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Abstract 

The results of a human-in-the-loop experiment are used to investigate the control strategies that 
humans use to interact with nonlinear dynamic systems. Two groups of human subjects interact with a 
dynamic system and perform a command-following task. The first group interacts with a linear time- 
invariant (LTI) dynamic system. The second group interacts with a Wiener system, which consists 
of the same LTI dynamics cascaded with a static output nonlinearity. Both groups exhibit improved 
performance over the trials, but the average of the linear group’s performance is better on more than 
three-fourths of the trials. A new nonlinear subsystem identification algorithm is presented and used 
to identify the feedback and feedforward control strategies used by the subjects in both groups. The 
identification results for the linear group agree with prior studies suggesting that adaptive feedforward 
inversion is a primary control strategy used by humans for command-following tasks. The main results 
of this paper address an open question of whether a similar control strategy is used for nonlinear 
systems. The identification results for the nonlinear group suggest that those subjects also use adaptive 
feedforward inversion. However, the static output nonlinearity inhibits the human’s ability to approximate 
the inverse. 
© 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Humans are often the least-understood component of a human-in-the-loop (HITL) system.
here are many engineering principles and analysis techniques that can be used to predict
nd design the behavior of dynamic systems, such as aircraft, construction machinery, haptic
evices, and telerobotic systems. Predicting how humans will interact with those systems is
ore challenging. An improved understanding of human control strategies is likely to yield
ignificant advancements in HITL technologies. 
Many HITL systems can be modeled using the control architecture shown in Fig. 1 . The

uman interacts with a dynamic system through the control input u, which is generated
ased on available feedback y and a command signal r. The human’s goal is to interact with
he dynamic system in a manner that makes the magnitude of the command-following error
 = r − y small. 
A human’s control response is complex and depends on the properties of the dynamic

ystem and command, as well as many other factors, such as experience, effort, and ability.
lthough no model captures all aspects of human-control behavior, it is often possible to
dentify control strategies that approximate typical human behavior over a limited period of
ime [1–3] . Such models can be used to predict closed-loop behavior of HITL systems. 
The review paper [4] provides an account of research on modeling human-control behavior.
uch of the early human-control literature is based on studies of compensatory behavior,
here the human only has access to the error e for feedback instead of both r and y [5–7] .
he well-known crossover model and precision model provide fundamental principles that can
e used to predict human compensatory behavior [8–10] . Alternatively, as discussed in [4] ,
here is significantly less work on HITL models for command-following. 
It has long been suggested that humans may rely on models for control. The internal model

ypothesis of neuroscience suggests that the brain constructs models (i.e., internal models)
f the dynamic systems with which it interacts, and uses those models to generate control
ignals [11–17] . Forward and inverse internal models have been proposed [18–28] . Support
or the internal model includes evidence of predictive behavior and qualitative comparisons
ith models [29–40] . 
More direct evidence of model-based control strategies by humans is provided in [41] ,
hich analyzes command-following interactions with linear time invariant (LTI) dynamic sys-
Fig. 1. A control architecture for HITL systems. 

2 



S. Koushkbaghi, J.B. Hoagg and T.M. Seigler Journal of the Franklin Institute xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FI [m1+; February 20, 2021;4:13 ] 

t  

c  

h  

h  

t  

[  

w  

o  

G  

t
 

R  

w  

r  

f  

m  

i  

f  

b  

t
 

c  

a  

d  

s  

L  

b  

d  

t
 

t  

f  

i  

t  

p  

n  

d  

t

2

 

v  

w  

j  

d  

t  
ems. In those studies, the human control response is modeled by the feedback-feedforward
ontrol architecture shown in Fig. 1 . The feedback control is based on e and models the
uman’s reactive control response; the feedforward control is based only on r and models the
uman’s anticipatory control response. Subsystem identification (SSID) techniques are used
o determine best-fit linear models of the feedback and feedforward models. The results in
41] suggest that a primary command-following strategy used by humans is adaptive feedfor-
ard inversion . Specifically, if the LTI system is represented by the transfer function G, then
ver repeated interactions the human updates its feedforward controller until it approximates
 
−1 . SSID results suggest that feedforward inversion is used for many LTI systems, provided
hat the command is predictable or a preview of the command is available [42,43] . 
The extent to which humans use adaptive feedforward inversion for control is unknown.

ecent results suggest that for some nonminimum-phase LTI systems, the human’s feedfor-
ard controller does not converge to an approximation of the dynamic system’s inverse, but
ather a different type of model-based control strategy is used [44] . Thus, it is unclear whether
eedforward plant inversion is a primary human-control strategy, even for LTI systems. Hu-
an interactions with nonlinear dynamic systems is also an open question. Some studies have
nvestigated HITL interactions with static nonlinear systems and provide some evidence for
eedforward inversion [45–51] . However, they do not explicitly identify the controllers used
y the human subjects. Moreover, the nonlinear systems used in [45–51] are only static, and
hus human control strategies for nonlinear systems having dynamics remains unclear. 
The main motivation of this paper is an improved understanding of the command-following

ontrol strategies that humans use to interact with nonlinear systems. We present results and
nalysis of an experiment in which two groups of human subjects interact with two different
ynamic systems to perform a command-following task. The first group interacts with a LTI
ystem, and the second group interacts with a Wiener system, which consists of the same
TI dynamics cascaded with a static output nonlinearity. Each subject’s command-following
ehavior is modeled by a discrete-time control architecture consisting of a feedback time
elay, a linear feedback controller, and a nonlinear feedforward controller. We compare the
ime-domain performance and control behavior of these two groups. 
This paper provides several new contributions. First, the experimental results suggest that

he presence of static output nonlinearities tends to make dynamic systems more difficult
or humans to control. Second, we present a new discrete-time nonlinear SSID technique to
dentify control models that approximate the subjects’ command-following behavior. In con-
rast to existing frequency-domain SSID techniques used in [41,52–55] , the SSID technique
resented in this paper is performed in the time domain and can accommodate static-input
onlinearities in the feedforward controller. Finally, the identification results are used to ad-
ress open questions on the impact of dynamic-system nonlinearities on the control strategies
hat humans use in command-following tasks. 

. Experimental methods and performance data 

Twenty-two people voluntarily participated in this study, which was approved by the Uni-
ersity of Kentucky’s Institutional Review Board under IRB protocol 44649. The subjects
ere 18 to 35 years old and had no known neurological disorders. Subjects use a rotational
oystick (Teledyne Gurley model 8225-6000-DQSD) to control the motion of an object that is
isplayed on a computer screen. A trial is a 60-s time period during which a subject operates
he joystick, and a session consists of 10 consecutive trials completed within a period of
3 
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Fig. 2. Subjects use a rotational joystick to control the position y of the bottom marker displayed on the computer 
screen. The subjects’ objective is to make y follow the command r, whose position is displayed on the computer 
screen by the top marker. The joystick’s angular position u is the control input of an unknown dynamic system, 
which is simulated by a computer, and the dynamic system’s output is y. 
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0 min. Subjects completed 4 sessions over a 7-day period, but no more than one session in
 12-hour period. 
The experimental setup is shown in Fig. 2 . The computer monitor displays two thin rectan-

ular markers, one above the other. The top rectangular marker is called the reference object
nd its horizontal position is denoted r. The bottom rectangular marker is called the control
bject and its horizontal position is denoted y. The reference object follows a predetermined
ath, which is the same for all subjects and all trials. Alternatively, the control object’s po-
ition is dependent on the joystick’s angular position, which is denoted by u. The subjects
re provided no information about how the joystick affects the motion of the control object.
ubjects are instructed to use the joystick to make the control object mimic the motion of
he reference object. More specifically, their objective is to generate a control u that makes
he magnitude of the command-following error e � r − y as small as possible. 
The reference object’s position for all t ∈ [0, 60] is 

(t ) � 2 sin 
πt 2 

120 
, (1)

hich is a 60-second chirp signal with frequency content between 0 and 0.5 Hz. For all
 ∈ [0, 60] , the relationship between the subject’s control u and the controlled object’s position
satisfies the differential equation 

˙  (t ) = Ax(t ) + Bu(t ) , (2)

(t ) = Cx(t ) , (3)

(t ) = h(v(t )) , (4)

here x(t ) ∈ R 
n is the state, x(0) = 0 is the initial condition, v(t ) ∈ R is the output of the

inear dynamics (which is not accessible to the subjects), y(t ) ∈ R is the output, A ∈ R 
n×n ,

 ∈ R 
n×1 , C ∈ R 

1 ×n , and h : R → R is a continuous and one-to-one function. It follows from
qs. (2) and (3) that the transfer function from u to v is G(s) � C(sI − A ) −1 B. The units of r
nd y are hash marks (hm), which are equally-spaced vertical lines displayed on the computer
creen. The distance between hash marks is 2.5 cm, and the range of motion displayed on
he computer screen is ±8 hm. 
4 
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Fig. 3. The reference r k , output y k , and error e k for the median subject’s 1st and 40th trial. 
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The 22 subjects were randomly divided into two groups of 11 subjects. Both groups
nteracted with the dynamic system (2) –(4) , where A, B, and C are the same for both groups.
owever, h is different for the two groups. The function h is used to explore the effects of
onlinearity on performance and control strategy. For both groups, the transfer function from
to v is 

(s) = 

2s + 4. 4 

s 2 + 3 . 6 s + 4 
, 

hich has a zero at −2. 2 and a pair of complex-conjugate poles at −1 . 8 ± j0. 872. For the
rst group, h(v) is the identity function (i.e., h(v) = v), in which case the system (2) –(4) is
TI. We refer to the first group as the linear group . For the second group, h(v) is the unique
eal root of the polynomial 0. 1 s 3 − 0. 2s 2 + 0. 5 s − v. Note that since y = h(v) , it follows
hat 

 

−1 (y) = 0. 5 y − 0. 2y 2 + 0. 1 y 3 , 

hich is a cubic nonlinearity. We refer to the second group as the nonlinear group . 
For all trials, the experimental time signals r, y, and u are recorded with sample time

 s = 0. 02 s and N s = 3001 samples. The sampled data yield the discrete signals { r k } N s k=1 ,

 y k } N s k=1 , and { u k } N s k=1 . The sampled command-following error is e k � r k − y k , and the time-
veraged error is 

| e || � 

1 

N s 

N s ∑ 

k=1 

| e k | . 

 divergent trial is a trial in which the magnitude of y k exceeds 8 hm, that is, the controlled
bject’s position exceeds the range of motion displayed on the computer screen. There was
nly one divergent trial in this study, and it is omitted from the results. 
Fig. 3 shows r k , y k , and e k on the first and last trial for the median performer in the linear

nd nonlinear groups. The median performer of each group is the subject whose || e || on the
ast trial is the median (i.e., 6th best) of all subjects in their group. The median subject for
oth groups performs better on the last trial than the first trial. All subjects in both groups
5 
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Fig. 4. The performance of both linear and nonlinear groups improves over 40 trials. The symbols ◦ and × indicate 
the mean of the 11 subjects for linear and nonlinear group respectively and the vertical lines show one standard 
deviation above and below the mean. 
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xhibit improved performance from their first to last trial. Similar results are observed for all
ther subjects. 
Fig. 4 shows the mean and standard deviation of || e || on each trial. For both the linear

nd nonlinear group, the mean and standard deviation tend to decrease over the trials. The
verage || e || of the linear group is smaller than the average || e || of the nonlinear group on
7.5% of the trials. This suggests that the nonlinear system is more difficult to control than
he linear system. However, the linear group exhibits a larger variance in performance on all
rials. We note that the variance of the nonlinear group is small compared with the results of
everal similar experiments [41,44,55] . The reason for this small variance is unclear, but it
ay be a small-sample effect or possibly caused by some feature of the nonlinearity. 

. Modeling human control behavior 

We model each subject’s control strategy by the discrete-time control architecture shown
n Fig. 5 . The dynamic system consists of the pair (G, h) , where G (z) is the discrete-time
ransfer function that is obtained by discretizing G(s) using a zero-order hold on the input
ith sample time T s . The human controller consists of a feedback transfer function G fb (z) ; a
eedback delay d, which is a nonnegative integer (the feedback time delay in seconds is dT s );
eedforward transfer functions G ff , 1 (z) , . . . , G ff ,p (z) ; and basis functions f 1 , . . . , f p : R → R .
The feedback delay d models physiological limitations associated with visual processing

nd neuromuscular response. The feedback transfer function G fb models the subjects’ reactive
ontrol response, which is based on the observed command-following error e k . The feed-
orward transfer functions G ff , 1 , . . . , G ff ,p and basis functions f 1 , . . . , f p model the subjects’
nticipatory control response, which is based solely on the command r k . The basis functions
6 



S. Koushkbaghi, J.B. Hoagg and T.M. Seigler Journal of the Franklin Institute xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FI [m1+; February 20, 2021;4:13 ] 

Fig. 5. A time-invariant system, where the input r k , the output y k , and the signals v k and u k are accessible, but all 
internal signals are inaccessible. 
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f 1 , . . . , f p allow for static-input nonlinearities in the feedforward controller. Feedforward de-
ay is not included in the control model because the chirp command (1) is predictable and the
ame for all trials. Physiological interpretations of feedback and feedforward control processes
re given in [25] . 
The SSID problem is to estimate the feedback pair (d, G fb ) and feedforward transfer func-

ions (G ff , 1 , . . . , G ff ,p ) from knowledge of G and h, basis functions f 1 , . . . , f p , and discrete-
ime signals r k and v k . We note that SSID techniques for modeling HITL systems with LTI
ystems are given in [54,56–59] . Those techniques are not applicable to the feedback struc-
ure of Fig. 5 , because of the dynamic-system and controller nonlinearities. To address the
onlinear aspects of this SSID problem, we introduce a new approach that uses concepts
rom [54] and [60] . Specifically, [60] uses a feedforward architecture similar to Fig. 5 for
ammerstein-model identification, and [54] introduces a convexification approach that in-
olves gridding on the parameters of the feedback pair (d, G fb ) . 
The following assumptions and notation are used for the rest of this section. Unless other-
ise specified, all references to the subscript j are for all j ∈ { 1 , . . . , p} . Let N and D be the
oprime polynomials of degree n y and d y satisfying G = N D 

−1 . The feedback transfer func-
ion G fb has the factorization G fb = N fb D 

−1 
fb , where N fb and D fb are polynomials of degree n fb

nd d fb , where d fb ≥ n fb . The feedforward transfer function G ff , j is order n ff finite impulse
esponse (FIR), which implies that it can be expressed as G ff , j = z −n ff N ff , j , where N ff , j is
 polynomial of degree n ff . The FIR assumption does not significantly restrict the range of
eedforward behavior relative to an infinite impulse response (IIR) transfer function, since a
ufficiently large order FIR transfer function can be used to approximate an IIR transfer func-
ion to arbitrary accuracy. Next, the discrete signals r k and v k have N s samples and sampling
ime T s . Finally, the operator q denotes the forward shift operator (i.e., if x k is a sequence,
hen qx k = x k+1 ). 
7 
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Let ˆ v (z) and ˆ u (z) denote the z-transforms of v k and u k , and it follows that: 

ˆ  (z) = G (z) ̂  u (z) . (5)

he control based on the architecture of Fig. 5 is 

ˆ  (z) = G fb (z ) z 
−d ˆ e (z ) + 

p ∑ 

j=1 

G ff , j (z ) ̂  s j (z ) , (6)

here ˆ e (z) is the z-transform of e k = r k − h(v k ) , and ˆ s j (z) is the z-transforms of f j (r k ) .
ombining Eqs. (5) and (6) yields 

ˆ  (z) = G (z ) G fb (z ) z 
−d ˆ e (z ) + G (z ) 

p ∑ 

j=1 

G ff , j (z ) ̂  s j (z ) . (7)

ubstituting the polynomials N, D, N fb , D fb , and N ff , j into Eq. (7) and multiplying through
y DD fb z d+ n ff yields 

(z) D fb (z) z 
d+ n ff ˆ v (z) = N (z) N fb (z) z 

n ff ˆ e (z) + N (z) D fb (z) z 
d 

p ∑ 

j=1 

N ff , j (z) ̂  s j (z) . (8)

e seek feedback and feedforward parameters that make the left and right side of Eq. (8) ap-
roximately equal. Specifically, we seek N ff , 1 , . . . , N ff ,p , N fb , D fb , and d that minimize the
ost function 

 (d, N fb , D fb , N ff , 1 , . . . , N ff ,p ) � 

1 

2 

N s −� d ∑ 

k=1 −� d 

∣∣N (q) D fb (q)q 
d 

p ∑ 

j=1 

N ff , j (q) f j (r k ) 

+ N (q) N fb (q)q 
n ff e k − D(q) D fb (q)q 

d+ n ff v k 
∣∣2 , 

here � d � d + n ff + d y + d fb . To identify N ff , j , N fb , D fb , and d, we first generate a candidate
ool that contains N c possible models of the feedback pair (d, G fb ) . The cost J is convex
n the coefficients of N ff , j . For each feedback pair (d, G fb ) in the candidate pool, a convex
ptimization is solved to determine the best-fit N ff , j that minimizes J (N ff , j ) . This computation
enerates N c models of (d, N fb , D fb , N ff , j ) , from which we select the element that minimizes
 (d, N fb , D fb , N ff , j ) . A detailed description of the SSID algorithm is given in Appendix A .
roperties of this SSID algorithm can be derived using analyses similar to those given in
54] , which shows that if the data noise is sufficiently small and the feedback candidate pool
s sufficiently dense, then the identified control parameters are arbitrarily close to the true
arameters. Appendix C provides numerical examples that demonstrate the application and
ffectiveness of this SSID method. 

. Potential human control strategies 

We consider control strategies that are possible solutions of the SSID algorithm of Sec-
ion 3 . The focus of this section is on control strategies for the nonlinear group. For the rest
f this section, we assume that the pair (G, h) in Fig. 5 is that of the nonlinear group. For
he linear group, there is a wide range of linear-control strategies that can be used to achieve
losed-loop stability and good command-following performance. Some of these linear-control
trategies and their limitations for HITL applications are discussed in [41] . 
8 
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Fig. 6. Two different control strategies that make the magnitude of the error small for the nonlinear group: (a) High 
gain in feedback; (b) Approximate inverse dynamics in feedforward. 
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First, consider a pure feedback control strategy. For all j ∈ { 1 , . . . , p} , let G ff , j = 0. In
his case, the control architecture of Fig. 5 reduces to a Lur’e system. One possible control
trategy is high gain in feedback, which makes the Bode magnitude large at frequencies of
he command r k . High-gain in feedback yields good command-following performance for
TI systems, provided that the closed-loop is asymptotically stable. Closed-loop stability and
erformance for the nonlinear system (G, h) is more difficult to evaluate. Since the slope of
he magnitude of h is bounded, there are several classical nonlinear stability results that apply
61] . For example, the circle criterion implies that the closed-loop system is absolutely stable
f G fb G is asymptotically stable and its H ∞ norm is sufficiently small [61, Theorem 5.2] . 
Consider the feedback transfer function G fb = 6 . 67 z / (z 2 − 0. 07 z + 0. 8) . Let the feedback

elay be d = 5 , which corresponds to a feedback time delay of 100 ms. Fig. 6 shows the
esulting closed-loop output y k and error e k . The time-averaged error corresponding to Fig. 6 is
.24, which is smaller than time-averaged error for all 40th trial experiments of the nonlinear
roup (cf. Fig. 4 ). 
There are some practical limitations for using high-gain in feedback for manual command-

ollowing tasks. Humans cannot use arbitrarily high gain due to physical limitations in speed
nd range of motion. Moreover, a human’s ability to use high gain in feedback is limited by
heir feedback time delay, which can cause closed-loop instability if the gain in feedback is
oo large. 
Another possible control strategy is feedforward inversion. Let p = 3 , f 1 (r k ) = 0. 5 r k ,

f 2 (r k ) = −0. 2r 2 k , f 3 (r k ) = 0. 1 r 3 k , and G ff , j = G 
−1 for all j ∈ { 1 , 2, 3 } . If in addition G fb = 0,

hen the closed-loop response is ˆ e = [1 − G 
−1 G ] ̂  r = 0, which implies that the command-

ollowing error is zero. Similar performance results can also be obtained by approximate feed-
9 
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{  
orward inversion, where the feedforward controllers are approximations of G 
−1 . Fig. 6 shows

he resulting closed-loop output y k and error e k for the case that for all j ∈ { 1 , 2, 3 } , G ff , j

s the matched z-transform mapping of 22 G 
−1 (s) / (s + 22) , which is a proper approximation

f G 
−1 . We note that the approximate feedforward inversion controller yields a better per-

ormance than the median-performer’s 40th-trial results shown in Fig. 3 . The time-averaged
rror corresponding to Fig. 6 is 0.09, which is smaller than time-averaged error for all 40th
rial experiments of the nonlinear group (cf. Fig. 4 ). 
As with high gain in feedback, there may also be practical limitations with feedforward

nversion. In particular, a human’s ability to approximate the dynamic-system inverse may be
imited by various features, such as relative degree, time delays, and nonminimum-phase zeros
55] . Nonlinearities may also inhibit accurate approximation of the dynamic-system inverse. 
There are many other control strategies of the form (6) that yield good command-following

erformance. Another possible strategy is a combination of high gain in feedback and feedfor-
ard inversion. For example, humans may use high-gain feedback at lower frequencies, where
hey have more control authority and the effects of feedback time delay are less pronounced;
nd then at higher frequencies, humans may utilize their predictive capabilities to implement
eedforward inversion to mitigate the effects of reduced control authority and increased phase
ag due to time delay. 

. Results and discussion 

The SSID method described in Section 3 is applied to the experimental data of the linear
nd nonlinear groups. For each subject and each trial, we identify a feedback transfer func-
ion G fb , feedback delay d, and feedforward transfer functions G ff , 1 , . . . , G ff ,p . The candidate
ool � contains approximately 50 million candidate pairs (d, G fb ) and captures a wide range
ontrol behavior over the 0-to-0.5 Hz frequency range of the command (1) . The candidate
eedback transfer functions G fb are second order relative degree one with monic denomina-
or (i.e., n fb = 1 , and d fb = 2). More specific details on the candidate pool are provided in
ppendix B . The feedforward transfer functions G ff , 1 , . . . , G ff ,p are each 5th-order FIR, and
or i ∈ { 1 , . . . , 5 } , f i (r k ) = r i k . The SSID algorithm is implemented using parallel computa-
ion on a supercomputer. A validation analysis of the identification results is presented in
ppendix D . 
We first present identification results of the feedback pair (d, G fb ) . For each identified

eedback transfer function, we define 

 G fb ‖ � max 
ω∈ [0,π] 

∣∣G fb (e 
jωT s ) 

∣∣, 
hich is the peak magnitude of the feedback transfer function over the 0-to-0.5 Hz range of
he command r. For each trial, we compute the average ‖ G fb ‖ and average time delay d of
ll 11 subjects in each group. Figs. 7 and 8 show the trial-by-trial averages for the linear and
onlinear groups. The subjects in the nonlinear group consistently use a lower feedback gain
nd a larger time delay than the subjects in the linear group. The larger time delay suggests
hat the nonlinear-group subjects are more hesitant to react to command-following errors than
he linear-group subjects. The larger time delay for the nonlinear subjects limits the amount
f gain they can use in feedback to maintain a stable closed-loop response. In contrast, the
inear-group subjects have a smaller time delay and are thus able to use larger feedback gain.
Next, identification results are presented for the feedforward controllers. For all k ∈

 1 , . . . , N s } , define the identified feedforward control signal u ff ,k � 

∑ p 
j=1 N ff , j (q) f j (r k ) . We
10 
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Fig. 7. The feedback controller’s peak magnitude for the nonlinear group is smaller than that of the linear group over 
all 40 trials. The symbols ◦ and × indicate the mean of the 11 subjects for linear and nonlinear group respectively 
and the vertical lines show one standard deviation above and below the mean. 

Fig. 8. Subjects in the nonlinear group have more feedback delay over the 40 trials compared to subjects in the 
linear group. The symbols ◦ and × indicate the mean of the 11 subjects for linear and nonlinear group respectively 
and the vertical lines show one standard deviation above and below the mean. 

11 
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Fig. 9. The time-averaged difference between u ff ,k and u ∗ff ,k for the linear and nonlinear group decreases over 40 
trials. The symbols ◦ and × indicate the mean of the 11 subjects for linear and nonlinear group respectively and the 
vertical lines show one standard deviation above and below the mean. 
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ompare u ff ,k with the feedforward-inversion control signal u ∗ff ,k , which is the zero-initial-
ondition solution of u ∗ff ,k � G 

−1 (q) h −1 (r k ) . For each identified feedback controller, the av-
rage difference between u ff ,k and u ∗ff ,k is defined as 

u ff − u ∗ff 
∥∥ � 

1 

N s 

N s ∑ 

k=1 

∣∣u ff ,k − u ∗ff ,k 
∣∣. 

 smaller 
∥∥u ff − u ∗ff 

∥∥ indicates that the feedforward controller more closely approximates
eedforward inversion. Fig. 9 shows the average 

∥∥u ff − u ∗ff 
∥∥ of the 11 subjects in the linear

nd nonlinear groups for each trial. For both groups, the average of 
∥∥u ff − u ∗ff 

∥∥ decreases over
he 40 trials. The linear group’s feedforward control is on average a better approximation of
eedforward inversion than the nonlinear group. This difference may account for some of
he difference in performance between the two groups (see Fig. 4 ). Specifically, the dynamic
ystem’s static output nonlinearity may make it more difficult for the subjects to accurately
nvert the dynamics in feedforward, thus yielding decreased performance. 
The results in Fig. 9 suggest that both groups of subjects learn to approximate the

ynamic system’s inverse in feedforward. To distinguish between the learning of G 
−1

nd h −1 for the nonlinear group, we use each subject’s identified controller to derive a
ammerstein-model approximation of their feedforward controller. Specifically, we compute
 pair ( f , G ff ) where f : R → R is an input nonlinearity, G ff is a FIR transfer function,
nd G ff (q) f (r k ) is the Hammerstein-model approximation. Note that the identified feedfor-
ard control 

∑ p 
j=1 G ff , j (q) f j (r k ) is a Hammerstein model if for all j ∈ { 1 , . . . , p} , there

xists scalar c j such that G ff , j = c j G ff . The Hammerstein model structure is more restric-
ive feedforward control model than that of Fig. 5 . However, when the feedforward controller
12 
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∥∥
pproximates feedforward inversion, then a Hammerstein model pair ( f , G ff ) can approximate
his behavior and provide a direct comparison with the components of the exact feedfoward
nversion pair (h −1 , G 

−1 ) . 
Replacing the feedforward controller in (8) with the Hammerstein model ( f , G ff ) yields 

(z) D fb (z) z 
d+ n ff ˆ v (z) = N (z) N fb (z) z 

n ff ˆ e (z) + N (z) D fb (z) z 
d G ff (z) ̂  s (z) , (9)

here ˆ s (z) is the z-transform of f (r k ) . Let f be defined by f (r k ) � 

∑ p 
j=1 α j f j (r k ) , where

1 , . . . , αp ∈ R are unknown coefficients. We assume that the linear behavior of the identified
eedforward controller is primarily captured by its linear component G ff , 1 (q) f 1 (r k ) , and we let
 ff = 

1 
α1 
G ff , 1 . Thus, the Hammerstein model can be expressed as G ff (q) f (r k ) = G ff , 1 (q) ̄f (r k ) ,

here 

f̄ (r k ) � f 1 (r k ) + [ f 2 (r k ) · · · f p (r k )] ̄α, 

nd ᾱ � [ α2 
α1 

· · · αp 

α1 
] T . We use (9) along with the identified control components d, G fb , and

 ff , 1 to find a best-fit ᾱ. For all k ∈ { 1 − � d , . . . , N s − � d } , define 
 k � N (q) D fb (q) N ff , 1 (q)q 

d [ f 2 (r k ) · · · f p (r k )] , 

n k � D(q) D fb (q)q 
d+ n ff v k − N (q) N fb (q)q 

n ff e k − N (q) D fb (q) N ff , 1 (q)q 
d f 1 (r k ) , 

here d, N fb , D fb , and N ff , 1 are identified parameters. For all k = 1 , . . . , N f , let ω k � (k −
) π/ 30 rad/s, which are N f = 31 evenly-spaced frequencies over the 0-0.5 Hz range. Let
 dft (ω k ) and n dft (ω k ) denote the discrete Fourier transforms of the sequences { m k−� d } N s k=1 and

 n k−� d } N s k=1 . We seek ᾱ that minimizes the cost function 

 H ( ̄α) � 

∑ 

ω k ∈ [ ω 1 ,ω N f ] 
| m dft (ω k ) ̄α − n dft (ω k ) | 2 . 

he cost J H is convex in the elements of ᾱ. The method of least squares is used to determine
he best-fit ᾱ that minimizes J H . 
The Hammerstein-model pair is (α1 f̄ , G ff , 1 /α1 ) , where α1 is unknown. Note that for any

onzero α1 , 
1 
α1 
G ff , 1 (q) α1 f̄ (r k ) = G ff , 1 (q) ̄f (r k ) . Thus, α1 is an arbitrary with regards to the

nput-output response. To compare ( f , G ff ) with (h −1 , G 
−1 ) , we let 

1 � 

√ ∑ N s 
k=1 

∣∣h −1 (r k ) 
∣∣2 

√ ∑ N s 
k=1 

∣∣ f̄ (r k ) ∣∣2 
, (10)

hich enforces the condition that { f (r k ) } N s k=1 and { h −1 (r k ) } N s k=1 have the same � 2 norm. 
For each subject and each trial, we identify a best-fit Hammerstein model pair ( f , G ff ) .

he following discussion compares the subjects’ identified feedforward components f and
 ff with the ideal feedforward inversion components h −1 and G 

−1 . 
First, we compare f with h −1 . Fig. 10 shows the average f for all subjects on the first

nd last trials of the linear and nonlinear groups. For both groups, the average f is a better
pproximation of h −1 on the last trial than on the first trial. The nonlinear group has a more
ignificant change in f from the first to the last trial. To further compare f with h −1 , define 

f − h −1 
∥∥ � 

1 

2 

N s ∑ 

k=1 

∣∣ f (r k ) − h −1 (r k ) 
∣∣∣∣h −1 (r k ) 

∣∣ , 
13 
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Fig. 10. The average basis function f is a better approximation of h on the last trial than the first trial. The shaded 
region shows one standard deviation above and below the mean. 

Fig. 11. Mean and standard deviation of 
∥∥ f − h −1 

∥∥ on each trial. The difference between f and h −1 for the nonlinear 
group has a more significant decreases over the 40 trials. The symbols ◦ and × indicate the mean of 11 subjects for 
the linear and nonlinear group respectively and the vertical lines show one standard deviation above and below the 
mean. 

w  

s  

o  

g  

H  
hich is a measure of the difference between f and h −1 . Fig. 11 shows the mean and
tandard deviation of 

∥∥ f − h −1 
∥∥ on each trial of the linear and nonlinear group. The average

f 
∥∥ f − h −1 

∥∥ is smaller for the linear group than the nonlinear group on all trials. For both
roups, the average of 

∥∥ f − h −1 
∥∥ is smaller on the last trial compared to the first trial.

owever, the nonlinear group exhibits a more significant decreasing trend over the 40 trials.
14 
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Fig. 12. The average feedforward transfer function G ff approximates G after 40 trials. The shaded region shows one 
standard deviation above and below the average identified feedforward transfer function. 

Fig. 13. Mean and standard deviation of ‖ G ff G − 1 ‖ on each trial. For both groups, the difference between G ff and 
G 

−1 decreases over the 40 trials. The symbols ◦ and × indicate the mean of the 11 subjects for linear and nonlinear 
group respectively and the vertical lines show one standard deviation above and below the mean. 

T  

w
f  

m
 

r  
hese results suggest that the nonlinear subjects learn to approximate h −1 in feedforward,
hereas there is less learning for the linear group. We also note that the average of 

∥∥ f − h −1 
∥∥

or the nonlinear group continues to decrease over the last 10 trials, suggesting that the subjects
ay continue to improve their approximation of h −1 if given more trials. 
Next, we compare G ff with G 

−1 . Fig. 12 shows the average Bode plot over the frequency
ange of 0-to-0.5 Hz of the identified G ff for all 11 subjects on the first and last trials of the
15 
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inear and nonlinear group. For both groups, the average feedforward transfer function more
losely approximates G 

−1 on the last trial compared to the first trial. To further compare G ff 

ith G 
−1 , define 

 G ff G − 1 ‖ � 

1 

π

∫ π

0 

∣∣G ff (e 
jωT s ) G (e jωT s ) − 1 

∣∣dω, 

hich is a frequency-domain measure of the difference between G ff and G 
−1 . Fig. 13 shows

he mean and standard deviation of ‖ G ff G − 1 ‖ for each trial of the linear and nonlinear
roup. We note that the trends for the linear group are comparable to those in [44] , which
pplies a frequency-domain SSID method to the same experimental data. 
The average of ‖ G ff G − 1 ‖ for the two groups have a similar trend over the 40 trials. Over

he first 10 trials, there is a decreasing trend for both groups; and over the last 10 trials, the
rend is relatively flat for both groups. The linear group achieves a better approximation of
 
−1 than the nonlinear group. These results suggest that the subjects of both groups learn to
pproximate the inverse of G in feedforward over the 40 trials. 

. Summary and conclusions 

This paper presents new results on the impact of nonlinearities on HITL control behavior.
he experimental results indicate that static output nonlinearities can make a dynamic system
ore difficult for humans to control. The average command-following performance of the

inear group is better on 77.5% of trials than the nonlinear group (see Fig. 4 ). To investigate
he control strategies of both groups, a nonlinear SSID algorithm is used to identify best-fit
eedback and feedforward controllers for each subject and on each trial. The SSID results
eveal several differences between the linear and nonlinear groups. The linear group tends
o use more feedback-control authority. Specifically, the linear group has a smaller feedback
ime delay and uses a larger feedback gain than the nonlinear group (see Figs. 7 and 8 ). 
The main finding of this paper addresses feedforward behavior. Prior HITL studies suggest

hat adaptive feedforward inversion is a primary command-following control strategy for many
inear systems. The results in this paper provide supporting evidence that humans also adopt
his control strategy for some nonlinear systems. For both the linear and nonlinear groups,
he identified feedforward controllers approximate the dynamic system’s inverse better on
he last trial than on the first trial (see Figs. 10 and 12 ). However, the linear group achieves
etter approximation of the dynamic system’s inverse (see Figs. 11 and 13 ). This difference in
pproximating the inverse is a possible explanation for the difference in performance between
he two groups. Finally, the SSID results suggest that the nonlinear subjects learn the linear
art of the dynamic system more quickly than they learn the static output nonlinearity. Over
he latter half of the trials, the nonlinear subjects’ feedforward transfer function does not
hange significantly (see Fig. 13 ), whereas they continue to learn the output nonlinearity (see
ig. 11 ). Given more trials, the nonlinear subjects may continue to learn a better approximation
f the dynamic system’s inverse and perform as well as the linear subjects. 
The results from this study provide some insight into human-control strategies for non-

inear systems. However, many open questions remain. Further investigation is needed into
hether these results extend to dynamic systems with more complex transfer functions (e.g.,
igher order, higher relative degree, nonminimum phase, etc.) and more complex output non-
inearities. The control strategies that humans use for systems with dynamic nonlinearities is
lso a significant open question. 
16 
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ppendix A. SSID Algorithm 

To formulate the SSID algorithm in terms of coefficients of the feedback and feedforward
ontrollers, define the candidate polynomials 

 fb (q, θ ) � [q n fb q n fb −1 · · · 1 0 1 ×d fb ] θ, 

 fb (q, θ ) � q d fb + [0 1 ×(n fb +1) q d fb −1 · · · 1] θ, 

 ff , j (q, φ j ) � [q n ff q n ff −1 · · · 1] φ j , 

here θ ∈ R 
n fb + d fb +1 contains the numerator and denominator coefficients of feedback trans-

er function, and φ j ∈ R 
n ff +1 contains the numerator coefficients of the feedforward transfer

unction. Next, consider the cost function 

 (δ, θ, φ) � J (δ, N fb (q, θ ) , D fb (q, θ ) , N ff , j (q, φ j )) = 

1 

2 

N s −� δ∑ 

k=1 −� δ

| a k (δ, θ ) φ − b k (δ, θ ) | 2 , 

here the positive integer δ is the feedback delay, � δ � δ + n ff + d y + d fb , φ �
 φT 
1 · · · φT 

p ] 
T ∈ R 

p(n ff +1) , and for all k ∈ { 1 − � δ, . . . , N s − � δ} , 
 k (δ, θ ) � N (q) D fb (q , θ )q δ[q n ff q n ff −1 · · · 1] � [ f 1 (r k ) · · · f p (r k )] ∈ R 

1 ×p(n ff +1) , 

 k (δ, θ ) � D(q) D fb (q , θ )q δ+ n ff v k − N (q) N fb (q , θ )q n ff e k ∈ R , 

here � denotes the Kronecker product. 
Next, let I c � { 1 , . . . , N c } , where N c is a positive integer. For all i ∈ I c , define distinct

andidate feedback pairs (δi , θi ) . Let � be a set with N c elements where γi � 

[
δi θT 

i 

]
T ∈

 
n fb + d fb +2 are its elements. We call � the candidate pool . For each γi ∈ �, define the quadratic
ost function 

 i (φ) � 

1 

2 
‖ A i φ − b i ‖ 2 2 , 

here 

 i � [ a T 1 −� δi 
(δi , θi ) a T 2−� δi 

(δi , θi ) · · · a T N s −� δi 
(δi , θi )] 

T ∈ R 

N s ×p(n ff +1) , 

b i � [ b 1 −� δi 
(δi , θi ) b 2−� δi 

(δi , θi ) · · · b N s −� δi 
(δi , θi )] 

T ∈ R 

N s . 

or all i ∈ I c , J i is quadratic with respect to the unknown feedforward parameters φ. If the
umber of samples N s is sufficiently large, then it can be shown that A 

T 
i A i is positive definite.

or each i ∈ I c , define 

i � 

(
A 

T 
i A i 

)−1 A 

T 
i b i , 

hich is the unique global minimizer of J i . 
Let κ ∈ I c be the smallest integer such that J κ = min i∈I c J i . The identified feedback time

elay is d � δκ ; the numerator and denominator polynomials of the identified feedback trans-
er function are N fb (z) � N fb (z, θκ ) and D fb (z) � D fb (z, θκ ) ; and the identified feedforward
ransfer functions are G ff , j (z) � z −n ff N ff , j (z, φ j,κ ) . 
17 
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ppendix B. Candidate Pool 

The candidate pool � is a set that contains approximately 50 million elements and is
esigned to capture a wide range of possible human control behavior over the 0-to-0.5 Hz
requency range. Candidate feedback transfer functions are second-order IIR with monic de-
ominator and relative degree one, that is, n fb = 1 , and d fb = 2. For each γ ∈ �, the following
onditions hold: 

C1) If λ ∈ C is a root of the candidate polynomial N fb , then | λ| < 1 . 
C2) If λ ∈ C is a root of the candidate polynomial D fb , then | λ| < 1 . 

C3) max ω∈ [0,π] 
∣∣∣N fb (e jωT s ) 
D fb (e jωT s ) 

∣∣∣ ≤ 30. 5 . 

C4) δ ∈ { 4, 5 , 6 , . . . , 25 } . 

Conditions C1 and C2 indicate that the parameters of candidate feedback controller are
esigned such that the zero and poles of G fb lie inside the unit circle. Thus, the candidate
ool assumes that the feedback control behavior of the subjects is stable. Condition C3 states
hat the peak magnitude of the feedback controller over the frequency range [0, π ] rad/s is no
ore than 30.5 (or approximately 30 dB). Thus, C3 imposes an upper limit on the magnitude
f the feedback controller. The 30 dB upper limit is based on a separate experiment with
0 subjects, where each subject was asked to follow a single-frequency sinusoid using only
rror feedback (i.e., feedforward of the reference signal was not available). In this experiment,
he peak magnitude of the feedback controller used by the subjects is approximately 30 dB,
uggesting that 30 dB is the peak gain that a human can use in feedback. Condition C4
mplies that the human’s sensory feedback time delay is in the range of 80 ms to 500 ms.
his is consistent with [7,62–64] . Since the sampling rate in this experiment for both groups
s 20 ms, we assume that δ ∈ { 4, 5 , · · · , 25 } . 

ppendix C. Numerical examples 

We present two numerical examples using the SSID technique described in Section 3 and
ppendix A . For both examples, the plant components are G (z) = 1 / (z + 0. 2) and h −1 (x) =
 − 0. 4x 2 + 0. 2x 3 . We numerically simulate the closed-loop system shown in Fig. 5 for a
iven feedback system (d, G fb ) and feedforward system ( f , G ff ) where all initial conditions
re zero. The numerical simulations yield data signals r k and v k , which are used to compute
est-fit models (d + , G 

+ 

fb ) and ( f 
+ , G 

+ 

ff ) . 

xample 1. Consider d = 8 , G fb (z) = 0. 43 / (z − 0. 31) , G ff (z) = (3 z − 6) /z and α =
 −0. 50. 1 0 0] T . Let n ff = 1 and define the candidate pools 

1 � { γ ∈ R 

3 : e 1 γ , e 2 γ ∈ {−1 + 0. 25 τ } 8 τ=0 , 

e 3 γ ∈ { 4 + τ } 21 τ=0 } , 
2 � { γ ∈ R 

3 : e 1 γ , e 2 γ ∈ {−1 + 0. 125 τ } 16 τ=0 , 

e 3 γ ∈ { 4 + τ } 21 τ=0 } , 
3 � { γ ∈ R 

3 : e 1 γ , e 2 γ ∈ {−1 + 0. 0625 τ } 32 τ=0 , 

e 3 γ ∈ { 4 + τ } 21 τ=0 } . 
18 
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here e 1 � [1 0 0] , e 2 � [0 1 0] , and e 3 � [0 0 1] . The candidate pools define
andidate pairs (d, G fb ) . All 3 candidate pools have the same boundaries, but �3 has more
lements than �2 , and �2 has more elements than �1 . Note G fb is not a member of the
andidate pool, and thus the identification cannot yield the exact controller components. This
xample demonstrates how increasing the density of the candidate pool yields more accurate
dentifications. 
For each of the 3 candidate pools, the SSID algorithm in Section 4 is used to obtain d + ,

 

+ 

fb , G 

+ 

ff , and α
+ . 

For �1 , the SSID yields d + = 8 , G 

+ 

fb = 0. 5 / (z − 0. 25) , G 

+ 

ff = (3 . 62z − 6 . 73) /z, and α+ =
 −0. 49527 0. 09407 0. 00195 0. 00016] T . 
For �2 , the SSID yields d + = 8 , G 

+ 

fb = 0. 375 / (z − 0. 375) , G 

+ 

ff = (2. 78 z − 5 . 71) /z, and
+ = [ −0. 50342 0. 10411 − 0. 00102 − 0. 00023] T . 
For �3 , the SSID yields d + = 8 , G 

+ 

fb = 0. 4375 / (z − 0. 3125) , G 

+ 

ff = (3 . 25 z − 6 . 28) /z, and
+ = [ −0. 49891 0. 09855 0. 00065 − 0. 00002] T . 

xample 2. Consider the same parameters of the previous example, except G ff (z) = 2/ (5 z +
) and n ff = 2. Thus, G ff is IIR, and we approximate G ff by a second-order FIR. 
For �1 , the SSID yields d + = 8 , G 

+ 

fb = 0. 5 / (z − 0. 25) , G 

+ 

ff = (0. 30z 2 − 0. 20z + 0. 16) /z 2 ,
nd α+ = [ −0. 54127 , 0. 10708 , −0. 00066 , 0. 00026] T . 
For �2 , the SSID yields d + = 8 , G 

+ 

fb = 0. 375 / (z − 0. 375) , G 

+ 

ff = (−0. 26 z 2 + 0. 89 z −
. 33) /z 2 , and α+ = [ −0. 48117 , 0. 09672, 0. 00056 , −0. 00016] T . 
For �3 , the SSID yields d + = 8 , G 

+ 

fb = 0. 4375 / (z − 0. 3125) , G 

+ 

ff = (0. 04z 2 + 0. 31 z −
. 07) /z 2 , and α+ = [ −0. 51228 , 0. 10208 , −0. 00003 , 0. 00005] T . 
ig. C.1. The Bode plots of the identified transfer functions G 
+ 
fb and G 

+ 
ff for the densest candidate pool �3 results 

n the best estimates of G fb and G ff . 
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Fig. C.1 shows the Bode plots of the identified transfer functions for each of the 3 candidate
ools. The Bode plots of G 

+ 

fb and G 

+ 

ff are closest to G fb and G ff for the candidate pool �3 ,

hich is denser than �1 and �2 . 

ppendix D. Validation of SSID Results 

To validate the SSID results, for each trial we use the identified control pairs (d + , G 

+ 

fb ) and
( f + , G 

+ 

ff ) to simulate the closed-loop system, where the input to the simulation is { r k } N s k=1 ,

he output of the simulation is the validation data { y + 

k } N s k=1 , and all initial conditions are
ero. We then use the experimental data { y k } N s k=1 and validation data { y + 

k } N s k=1 to calculate the
ariance accounted for (VAF) for each trial. VAF is a measure of the accuracy of the identified
ontrollers and is given by 

AF � 1 −
∑ N s 

k=1 

∣∣y k − y + 

k 

∣∣2 ∑ N s 
k=1 | y k | 2 

. 

Fig. D.1 shows the mean and standard deviation of VAF for each trial. For both groups,
he mean VAF increases and the standard deviation decreases over the 40 trials. The increase
n the VAF suggests that the identified models obtained for the later trials are a more accurate
epresentation of the data than the models obtained for the earlier trials. This means that as
he subjects learn, their control behavior can be better modeled by the control structure used
n this paper. 
ig. D.1. Mean and standard deviation of VAF on each trial. For both experiments, the mean VAF increases over the 
0 trials. The symbols ◦ and × indicate the mean of the 11 subjects for linear and nonlinear experiments respectively 
nd the vertical lines show one standard deviation above and below the mean. 
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