below the mean.

Linear Group Nonlinear Group

0.1 I %%ﬁ %
Wiotay

Trial Trial

Fig. 11. Mean and standard deviation of || f—nt H on each trial. The difference between f and #~! for the nonlinear
group has a more significant decreases over the 40 trials. The symbols o and x indicate the mean of 11 subjects for
the linear and nonlinear group respectively and the vertical lines show one standard deviation above and below the
mean.

which is a measure of the difference between f and h~!. Fig. 11 shows the mean and
standard deviation of “ f—nh! || on each trial of the linear and nonlinear group. The average
of |f —h~"| is smaller for the linear group than the nonlinear group on all trials. For both
groups, the average of || f —h’1|| is smaller on the last trial compared to the first trial.
However, the nonlinear group exhibits a more significant decreasing trend over the 40 trials.
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Frequency (Hz)

(a) Linear group (b) Nonlinear group

Fig. 12. The average feedforward transfer function Gg approximates G after 40 trials. The shaded region shows one

standard deviation above and below the average identified feedforward transfer function.

Linear Group Nonlinear Group

T T T T T T T T T T

1GeG — 1]

0 L L L L L L L L L
20 30 40 1 10 20 30 40

Trial Trial

Fig. 13. Mean and standard deviation of ||GgG — 1|| on each trial. For both groups, the difference between Gg and
G~ decreases over the 40 trials. The symbols o and x indicate the mean of the 11 subjects for linear and nonlinear
group respectively and the vertical lines show one standard deviation above and below the mean.

These results suggest that the nonlinear subjects learn to approximate A~' in feedforward,
whereas there is less learning for the linear group. We also note that the average of || f—hn! “
for the nonlinear group continues to decrease over the last 10 trials, suggesting that the subjects
may continue to improve their approximation of A~ if given more trials.

Next, we compare Gy with G~!. Fig. 12 shows the average Bode plot over the frequency
range of 0-to-0.5 Hz of the identified Gy for all 11 subjects on the first and last trials of the
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linear and nonlinear group. For both groups, the average feedforward transfer function more
closely approximates G~! on the last trial compared to the first trial. To further compare Gy
with G~!, define

1 b s
1GoG =112~ [ [Gr(@)G(e™) = 1]do,
0

which is a frequency-domain measure of the difference between Gy and G~'. Fig. 13 shows
the mean and standard deviation of |GG — 1| for each trial of the linear and nonlinear
group. We note that the trends for the linear group are comparable to those in [44], which
applies a frequency-domain SSID method to the same experimental data.

The average of |GG — 1]| for the two groups have a similar trend over the 40 trials. Over
the first 10 trials, there is a decreasing trend for both groups; and over the last 10 trials, the
trend is relatively flat for both groups. The linear group achieves a better approximation of
G~! than the nonlinear group. These results suggest that the subjects of both groups learn to
approximate the inverse of G in feedforward over the 40 trials.

6. Summary and conclusions

This paper presents new results on the impact of nonlinearities on HITL control behavior.
The experimental results indicate that static output nonlinearities can make a dynamic system
more difficult for humans to control. The average command-following performance of the
linear group is better on 77.5% of trials than the nonlinear group (see Fig. 4). To investigate
the control strategies of both groups, a nonlinear SSID algorithm is used to identify best-fit
feedback and feedforward controllers for each subject and on each trial. The SSID results
reveal several differences between the linear and nonlinear groups. The linear group tends
to use more feedback-control authority. Specifically, the linear group has a smaller feedback
time delay and uses a larger feedback gain than the nonlinear group (see Figs. 7 and 8).

The main finding of this paper addresses feedforward behavior. Prior HITL studies suggest
that adaptive feedforward inversion is a primary command-following control strategy for many
linear systems. The results in this paper provide supporting evidence that humans also adopt
this control strategy for some nonlinear systems. For both the linear and nonlinear groups,
the identified feedforward controllers approximate the dynamic system’s inverse better on
the last trial than on the first trial (see Figs. 10 and 12). However, the linear group achieves
better approximation of the dynamic system’s inverse (see Figs. 11 and 13). This difference in
approximating the inverse is a possible explanation for the difference in performance between
the two groups. Finally, the SSID results suggest that the nonlinear subjects learn the linear
part of the dynamic system more quickly than they learn the static output nonlinearity. Over
the latter half of the trials, the nonlinear subjects’ feedforward transfer function does not
change significantly (see Fig. 13), whereas they continue to learn the output nonlinearity (see
Fig. 11). Given more trials, the nonlinear subjects may continue to learn a better approximation
of the dynamic system’s inverse and perform as well as the linear subjects.

The results from this study provide some insight into human-control strategies for non-
linear systems. However, many open questions remain. Further investigation is needed into
whether these results extend to dynamic systems with more complex transfer functions (e.g.,
higher order, higher relative degree, nonminimum phase, etc.) and more complex output non-
linearities. The control strategies that humans use for systems with dynamic nonlinearities is
also a significant open question.
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Appendix A. SSID Algorithm

To formulate the SSID algorithm in terms of coefficients of the feedback and feedforward
controllers, define the candidate polynomials

Ni(q,0) £ 1q"™ q™ " o 1 044,10,
D(q, 0) = q™ + [01x (ngy+1) g1 oo 18,
Niej@ ¢) £1q" ¢ - 11,

where € R +tdntl contains the numerator and denominator coefficients of feedback trans-
fer function, and ¢; € R™*! contains the numerator coefficients of the feedforward transfer
function. Next, consider the cost function

| Nt
J(5.6,¢) = J(6. Np(q.0). Din(q.0), Nir.j(q. ¢;)) = 5 Z la (8, 0)¢ — bi(8, ),

k=1—{;

where the positive integer § is the feedback delay, s =8 +ng +dy +dp, ¢ =
[pf - (/{);]T e RPOs+D “and for all k € {1 — &5, ..., Ny — £},

ar(8,0) £ N(@Dw(q, )G [q" g™ - 1@[filre) -+ fr(r)] € RP>POa+D,
bi(8,0) £ D(qQ) D (q, 0)q* v — N(@Np(q, 0)q"ex € R

where ® denotes the Kronecker product.

Next, let 7, £ {1,...,N.}, where N, is a positive integer. For all i € Z., define distinct
candidate feedback pairs (8, 6;). Let I' be a set with N, elements where y; £ [5; 6] |T €
R tdn+2 are its elements. We call T the candidate pool. For each y; € T', define the quadratic

cost function

A 1 2
Ji(¢) = §||A1¢ — bill3,

where
A Elal_y, (8,60 ay_y (8i.6) -+ ay_, (8;,6)]" € RMWPor+h
bi 2 [bi1_g, (8, 6) bag, (51.6) -+ by, (8,601 € RY.

For all i € Z., J; is quadratic with respect to the unknown feedforward parameters ¢. If the
number of samples N is sufficiently large, then it can be shown that ATA; is positive definite.
For each i € Z., define

S (A,TAi) ~'ATb,,

which is the unique global minimizer of 7.

Let k € Z, be the smallest integer such that 7, = min;ez, J;. The identified feedback time
delay is d £ §,; the numerator and denominator polynomials of the identified feedback trans-
fer function are Nip(z) = Npp (2, 6,) and Dy, (2) 2 Dy (2, 6,); and the identified feedforward
transfer functions are Gy, ;(2) £ 77 Ny, (@ @)
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Appendix B. Candidate Pool

The candidate pool T" is a set that contains approximately 50 million elements and is
designed to capture a wide range of possible human control behavior over the 0-to-0.5 Hz
frequency range. Candidate feedback transfer functions are second-order IIR with monic de-
nominator and relative degree one, that is, ng, = 1, and dp, = 2. For each y € I, the following
conditions hold:

Cl1) If & € C is a root of the candidate polynomial A, then |A| < 1.
C2) If A € C is a root of the candidate polynomial Dy, then |A| < 1.

Nip(e
C3) maxeqo.n [ 32672 < 30.5.

C4) 5 € {4,5,6,...,25).

Conditions C1 and C2 indicate that the parameters of candidate feedback controller are
designed such that the zero and poles of Gy, lie inside the unit circle. Thus, the candidate
pool assumes that the feedback control behavior of the subjects is stable. Condition C3 states
that the peak magnitude of the feedback controller over the frequency range [0, 7] rad/s is no
more than 30.5 (or approximately 30 dB). Thus, C3 imposes an upper limit on the magnitude
of the feedback controller. The 30 dB upper limit is based on a separate experiment with
10 subjects, where each subject was asked to follow a single-frequency sinusoid using only
error feedback (i.e., feedforward of the reference signal was not available). In this experiment,
the peak magnitude of the feedback controller used by the subjects is approximately 30dB,
suggesting that 30dB is the peak gain that a human can use in feedback. Condition C4
implies that the human’s sensory feedback time delay is in the range of 80 ms to 500 ms.
This is consistent with [7,62-64]. Since the sampling rate in this experiment for both groups
is 20 ms, we assume that § € {4,5,---,25}.

Appendix C. Numerical examples

We present two numerical examples using the SSID technique described in Section 3 and
Appendix A. For both examples, the plant components are G(z) = 1/(z +0.2) and A~ ! (x) =
x — 0.4x% + 0.2x>. We numerically simulate the closed-loop system shown in Fig. 5 for a
given feedback system (d, Gp,) and feedforward system (f, Gg) where all initial conditions
are zero. The numerical simulations yield data signals r; and v, which are used to compute
best-fit models (d*, G{) and (f*, Gff).

Example 1. Consider d =8, Gg(z) =0.43/(z—0.31), Gg(z) = Bz—6)/z and o =
[—0.50.1 0 0]T. Let ny = 1 and define the candidate pools

INE RS R3: eiy,ey € {—1+ 0.25t}§:0,
e3y € {4+ 1)),

N2y eR? ey, ey € {(—1+0.1257}1° |
ey € {4+ 1),

D32y e R :eyy, ery € {—140.06257)3%,

ey € (44 1L).
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where ¢ 21 0 0], e22[0 1 0], and e32[0 0 1]. The candidate pools define
candidate pairs (d, Gg,). All 3 candidate pools have the same boundaries, but I'; has more
elements than I'>, and I'; has more elements than I'y. Note Gg, is not a member of the
candidate pool, and thus the identification cannot yield the exact controller components. This
example demonstrates how increasing the density of the candidate pool yields more accurate
identifications.

For each of the 3 candidate pools, the SSID algorithm in Section 4 is used to obtain d™,
Gy, G, and o

For T'y, the SSID yields d™ = 8, G, = 0.5/(z — 0.25), Gff = (3.62z — 6.73)/z, and o™ =
[—0.49527 0.09407 0.00195 0.00016]".

For 'y, the SSID yields d* =8, G& = 0.375/(z — 0.375), G& = (2.78z — 5.71)/z, and
at =[-0.50342 0.10411 —0.00102 — 0.00023]7.

For I'3, the SSID yields d* = 8, G;’b = 0.4375/(z — 0.3125), G;‘; = (3.25z — 6.28)/z, and
at =[—0.49891 0.09855 0.00065 — 0.00002]T.

Example 2. Consider the same parameters of the previous example, except G (z) = 2/(5z +
2) and ng = 2. Thus, Gy is IR, and we approximate Gg by a second-order FIR.

For Ty, the SSID yields d* = 8, Gi; = 0.5/(z — 0.25), G = (0.30z> — 0.20z + 0.16) /2,
and ot = [—0.54127, 0.10708, —0.00066, 0.00026]".

For I', the SSID yields d™ =8, Gj =0.375/(z—0.375), G} = (—0.267> + 0.897 —
0.33)/z%, and ot = [—0.48117, 0.09672, 0.00056, —0.00016]".

For T3, the SSID yields d* =8, G =0.4375/(z—0.3125), G} = (0.04z> +0.31z7 —
0.07)/7%, and ot = [—0.51228, 0.10208, —0.00003, 0.00005]".
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S TN R (PP
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=
g 0.6 === e e e e e m e - - - -
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= G, Gy
= - — =G} with I 025} = = =Gy with Iy
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Fig. C.1. The Bode plots of the identified transfer functions G:{) and G§ for the densest candidate pool I'3 results
in the best estimates of G, and Gyy.
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Fig. C.1 shows the Bode plots of the identified transfer functions for each of the 3 candidate
pools. The Bode plots of G% and G;; are closest to Gy, and Gy for the candidate pool I's,
which is denser than I'y and I',.

Appendix D. Validation of SSID Results

To validate the SSID results, for each trial we use the identified control pairs (d ¥, G:{)) and
(ft, G;; ) to simulate the closed-loop system, where the input to the simulation is {rk}st:l,
the output of the simulation is the validation data {y,':}gs:l, and all initial conditions are
zero. We then use the experimental data {yk}iv;1 and validation data {y,j}f{v;l to calculate the
variance accounted for (VAF) for each trial. VAF is a measure of the accuracy of the identified
controllers and is given by

e e =37

S el

Fig. D.1 shows the mean and standard deviation of VAF for each trial. For both groups,
the mean VAF increases and the standard deviation decreases over the 40 trials. The increase
in the VAF suggests that the identified models obtained for the later trials are a more accurate
representation of the data than the models obtained for the earlier trials. This means that as
the subjects learn, their control behavior can be better modeled by the control structure used
in this paper.

VAF£ 1 —

Linear Group Nonlinear Group

1 L+ T 4 L

] |

VAF

0.6 1 1r ]

0'5 1 1 1 L L L 1 1 1
1 10 20 30 40 1 10 20 30 40

Trial Trial

Fig. D.1. Mean and standard deviation of VAF on each trial. For both experiments, the mean VAF increases over the
40 trials. The symbols o and x indicate the mean of the 11 subjects for linear and nonlinear experiments respectively
and the vertical lines show one standard deviation above and below the mean.
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