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The primary goal of this paper is to develop a formal foun-
dation to design nonlinear feedback control algorithms that
intrinsically couple legged robots with bio-inspired tails for
robust locomotion in the presence of external disturbances.
We present a hierarchical control scheme in which a high-
level and real-time path planner, based on an event-based
model predictive control (MPC), computes the optimal mo-
tion of the center of mass (COM) and tail trajectories. The
MPC framework is developed for an innovative reduced-
order linear inverted pendulum (LIP) model that is aug-
mented with the tail dynamics. At the lower level of the con-
trol scheme, a nonlinear controller is implemented through
the use of quadratic programming (QP) and virtual con-
straints to force the full-order dynamical model to track the
prescribed optimal trajectories of the COM and tail while
maintaining feasible ground reaction forces at the leg ends.
The potential of the analytical results is numerically veri-
fied on a full-order simulation model of a quadrupedal robot
augmented with a tail with a total of 20 degrees of freedom.
The numerical studies demonstrate that the proposed control
scheme coupled with the tail dynamics can significantly re-
duce the effect of external disturbances during quadrupedal
locomotion.

1 Introduction
This paper presents a systematic approach to design a

hierarchical control algorithm, based on reduced-order mod-
els, model predictive control (MPC), quadratic programming
(QP), and virtual constraints, to intrinsically couple bio-
inspired articulated tails with legged robots for robust lo-
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Fig. 1. (a) Vision 60 robot with 18 DOFs whose full-order dynamical
model will be used for the numerical simulations. (b) CAD represen-
tation of Vision 60 augmented with a 2-DOF tail mechanism.

comotion. In the proposed approach, the high-level MPC
computes an optimal center of mass (COM) trajectory for
the body and an optimal tail trajectory in real time. More
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specifically, we develop an MPC formulation for an innova-
tive and augmented linear inverted pendulum (LIP) model
which has been extended to consider the forces introduced
by the tail dynamics. The high-level MPC is implemented
in an event-based manner in the sense that it is solved at
the beginning of each continuous-time domain subject to the
predefined foot placements, the feasibility of the net ground
reaction force (GRF), and the tail joint and actuation limits.
In order to close the gap between the reduced-order model
used by the high-level MPC and the full-order model of the
robot augmented with a tail, a low-level nonlinear controller,
based on convex QP and virtual constraints, is implemented
to track the prescribed COM and tail trajectories while en-
suring feasible GRFs at the contacting leg ends. The poten-
tial of the proposed control approach is numerically demon-
strated through extensive full-order simulations of the Vision
60 quadruped augmented with a serpentine tail with a total
of 20 degrees of freedom (DOFs) (see Fig. 1). It is shown
that extending existing MPC frameworks for locomotion to
consider additional dynamics induced by a tail can produce
greater robustness to external disturbances during locomo-
tion than a legged system without the addition of a tail like
structure.

1.1 Background, Motivation, and Challenges
Related Work on Legged Locomotion: The most

widely used control method for legged locomotion is based
on a heuristic notion of gait stability, known as the zero mo-
ment point (ZMP) criterion [1,2]. This control methodology
produces quasi-static gaits and assumes full-actuation. Al-
ternatively, legged locomotion can be described by hybrid
systems [3,4] with continuous-time domains (i.e., phases) to
represent the Lagrangian dynamics and discrete-time tran-
sitions between continuous-time domains to represent the
abrupt changes in the velocity components of the state vec-
tor during the infinitesimal period of the rigid impacts be-
tween the swing leg ends and the environment [5–29]. State-
of-the-art nonlinear control algorithms that address the hy-
brid nature of legged locomotion to stabilize gait patterns in-
clude controlled symmetries [8], hybrid reduction [30, 31],
transverse linearization [10, 32], and hybrid zero dynamics
(HZD) [7,18,33,34]. Of these methods, only HZD and trans-
verse linearization are capable of addressing the general case
of underactuation inherent to dynamic locomotion. In the
case of HZD, a set of kinematic constraints, referred to as
virtual constraints [5, 34], are enforced via input-output (I-
O) feedback linearization [35] in order to impose coordinated
motion among the limbs. Virtual constraint controllers have
been validated both numerically and experimentally for the
stable locomotion of bipedal robots [7,17,20,26,34,36–39],
quadrupedal robots [40–42], lower extremity powered pros-
theses [43–45], and exoskeletons [46]. The gait planning for
virtual constraint controllers is typically performed offline by
solving a nonlinear programming (NLP) problem. While al-
gorithms exist in which agile gait planning can be performed
efficiently [26, 47], these methods cannot be used in an on-
line manner, thereby restricting the use of HZD methods for

navigating complex environments.
A variety of QP- and MPC-based approaches also ex-

ist for locomotion, including LIP-based MPC path planning
[42, 48–51], centroidal dynamics-based MPC [52, 53], non-
linear MPC [54], policy-regularized MPC [55], and whole-
body QP-based control [56, 57], though LIP and centroidal
methods have been studied most extensively. In LIP-based
MPC, optimal COM and center of pressure (COP) trajecto-
ries are determined subject to the ZMP conditions and feasi-
ble net GRF. This approach has the benefit of not requiring
offline trajectory optimization and may be coupled with a
number of different low-level control techniques to track the
prescribed trajectories. While LIP-based MPC has primar-
ily been applied to bipedal systems [48–50], it has recently
been extended to quadrupedal locomotion as well, [42, 58].
Centroidal-based MPC techniques determine optimal GRFs
using reduced-order dynamics, and has the primary benefit
of considering the feasibility of GRFs at each contact point.
While these optimization methods have shown to produce
robust locomotion, it is a significant computational burden
to solve the MPC at every time step even considering the
problems are typically formulated as convex QPs. For this
reason, event-based optimization is of great interest [42, 59].
This is especially true as the number of decision variables
and constraints increase, as is the case when augmented with
a serpentine tail.

Motivation and Related Work on Tails for Legged
Locomotion: Although the technology involved in the de-
velopment of sophisticated quadrupedal machines is rapidly
advancing, the knowledge regarding the synthesis of feed-
back control paradigms that intrinsically couple the motion
of tails and legged robots for improved dynamic stability is
lacking. The use of tails in nature has primarily been stud-
ied in terms of dynamic reorientation during leaps and falls
[60, 61], but there has been evidence that large cats use their
tails for dynamic locomotion as well [62]. Similar to their
biological counterpart, the use of biomimetic pendulum-like
tails have been explored on bipedal [63–66], quadrupedal
[67–69], and hexapedal [70] systems for stability. While
these tails have been shown to negate external disturbances
[67], perform aerial reorientation [63–65,69–71] in an effort
to regain stability, and increase rapid accelerations [68], the
dynamic stability of locomotion for quadrupeds augmented
with biomimetic tails has been addressed in very few stud-
ies, see e.g., [72, 73]. These investigations primarily ex-
plore the use of tails during static stance [67], flight phase
[63–65, 69, 70], and gait initiation [68], allowing for simpli-
fied models and controllers which cannot easily be gener-
alized to varying single- and multi-contact domains present
during quadrupedal locomotion. Additionally, control of
legged systems with the addition of serpentine appendages
(as opposed to pendulum-like appendages)–which greatly
increases the nonlinearities present–has been largely unex-
plored.

Significant Challenges: Existing nonlinear controller
design approaches for legged locomotion are tailored specif-
ically to systems without the addition of tails, and the in-
tegration of tails introduces significant overhead in terms of

Paper DS-20-1377 2 Corresponding Author: Akbari Hamed



Fig. 2. Block diagram of the proposed hierarchical control scheme. A high-level and real-time planner, based on event-based MPC, computes
the optimal COM and tail trajectories for a reduced-order model, referred to as the extended LIP dynamics, subject to the feasibility of the
net GRF and tail motion. A low-level nonlinear controller, based on virtual constraints and QP, imposes the full-order dynamical model of
locomotion to track the prescribed and reduced-order optimal trajectories subject to the feasibility of the GRFs at the contacting leg ends.

complexity and dimensionality of these already sophisticated
machines. This, in turn, further complicates the design of
robust nonlinear control algorithms. We aim to answer the
following questions: 1) how can we extend the LIP dynam-
ics to include external forces induced by a tail? 2) how can
we systematically plan for the motion of the tail in real time
to ensure robust locomotion? and 3) how can we implement
these reduced-order trajectories on a full-order model using
nonlinear control approaches?

1.2 Goals, Objectives, and Contributions
The overarching goal of this paper is to present a for-

mal foundation to design real-time motion planning and non-
linear feedback control algorithms for robust locomotion of
quadrupedal robots augmented with serpentine tails. The
specific objectives and key contributions of the paper are as
follows:

1. We present an innovative reduced-order model, referred
to as the extended LIP dynamics, for the real-time plan-
ning of the COM and tail motions. In particular, the pre-
sented reduced-order model integrates the LIP dynamics
with the nonlinear tail dynamics to enable us to formu-
late an online optimal control problem.

2. We present a hierarchical nonlinear control scheme for
the motion control of quadrupedal robots with robotic
tails. At the higher-level of the control scheme, we pro-
pose an MPC formulation for the real-time path plan-
ning of the reduced-order model to effectively gener-
ate the optimal trajectories for the robot’s COM and tail
joints. The MPC considers the feasibility of the tail mo-
tion, COP constraints, and the feasibility of the net GRF.
As the proposed reduced-order model is nonlinear, we
linearize the extended LIP model at the beginning of
each continuous-time domain and then solve the MPC
algorithm in an event-based manner to formulate a con-
vex QP (see Fig. 2).

3. At the lower-level of the control scheme, a nonlinear

controller, based on QP and virtual constraints, is pre-
sented for the motion control of the full-order dynamical
system to track the prescribed motions of the COM and
tail while imposing feasibility of the GRFs at all contact
points.

4. We investigate the effect of robotic tails on quadrupedal
locomotion intrinsically coupled with the proposed con-
trol algorithms. For this purpose, a series of exten-
sive and full-order numerical simulations is presented
to demonstrate the effectiveness and robustness of the
proposed control approach for locomotion of a 20-DOF
advanced quadrupedal robot, Vision 60, augmented with
a serpentine tail in the presence of external disturbances
(see Fig. 1). We numerically show that the integration of
the tail dynamics with the developed nonlinear feedback
control algorithms can significantly reduce the effect of
external disturbances on quadrupedal locomotion.

References [72] and [73] have provided an interesting
approach to address the dynamic stability of legged robots
augmented with a single-DOF pendulum-like tail, but in both
cases the controller used is a central pattern generator (CPG),
where the trajectory is calculated offline and the robot is con-
trolled in an open-loop manner. Reference [72] provided
an analysis regarding the general design of the tail using a
spring loaded inverted pendulum (SLIP) model, though it is
not used as part of any control algorithm and only encom-
passes movement in the sagittal plane. Our work differs
completely in that, 1) we consider the use of a serpentine
tail, 2) we propose real-time planning algorithms for both
locomotion and the tail by using an extended LIP model,
and 3) we track the generated reduced-order trajectories in
a closed-loop manner through a QP-based virtual constraint
controller. The work presented in the current paper also dif-
fers from the previous work [42] in that [42] did not ad-
dress locomotion with tail dynamics. Here, we derive and
use a novel extended LIP model in which additional exter-
nal forces may be addressed. Furthermore, the current work
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includes the dynamics of the appendage in the path planner
in order to increase gait stability and robustness as opposed
to treating the appendage as a disturbance. We also extend
the event-based MPC formulation of [42] to the nonlinear
reduced-order model, arising from the extended LIP dynam-
ics and plan for the optimal COM motion of the robot as well
as the tail trajectory.

The paper is organized as follows. The full-order non-
linear models for quadrupedal locomotion with robotic tails
are presented in Section 2. Section 3 presents the extended
reduced-order model for real-time planning. Section 4 ad-
dresses the optimal control problem and formulation of the
higher-level MPC for the extended LIP model. The lower-
level nonlinear controller, based on QP and virtual con-
straints, for the whole-body motion control is presented in
Section 5. Section 6 presents the numerical simulations for
quadrupedal locomotion with tails to verify the effectiveness
of the proposed control algorithms. Finally, Sections 7 and 8
present discussion and concluding remarks, respectively.

2 Full-Order Nonlinear Model of Locomotion with Tail
2.1 Robot and Tail Model

In this paper, we consider the full-order dynamical
model for locomotion of the quadrupedal robot Vision 60,
made by Ghost Robotics1, augmented with a serpentine tail
(see Fig. 1). Vision 60 can be modeled with 18 DOFs, 12
of which consist of leg DOFs while the other 6 represent the
absolute position and orientation of the floating base in an in-
ertial world frame. Each leg of the robot consists of an actu-
ated 2 DOF hip joint (roll and extension) plus a 1 DOF knee
joint, ending with a point foot. The tail design used in this
paper has 2 DOFs, one allows for a rolling motion, while the
other allows for yaw motion (see Fig. 3). The yaw portion
of the tail consists of eight holonomically constrained gears
which are driven by a single actuator. The gear ratio is held
constant from one link to the next, therefore each link is con-
strained to rotate by the same amount as the previous link in
order to obtain uniform deformation along the length of the
tail. This design is partially inspired by the designs found
in [74] and [71]. To keep the tail mechatronics light and sim-
ple, each actuated joint uses a single Hebi Robotics2 actuator
which will provide sufficient torque to drive the tail. We note
that the total mass of the tail is approximately 1.51 (kg), in
which the base, roll link, and individual yaw links are ap-
proximately 0.4 (kg), 0.68 (kg), and 0.053 (kg), respectively.
Throughout this paper, the tail mechanism is assumed to be
mounted on a point, referred to as the base of the robot (see
Fig. 1).

2.2 Nonlinear Dynamics
The generalized coordinates for Vision 60 are expressed

as qr := col(pr,αr,qb) ∈ Qr ⊂ R18, in which the subscript
“r” stands for the robot, pr ∈ R3 and αr ∈ R3 represent the
absolute position and orientation of the body of the robot in

1https://www.ghostrobotics.io/
2https://www.hebirobotics.com/

Fig. 3. (a) Side view of the tail CAD design annotated with the axes
of rotation. (b) Isometric view of the tail CAD design.

the inertial world frame, respectively, and qb ∈ R12 denotes
the body angles (i.e., shape of the robot). The torque and
force inputs applied to the robot are denoted by ur ∈ R12,
λc ∈R3nc , and λt ∈R6, which are the actuator torque inputs,
the GRFs at the contacting leg ends, and the tail reaction
wrench (forces and moments), respectively. In our notation,
“col” represents the column vector and nc denotes the num-
ber of contacting legs with the ground. The evolution of the
robot is then described by the Euler-Lagrange equations and
principle of virtual work as follows:

Dr(qr) q̈r +Hr (qr, q̇r) = Br τr + J>c (qr)λc + J>br(qr)λt , (1)

where Dr(qr)∈R18×18 is the symmetric and positive definite
mass-inertia matrix, Hr(qr, q̇r) ∈ R18 denotes the Coriolis,
centrifugal, and gravitational terms, and Br ∈ R18×12 is the
input distribution matrix. In addition, Jc(qr) ∈R3nc×18 is the
ground contact Jacobian matrix, and Jbr(qr) := ∂pbr

∂qr
(qr) ∈

R6×18 is the Jacobian of the base of the robot on which the
tail is connected.

The tail is modeled with 8 DOFs in total, where 6 DOFs
come from the floating base, and the additional 2 DOFs
are the internal roll and yaw motions of the tail. The gen-
eralized coordinates of the tail are then defined as qt :=
col(pt ,αt ,θ) ∈ Qt ⊂ R8, where the subscript “t” stands for
the tail, pt ∈ R3 and αt ∈ R3 represent the absolute position
and orientation of the base of the tail in the inertial world
frame, respectively, and θ := col(θroll,θyaw) ∈ R2 are the in-
ternal roll and yaw angles. Lastly, τt := col(τroll,τyaw) ∈ R2

are the torque inputs to the tail roll and yaw actuators. The
equations of motion can be described as follows:

Dt(qt) q̈t +Ht(qt , q̇t) = Bt τt − J>bt (qt)λt (2)

where Dt(qt) ∈ R8×8, Ht(qt , q̇t) ∈ R8, and Bt ∈ R8×2 de-
note the mass-inertia matrix, Coriolis, centrifugal, and grav-
itational forces, and input distribution matrix, respectively.
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Furthermore, Jbt(qt) := ∂pbt
∂qt

(qt) ∈ R6×8 is the Jacobian of
the base of the tail in the tail inertial frame. The holonomic
constraints between the robot and tail can be expressed as
pbr(qr) = pbt(qt), in which pbr(qr) ∈ R6 and pbt(qt) ∈ R6

represent the absolute position and orientation of the base of
the tail in qr and qt coordinates, respectively. Differentiating
the holonomic constraints twice yields

Jbr(qr) q̈r + J̇br (qr, q̇r) = Jbt(qt) q̈t + J̇bt (qt , q̇t) . (3)

Equations (1)-(3) may then be put into a system of algebraic
differential equations to solve for the acceleration of each
body and the interacting forces between them, that is,

Dr 0 −J>br
0 Dt J>bt

Jbr −Jbt 0

q̈r
q̈t
λt

=

Br τr−Hr + J>c λc
Bt τt −Ht
J̇bt − J̇br

 , (4)

where 0 represents a matrix of zeros of the correct dimen-
sion. Note that the final equation in (4) ensures that there
is a rigid connection between the tail and the quadruped. By
eliminating the Lagrange multiplier λt (i.e., internal wrench),
the equations of motion in the nonlinear coupled dynamics
(4) can be expressed as an input-affine system as follows:

ż = f (z)+g(z)τ+w(z)λc, (5)

where z := col(qr,qt , q̇r, q̇t) denotes the state vector and τ :=
col(τr,τt) represents the control inputs.

3 Extended LIP Model
The objective of this section is to derive a reduced-order

model based on the LIP dynamics to study the equations of
motion for the COM and the tail dynamics. The model, re-
ferred to as the extended LIP dynamics, will be utilized for
the development of the real-time motion planning algorithm
in Section 4.

The reduced-order LIP model can be described by [51][
ẍcom

ÿcom

]
=

g0

zcom

[
xcom− xcop

ycom− ycop

]
, (6)

where xcom and ycom represent the Cartesian coordinates of
the COM with respect to the inertial world frame in the x and
y directions, respectively, having been projected onto the xy-
plane. In addition, zcom is the vertical height of the center
of mass, which is assumed to remain constant throughout
the duration of the gait, g0 is the gravitational constant, and
ucop := col(xcop,ycop) ∈ R2 represents the Cartesian coordi-
nates of the COP in the world frame. In order to include
external forces in the LIP model, we consider the following
dynamics

[
ẍcom

ÿcom

]
=

1
mtot

[
Fx +Fgx +FMpx +FMyx
Fy +Fgy +FMry +FMyy

]
, (7)

Fig. 4. Free body diagram of the forces and moments induced by
the tail on the LIP dynamics. Note that the zcop is always zero.

where mtot is the total robot mass, Fx denotes the external
force in the x direction applied by the tail, Fgx represents the
GRF in the x direction, FMrx denotes the equivalent force in
the x direction due to an external roll moment, FMpx repre-
sents the equivalent force in the x direction due to an external
pitch moment, and FMyx denotes the equivalent force in the x
direction due to an external yaw moment (see Fig. 4). The
notation is defined similarly for both the y and z directions.
In order to solve for the net GRF, we consider the equation
of motion in the z direction as

mtot z̈com = Fz +Fgz +FMrz +FMpz−mtot g0 (8)

and let z̈com = 0 for the duration of the gait. For this purpose,
we first study the components of the GRF and the equiva-
lent forces due to moments according to the geometry of the
model. In particular, it can be shown that Fgx = Fg

xcom−xcop

l ,
Fgy = Fg

ycom−ycop

l , and Fgz = Fg
zcom

l , where Fg denotes the net
GRF and l :=

√
(xcom− xcop)2 +(ycom− ycop)2 +(zcom)2. In

addition, we can easily translate the moments into equivalent
forces as follows (see Fig. 4)

FMpx =
Mp

`2
xz

zcom, FMpz =
−Mp

`2
xz

(xcom− xcop)

FMry =
−Mr

`2
yz

zcom, FMrz =
Mr

`2
yz
(ycom− ycop)

FMyx =
−My

`2
xy

(ycom− ycop) , FMyy =
My

`2
xy
(xcom− xcop) ,

where `xz :=
√

(xcom− xcop)2 +(zcom)2 represents the dis-
tance between the COM and COP in the xz-plane,
and similarly, `yz :=

√
(ycom− ycop)2 +(zcom)2 and `xy :=√

(xcom− xcop)2 +(ycom− ycop)2. These geometric relations
together with (8) and z̈com = 0 finally result in the following
net GRF

Fg =
l

zcom

(
mtotg0−Fz +

Mp(xcom− xcop)

(xcom− xcop)2 +(zcom)2

− Mr(ycom− ycop)

(ycom− ycop)2 +(zcom)2

)
. (9)

The GRF in (9) can then be combined with (7) to obtain the
extended LIP dynamics which are nonlinear due to the ad-
dition of several nonlinear components, including Fz and the
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Fig. 5. Illustration of the reduced-order extended LIP model.

moments about the base of the tail (i.e., Mr, Mp, and My).
Since the dominant external wrenches that are applied by the
tail are assumed to be those involving Fx and Fy, the verti-
cal force and the moments induced about the base of the tail
are neglected for the purpose of planning, but all forces and
moments are considered during the full-order controller and
simulations (see Sections 5 and 6). Furthermore, `xy goes
to zero as the COM approaches the COP which causes FMyx
and FMyy to become undefined due to division by zero. We
therefore plan only for the standard COP inputs (i.e., xcop and
ycop) together with Fx and Fy which are to be applied by the
tail. We can show that this assumption will reduce the non-
linear dynamics of the extended LIP model to the following
linear dynamics

[
ẍcom

ÿcom

]
=

g0

zcom

[
xcom− xcop

ycom− ycop

]
+

1
mtot

[
Fx
Fy

]
. (10)

3.1 Addition of Tail Dynamics
In order to properly plan for the movement of the tail

in the high-level MPC, the nonlinear tail dynamics must be
integrated with (10). For the sake of keeping the reduced-
order model as simple as possible while capturing the overall
dynamics, the tail is assumed to be attached to the geometric
center of the robot, as shown in Fig. 5. Due to the nature
of Bt and Jb, the equations of motion in (2) can be rewritten
more concisely as

Dt(qt) q̈t +Ht (qt , q̇t) =

−Ft
−Mt

τt

 , (11)

where λt = col(Ft ,Mt) with Ft := col(Fx,Fy,Fz) ∈ R3 being
the forces at the base of the tail in the x, y, and z directions,
and Mt := col(Mr,Mp,My) ∈ R3 being the moments at the
base of the tail in the roll, pitch, and yaw directions.

Considering that we are only interested in the forces in
the x and y directions, only the first two rows of (11) are used
for the high-level MPC. We may then solve for the reaction
forces caused by the tail in the x and y directions by noting

the tail mass matrix, Dt , and nonlinear vector, Ht , may be
decomposed into individual parts, denoted by Di j for 1 ≤
i, j ≤ 8 and Hi for 1≤ i≤ 8, respectively. More specifically,
we have[

Fx
Fy

]
=

[
−D11 ẍcom−D17 θ̈roll−D18 θ̈yaw−H1
−D22 ÿcom−D27 θ̈roll−D28 θ̈yaw−H2

]
, (12)

where θroll and θyaw denote the actuated roll and yaw angles
(i.e., shape variables) of the tail. Here, we assume that the
roll, pitch, and yaw of the quadruped (and the base of the
tail) are zero, and zcom is constant. Hence, (12) does not
contain the portions of the mass-inertia matrix pertaining to
the orientation and height of the base of the tail. We further
remark that D12 = D21 = 03. Combining (10) and (12), the
LIP equations with external forces in the x and y directions
may then be written as

[
ẍcom

ÿcom

]
=

[
g0

zcom (xcom− xcop)+
−D11 ẍcom−D17θ̈roll−D18θ̈yaw−H1

mtot
g0

zcom (ycom− ycop)+
−D22 ÿcom−D27θ̈roll−D28θ̈yaw−H2

mtot

]
.

(13)
Similarly, the dynamics for the shape of the tail (i.e. θ̈roll and
θ̈yaw) may be written as

[
D71ẍcom +D72ÿcom +D77θ̈roll +D78θ̈yaw
D81ẍcom +D82ÿcom +D87θ̈roll +D88θ̈yaw

]
=

[
τroll−H7
τyaw−H8

]
.

(14)
Combining (13) and (14), and moving all acceleration terms
to the left hand side, we obtain the final equations for the
reduced-order model as a set of algebraic differential equa-
tions of the form

W (x) ẋ = Ax+Bu+N(x), (15)

where x := col(xcom,ycom,θroll,θyaw, ẋcom, ẏcom, θ̇roll, θ̇yaw) ∈
R8 and u := col(xcop,ycop,τroll,τyaw) ∈ R4 denote the state

3Due to the nature of the floating base coordinates, the upper-left 3× 3
block of the D matrix is diagonalized.
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and control inputs, respectively. In addition, W (x) ∈ R8×8

is a weighting matrix, A ∈ R8×8 represents the state matrix,
B ∈ R4×8 denotes the input distribution matrix, and N(x) ∈
R8 contains the remaining nonlinear terms.

3.2 Linearization of the Extended LIP Model
The final reduced-order equations (15) are linearized by

taking the first order Taylor series expansion. Due to the
complexity of symbolically inverting the W matrix, the Tay-
lor series expansion is applied to both the left and right hand
sides of the equation separately yielding

G(x, ẋ) :=W (x) ẋ

≈ G(x0, ẋ0)+
∂G
∂x

∣∣∣∣
(x0,ẋ0)

(x− x0)+
∂G
∂ẋ

∣∣∣∣
(x0,ẋ0)

(ẋ− ẋ0)

(16)

and

F(x,u) := Ax+Bu+N(x)

≈ F(x0,u0)+
∂F
∂x

∣∣∣∣
(x0,u0)

(x− x0)+
∂F
∂u

∣∣∣∣
(x0,u0)

(u−u0),

(17)

where x0, ẋ0, and u0 are the operating points around which
the system is linearized. Combining (16) and (17) and solv-
ing for ẋ, we obtain the linearized equations of motion

ẋ =
∂G
∂ẋ

∣∣∣∣−1

(x0,ẋ0)

(
∂F
∂x

∣∣∣∣
(x0,u0)

− ∂G
∂x

∣∣∣∣
(x0,ẋ0)

)
(x− x0)

+
∂G
∂ẋ

∣∣∣∣−1

(x0,ẋ0)

∂F
∂u

∣∣∣∣
(x0,u0)

(u−u0)+ ẋ0

(18)

as G(x0, ẋ0) = F(x0,u0). For future reference, one can
rewrite (18) in a compact form as the following control affine
system

ẋ = A` (x0, ẋ0) x+B`(x0,u0)u+d` (x0, ẋ0,u0) , (19)

where the subscript “`” stand for the linearized dynamics.
The dynamics (19) are then discretized via an Euler for-

mulation such that xk+1 = xk + ẋkTs where k ∈ Z≥0 and Ts
is the sampling time. Using (19), we are left with a set of
difference equations of the form

xk+1 = Ad xk +Bd uk +d, (20)

where Ad ∈ R8×8 and Bd ∈ R8×4 are the discrete state and
input distribution matrices, respectively, and d ∈R8 is a vec-
tor of constants. The aforementioned matrices and vector are
constant for a given linearization/discretization, and will be
reevaluated in an event-based manner for the real-time path
planning problem (see Section 4).

4 High-Level Path Planner
The objective of this section is to formulate a real-

time optimal control problem for the extended reduced-order
model to compute an optimal trajectory for the COM and
tail motions subject to the COP remaining within the sup-
port polygon created by the contacting leg ends, feasible net
GRF, and joint and actuation limits of the tail. In particular,
we formulate a high-level MPC problem to be solved in an
event-based manner (i.e., beginning of each continuous-time
domain) to drive the state of the extended reduced-order sys-
tem from an arbitrary initial state, xi, to some final state, x f ,
over a finite number of continuous time domains, M ≥ 1. We
consider a general locomotion pattern with a graph G(V ,E)
with the vertices set V and the edges set E ⊂ V ×V (see
Fig. 6). The vertices denote the continuous-time domains of
locomotion including double-, triple-, and quadruple-contact
phases, and edges represent the discrete-time transitions be-
tween the continuous-time domains. Each continuous-time
domain is assumed to have Nd ≥ 1 evenly temporally spaced
grid points over which the trajectory is optimized. In order
to indicate the continuous-time domain for every time sam-
ple, we define the index function as ζ : Z≥0→ {1,2, · · · ,M}
by ζ[k] := b k

Nd
c+ 1 for all 0 ≤ k < M Nd and ζ[k] := M for

k ≥M Nd . In our notation, b.c represents the floor function.
MPC Formulation: We formulate an event-based op-

timal control problem for the real-time planning of the ex-
tended reduced-order model. In particular, we first linearize
the nonlinear extended LIP dynamics (15) about its cur-
rent operating points at the event times (beginning of each
continuous-time domain), that is, k = r Nd for some r ∈ Z≥0.
We then set up an MPC problem using the above-mentioned
linearization over a finite control horizon Nc = nNd for some
n≥ 1. This reduces the optimal control problem of the non-
linear system into QP that can be solved in real time. The
optimal control inputs are then employed for Nd grid points
of the current domain while we discard the remaining control
inputs for the next domains. At the beginning of the next do-
main (i.e., new event), the Jacobian linearization is updated
according to the current state of the nonlinear reduced-order
model and a new MPC problem is solved. This iterative pro-
cedure continues for all future events.

To make this notion more precise, let us assume that we
are at the event time k = r Nd for some r ∈ Z≥0. We next
evaluate the Jacobian matrices A` and B` together with the
vector d` as discussed in Section 3.2 for the following non-
linear dynamics

W (xo
k) ẋo

k = F(xo
k ,u

o
k−1), (21)

where xo
k , ẋo

k , and uo
k−1 represent the current state of the orig-

inal reduced-order system, the time derivative of the state,
and the optimal control input for the previous time sample,
respectively. Furthermore, the superscript “o” stands for the
original system. These matrices are then kept constant for
the formulation of the optimal control problem. At the next
event, the matrices will be reevaluated and will be utilized
again for a new optimal control problem. We now consider
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Fig. 6. Snapshots of a nominal trot gait to illustrate the corresponding directed graph G(V ,E) with M continuous-time domains. The
first and last vertices of the graph represent quadruple-contact domains for starting and stopping, whereas the middle vertices represent
double-contact domains. The contacting leg ends are depicted by the circles.

the affine dynamics (20) with the initial condition xk = xo
k

for all future times. The optimal control inputs must be con-
strained such that ucop

k (i.e., COP components of the input)
belongs to the convex hull of the contacting points with the
ground, Uζ[k] ⊂ R2, for all domains. That is, ucop

k ∈ Uζ[k],
ensuring that the COP is within the support polygon for all
time samples. Additionally, we constrain the net GRF to re-
main within the friction cone. From the linearized extended
LIP dynamics, the friction cone constraints can be given by

±(A f xk +B f uk +d f )≤ η, (22)

in which the subscript “ f ” stands for friction cone. More
specifically, A f ∈ R2×8 and B f ∈ R2×4 are the state and in-
put matrices which are composed of the rows of A` and B`

pertaining to the accelerations in the x and y directions. In
a similar manner, d f ∈ R2 is composed of the appropriate
rows of d`. Lastly, we define η := 1 g0 µ√

2
to represent the fric-

tion cone that the net GRF must stay within, where µ denotes
the static friction coefficient, g0 represents the gravitational
constant, and 1 is an appropriately sized vector of ones.

Finally, because the tail joint positions and torques are
explicitly included in the path planning problem, we may
bound them in order to ensure shape and input feasibility.
We define τt,k ∈ R2 and θk ∈ R2 to be the tail torque inputs
and the actuated tail configurations at the time step k, respec-
tively. We also define τlb

t , τub
t , θlb, and θub to denote the

lower and upper bounds of the tail torque inputs and joint
positions. We are now in a position to set up the MPC prob-
lem to be solved in an event-based manner (i.e., beginning of
each continuous-time domain) in order to create an optimal
sequence of inputs (i.e., COP and τt ) which drives the sys-
tem from x0 to x f over the control horizon. In particular, we
consider the following optimal control problem at k = r Nd

min
Uk→k+Nc−1|k

Jk
(
xk,Uk→k+Nc−1|k

)
= p

(
xk+Nc|k

)
+

Nc−1

∑
i=0

L
(
xk+i|k,uk+i|k

)
s.t. xk+i+1|k = Ad xk+i|k +Bd uk+i|k +d

ucop
k+i|i ∈Uζ[k+i]

± (A f xk+i|k +B f uk+i|k +d f )≤ η

τ
lb
t ≤ τt,k+i|i ≤ τ

ub
t

θ
lb ≤ θk+i|k ≤ θ

ub, i = 0,1, · · · ,Nc−1, (23)

where Uk→k+Nc−1|k := col(uk|k, . . . ,uk+Nc−1|k) denotes the se-
quence of control inputs and xk+i|k is the predicted state vec-
tor at time k+ i computed at time k subject to the dynamics
xk+i+1|k = Ad xk+i|k +Bd uk+i|k + d with the initial condition
xk|k := xk. In a similar manner, we denote uk+i|k to be the
COP and tail torque inputs at time k + i computed at time
k. The terminal cost is expressed as p(xk+Nc|k) := ||xk+Nc|k−
xdes

k+Nc|k||
2
P for some symmetric positive definite matrix P ∈

R8×8. In this notation xdes
k+i|k represents the desired state vec-

tor at time k+ i which is a smooth trajectory beginning at xk
and ending at x f , and ||x||2P := x>Px. The stage cost is also
defined as L(xk+i|k,uk+i|k) := ||xk+i|k− xdes

k+i|k||
2
Q + ||uk+i|k||2R

where Q ∈ R8×8 and R ∈ R4×4 are symmetric positive defi-
nite matrices.

Remark 1. The matrices Ad and Bd together with the
vector d are reevaluated at the beginning of each new
continuous-time domain using the current state of the origi-
nal system and the previous optimal input, and are held con-
stant for the duration of the MPC. The same is true for the
friction matrices A f and B f , and the friction vector d f . This
reduces the MPC into QP that can be effectively solved in
real-time (see Section 6 for more details).

Remark 2. The optimal COM and tail motions for the
reduced-order model that are prescribed by the MPC for
the current domain will be utilized as a reference trajectory
for the full-order model in Section 5. In particular, the low-
level nonlinear controller will impose the full-order dynam-
ics to asymptotically track the optimal reduced-order trajec-
tory while imposing all contact forces to remain within the
friction cone.

5 Low-Level Nonlinear Controller
This section presents the low-level controller (i.e.,

whole-body motion controller) which is developed based
on virtual constraints and QP to track the optimal reduced-
order motions generated by the high-level path planner.
Specifically, we derive a nonlinear control algorithm which
tracks the COM and tail trajectories prescribed by the event-
based MPC for the current domain. Here, we extend the
low-level nonlinear control algorithm of [42] to locomotion
with robotic tails. While the path planner directly provides
torques for the tail, the torques are based upon the linearized
model and are not likely to be accurate enough to use on the
full-order system. In addition to tracking the trajectories of
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the COM and the tail, the low-level controller is responsible
for coordinating the motion of the swing legs such that they
arrive at the next desired foot placement while ensuring the
feasibility of all GRFs at the contacting legs.

We consider the following time-varying virtual con-
straints

y(z, t) := h(q, t) := h0(q)−hd(s,α), (24)

where h0(q) represents a set of holonomic parameters to be
controlled and hd(s,α) denotes the desired evolution of the
holonomic outputs h0 on the gait. In particular, hd(s,α) is
taken as a Bézier polynomial that passes through the discrete
waypoints generated by the MPC path planner, in which s
is a gait phasing variable taken as the normalized time and
α represents the coefficients of the Bézier polynomial. The
dimension of the outputs vary depending on the number of
contact points with the ground. During quadruple-contact, h0
consists of 8 components including the COM position, body
orientation (i.e., roll, pitch, and yaw), and two internal joints
of the tail. The idea here is to impose the full-order system
to track the prescribed COM and tail motions while regu-
lating the Euler angles of the floating base. During triple-
and double-contact domains, these controlled variables are
augmented with the Cartesian coordinates of the swing legs
ends for the foot placement. Here, we would like the swing
leg ends follow a desired trajectory in the work space start-
ing from the former foothold and ending at the next one. This
would increase the dimension of the controlled variables to
11 and 14 during the triple- and double-contact domains, re-
spectively.

Differentiating (24) along (5) we obtain the following
output dynamics using I-O linearization

ÿ = LgL f y(z, t)τ+LwL f y(z, t)λc +L2
f y(z, t)+

∂2y
∂t2 (z, t)

=−KD ẏ−KP y, (25)

where LgL f y, LwL f y, and L2
f y are Lie derivatives and KP

and KD are positive definite gain matrices. Furthermore,
because the GRFs cannot be measured on the quadruped,
we estimate the GRFs through the use of a rigid contact
model. This assumes that the acceleration of the foot re-
mains zero after contact which may be expressed as p̈ =
Jc(qr) q̈r +

∂

∂qr
(Jc(qr) q̇r) q̇r = 0. This in tandem with (5)

yields

p̈ = LgL f p(z)τ+LwL f p(z)λc +L2
f p(z) = 0. (26)

Analogous to [42], we set up a convex QP to solve for
the optimal joint-level torques τ for the robot as well as the
tail, while imposing the feasibility of GRFs at all contacting

legs. More precisely, we consider the following real-time QP

min
(τ,λc)

1
2
‖τ‖2

[
LgL f y LwL f y
LgL f p LwL f p

][
τ

λc

]
=

[
−KD ẏ−KP y−L2

f y− ∂2y
∂t2

−L2
f p

]
λc ∈ F C
τmin ≤ τ≤ τmax, (27)

where F C denotes the friction cone, and τmin and τmax rep-
resent the lower and upper bounds for the torque inputs, re-
spectively. By formulating the low-level controller in terms
of a QP, the controller also becomes more robust to singu-
larities that could arise from matrix inversions during I-O
linearization. We remark that the low-level QP for nonlin-
ear control is executed in real-time (e.g., 1kHz) to compute
the optimal torques for the full-order model of locomotion,
while the higher-level MPC is solved at a slower rate (i.e.,
in an event-based manner) for trajectory re-planing based on
the extended LIP model.

6 Numerical Simulations
The objective of this section is to numerically verify the

effectiveness of the proposed control algorithm for robust
and stable quadrupedal locomotion with robotic tails. We
present a multitude of full-order simulations to demonstrate
the increased robustness that an articulated tail provides us-
ing the proposed control technique. In all cases, we consider
a trot gait with start and stop conditions as shown in Fig. 6.

6.1 Controller Parameters and Nominal Closed-Loop
Simulations

The extended LIP model is discretized using a sam-
pling time of Ts = 80 (ms). The high-level MPC computes
the optimal reduced-order trajectory over a control horizon
of n = 2 domains, where each domain consists of Nd = 4
grid points. We utilize the optimal solution for the cur-
rent domain, meaning that only the first four optimal tra-
jectory points from the high-level MPC–that correspond to
the current domain– are used as inputs to the low-level non-
linear controller. The rest of the parameters for the MPC
are taken as P = diag(104,104,103,103,104,104,1,1), Q =
diag(10,10,10,10,0.1,0.1,0.1,0.1), and R = I4×4, where I
represents the identity matrix and “diag” denotes the diago-
nalization operator. Conceptually, we aim to give the MPC
the ability to deviate from the desired tail trajectory (which
is always 0) and prioritize tracking the desired COM motion.
Additionally, we attempt to drive the tail back to zero at the
end of the path planner to allow the tail to begin in an uncom-
promised position at the start of the next domain. However,
we put relatively little weight on the velocity of the tail at the
end of each domain, thereby allowing the tail to keep mo-
mentum. We begin by simulating the original and extended
LIP models integrated with the proposed MPC approach to
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Fig. 7. Reduced-order simulation of the event-based MPC acting
on the standard LIP model (without tail) and the extended LIP model
(with tail) for a forward trot with a 10 (cm) step length. Here we con-
sider a 30 (N) pulse disturbance in the lateral direction which is ap-
plied for the duration of two MPC grid points (i.e., 2Ts), starting at
time sample 41.

show the effectiveness of the higher-level controller in re-
jecting pulse-like disturbances, see Fig. 7. Here, we con-
sider a forward trot gait with 20 domains subject to a pulse
disturbance with a magnitude of 30 (N) in the lateral direc-
tion (i.e., y-axis) which is applied for the duration of two
grid points, i.e., 2Ts = 160 (ms), in domain 11. The reduced-
order simulation is done in MATLAB and uses ECOS [75]
in order to solve the QP arising from the event-based MPC.
The stability of final target point for both the standard LIP
(without tail) and the extended LIP (with tail) models sub-
ject to the event-based MPC is clear, but it is evident that the
closed-loop system using the extended LIP model more ade-
quately attenuates the disturbance. In particular, the system
without the tail obtains a maximum displacement from the
y-axis of approximately 9.7 (cm) while the system with the
tail reaches a maximum displacement of 8 (cm) and settles
back to steady state faster.

Full-order simulations are then done primarily in
RaiSim [76], where we utilize qpSWIFT [77] to solve the
high- and low-level QPs. Here, the MPC problem (23) is
solved at the beginning of each continuous-time domain, that
is approximately every 4Ts = 320 (ms), whereas the low-
level nonlinear control QP is solved at 1kHz. We can show
that the QP for the higher-level MPC has 120, 112, and 128
decision variables for the first, middle, and last continuous-
time domains, respectively. In addition, the typical computa-
tion time of the MPC problem on a desktop computer with an
Intel(R) Xeon(R) W-2125 CPU at 4.00 GHz (4 cores) and 16
GB of RAM is 0.32 (ms) to 0.42 (ms). The lower-level QP
has 40 decision variables for both the double- and quadruple-
contact domains of the trot gait with a typical computation
time of 0.19 (ms) to 0.3 (ms).

RaiSim uses a universal robot description file (URDF)
representation of the system. This presents a hurdle in

that URDFs cannot represent holonomically constrained sys-
tems. In order to get around this, a URDF is created assum-
ing that each yaw link in the tail is actuated instead of being
holonomically constrained. In order to get the same dynam-
ical behavior of the holonomically constrained tail in Fig.
3, RBDL [78] is then employed to compute the equivalent
torque at each yaw joint of the tail via inverse dynamics by
using τt and λt computed by the low-level QP.

We consider three nominal simulations, two of which
are conducted in RaiSim, and the third in MATLAB. We con-
sider multiple simulation environments in order to demon-
strate the robustness of the closed-loop system against non-
parametric uncertainties arising from different contact mod-
els. The robot hardware has a small compliant element at
the toe, but the provided damping is assumed to be small and
the rebound during impact is assumed to be zero. It is there-
fore reasonable to assume that the compliant dynamics at the
toe are negligible when compared to the overall dynamics
and impacts may be treated as rigid. For this reason, the
majority of the simulations are conducted in RaiSim [76],
where a rigid contact model between the leg ends and the
ground is used, whereas few simulations are conducted in
MATLAB, in which we utilize a LuGre model [79] to repre-
sent a compliant contact model. Figures 8 (a) and (b) depict
the output (i.e., virtual constraints) and torque profiles of the
quadrupedal robot and tail for forward and diagonal trots in
RaiSim. Figure 8 (c) shows a full-order simulation of the
system run in MATLAB/Simulink subject to LuGre contact
model. In addition, Fig. 8 (c) illustrates the components of
the ground reaction force experienced at one of the legs. For
the purpose of this paper, we use a step length of 10 (cm) for
the forward trot and step lengths of (7,4) (cm) in the x and y
directions for the diagonal trot.

6.2 Robustness Analysis
In order to study the robustness of the closed-loop sys-

tem against external disturbances, we consider two different
trot gaits, namely forward and diagonal trots. The robustness
simulations fall under two different categories, the first being
a pulse-like disturbance and the latter being a time-varying
disturbance.

6.2.1 Pulse Disturbance Rejection
In order to analyze the closed-loop system’s robustness,

we investigate the effects of a pulse perturbation applied to
the system for 200 (ms) at the COM. First we consider the
forward trot gait with two different pulse disturbances, the
first being 75 (N) in the lateral direction, and the second
being 100 (N) in the forward direction. The virtual con-
straints and joint-level torques for these simulations are de-
picted in Figs. 9 (a) and (b). We also consider two ad-
ditional simulations with the diagonal trot gait, where the
first simulation is subject to a pulse disturbance directly op-
posing the direction of motion

(
i.e., along the unit vector

(−0.8682,−0.4961,0)), and the second is subject to a pulse
disturbance which is orthogonal to the direction of motion
(i.e., along the unit vector (0.4961,−0.8682,0)). The pulse-
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Fig. 8. (a) and (b) Time profiles of the outputs (i.e., virtual constraints) and joint torques for the forward and diagonal trot gaits in RaiSim.
(c) Time profile of the virtual constraints and the GRF experienced at one of the leg ends during forward trot gait with a LuGre contact model
in MATLAB. Here, we only plot the components of the virtual constraints that correspond to the absolute position of the COM (i.e., yx, yy,
and yz), absolute orientation of the robot’s floating base (i.e., yroll, ypitch, and yyaw), and shape variables of the tail (i.e., yroll,T and yyaw,T).
Other components are not shown to simplify the illustration. For the torque plots, the subscripts “FH”, “FK”, “RH”, “RK”, and “T” stand for the
front hip, front knee, rear hip, and rear knee of the left-hand-side of the robot as well as the tail, respectively. In addition, “roll” and “pitch” for
the torque plots represent the roll and pitch motions of the joints.

like forces in the latter two simulations have magnitudes of
75 (N) and 110 (N), respectively, and the corresponding vir-
tual constraints and torques are shown in Figs. 9 (c) and (d).
The same disturbances were then applied to the system with-
out the addition of the tail and the corresponding plots are
provided in Fig. 10 to allow direct comparison. Figure 11
furthermore provides snapshots for the simulations found in
Fig. 9 (a) and Fig. 10 (a). It is clear that the quadruped robot
with the tail and the proposed control algorithm can success-
fully reach the final target in the presence of the aforemen-
tioned disturbance, whereas its counterpart without the tail
cannot reach the target destination.

It is important to note that the ability for the closed-loop
system to reject a pulse disturbance is greatly influenced by
when the disturbance is applied. Specifically, it depends on
what point in the gait cycle the robot is currently in, and the
state of the tail at that point. With this in mind, we aim to
quantify the level of improvement the tail adds by consid-
ering a forward trot with a lateral pulse, where the pulse is
applied at different times. In this regard, twelve different
simulations were conducted, where in each simulation the
pulse was applied 0.1 (s) later than the previous simulation.
During each test, the largest magnitude pulse that the system
was able to withstand while still reaching the target destina-
tion was recorded. On average, the system including the tail
was able to sustain 61.7 (N) while still being able to reach the
target destination which is an increase of 32.6% compared to
its tailless counterpart. A similar procedure was done for the
diagonal trot but was instead subject to a disturbance orthog-
onal to the direction of locomotion (i.e., along the unit vector
(0.4961,−0.8682,0)). The system with the tail could reject
a pulse of 83.4 (N) on average. This is a 25.6% increase in

magnitude compared to the system without the tail.

6.2.2 Time-Varying Disturbance Rejection
In this section, we consider four additional simulations

in which the system is subject to a persistent time-varying
disturbance. Similar to the pulse disturbances, we first inves-
tigate two forward trots, and then two diagonal trots, each
subject to a different persistent disturbance. For each simu-
lation, we note the largest magnitude at which the system can
walk for 80 continuous-time domains both with and without
the tail in order to compare the results. In the first scenario,
we consider a forward trot gait with a lateral disturbance
of the form βsin(4t), where the largest magnitude the sys-
tem with the tail could withstand was β = 21.5 (N), which
is 35.2% larger than the system without the tail. We then
consider a second simulation of the forward trot gait sub-
ject to a disturbance of the form β(sin(4t),cos(4t)) in the x
and y directions. In this case, the system with the tail could
reject a maximum of β = 11 (N) while still being able to
walk for 80 domains, up from β = 7.4 (N) without the tail.
Figures 12 (a) and (b) depict the closed-loop system’s be-
havior for the forward trot gait subject to the aforementioned
time-varying disturbances. Finally, we consider two differ-
ent simulations with a diagonal trot, where each system is
subject to a disturbance of the form βsin(4t) but in different
directions. During the first diagonal simulation, the distur-
bance acts along the direction of motion

(
i.e., along the unit

vector (0.8682,0.4961,0)
)
, and in the latter, the disturbance

acts along the unit vector (0.8682,−0.4961,0). During these
simulations, the system could reject β= 14.3 and β= 18 (N),
which is an increase of 20.2% and 73% compared to the tail-

Paper DS-20-1377 11 Corresponding Author: Akbari Hamed



Fig. 9. Time profiles of the outputs (i.e., virtual constraints) and joint torques for quadrupedal locomotion with the robotic tail subject to various
pulse disturbances, all beginning at 3.5 (s) and lasting 200 (ms). The proposed controller can successfully reject the effect of disturbances
while keeping the output and input profiles bounded. (a) Closed-loop system’s behavior for a forward trot gait subject to a pulse disturbance
of -75 (N) in the y direction. (b) Closed-loop system’s behavior for a forward trot gait subject to a pulse disturbance of 100 (N) in the forward
direction. (c) Closed-loop system’s behavior for a diagonal trot gait subject to a pulse disturbance of 75 (N) orthogonal to the direction of
locomotion in the xy-plane. (d) Closed-loop system’s behavior for a diagonal trot gait subject to a pulse disturbance of 110 (N) opposing the
direction of locomotion.

Fig. 10. Time profiles of the outputs (i.e., virtual constraints) and joint torques for quadrupedal locomotion without the robotic tail subject to
various pulse disturbances, all beginning at 3.5 (s) and lasting 200 (ms). Here, we use the same disturbances that are applied to the system
with the robotic tail in Fig. 9. The instability of the gaits is clear. In particular, the outputs diverge after a while with the torques reaching
the maximum values. (a) System’s behavior for a forward trot gait subject to a pulse disturbance of -75 (N) in the y direction. (b) System’s
behavior for a forward trot gait subject to a pulse disturbance of 100 (N) in the forward direction. (c) System’s behavior for a diagonal trot gait
subject to a pulse disturbance of 75 (N) orthogonal to the direction of locomotion. (d) System’s behavior for a diagonal trot gait subject to a
pulse disturbance of 110 (N) opposing the direction of locomotion.

less system, respectively. Figures 12 (c) and (d) illustrate
the time profiles of the virtual constraints and joint torques
for these simulation. In order to demonstrate the robustness
of the closed-loop system with the tail mechanism, Fig. 13
contains the same simulations having been performed on the
system without the tail. In addition, Fig. 14 (a) and (b) pro-
vides snapshots of the simulations corresponding to Fig. 12

(b) and Fig. 13 (b), respectively. Animations of these simu-
lations can be found online4.

4https://youtu.be/Bi7Zec66nbA
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Fig. 11. Snapshots of the quadrupedal locomotion with and without robotic tails and subject to the pulse-like disturbance in RaiSim. (a)
Snapshots for the closed-loop system’s behavior with the robotic tail as simulated in Fig. 9 (a). Here, we consider a forward trot gait subject
to a pulse disturbance of -75 (N) in the y direction, starting at 3.5 (s) and lasting 200 (ms). (b) Snapshots for the system’s behavior without
the robotic tail and the same disturbance as simulated in Fig. 10 (a). The arrow illustrates the disturbance. The instability of the gait without
the tail is clear.

Fig. 12. Time profiles of the outputs (i.e., virtual constraints) and joint torques for quadrupedal locomotion with the robotic tail subject to
various sinusoidal disturbances. The proposed controller can successfully reject the effect of time-varying disturbances while keeping the
output and input profiles bounded. (a) Closed-loop system’s behavior for a forward trot gait subject to a disturbance of the form 18sin(4t)
(N) in the y direction. (b) Closed-loop system’s behavior for a forward trot gait subject to a disturbance of the form (8.5sin(4t),8.5cos(4t))
(N) in the x and y directions, respectively. (c) Closed-loop system’s behavior for a diagonal trot gait subject to a disturbance of the form
13sin(4t) (N) along the direction of locomotion. (d) Closed-loop system’s behavior for a diagonal trot gait subject to a disturbance of the
form 13sin(4t) (N) along the unit vector (0.8682,−0.4961,0).

7 Discussion

The numerical studies and full-order simulations of this
paper show significant improvements in rejecting both pulse-
like and time-varying disturbances during quadrupedal loco-
motion integrated with robotic tails and the proposed control
algorithms. The amount of improvements depends largely on
the gait and the properties of the disturbance applied. The tail
mechanism integrated with the proposed hierarchical control
algorithm has been shown to allow the closed-loop system
to withstand pulse-like disturbances up to 32.6% and 25.6%
greater in magnitude during forward and diagonal trots when
compared to a system without a tail. Furthermore, the tailed
closed-loop system was able to withstand persistent pertur-

bations up to 21.5% and 73% greater in magnitude during
forward and diagonal trots, respectively.

It is noteworthy that the tail does not produce aggressive
motions in order to reject disturbances. However, because of
the nonlinearities of the tail dynamics, it only takes a small
angular deflection at the base of the yaw links to deflect the
end effector of the tail greatly. In addition, the gaits pro-
vided are quasi-static gaits where it stands to reason that the
tail motions would be quasi-static as well. In a more ag-
gressive gait, the tail would likely produce faster motions of
larger amplitude. Furthermore, the roll of the tail remains
relatively constant throughout the gait which indicates that
the yaw portion of the tail is more important in maintaining
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Fig. 13. Time profiles of the outputs (i.e., virtual constraints) and joint torques for quadrupedal locomotion without the robotic tail subject
to various sinusoidal disturbances. Here, we utilize the same time-varying disturbances that are applied to the system augmented with the
robotic tail in Fig. 12. The instability of the gaits is clear. In particular, the outputs diverge after a while with the torques reaching the maximum
values. (a) System’s behavior for a forward trot gait subject to a disturbance of the form 18sin(4t) (N) in the y direction. (b) System’s
behavior for a forward trot gait subject to a disturbance of the form (8.5sin(4t),8.5cos(4t)) (N) in the x and y directions, respectively. (c)
System’s behavior for a diagonal trot gait subject to a disturbance of the form 13sin(4t) (N) along the direction of locomotion. (d) System’s
behavior for a diagonal trot gait subject to a disturbance of the form 13sin(4t) (N) along the unit vector (0.8682,−0.4961,0).

Fig. 14. Snapshots of the quadrupedal locomotion with and without robotic tails and subject to a persistent sinusoidal disturbance in RaiSim.
(a) Snapshots for the closed-loop system’s behavior with the robotic tail as simulated in Fig. 12 (b). Here, we consider a forward trot gait
subject to a time-varying disturbance of the form (8.5sin(4t),8.5cos(4t)) (N) in the x and y directions. (b) Snapshots for the system’s
behavior without the robotic tail and the same disturbance as simulated in Fig. 13 (b). The arrow illustrates the disturbance. The instability of
the gait without the tail is clear.

robust and stable locomotion on flat ground.

While increasing the complexity of the reduced-order
model to a nonlinear template model such as the inverted
pendulum (IP) model [80] or spring-loaded inverted pendu-
lum (SLIP) model [19] could potentially offer increased per-
formance, it comes at the cost of increased computational
demand. More specifically, these templates necessitate solv-
ing a NLP in real-time for path planning which significantly
increases the computational demand compared to working
with a linearized model. Furthermore, in the case of quasi-
static quadrupedal locomotion, the assumption that the COM

height remains constant is a very good approximation as
shown by simulation results above, making the LIP model
a suitable choice for the reduced-order model. During more
agile locomotion where these assumptions might be violated,
a more complex reduced-order model could play a larger role
in increasing robustness. However, for the quasi-static case
with multi-contact domains considered here, the additional
tail hardware can play a larger role in attenuating disturbance
forces applied to the robot than increasing model complexity
due to the tails ability to directly apply forces to the body of
the robot to reject said disturbances.

Paper DS-20-1377 14 Corresponding Author: Akbari Hamed



The numerical results above have shown that the event-
based framework coupled with the assumption that the roll,
pitch, and yaw of the body are zero, along with the height of
the COM being constant, leads to robust locomotion when
maneuvering over flat, even terrain. In particular, under these
conditions, linearizing the extended LIP model once per do-
main is sufficient due to the quasi-static nature of the gait and
small deflections of the tail. However, the high-level path
planner in its current form would likely need to be altered
in order to address more complex environments wherein the
terrain is unknown or unstructured. This is largely due to sev-
eral reasons, the first being that in the current framework the
desired foot locations are calculated offline, the second be-
ing that moving up or down slopes would inherently violate
the assumptions regarding the COM height and body orienta-
tion, and finally, the event-based linearization/planning may
not be sufficient to adequately plan for locomotion along un-
structured terrain considering higher planning rates are typi-
cally required when the environment is not well known.

8 Conclusion

This paper presented a formal foundation to design hi-
erarchical and nonlinear feedback control algorithms that
effectively couple bio-inspired articulated tails with legged
robots to produce robust locomotion patterns in the presence
of external disturbances. The proposed control approach uti-
lizes a high-level and real-time path planner, based on an
event-based MPC, to compute the optimal robot’s COM and
tail trajectories for an innovative reduced-order model, re-
ferred to as the extended LIP dynamics. The MPC problem
considers the feasibility of the net GRF and the tail’s mo-
tion during the steering problem of the extended LIP model.
A nonlinear whole-body motion controller, based on virtual
constraints and QP, is then utilized in the lower-level of the
control scheme to impose the full-order dynamical model
of locomotion to track the optimal and reduced-order tra-
jectories prescribed by the MPC, while ensuring the feasi-
bility of the GRFs at the contacting legs. The potential of
the proposed control approach was demonstrated through a
variety of full-order simulations for an 18-DOF quadruped
robot augmented with a 2-DOF serpentine tail. It is shown
that the proposed control solution integrated with the tail dy-
namics can significantly reduce the effect of disturbances on
quadrupedal locomotion.

For future research, we will extend the framework to
more agile gaits wherein the tail could have an even greater
impact on the overall stability of locomotion. We will also
study alternative tail designs with different structures and
DOF to further investigate the effects of tails on quadrupedal
locomotion. Moreover, we will experimentally employ the
developed control algorithms for locomotion of the Vision
60 platform coupled with a robotic tail. Finally, we will con-
sider extending the proposed framework to uneven, unstruc-
tured, and sloped terrain to allow for greater versatility.
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Nomenclature
(.)r, (.)t Variables corresponding to the robot, variables

corresponding to the tail
(.)`, (.)d Variables corresponding to the linearized system,

variables corresponding to the discretized system
D(.), H(.) Mass inertia matrix, nonlinear vector (i.e. Corio-

lis, centrifugal, and gravitational terms)
B(.), Jb(.) Input distribution matrix, Jacobian matrix at the

base of the tail
qr, qt , z Configuration and state variables for the robot, the

tail, and the augmented system
θroll, θyaw Internal roll and yaw angles of the tail
τroll, τyaw Torques applied to the roll and yaw actuators of

the tail
τr, τt , τ Inputs to the robot, the tail, and the augmented

system
λc, λt Ground reaction forces, tail wrench
( f ,g,w) Vector fields of the affine continuous-time dynam-

ics
(.)com, (.)cop Variables corresponding to the center of mass

(COM) having been projected onto the xy-
plane, variables corresponding to the center
of pressure (COP)

Fx, Fy, Fz Forces in the x, y, and z directions
Mr, Mp, My Moments in the roll, pitch, and yaw directions
Ft , Mt Forces at the base of the tail, moments at the base of

the tail
W , A(.), N, d Extended LIP weighting matrix, state ma-

trix, nonlinear vector function, vector of con-
stants

x, u State variables for the extended LIP model including
tail dynamics, inputs to the extended LIP model in-
cluding tail dynamics

xo
k , ẋo

k , uo
k State and input variables for the original and ex-

tended reduced-order system at time k
x0, ẋ0, u0 Operating points around which the augmented

LIP model is linearized
ζ[k], Uζ[k] Current domain function, convex hull formed by

stance legs
M, n Total number of continuous-time domains, number of

continuous-time domains to plan over
Nd , Nc, Ts Number of grid points to plan over, control hori-

zon, time step between grid points
y, h0, hd Holonomic output function, holonomic control

variables, desired evolution of controlled vari-
ables

LgL f ,LwL f ,L2
f Lie derivatives along the continuous-time

dynamics
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