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Planktonic communities constitute the basis of life in marine environments and have
profound impacts in geochemical cycles. In the North Atlantic, seasonality drives
annual transitions in the ecology of the water column. Phytoplankton bloom annually
in spring as a result of these transitions, creating one of the major biological pulses
in productivity on earth. The timing and geographical distribution of the spring
bloom as well as the resulting biomass accumulation have largely been studied
using the global capacity of satellite imaging. However, fine-scale variability in the
taxonomic composition, spatial distribution, seasonal shifts, and ecological interactions
with heterotrophic bacterioplankton has remained largely uncharacterized. The North
Atlantic Aerosols and Marine Ecosystems Study (NAAMES) conducted four meridional
transects to characterize plankton ecosystems in the context of the annual bloom
cycle. Using 16S rBNA gene-based community profiles we analyzed the temporal
and spatial variation in plankton communities. Seasonality in phytoplankton and
bacterioplankton composition was apparent throughout the water column, with changes
dependent on the hydrographic origin. From winter to spring in the subtropic and
subpolar subregions, phytoplankton shifted from the predominance of cyanobacteria
and picoeukaryotic green algae to diverse photosynthetic eukaryotes. By autumn,
the subtropics were dominated by cyanobacteria, while a diverse array of eukaryotes
dominated the subpolar subregions. Bacterioplankton were also strongly influenced by
geographical subregions. SAR11, the most abundant bacteria in the surface ocean,
displayed higher richness in the subtropics than the subpolar subregions. SAR11
subclades were differentially distributed between the two subregions. Subclades la.1
and la.3 co-occurred in the subpolar subregion, while la.1 dominated the subtropics.
In the subtropical subregion during the winter, the relative abundance of SAR11
subclades “II” and 1c.1 were elevated in the upper mesopelagic. In the winter, SAR202
subclades generally prevalent in the bathypelagic were also dominant members in
the upper mesopelagic zones. Co-varying network analysis confirmed the large-scale
geographical organization of the plankton communities and provided insights into the
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vertical distribution of bacterioplankton. This study represents the most comprehensive
survey of microbial profiles in the western North Atlantic to date, revealing stark seasonal
differences in composition and richness delimited by the biogeographical distribution of

the planktonic communities.

Keywords: North Atlantic Aerosols and Marine Ecosystems Study, phytoplankton community composition,
bacterioplankton community composition, North Atlantic subregions, seasonal succession, amplicon sequence

variants

INTRODUCTION

The phytoplankton spring bloom in the North Atlantic is
the climax of an annual cycle driven by the seasonality of
physical, chemical and biological features (Sieracki et al., 1993;
Behrenfeld and Boss, 2018). This massive pulse in biological
productivity is a key mediator of the strength of the biological
carbon pump (Martin et al, 2011; Sanders et al., 2014). The
phytoplankton spring bloom represents a pathway by which
atmospheric CO; is biologically converted to organic matter and
subsequently exported vertically to depth via sinking particles,
vertically migrating zooplankton, and the physical mixing of
suspended organic particles and dissolved organic matter (DOM)
(Ducklow et al., 2001).

A dynamic ecological system underlies the annual cycle
of phytoplankton biomass in the western North Atlantic.
Phytoplankton composition has been observed to undergo
major seasonal shifts (Choi et al.,, 2020; Kramer et al., 2020;
Yang et al., 2020). Communities dominated by cyanobacteria,
prasinophytes and pelagophytes in the early winter give way
to a more diverse eukaryotic phytoplankton community in the
spring. Major contributors over this period include haptophytes,
diatoms, and prasinophytes (Bolanos et al., 2020). The magnitude
and composition of springtime diversity captured depends on the
successional stage of the phytoplankton bloom that is sampled,
which is strongly influenced by both timing and location.
Assessing the role of the spring phytoplankton bloom in the
biological carbon pump and how it may change in future climate
scenarios requires better understanding of the composition,
functioning, and interactions of the microbial community.

Bacterioplankton composition in the surface waters of the
ocean is influenced by multiple environmental factors and
biological interactions (Bunse and Pinhassi, 2017). Seasonality
of bacterioplankton has been well documented with inter-
annual time-series in different oceanic regions (Giovannoni
and Vergin, 2012; Cram et al., 2015). Transect surveys have
provided insights on how bacterioplankton assemblages are
biogeographically defined (Milici et al, 2016), and vertical
profiles have shown that a high degree of bacterioplankton
specialization exists in the water column macro- (Giovannoni
et al., 1996; Field et al, 1997; DeLong et al, 2006; Treusch
et al., 2009) and micro-environments (Moeseneder et al., 2001;
Liu et al., 2018). Bacterioplankton community composition
can be influenced by changes in phytoplankton composition,
as demonstrated by a bloom study in which cultures of either
diatoms or dinoflagellates were inoculated into mesocosms
(Camarena-Gomez et al, 2018). Shifts in bacterioplankton

composition are likely, largely determined by variance in the
quality and bioavailability of DOM produced by phytoplankton
(Aluwihare and Repeta, 1999; Meon and Kirchman, 2001).
Variability in DOM composition may result not only from
differences in the DOM that distinct phytoplankton release,
but also from food-web processes stimulated by phytoplankton
community structure. Phytoplankton direct release, grazer-
mediated production, solubilization of sinking and detrital
particles, and cell lysis by viral or bacterioplankton infection
all affect the magnitude and quality of DOM production
(Thornton, 2014; Carlson and Hansell, 2015). Bacterioplankton
communities are sensitive and respond to such variability in
DOM composition (Massana et al., 2001; Carlson et al., 2002;
Liu et al., 2020a). Indeed, microbial DOM remineralization
experiments have demonstrated that the amendment of DOM
derived from distinct primary producers can differentially affect
the responding bacterioplankton community (Nelson et al,
2013; Wear et al,, 2015b; Liu et al, 2020b). Coastal surveys
observed that bacterioplankton responses to phytoplankton
blooms consisted of a succession of different phylogenetic
groups driven by the availability of specific classes of
algal primary products (Teeling et al, 2012; Wear et al,
2015a). As physicochemical gradients shape phytoplankton
communities, these studies collectively demonstrate that
shifts in phytoplankton community composition can dictate
bacterioplankton species succession on time scales as short as
days (Wear et al, 2015a; Needham and Fuhrman, 2016). In
this analysis, we hypothesize that seasonal shifts and regional
differences in phytoplankton communities through annual cycles
shape the composition of heterotrophic bacterioplankton in
the North Atlantic.

The North Atlantic Aerosols and Marine Ecosystems Study
(NAAMES) was designed to study the plankton ecosystem
dynamics over four stages of the annual phytoplankton
productivity cycle: early winter (“winter transition”: November—
December), early spring (early “accumulation phase™
March-April), late spring (“climax transition™ May-June),
and early autumn (“depletion phase”: September) (Behrenfeld
et al, 2019). Meridional transects sampled water masses
originating from the Sargasso Sea, subtropical, temperate
and subpolar subregions (Della Penna and Gaube, 2019).
In this study, we demonstrate seasonality in microbial
composition within the NAAMES region. A near complete
view of bacterioplankton and eukaryotic phytoplankton is
provided by high-throughput amplicon sequencing of 16S rRNA
genes of bacterioplankton and eukaryotic chloroplasts. Samples
were collected from eight different depths spanning the euphotic
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zone (5-100 m) and upper mesopelagic (150-300 m) at each
station. Ecological analyses of Amplicon Sequence Variants
(ASVs) maximized the taxonomic resolution of the microbial
community variation. Furthermore, ASV co-variability was
examined by network analysis to identify large-scale trends in
microbial community structure.

MATERIALS AND METHODS
Sampling and DNA Extraction

Microbial biomass was sampled along the meridional transects
of the four seasonal NAAMES field campaigns (Figure 1). In
early winter (NI; November 2015) and late spring (NII; May
2016), transect sampling covered the subpolar, temperate and
subtropical subregions. One station in subtropical waters in the
late spring (NII-S4) was sampled daily for 4 days, capturing a
local bloom resulting from mixed-layer stratification following
a storm-induced deep-mixing event (Graff and Behrenfeld,
2018; Morison et al., 2019; Della Penna and Gaube, 2020).
In early autumn (NIII; September 2017), stations covered all
four subregions. During this field campaign, one station in the
subpolar subregion (NIII-S6) was sampled daily for 4 days. In
early spring (NIV; March-April 2018), all stations were located
south of 45°N (Figure 1c), spanning the subtropical and Sargasso
Sea subregions. Full description of NAAMES campaigns,
locations of the stations, hydrographic and environmental data
can be found in Behrenfeld et al. (2019). At all stations, 8
nominal depths (5, 25, 50, 75, 100, 150, 200, and 300 m)
were sampled at dawn from 10 L Niskin bottles affixed to
a standard Conductivity-Temperature-Depth (CTD, Sea-Bird
911+) rosette. At each depth, 4 L of water were collected into a
polypropylene carboy (rinsed 3 times with sample water prior
to collection). Seawater was then filtered inline using an eight-
channel peristaltic pump at a flow-rate of 30 mL/min through
a 0.22 um pore-size Sterivex filter cartridge (polyethersulfone
membrane, Millipore). One ml of sucrose lysis buffer (SLB) was
added to each cartridge and filters were stored at —80°C until
further processing. DNA was extracted from the filters using
a phenol:chloroform protocol (Giovannoni et al., 1996). DNA
concentration was measured using Quant-iT assays (Invitrogen,
Carlsbad, CA) in a Qubit fluorometer. Negative controls
consisted of one ml aliquots of the SLB used to preserve the
samples for each cruise. DNA extractions, amplicon library
preparation, and sequencing of negative controls were performed
using the same parameters and protocols used for the samples.
Environmental data, as well as data for total chlorophyll a
concentration and bacterioplankton abundance, were obtained
from the publicly available SeaWiFS Bio-optical Archive and
Storage System (SeaBASS)'.

Library Preparation and Amplicon
Sequencing

The hypervariable V1-V2 region of the 16S rRNA gene was
amplified with the 27F (5-AGAGTTTGATCNTGGCTCAG-3)

Uhttps://seabass.gsfc.nasa.gov/naames

(Lane, 1991) and 338 RPL (5-GCWGCCWCCCGTAGGWGT-
3’) (Daims et al., 1999; Vergin et al., 2013) primers attached
to Ilumina overhang adapters (Illumina Inc.). These primers
retrieve V1-V2 16S rRNA gene sequences from bacteria and
plastids of multiple phytoplankton lineages in one round of
amplification (Rappé et al., 1998). Libraries for each reaction
product were constructed by attaching dual indices with the
Nextera XT Index Kit (Illumina Inc.) using a second PCR
amplification (following manufacturers conditions). Library
PCR size was confirmed in a Bioanalyzer DNA 1000 chip
(Agilent, Santa Clara, CA, United States). All PCR reactions
were purified using AMPure XP beads (Beckman Coulter,
Brea, CA, United States). Purified libraries were pooled in
equimolar concentrations for each campaign. Each pool was
sequenced using the Illumina MiSeq platform (reagent kit
v.2; 2 x 250 PE; Illumina Inc.) at the Center for Genome
Research and Biocomputing (Oregon State University, Corvallis,
Oregon, United States).

Bioinformatics Analysis

Primer sequences from de-multiplexed raw paired-end fastq
files were cut using the CutAdapt software (Martin, 2011),
removing 20 bases from forward files and 18 from reverse files
that matched the 27F and 338 RPL primer lengths, respectively.
Trimmed fastq files were quality filtered, dereplicated and
merged with dada2 R package, version 1.2 (Callahan et al,
2016) following the pipeline described in Bolafios et al. (2020).
Taxonomic assignment was determined aligning the sequences
to the silva_nr_v123 database (Quast et al., 2012). ASVs assigned
as plastid and cyanobacteria were extracted and placed in
curated reference trees (Sudek et al., 2015; Choi et al., 2017)
using Phyloassigner version v6.166 (Vergin et al., 2013). Of the
negative controls, only the SLB from NAAMES 4 (NIV-SLB_neg)
retrieved amplicon sequences. We analyzed the prevalence
of potential contamination ASVs with the decontam package
(Davis et al., 2018). For phytoplankton community composition,
only samples shallower than 100 m that had > 1,600 plastid
and cyanobacteria reads were considered. Bacterioplankton
sequences of SAR202 clades were further classified using
Phyloassigner and custom phylogenetic trees (Vergin et al., 2013;
Landry et al., 2017). SAR11 sequences were assigned using a 16S
rRNA full-length custom phylogenetic tree. Briefly, we retrieved
all SAR11 sequences from SILVA database version SSU r138
which fulfilled the following conditions: taxonomy = “SARI11
clade”, sequence length > 1,200 bp, sequence quality > 90.
The retrieved set of sequences were aligned using Clustal W
(Thompson et al., 1994) and cropped to the last base pair of
the 27F primer and position 1,355. Sequences not spanning
this region were discarded. Final dataset was composed of
1,181 sequences including those used as outgroup. For the
SAR202 tree, we referenced the phylogenetic tree shown in
the Figure S1 supplementary data of Landry et al. (2017). We
used the setupdb.pl script provided in Phyloassigner to create
both phylogenetic databases. SAR11 (Supplementary Figure 1)
and SAR202 (Landry et al., 2017) phylogenetic databases along
with a metadata table of the SAR11 sequences are available
at  https://www.github.com/Ibolanos32/NAAMES_2020. For
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FIGURE 1 | Map of the sampled stations in the western North Atlantic overlapped with the subregions established by Mean Dynamic Topography analysis. Panels in
clockwise direction: (a) early autumn (NAAMES field campaign NIIl: September 2017) (b) early winter (NAAMES field campaign NI: November 2015) (c) early spring
(NAAMES field campaign NIV: April-March 2018) (d) late spring (NAAMES field campaign NiI: May 2016).
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bacterioplankton analysis we included all amplicon datasets
composed of > 15,000 reads.

Hierarchical clustering (method = “ward.D2”) of the
phytoplankton fraction was performed with normalized counts
using the variance stabilizing transformation in DESEq2 (Love
et al,, 2014) with fixed zero-tolerant geometric means. Chaol
index and Bray-Curtis dissimilarities were calculated using
rarefied datasets (1,600 for phytoplankton and 30,000 for
bacterioplankton) with Phyloseq (McMurdie and Holmes, 2013).
For SARI11 richness estimation (Chaol), the dataset was rarefied
to the minimum in the sample (6,740 sequences). Ordinations

were constructed with the MDS method using the Bray-Curtis
dissimilarities. Relative contribution barplots and supporting
plots were done in R using ggplot2 (Wickham, 2016) and edited
in inkscape® for aesthetics.

Network Analysis, Visualization, and

Module Identification
Co-variation network analysis was performed using a reduced
dataset to reduce the noise of low abundance ASVs. ASVs

Zwww.inkscape.org
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with less than 6 counts in at least 10% of the samples for the
phytoplankton and in 40% of the samples for bacterioplankton
were removed. After separately filtering the phytoplankton and
bacterioplankton, both datasets were embedded in phyloseq
objects and merged. The covarying network was calculated
with the SPIEC-EASI function in the SpiecEasi package v.1.0.7
(Kurtz et al., 2015) in R using the Meinshausen-Buhlmann
Neighborhood Selection method (50 repetitions). Log2 of the
mean of each ASV was calculated to represent the size of
the nodes. The network visual representation was achieved
with igraph v.1.0.1 (Csirdi and Nepusz, 2006) and ggnet
v.0.1.0 (Butts, 2019) packages. Modules were defined using
the igraph fast greedy modularity optimization algorithm. The
network visualization of each module was done using igraph
v.1.0.1 and ggnet v.0.1.0 packages. Supporting heatmap and
barplots were generated in R using ggplot2 and edited for
aesthetics in inkscape?.

RESULTS

Phytoplankton Composition Displays
Subregional Seasonality

Profiles of phytoplankton community composition in the
euphotic zone (upper 100 m) were analyzed along the
meridional transects of the four campaigns, each capturing
distinct stages of the phytoplankton productivity annual
cycle (Figure 1). Previous observations from the early winter
(Figure 1b) and late spring (Figure 1d) campaigns revealed
two distinctive phytoplankton communities (Bolafios et al.,
2020). One group was characterized as subpolar for samples
collected in the subpolar and temperate subregions, the other
as subtropical for samples collected in the subtropical and
Gulf stream-Sargasso Sea subregions. The present study adds
the analysis of phytoplankton composition datasets from
the early autumn (Figure la) and early spring (Figure 1c).
Clustering based on the ASV profiles revealed that early
spring and early autumn phytoplankton communities
generally differentiated into the two groups matching the
previously described subpolar and subtropical community
types (Supplementary Figure 2). However, the early autumn
subtropical samples did not cluster with the other seasons from
the subtropical subregion, instead clustering more closely to the
subpolar grouping.

Multidimensional scaling (MDS) based on Bray-Curtis
dissimilarities (beta diversity) supported the observed clustering
pattern in phytoplankton surface communities, resolving further
details of each campaign (Figure 2A and Supplementary
Figure 3). In early autumn and early winter, sample clustering
followed a north to south organization, represented by the
second axis (Figure 2A). Early autumn samples showed a
gradient of latitudinal distribution with some overlaps between
the subtropical and subpolar communities. During early winter,
a larger separation clearly distinguished the subpolar and
subtropical communities. The latitudinal ordination observed in
the early autumn and early winter communities was shifted in
the early spring. Subtropical early spring samples organized by

longitude, with stations 1 and 3 (43°W, 42°W, respectively) being
more similar to each other than either with 2 and 4 (41°W,
38°W, respectively).

Total chlorophyll a concentration was used as a proxy
for phytoplankton biomass and remained below 2 mg/m?
throughout all sampled stations (Figure 3), with one exception.
In the subpolar late spring, surface chlorophyll a concentrations
were maximal, increasing southward from 56° N to 50° N.
This pattern reflects the general timing phenomenon where
the peak of the bloom shifts to later dates with increasing
latitude. Phytoplankton-derived 16S rRNA gene copies retrieved
from the total dataset did not follow the same pattern as
chlorophyll a concentrations. Low chlorophyll samples were
not necessarily associated with a low number of phytoplankton
gene copies, as shown by the early autumn subtropics
(Figure 3). Of the total sequences recovered, the percentage
represented by phytoplankton ranged from ~5% in the subpolar
autumn and winter samples to a maximum of 60% in the
subtropical late spring.

Patterns in phytoplankton ASV richness through the water
column differed at each station, likely due to the influences
of subregional and seasonal conditions (Figure 3). During the
subpolar late spring bloom, ASV richness increased in parallel
to chlorophyll a concentration. No other season showed a
similar effect, indicating that spring bloom conditions allowed
a diverse set of phytoplankton to succeed. The lowest richness
was observed in samples from both the subpolar early winter
and the surface (5-25 m) of the early autumn subtropics.
The low ASV richness in these environments at these times
reflects different types of limiting conditions to phytoplankton.
In the subpolar early winter, low temperature, deep mixing,
and low light may restrict the range of phytoplankton species
that can thrive. Comparatively, in the thermally stratified
water column characteristic of the early autumn subtropics,
nutrient depletion may be a more influential factor that
skews community composition toward groups better adapted to
oligotrophic conditions.

Subpolar  phytoplankton shifted sharply
through seasons. In early autumn, a diverse set of eukaryotic
phytoplankton, including cryptophytes, prymnesiophytes,
pelagophytes, and bacillariophytes dominated the communities.
The remaining sequences were represented by cyanobacteria,
specifically Synechococcus ecotypes 1 and IV. Early winter
was dominated by Synechococcus ecotypes I and IV and
prasinophytes. During the late spring bloom, cyanobacteria
relative abundances decreased, while eukaryotic phytoplankton
dominated and were particularly represented by haptophytes,
rappemonads, prasinophytes, and bacillariophytes.

Subtropical phytoplankton communities displayed seasonal
patterns. Cyanobacteria dominated in the early autumn;
Prochlorococcus  contributions made up to 95% of the
phytoplankton reads at the two most southern stations of
the subregion. Prochlorococcus dominance decreased northward,
while the relative abundance of Synechococcus clades I and IV
increased. In early autumn, eukaryotic sequences were most
pronounced at depths greater than 25 m and were primarily
composed of prasinophytes. In early winter, prasinophytes

communities
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FIGURE 2 | Multidimensional scaling (MDS) ordination based on Bray-Curtis dissimilarities (A) Phytoplankton fraction of the datasets (0-100 m) (B) Bacterioplankton
fraction of the datasets (0-300 m). Ordinations were divided in four panels representing each of the sampled seasons (clockwise: early autumn, early winter, early
spring, late spring). Datasets in both panels are colored based on the MDT subregion.

increased relative to early autumn throughout the euphotic
zone and, with cyanobacteria, dominated the communities.
The cyanobacterial fraction at this time was dominated by
Prochlorococcus HL 1 and Synechococcus IV. In the early spring,
Synechococcus (clades II and IV) and prasinophytes dominated,
but bacillariophytes and prymnesiophytes increased to comprise
up to 25% of the ASVs. In the late spring, the two stations
that were sampled in the subtropical subregion had distinct
communities from each other. NII-S4 was a unique station in
that it was homogeneously mixed to > 250 m upon the first day
of occupation and stratified to < 50 m over the next 4 days of
occupation. As the water column stratified at NII-S4, the relative
abundance of phytoplankton sequences became dominated
by prasinophytes and diatoms, both of which increased in cell
number. In contrast, the subtropical station NII-S5, which
was thermally stable and stratified, showed an increase in the
relative contribution of Synechococcus, which made up to 35%
of the sequences.

Overall, the annual phytoplankton seasonality showed two
distinct patterns of community succession specific to each
subregion. In the subpolar subregion, eukaryotes displayed
broad taxonomic shifts accompanied with a variable season-
dependent contribution of cyanobacteria, specifically constrained
to the co-occurrence of Synechococcus clades I and IV.
Cyanobacteria contribution in this subregion displayed a
maximum in winter. Comparatively, eukaryotic phytoplankton
composition was broad and relatively stable in the subtropics
throughout the year, mostly being of prasinophytes (Bathycoccus,
Ostreococcus, and Micromonas) and bacillariophytes. In this
subregion, the contribution of cyanobacteria shifted sharply
between seasons, reaching a maximum in early autumn.
Common to both subregions, eukaryotes displaced cyanobacteria
to marginal contributions and dominated phytoplankton bloom
communities during the late spring.

Bacterioplankton Community

Composition

Bacterioplankton profiles spanning the surface 300 m were
analyzed by subregions and seasons to assess whether or not
similar spatiotemporal patterns exist between phytoplankton
and bacterioplankton community composition (Figure 2).
MDS ordination, based on Bray-Curtis dissimilarities, showed
that bacterioplankton communities geographically clustered
in a similar pattern as the phytoplankton communities.
Subtropical and Gulf stream - Sargasso Sea communities
clustered together (i.e., subtropical community), while
subpolar and temperate communities clustered together
(i.e., subpolar community) (Figure 2B and Supplementary
Figure 4). As expected, bacterioplankton communities
were structured by depth at almost all seasons and stations,
with samples from the euphotic zone (<100 m) generally
ordinating distantly from those in the upper mesopelagic
(150-300 m; Axis 2). However, the magnitude and depth
of the transition differed by station and with season. In
early autumn, bacterioplankton communities clustered
by subregion and depth, but an overlap in community
structure between subregions was observed, similar to the
phytoplankton ordination. In the early winter, communities
clustered clearly and distantly by subregion and by location
within the water column. Samples from the wintertime
subtropical mesopelagic clustered tightly to each other and
distally from others, reflecting a similarly unique composition
in their community structure, while the wintertime subpolar
samples showed a more subtle differentiation between the
euphotic and upper mesopelagic. In early and late spring,
bacterioplankton communities transitioned gradually from
the euphotic zone to the mesopelagic. An exception to this
was at NII-S4, where a mostly homogeneous community
was observed over 200 m due to a recent storm-induced
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deep mixing event (mixed layer depth of > 250 m),
mentioned previously.

Bacterioplankton abundance (cells/L) near the surface (5
and 25 m) was lower in the early winter and early spring
compared to late spring and early autumn (Figure 4).
Bacterioplankton ASV richness was lower in subpolar subregions
than subtropical subregions (Figure 4). Seasonality and latitude
influenced richness patterns throughout the water column
for both subregions. In early autumn, all stations displayed
similar richness profiles to each other, increasing gradually
with depth. Early winter displayed a different pattern where
subtropical communities showed the highest richness of all
samples, especially in the upper mesopelagic. In contrast, the
early winter subpolar stations had the lowest richness. The two
most northern subtropical stations in the early spring showed
constant richness throughout the water column, while richness
increased with depth at the southern stations. In the late spring,
richness increased southward and followed the phytoplankton
bloom progression.

The SARI1 clade was the dominant fraction of the
bacterioplankton community across space and time (Figures 4-
6). However, SAR11 ASV richness was lower in the subpolar
subregion compared to the subtropics, following the total
bacterioplankton abundance (Figures 4, 5) and richness
(Figure 6). SARI1 subclades, thought to be ecotypes with
specialized adaptations, displayed different spatiotemporal
distributions in the euphotic zone and the upper mesopelagic
(Figure 6). Subclades Ia.1 and Ia.3 dominated the community in
the euphotic zone through most seasons, with clear subregional
differences in relative abundances. SARI1 subclade Ia.l was
co-occurrent with Ia.3 in the subpolar subregion regardless
of the season, while the relative contribution of subclade Ia.3
dominated throughout the subtropics. In the subpolar subregion,
subclades ITa.B and IV made the rest of the SAR11 fraction. These
subclades showed a decreasing contribution from more than 30%
of the SARI1 clade in the early autumn to less than 10% in the
late spring, when Ia.1 and I.a3 dominated the subpolar euphotic
zone. Throughout the year in the subtropics, multiple subclades
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including Ia.4, Ib.1, Ib.2, Id, ITa.A, and IIa.B accompanied the
dominant Ia.1. Of these subclades, Ib.1 and Ib.2 were the most
sensitive to seasonal changes, being abundant in early winter and
spring and then decreasing in the autumn to a negligible fraction
of the SAR11 clade.

Subclades Ta.1 and Ia.3 dominated the upper mesopelagic and
displayed similar ratios between subregions. In early autumn,
the SAR11 composition across the subpolar and subtropical
regions were homogenous. Notably, sequences belonging to the
subclade II made more than 30% of the SAR11 clade in the upper
mesopelagic. By the early winter in the subtropics, subclade II
increased up to 40%. Subclade 1c.1 was also observed to increase
to more than 10% at this time within the upper mesopelagic.
In the early and late spring, SAR11 composition was similar
between the upper mesopelagic and the euphotic zone. In station
NIV-S3 of early spring, the distribution of SARII1 subclade
relative abundance was uniform from 5 to 300, while at stations
1 and 2, clade II relative abundance gradually increased with
depth. At NII-S4 in the late spring, an initially homogenous
SAR11 composition through the water column changed, with the
relative contribution of subclades II increasing to the end of the
occupation as the water column stratified.

Over the annual cycle in both subregions, bacterioplankton
taxa within Flavobacteriales, Oceanospirilalles, SAR406,
Acidomicrobiales, and Rhodospirillales, were the next most

abundant ASVs after SAR11 in their relative contributions
to total bacterioplankton. However, SAR202 became an
abundant contributor at subtropical stations in the winter,
making up to 53% of the total sequences (300 m, NI-S4;
Figure 5). SAR202 sharply increased in depths greater than
100 m, but with shifting subclade composition (Figures 4, 5).
For example, SAR202 clade 1 dominated in the euphotic
zone, while SAR202 clades 2 and 3 became more prominent
in the upper mesopelagic (Figures 4, 5). Additionally, the
absence of OCS116 and the reduction of Oceanospirillales
in the upper mesopelagic contributed to the sharp shift in
vertical community composition in the subtropics during
the early winter.

At the most southern stations in early spring, NIV-S1 and
NIV-S2, Flavobacteriales made up to 25% of the community
in the surface 50 m, but dropped drastically at depths deeper
than the euphotic zone. At stations NIV-S3 and NIV-54,
Flavobacteriales were distributed homogenously throughout
the water column. During the late spring, Oceanospirillales
composed between 10 and 35% of the community at all stations
and were the major responders to the increase in phytoplankton
biomass in the euphotic zone, but were also prevalent in the upper
mesopelagic. In the early autumn, large gradients in community
structure across depth were observed. For example, at subpolar
NIII-S6, Desulfobacterales and SAR324 increased from being
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nearly absent in the surface 25 m to together contributing up to
17% of the sequences at 300 m. Notably, from the early spring to
the early autumn, SAR202 were marginalized or even absent in
the euphotic zone and at 150 and 200 m, but made up between 5
and 9% of the community at 300 m.

Co-variation Network Analysis and
Modularity of ASVs

To identify patterns of co-variation among ASVs that might
indicate interactions among planktonic taxa or among sets of taxa
with adaptations to very similar environments, we constructed
a network using the most abundant 292 bacterioplankton
(representing 71.2% of the total bacterioplankton reads) and 128
phytoplankton (representing 92.1% of the total phytoplankton
reads) ASVs from samples of the upper 100 m of the water
column (Figure 7 and Supplementary Figure 5). Overall, the
network had a clustering coefficient of 0.1414 indicating it is
a sparse network and a graph average degree of 13.295 (total
edges/total nodes).

The co-varying network was compartmentalized into 14
modules (Figures 7, 8 and Supplementary Figure S5). Sixty
five percent of the phytoplankton ASVs could be found in

only three modules (4, 2, and 9). These modules dominated by
phytoplankton ASVs were strongly associated with subregions.
Phytoplankton covarying module 4 was mainly constrained
to the subpolar subregion and linked with bacterioplankton
ASVs related to Oceanospirillales, SAR11 subclade II, and
Verrucomicrobia (Figure 8, Supplementary Figure 6, and
Supplementary Table 1). Phytoplankton covarying module 2
was associated to the subtropical subregion and linked with
bacterioplankton ASVs related to Flavobacteriales, SAR406, and
SAR11 subclade II (Figure 8, Supplementary Figure 6, and
Supplementary Table 1). Phytoplankton covarying Module 9 was
associated with the most southern stations under the influence of
the Gulf Stream and the Sargasso Sea. In this module we found
bacteria ASVs belonging to SAR202 clade 1 and SAR86 (Figure 8,
Supplementary Figure 6, and Supplementary Table 1). This
distinction between subtropical and Sargasso Sea phytoplankton
dominated modules indicates a southern ecological boundary
not captured by the ordination (Figure 2B) or clustering
(Supplementary Figure 2). The more highly resolved sampling of
the southern latitudes in early spring and early autumn compared
to our previous analysis of the early winter and late spring
(Bolafios et al.,, 2020) helped to define the boundary in the
network analysis.
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Modules dominated by bacterioplankton ASVs also showed in early autumn. These were mainly composed of Proteobacteria
subregional and seasonal differences in addition to differences and Bacteroidetes. Subtropical modules 5, 8, and 11 were
according to depth (Figures 7, 8). Modules 3 and 10 were present in all four seasons. Modules 5 and 8 followed similar
found in the subpolar subregion and some subtropical stations  distributions, except in early autumn. Module 11 was detected
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in subpolar samples and one of the few that overlapped
between geographical subregions. Two ubiquitous modules
were found: module 1, composed mainly of abundant SAR11
ASVs, and module 6, which contained Micrococcus, Bathycoccus,
and Alphaproteobacteria AEGAN-169 ASVs (Supplementary
Figure 6 and Supplementary Table 1).

While the observed network modularity indicates a strong
influence of geographical subregions on the phytoplankton
community composition, other factors likely influence the
high degree of variability between bacterioplankton modules.
Phytoplankton underwent major changes over the annual cycle
in the subpolar subregion, but these changes could be tracked
to a single covarying set of ASVs that were grouped in module
4. Comparatively, the dominant bacterioplankton modules in
the subpolar subregion could also be found in the subtropical
stations. Bacterioplankton assemblages are not only associated to
season or subregion but also with depth (Figure 8).

DISCUSSION

The temperate and subpolar latitudes of the western North
Atlantic are dynamic regions that have been under-sampled
compared to the eastern region of the basin (Behrenfeld et al,
2019). There is a paucity of microbial community structure data
for the western North Atlantic outside of those provided by the
large-scale survey projects such as Bermuda Atlantic Time-series

Study (BATS), Tara Oceans (Karsenti et al, 2011; Sunagawa
et al., 2020) and Malaspina (Duarte, 2015). The NAAMES field
campaign provided the most comprehensive temporal and spatial
view of the microbial communities for this region between 39
and 56° N. The sequencing strategy we selected targeted the
16S rRNA V1-V2 hypervariable region and provided information
on the relative abundance of heterotrophic bacterioplankton,
cyanobacteria and eukaryotic phytoplankton (by means of the
plastid 16S rRNA gene) in a single experiment.

Our previous analysis revealed a strong correlation between
phytoplankton communities and the hydrographic origin of
the water masses where the samples were collected (Bolafos
et al., 2020). Although seasonality generates a sharp shift in
phytoplankton composition, communities are constrained by the
environmental conditions specific to the subregions including
the degree of stratification, availability of macronutrients
and temperature regime. ASV co-variation network analysis
confirmed the strong boundaries that define the communities
in this region. Cyanobacteria, prasinophytes and stramenopiles
were the phytoplankton groups that shifted the most between
seasons. Research based on pigment data extended this
observation to Dinoflagellates, which were not efficiently detected
by the PCR primers used previously (Kramer et al, 2020).
Prasinophytes (green algae picoeukaryotes) had high relative
abundance during winter and spring (early and late) but declined
in autumn. Photosynthetic picoeukaryote communities have
been shown to be sensitive to temperature, light intensity and
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nutrient concentrations (Kirkham et al., 2011). Furthermore,
increasing numbers of cyanobacteria and their expansion to
higher latitudes are predicted as a consequence of global
warming (Mordn et al., 2010; Flombaum et al, 2013). The
contributions of cyanobacteria reported in this study suggests
that they may be more competitive than prasinophytes in the
oligotrophic and highly stratified subtropical conditions that
characterized the most southern autumn NAAMES stations
(~42-47° N). One biological characteristic that might favor
cyanobacteria is the high surface area to volume ratio of
these cells that can make them more competitive at low
nutrient concentrations.

Our results add support to the notion that the seasonal
succession in ocean bacteria is constrained by the biogeographical
distribution of the communities (Bunse and Pinhassi, 2017),
but also shows that the succession manifests differently between
the euphotic and the upper mesopelagic zones within our
study region. The euphotic and upper mesopelagic zones
were dominated by SAR11 but the dynamics of SARI1
subclades differed between subpolar and subtropical subregions.
The subpolar SAR11 composition was dominated by the
co-occurrence of subclades Ia.l and Ia.3 in all seasons,
while only Ia.3 was predominant in the subtropics. It is
well documented that subclade Ia.l is associated with cold
environments and la.3 to temperate and tropical (Brown
et al., 2012; Eren et al, 2013). However, the co-occurrence
in the subpolar subregion suggests that subclade Ia.3, or
specific phylotyopes within it (Delmont et al, 2019), are
adapted to a broader range of temperatures. In the subtropics,
SAR11 subclades followed a similar spatiotemporal dynamic
as previously reported at BATS site (Carlson et al., 2009
Vergin et al.,, 2013; Giovannoni, 2017). For example, subclade
Ib peaked in the euphotic zone during the period of water
column instability from early winter to spring, while subclade
II dominated the upper mesopelagic zone following deep
convective overturn in the late winter and early spring.
Comparatively, SARI1 composition in the subpolar subregion
was less dynamic and diverse: subclades Ia.1 and Ia.3 dominated,
with subclades ITa.B and IV comprising the remainder of the
SARI11 fraction and varying only slightly in relative contributions
throughout the seasons.

During the subtropical autumn and winter, upper mesopelagic
bacterioplankton differentiated sharply from the euphotic
communities, while in the spring (early and late) community
composition transitioned more gradually through depth. The
largest difference between euphotic and upper mesopelagic
communities was in the early winter subtropics. At these stations,
SAR202 subclades 2 and 3, which are commonly found in the
bathypelagic (Saw et al., 2020), dominated the upper mesopelagic
zone. SAR202 genomes encode for paralogs hypothesized to
oxidize remnant recalcitrant DOM (Landry et al., 2017; Saw
et al., 2020). In the subtropical water masses, where diatoms are
displaced by cyanobacteria during highly stratified period, net
DOC accumulation is observed (Hansell et al., 2009; Carlson
et al., 2010; Romera-Castillo et al., 2016). In the subtropics a
greater percentage of net community production is partitioned
as accumulating DOC, which can lead to a greater export

potential from the surface into the mesopelagic at latitudes that
also experience deep winter convection (Baetge et al., 2020).
The differences in DOC accumulation between regions with
distinct phytoplankton communities may lead to differences
in the quality of organic matter exported to the mesopelagic,
contributing to the observed response of SAR202 during or
shortly following deep winter convection in the subtropical realm
(Treusch et al., 2009).

In autumn, SAR324 and Desulfobacterales increased in
the upper mesopelagic. SAR324 are well-known deep ocean
chemolithotrophs that have C1 metabolism and a particle-
associated lifestyle (Swan et al., 2011), while Desulfobacterales
are sulfate-reducing strict anaerobes. Both taxa are well-known
inhabitants of the dark ocean, but seasonality has not been
documented in these bacteria (Treusch et al., 2009; Nelson et al.,
2014; Yilmaz et al., 2016).

In spring, bacterioplankton communities transitioned with
depth without the sharp shifts observed in other seasons.
These results may suggest that primary production from the
euphotic zone creates a gradient of DOM flux. In spring,
when primary production was greatest, Flavobacteriales and
Oceanospirillales had a high relative contribution in the euphotic
zone. The increase in abundance of these taxa concomitant to
phytoplankton bloom progression has been reported in other
systems, including the northern Antarctic peninsula (Signori
et al.,, 2018) and Antarctic islands in the Southern Indian Ocean
(Landa et al., 2016). This suggests that these bacteria might
respond to the DOM produced as a result of numerous food
web processes that occur during the periods of high primary
production. During this season in the subpolar subregion
(highest chlorophyll concentrations), bacterioplankton richness
represented by the Chaol index reached the lowest values,
while bacterioplankton abundance, phytoplankton biomass, and
phytoplankton richness were at their highest values. This
suggests that during the peak of primary productivity, specific
copiotrophic Rhodobacterales and Flavobacteriales may be
responding to the flux of fresh labile DOM, outcompeting other
community members as observed during phytoplankton blooms
(Buchan et al., 2014; Luria et al., 2017).

Biotic interactions are increasingly recognized as a major
influence on planktonic community composition (Lima-
Mendez et al, 2015). We analyzed the organization of the
communities in co-varying modules using a network analysis.
The network delineated 14 covarying modules among the most
abundant phytoplankton and bacteria ASVs. These modules
reflected subregional and seasonal variation and were congruent
with the results of ordination and community clustering.
However, the modules were insufficient to resolve potential
phytoplankton-bacteria interactions at a local spatial and
temporal scales. The tightly varying phytoplankton communities
influenced by subregion contrasted to the atomized co-varying
bacterioplankton modules, which showed an additional set of
patterns, mostly influenced by depth. This evidence may suggest
that bacterioplankton are more sensitive to local gradients or
disturbances, or that the diversity of heterotrophs is arranged in
additional dimensions by factors such as DOM quality and of
flux from food web sources.

Frontiers in Marine Science | www.frontiersin.org

February 2021 | Volume 8 | Article 624164


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Bolanos et al.

North Atlantic Plankton Composition

Our results provide evidence of the profound effect of water
mass origin and inherent physical/chemical features on the
seasonal dynamics of plankton community composition. In
previous work phytoplankton communities have been ordered in
reference to large-scale subregions of the North Atlantic (Bolanos
etal,, 2020). Although bacterioplankton composition is restricted
by the same ecological borders as phytoplankton, seasonal
fluctuations in the water column and primary production
determine how the community transitions are shaped through
depth. This effect creates a dynamic system, sensitive to
phytoplankton community changes but not strictly correlated in
the same temporal scale.
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