COSMOS Smart Intersection: Edge Compute and
Communications for Bird’s Eye Object Tracking

Shiyun Yang’, Emily Bailey*, Zhengye Yang!, Jonatan Ostrometzky', Gil Zussman', Ivan Seskar*, Zoran Kostic'
1 Dept. of Electrical Engineering, Columbia University, New York City
I Dept. of Computer Science, Columbia University, New York City
* Winlab, Rutgers University, New Jersey

Abstract—Smart-city intersections will play a crucial role in
automated traffic management and improvement in pedestrian
safety in cities of the future. They will (i) aggregate data from in-
vehicle and infrastructure sensors; (ii) process the data by taking
advantage of low-latency high-bandwidth communications, edge-
cloud computing, and Al-based detection and tracking of objects;
and (iii) provide intelligent feedback and input to control systems.
The Cloud Enhanced Open Software Defined Mobile Wireless
Testbed for City-Scale Deployment (COSMOS) enables research
on technologies supporting smart cities. In this paper, we provide
results of experiments using bird’s eye cameras to detect and
track vehicles and pedestrians from the COSMOS pilot site. We
assess the capabilities for real-time computation, and detection
and tracking accuracy - by evaluating and customizing a selection
of video pre-processing and deep-learning algorithms. Distinct
issues that are associated with the difference in scale for bird’s
eye view of pedestrians vs. cars are explored and addressed: the
best multiple-object tracking accuracies (MOTA) for cars are
around 73.2, and around 2.8 for pedestrians. The real-time goal
of 30 frames-per-second - i.e., a total of 33.3 ms of latency for
object detection for vehicles will be reachable once the processing
time is improved roughly by a factor of three.

Index Terms—smart-city, smart-intersection, deep learning,
detection, tracking, testbed, wireless.

I. INTRODUCTION

Smart-city intersections are the key infrastructural nodes
of the emerging technologically-enabled smart cities. A
collection of intersections, connecting roads and corresponding
vehicle and pedestrian traffic fully describe the real-time
dynamics of a smart-city [1]. A traffic intersection is an ideal
geographical location for positioning the communications
equipment and edge computing nodes used for collection and
processing of data, and for interaction with traffic participants.
Emerging applications such as autonomous and cloud-
connected vehicles, V2I, V2X [2] and multi-sensor/multi-
media assistance to handicapped pedestrians, will require
significant compute power including machine learning/Al
capabilities, very high communication bandwidths, and ultra-
low latencies.

Dense urban environments, such as New York City (NYC),
present unique challenges to the deployment of the advanced
services such as cloud-connected vehicles [3]. This is due
to the large number of vehicles moving at various speeds
in many directions, obstructions which are opaque to in-
vehicle sensors, and erratic behavior of pedestrians. Reliable

real-world automation of monitoring, measurement, learning,
feedback, and participation in control will require significant
further advancements in a number of technologies.

This paper presents the results of experiments with a subset
of technologies which will constitute a smart intersection:
bird’s eye videos, edge computing, and contemporary deep-
learning-based detection and tracking of objects in an
intersection. The experiments have been performed on the pilot
site of the COSMOS testbed [4]-[6], deployed in New York
City.

II. VISION OF A SMART CITY INTERSECTION

Smart city intersection will be at the core of an Al-powered
traffic management system for future metropolises. The key
goals of a smart-intersection are pedestrian protection and
real-time collaborative control of cloud-connected vehicles.
Real-world experiments are essential to making progress
on the concept of smart city intersections, and this paper
considers one smart intersection in NYC. Our studies are
based on the COSMOS testbed [4] pilot site at Columbia
University (Amsterdam Ave. and 120th Street). The paper
shows the results of the experiments with videos obtained
by bird’s-eye cameras located high above the intersection,
and deep-learning-based detection and tracking of vehicles
and pedestrians. The experiments are performed to asses and
provide direction on how to improve the state of art with an
eye of achieving two performance targets. One target is to
achieve latency around 33 ms for a loop which consists of:
(i) sensor data acquisition; (ii) communications between end-
users, peripheral, edge cloud and cloud equipment; (iii) real-
time AI/ML inference computation; and (iv) feedback towards
the end-users. The second target is to achieve accuracies of
high 90% for Al-based detection and tracking algorithms.

III. COSMOS TESTBED AS A PLATFORM FOR SMART
INTERSECTION EXPERIMENTATION

COSMOS testbed [4]-[6] provides technological
components for research on smart intersections. It will
support the use case of cloud-connected vehicles and
handicapped pedestrian assistance. Vehicles will wirelessly
share in-vehicle sensor data with other vehicles and with
the edge cloud servers. COSMOS will additionally deploy
a variety of infrastructure sensors, including street-level and

bird’s eye cameras [7], whose data will be aggregated by
the edge-cloud servers [8]. The servers will run real-time
algorithms to monitor and manage traffic after detecting
and tracking the objects in the intersection, and share the
processed data in real-time with participants in traffic and
with traffic management and control. COSMOS’s pilot
location is equipped with four cameras (two are bird’s eye
cameras), a GPU edge computing node, and can support low
latency wireless broadcast (see Fig. 1).

Fig. 1. COSMOS pilot site with cameras and edge-cloud node

COSMOS testbed [6] contains an optical x-haul transport
system connecting powerful edge computing clusters for
baseband processing with massively scalable CPU/GPU
computing resources and FPGA assist, and software defined
radios. It provides four technology layers for experimentation:
user device layer, radio hardware and front-haul network
resources, radio cloud, and general purpose cloud.

IV. TARGET USE CASE: SEEING AROUND THE CORNER -
BIRD’S EYE DETECTION AND TRACKING OF OBJECTS

One of the goals of the smart-intersection research is
the ability to support cloud-connected vehicles. That implies
multi-modal sensor integration combining data from in-vehicle
and infrastructure sensors. On the way to that goal, we
have defined an intermediate target which uses infrastructure
sensors only, such as cameras, to process videos, detect
and track objects, and to construct and broadcast a “radar
screen” to all participants in the intersection, similar to the
concept described in [9]. The “radar screen” is a real-time-
evolving “movie” of positions and velocity vectors of all
objects in the intersection. An example snapshot constructed
using the first implementation of deep-learning-based tracking
is illustrated in Fig. 2, where a car is marked by blue, a
pedestrian in red, and a bicycle in teal color. The radar
screen is constructed in the edge cloud server using learning
algorithms that will ultimately be dynamically distributed
across various computing resources based on the application
latency requirements and available bandwidth. The radar
screen will be wirelessly broadcast to participants in the
intersection within the prescribed latency target.

Bird’s eye infrastructural cameras are some of the key
sensors in dense urban environments such as New York
City, because they provide contextual awareness of the whole
intersection, and are less problematic from the perspective
of protecting privacy/anonymity: Pedestrian profiles are
exceptionally small and vehicle license plates are not visible.

* 14.8mph

Fig. 2. The “radar screen”: one frame of a video containing locations and
speed of objects within an intersection.

A. Data Acquisition

Video is the most frequently used data source for detection
and tracking of moving objects [7]. Because our application
is aimed at object tracking in crowded city intersections and
streets from videos taken with bird’s eye view cameras, a
unique goal when compared to existing literature, there is no
applicable public dataset available for training and testing our
systems. We therefore created our own dataset. For results
presented in this paper, we use videos acquired by COSMOS
cameras Hikvision (DS-2CD5585G0-IZHS), and some videos
acquired by GOPRO (Hero-6). The cameras were located
on the 12th floor of Seeley W. Mudd Building at Columbia
University in New York, overlooking the intersection of W
120th St. and Amsterdam Ave. All videos are recorded at 30
frames per second with a resolution of 1920 x 1080 pixels.
Videos were taken across many days in the morning, noon,
dusk, and at night.

B. Data Processing

Because different cameras, or cameras installed at different
locations, are likely to have different zooms, and objects
from different views may vary in scale, it is hard to have
comparable results for the detection and tracking algorithms.
To remedy this problem, we apply video calibration to the raw
videos, which warp the traffic intersection into a predefined
rectangle with a uniform scale. We also black out the regions
which are related to the buildings and sidewalks to remove
irrelevance; we leave the four corners of the intersection
where the entrances for pedestrians to enter the crosswalks
are located.

We inspected more than ten hours of recorded videos to
find video clips that contain busy traffic scenes and different
types of vehicles and pedestrians. We then divided the data
into one testing dataset and multiple training datasets. The
testing dataset contains 10 video clips of 90 seconds each,
and is used for benchmarking the model performances. We
chose 90-second clip length because this encapsulates one full

== vm) [«em) ,” Jl

i

Fig. 3. Example of an annotated frame with calibration and shading

cycle of the traffic light, allowing our data to cover all possible
standard trajectories in all directions.

To obtain the correct benchmarking results, the testing
datasets have been isolated from the training datasets. The
training datasets contain individual frames or images cropped
from frames, and are used for training of the object detection
models. We manually annotated all the calibrated datasets
which contain more than 10, 000 frames in total with bounding
boxes and corresponding ids. In Fig. 3, we present an example
of annotation with location and identity information of objects.
In Table I we present an overview of this new COSMOS
dataset and compare it to widely-used MOT benchmarking
datasets. This test dataset is larger than all but two others,
in terms of frames, tracks, and boxes. It is diverse in classes
represented and in lighting/weather conditions.

TABLE I
COMPARISON: COSMOS DATASET VS WIDELY-USED MOT BENCHMARKS
Testing Properties

Dataset Frames | Tracks Boxes Classes Year
COSMOS 9K 0.8K | 243.6K | Ped. & Veh. | 2020
MOT17 17.8K 24K 564.2K | Ped. & Veh. | 2017
MOT16 5.9K 0.8K | 182.3K | Ped. & Veh. | 2016
MOT15 5.8K 0.7K 61K Ped. 2015
UA-DETRAC 56K 23K 632K Veh. 2015
KITTI-T* 8K - - Veh. 2014
UR* 3.6K - - Ped. & Veh. | 2014
PETS2009 1.5K 0.1K 18.5K Ped. 2009
TUD* 0.5K 0K 2.6K Ped. 2008

* Indicates dataset with litle lighting and weather conditions.

C. Al for Detection, Tracking and Feedback

1) Object Detection: Object detection precedes object
tracking, and it requires models to automatically generate the
location and class information of objects inside the scenes.
Our detection models also create a confidence score for each
predicted object and class. We consider three state-of-the-art
detection models.

The first object detection algorithm that we consider is Mask
R-CNN [10] - an object detection and instance segmentation
framework built on top of the Faster R-CNN model within the
Region-based Convolutional Neural Network (R-CNN) family.
Faster R-CNN [11] is a two-stage object detector where, in
the first stage, object bounding boxes or Region-of-Interests
(Rols) are proposed for the entire image. In the second stage,

a small feature map is extracted from each Rol and is used
to perform classification and bounding-box regression. Mask
R-CNN adds an additional “mask branch” to the second stage
that predicts pixel-wise instance segmentation masks.

Because two-stage models such as R-CNNs separate the
detection task into branches, they sacrifice speed. Much
faster single-stage detectors have been proposed [12], [13].
Current state-of-the-art single-stage detectors include Single
Shot Detector (SSD) [14] and You Only Look Once v3
(YOLOV3) [15]. These models follow a similar strategy: they
extract features from input images and use several feature
layers to represent features with different scales, then predict
the offset of predefined anchor boxes based on the information
from feature maps to output the bounding boxes with non-max
suppression. The predefined anchor box sizes are the clusters
of all bounding boxes in the training dataset. These models are
designed with the goal to achieve real-time object detection
while maintaining competitive accuracy.

2) Object Tracking: In our application, not only do we need
to identify the presence and know the location of the objects,
but we also want to measure the movement and speed of the
objects at each time instance. To obtain this information, a
Multiple Object Tracking (MOT) [16] system is needed so
that we could trace the objects’ location in time and predict
the direction and speed of the movement. We next discuss
two off-the-shelf MOT algorithms, and we also develop an
optical-flow based tracking algorithm.

DeepSORT [17] is an extension to the Simple Online and
Realtime Tracking (SORT) algorithm [18], which is based
on the combination of two techniques - the Kalman Filter
and the Hungarian algorithm. On top of that, to better solve
the object association problem, DeepSORT introduced the
deep appearance descriptor, which is a convolutional neural
network (CNN) model to extract features inside of bounding
boxes, then uses cosine distance to represent matching score
to associate objects between two frames.

Deep Affinity Network (DAN) [19] learns compact,
comprehensive features of pre-detected objects at several
abstraction levels, and performs exhaustive pairing
permutations of features in any 2 frames to infer object
affinities. DAN accounts for multiple objects appearing and
disappearing between frames. It exploits the resulting efficient
affinity computations to associate objects in the current frame
deep into previous frames for reliable on-line tracking.

We developed a tracking algorithm called Multicut, which
works with optical flow [20]. Optical flow shows the speed
of consistently bright movements, which can be used to
describe motion. We use optical flow as traces to help to track
objects. We adopted a state-of-the-art optical flow estimation
model called PWC-Net [21], which uses pyramidal processing,
warping, and cost volume to achieve high estimation accuracy
without sacrificing inference speed. With the help of optical
flow and object detection results, we can predict objects’
movements in the next frame. Then we apply the greedy
approach to match the same objects across multiple frames. To
remedy the impact of missed detections, we can simply follow

the flow vector of missed objects, with the goal to mitigate the
identity switching problem. Furthermore, we keep the partial
momentum of optical flow to minimize the impact of object
occlusions.

V. EXPERIMENTS

To evaluate and compare how object detection and tracking
models perform in our application, we assess three object
detection models and three tracking models. The detection
models are trained on our dataset. We measure two sets of
performance metrics: (i) object detection performance metrics
are measured for each detector, and (ii)) MOT performance
metrics are measured for each detector-tracker pair.

A. Experimental Setup

Since running neural network models requires considerable
computing power, we use computing configurations consisting
of clusters of 16 vCPUs, 104GB of memory, and one Nvidia
P100 GPU, which can be run on Virtual Machines (VMs) on
Google Cloud Platform (GCP) for both training and testing
the models.The operating system is Ubuntu 16.04.

B. Training

Training on our own dataset is necessary for the object
detection models because most state-of-the-art detectors are
pre-trained on popular public benchmark datasets such as the
COCO dataset [22], which contains close-up pictures of many
different types of objects. In our bird’s eye view videos, objects
appear much smaller, thus the scale is very different; and the
object types are limited to two classes, vehicle and pedestrian.

On the other hand, we find that training the tracking models
on our own dataset is not necessary because (i) the tracking
models are trained to recognize object similarities between
a series of frames, which do not depend on the objects
themselves, therefore the pre-trained models work fine; and (ii)
training the tracking models requires a training dataset which
contains a large number of frames (preferably from different
cameras) and where each object is labelled with a consistent ID
across all frames. Preparing such a dataset requires significant
amount of time. An example tracking dataset is the Vehicle
Re-Identification (VeRi) dataset which contains over 50,000
images of 776 vehicles captured by 20 cameras.

The training of the detection models is done on the web
platform called Supervisely [23]. The training datasets are
the cropped images from our bird’s eye video recordings.
We ensure that the training images do not overlap with the
testing videos. The images are uploaded and hand-labeled
using Supervisely annotation tools. After connecting a GCP
VM to the platform, we can spawn a Supervisely docker
container that trains the model on the labelled datasets.

Since Mask-RCNN is an instance segmentation model, and
it therefore needs pixel-wise masks for the training. Annotating
pixel-wise masks is time-consuming - to remedy this problem,
we applied data augmentation to our training dataset including
random crops, horizontal flips, and random rotations all the
while keeping the objects’ original scale.

The other detectors only need bounding boxes to learn
the localization of objects. It is always good to train
neural networks with more data, and labeling the datasets
is expensive. Inspired by [24], and given Mask-RCNN’s
outstanding performance, we use Mask-RCNN which is
trained on our dataset to predict the calibrated dataset without
manual annotation. We then utilize the outputs from Mask-
RCNN as the pseudo ground truth to train YOLOV3 and SSD.

C. Inference

After the training is completed, we select the highest
accuracy model for each detector to use in the inference
phase. To measure the object detection performances, we run
each detection model on the entire test dataset, and then
use the outputs and the ground truth annotations to compute
the detection performance metrics. To measure the MOT
performances, we use the output of each detector as an input
to run each tracker, then use the tracks’ outputs to compute
the MOT performance metrics. When running each detector
and each tracker, we also record the runtime of the models.
To ensure a fair comparison, all models are ran on VMs with
the exact same specifications.

VI. RESULTS

In choosing the metrics, we paid particular attention to
those used by several widely-known challenges: for detection,
the Pascal Visual Object Classes (VOC) Challenge [25] and
the Common Objects in Context (COCO) Challenge [22]; for
tracking, the MOT Challenge [26].

We utilize the metric called Intersection Over Union (IOU),
defined as the area of intersection of the predicted and ground
truth bounding boxes, divided by the union of the predicted
and ground truth bounding boxes,

_ |AnB| _ |ANB]|
10U = |[AUB| = |A|+|B|-|ANB|"

IOU sets the basis of how we evaluate the detection, and
thus the tracking models which depend on detection results.
We consider an object to be detected if the IOU between a
prediction and a ground truth object is greater than a specified
threshold value.

A. Detection Accuracies

We also leverage IOU directly as a metric for detection
models: mIOU denotes the mean IOU for all detected objects.
The second key metric for measuring detection models is
Average Precision (AP), which denotes the mean ratio of
matches to detections across a set of confidence intervals.
We build ten confidence intervals using the confidence values
output by the detectors. Both metrics are calculated using the
IOU thresholds of 50% and 75%. Note that in the results
below we use the abbreviation Veh. for a vehicle, and Ped.
for a pedestrian; we use the abbreviation MRCNN for the
MaskRCNN model.

The first set of results, in Table II, shows each detector’s
performance for each of our two classes. We clearly see
that all models perform far better at detecting vehicles than

pedestrians, by an average of 34.8 points of APs5y. We also see
that MaskRCNN handily outperforms both SSD and YOLOv3
for both classes, by an average of 7.6 points for SSD and 8.2
points for YOLOV3.

TABLE 11
DETECTION RESULTS FOR THE TEST DATASET
Class | Detector | APsy | mIOUsy | AP75 | mIOU7s
MRCNN 90.7 717.3 73.3 84.4
Veh. SSD 89.7 71.3 58.5 81
YOLOV3 86.2 69.3 47.7 80.1
MRCNN 62.7 65.6 37.3 80.3
Ped. SSD 48.6 59.1 7.8 72
YOLOV3 50.8 58.2 12.9 71.4

We further analyze the performance of MaskRCNN on our
dataset by breaking down the APsy and AP7s results for each
class by the time of day. In Table IIl we see that lighting
conditions make a far greater impact on pedestrian detection
than on vehicle detection, with pedestrian APsy nearly 8.4
points higher in the day when compared to night (versus just a
3.4 point difference for vehicle detection). We hypothesize this
difference exists for two key reasons: first, cars at nighttime
shine headlights which are very visible; second, not only are
pedestrians unlit, but at dusk we see pedestrians casting very
long shadows, which closely resemble pedestrians themselves,
leading to large numbers of false positives.

TABLE III
DETECTION RESULTS FOR MASKRCNN BROKEN OUT ACROSS LIGHTING
CONDITIONS IN THE TEST DATASET

Daytime Nighttime
Class APsy | AP7s | APsg | APys
Veh. 92 76 88.6 69.4
Ped. 66.1 44.2 57.7 26.9

To put these results in context, we look to MaskRCNN
bounding box performance on the COCO dataset. APsq is
reported as 62.3 [10], which is lower than our MaskRCNN
performance on both vehicle and pedestrian detection. This
can be explained by recalling that the COCO dataset covers
more than 80 classes, whereas our dataset focuses in on just 2.
In addition, images in the COCO dataset come predominantly
from ground-level cameras. Because our data is captured
using bird’s eye cameras, which are notably further from the
subjects, features are less sharp and thus differences between
objects of the same class are not as likely to be problematic.

B. Tracking Accuracies

MOT results are measured primarily using MOT Precision
(MOTP), defined as the total error in position for valid
matched object-hypothesis pairs across all frames, and MOT
Accuracy (MOTA), defined as the total number of errors (false
positives, false negatives, and mismatches) relative to the total
number of ground truth object appearances [27]. Note that
while the range of possible MOTP values is [0, 100], MOTA
has a range of [—100,100]. We also look closely at the
percentages of Mostly Tracked (MT) and Mostly Lost (ML)

objects, those ground truths which are tracked > 80% and
< 20% of the time, respectively.

In Table IV we can see that once again our models all
perform far better across all metrics on the vehicle class than
on the pedestrian class. Note that here we use the abbreviations
DSORT for DeepSORT and MCUT for Multicut. Another
trend that repeats is that any tracker leveraging MaskRCNN
outperforms the same tracker leveraging either of the other
detection models, as is expected given the results presented in
Table II. Specific to the trackers themselves, we can see that
DeepSORT and Multicut both outperform DAN on MOTA;
however, we see that MOTP, MT, and ML across the three
models are all fairly comparable.

TABLE IV
MULTIPLE OBJECT TRACKING RESULTS FOR ALL TRACKER-DETECTOR
PAIRS FROM EXPERIMENTS ON THE TEST DATASET

Class | Tracker | Detector | MOTA | MOTP MT ML
DAN MRCNN 55.9 76.4 | 86.7 4.6
DAN SSD 31.7 704 | 46.3 | 204
DAN YOLOvV3 30.3 68.8 | 535 | 184
DSORT MRCNN 73.2 76.6 | 85.1 4.5
Veh. DSORT SSD 42 71.8 | 50.1 | 21.6
DSORT YOLOvV3 42.6 69.6 | 51.2 | 18.9
MCUT MRCNN 72.7 775 | 87.9 4.4
MCUT SSD 41.8 71.5 | 54.1 | 20.2
MCUT YOLOV3 40.8 69.5 | 594 | 17.5
DAN MRCNN -21.5 644 | 134 28
DAN SSD -50.2 59.8 0 | 815
DAN YOLOV3 -66 58.8 0 89
DSORT MRCNN 2.8 66.4 19 | 245
Ped. DSORT SSD -30.4 60.1 0 | 79.7
DSORT YOLOV3 -47.4 58.8 0 | 883
MCUT MRCNN -4.3 66 16 | 242
MCUT SSD -45.6 60 0 | 788
MCUT YOLOvV3 -62.1 58.8 0 | 87.1

In the most recent MOT Challenge [28], we see MOTA
values averaged across all classes ranging from —7.3 to 67.2.
This range is similarly broad to what we see in our own
results, but as they do not report class-level metrics, it is
difficult to compare to our work. Also, while the datasets used
for this challenge are more similar to ours than that of the
COCO challenge, being that they are made up of streetviews
containing vehicles and pedestrians, the cameras are still much
closer to the objects than our bird’s eye cameras.

C. Timing Profiles

Because our ultimate goal is to run real-time tracking and
detection, we consider the speed of algorithmic execution
using Frames per Second (FPS). We define real-time as a
minimum of 30 FPS. This number is convenient because it is
equal to FPS of many video recording systems. In the context
of the smart-city intersection, this number maps into 1 sec /
30 = 33.3 ms, and the corresponding movement of 10 cm for
a vehicle traveling at a velocity of 10 km/h. If a vehicle can
be provided feedback with “distance latency” of 10 cm, one
can argue that a useful safety action can be actuated by it.

Performance numbers for speed are reported averaged over
all classes, as the models do not train separately. The tracker
metrics are also reported averaged across the used detectors.

The findings are summarized in Table V. The key learning is
that none of our models can yet achieve the targeted real-time
speed. A second key takeaway is that MaskRCNN is roughly
ten times slower than either of the other two detectors. Of
the three tracking models, DeepSORT is the fastest, followed
by DAN (37% slower), with Multicut lagging far behind.
The reason is that estimating optical flow requires significant
computational power, primarily driven by the high resolution
of our datasets - this takes up more than 99% of total inference
time. While DAN and DeepSORT also process 1920 x 1080
resolution frames to generate the tracking results.

TABLE V
RUNTIME FOR DETECTORS AND TRACKERS FOR THE TEST DATASET

Detector | FPS Tracker | FPS
MRCNN 1 DAN 2
SSD 9.2 DSORT 3.2
YOLOv3 | 11.8 MCUT 0.47

It is valuable to put these results in context. Recent
research on real-time detection sees speeds ranging from 2.2
to 145.1 FPS [29]. This shows that state-of-the-art models
trained specifically for real-time detection may still lag the
threshold considerably; however, it also shows that real-time is
achievable. We have not encountered any papers that achieve
real-time MOT speed as we define it, though several claim
real-time capability by relying on lower thresholds [30], [31].

D. Visualization of the Results

An example of the segmentation-based detection using
Mask-RCNN is shown in Fig. 4. Red contours represent
pedestrians while green represent vehicles. This figure not only
shows the accuracy in detecting objects but also illustrates the
difference in scale between vehicles and pedestrians.

Fig. 4. Example of detection output: MaskRCNN

An example of the output for tracking using MaskRCNN
with DeepSort is shown in Fig. 5. Every object in the figure

is marked by a colored bounding box which contains the
identifier assigned to the object. Many objects of both classes
in frame 825 (left) maintain the same color and ID number in
frame 800 (right), indicating successful tracking.

Fig. 5. Example of tracking output: Deepsort + MaskRCNN on frame 800
(right) and 825 (left)

VII. CONCLUSION

This paper considers the problem of real-time detection and
tracking of objects in traffic intersections using bird’s eye
cameras, for purposes of supporting smart city use cases such
as cloud-connected vehicles and assistance to handicapped
pedestrians. Bird’s eye infrastructural cameras are some of
the key sensors in dense urban environments such as New
York City, because they provide contextual awareness of the
whole intersection, and are less problematic from the privacy
protection perspective: pedestrian profiles are exceptionally
small and vehicle license plates are not visible.

The studies presented in this paper are based on data
collected on the COSMOS testbed pilot site, and have used
its communications and computing equipment. Detection and
tracking are facilitated by very-low latency high-bandwidth
communications links, and edge-cloud computing resources
with deep learning algorithms. The set of bird’s eye videos or
an urban intersection, acquired from the 12th floor, is a unique
data set, which was previously not available for significant
studies of detection and tracking. The dataset covers both
daytime and nighttime conditions.

The small profile (small number of pixels) representing a
pedestrian captured by a bird’s eye camera, is in contrast
to the significant number of pixels representing a vehicle.
This results in significantly different accuracies in detection
and tracking of vehicles vs. pedestrians, where pedestrians
are much harder to reliably detect. We have presented an
overview of the performance of three state-of-the-art detection
algorithms (Yolo, MaskRCNN and Single-Shot Detection)
and three state-of-the-art multiple object tracking algorithms
(Deep-Sort, Multicut and Deep Affinity Networks), observing
that the performance is widely spread both in accuracies and
in timing. Representative multiple-object tracking accuracies

(MOTA) are around 73.2 for cars, and around 2.8 for
pedestrians.

We have defined a latency target of 33.3 ms for
detection/tracking of vehicles contending that such a
latency would provide useful sampling of vehicle locations,
corresponding to 0.1 meter distances for vehicles moving
at 10 km/h. This is arguably a sufficiently small distance
for purposes of assisting the cloud-connected vehicles. We
further observe that pedestrians in intersections may move
3-10 times slower than vehicles, therefore latencies for
pedestrian detection may be allowed to be 3-10 times larger
that latencies for vehicles. The evaluation of the timing
of contemporary deep-learning based methods indicates that
detection of vehicles needs to be sped up at least three times
to meet the execution time/latency of 33.3 ms.

ACKNOWLEDGMENTS

The authors thank the collaborators in Prof. Kostic’s lab
Tianyao Hua, Tingyu Mao, Yong Yang, Yanjun Lin, Deepak
Ravishankar, Pablo Vicente Juan, Vibhuti Mahajan, Kunjian
Liao, and WINLAB collaborator Jakub Kolodziejski. The team
is grateful for the support of Columbia School of Engineering,
Columbia Data Sciences Institute, and Rutgers University
Winlab laboratory. This work was supported in part by NSF
grant CNS-1827923, NSF-BSF grant CNS-1910757, and by
an AT&T VURI award.

REFERENCES
[1] US DOT - Intelligent Transportation Systems Joint Programs
Office, “Connected vehicle pilot deployment program.”

https://www.its.dot.gov/pilots/. Accessed: 2019-12-13.

[2] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan,
K. Lin, and T. Weil, “Vehicular networking: A survey and tutorial on
requirements, architectures, challenges, standards and solutions,” IEEE
Communications Surveys & Tutorials, vol. 13, pp. 584-616, Apr. 2011.

[3] NYC DOT, “New york city connected vehicle project for safer
transportation.” https://cvp.nyc. Accessed: 2019-12-13.

[4] COSMOS team, “Cloud enhanced open software defined mobile wireless
testbed for city-scale deployment.” https://cosmos-lab.org/. Accessed:
2019-12-13.

[5] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen,
J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy,
S. Maheshwari, P. Skrimponis, and C. Gutterman, “Challenge:
COSMOS: A city-scale programmable testbed for experimentation with
advanced wireless,” In Proc. ACM MOBICOM’20 (to appear), 2020.

[6] J. Yu, T. Chen, C. Gutterman, S. Zhu, G. Zussman, I. Seskar, and
D. Kilper, “COSMOS: Optical architecture and prototyping,” in Proc.
OSA/IEEE Optical Fiber Communications Conference (OFC), Mar.
2019.

[71 G. Ananthanarayanan, V. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. R. Sivalingam, and S. Sinha, “Real-time video analytics — the killer
app for edge computing,” Computer, vol. 50/10, pp. 58-67, Oct. 2017.

[8] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
V. Bahl, and M. Philipose, “Videoedge: Processing camera streams using
hierarchical clusters,” in Proc. of ACM/IEEE (SEC), Oct. 2018.

[9] MIT, “Helping autonomous vehicles see around corners.”

http://news.mit.edu/2019/helping-autonomous-vehicles-see-around-

corners-1028. Accessed: 2019-12-13.

K. He, G. Gkioxari, P. Dollar, and R. B. Girshick, “Mask R-CNN,”

CoRR, vol. abs/1703.06870, 2017.

S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards

real-time object detection with region proposal networks,” CoRR,

vol. abs/1506.01497, 2015.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” arXiv:1506.02640, 2015.

[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,”
arXiv:1612.08242, 2016.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.
Berg, “SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325,
2015.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018.

W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and T.-K. Kim,
“Multiple object tracking: A literature review,” arXiv:1409.7618, 2014.
N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” CoRR, vol. abs/1703.07402,
2017.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” CoRR, vol. abs/1602.00763, 2016.

S. Sun, N. Akhtar, H. Song, A. Mian, and M. Shah, “Deep affinity
network for multiple object tracking,” CoRR, vol. abs/1810.11780, 2018.
B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, no. 1, pp. 185 — 203, 1981.

D. Sun, X. Yang, M. Liu, and J. Kautz, “Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume,” CoRR, vol. abs/1709.02371,
2017.

T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014.

Maxim Kolomeychenko, “Supervisely platform.” https://supervise.ly.
Accessed: 2019-12-13.

D. Pathak, R. Girshick, P. Dollar, T. Darrell, and B. Hariharan, “Learning
features by watching objects move,” arXiv:1612.06370, 2016.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int.
J. Computer Vision, vol. 88, pp. 303-338, June 2010.

A. Milan, L. Leal-Taixé, I. D. Reid, S. Roth, and K. Schindler, “MOT16:
A benchmark for multi-object tracking,” CoRR, vol. abs/1603.00831,
2016.

K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: The clear MOT metrics,” EURASIP J. on Image and Video
Processing, vol. 2008, pp. 1-10, May 2008.

“MOT17 results.” https://motchallenge.net/results/MOT17.
2019-12-13.

S. Chinchali, “Distributed perception and learning between robots and
the cloud.” http://web.stanford.edu/~csandeep/final_slides/csandeep_
research_overview.pdf, 2019.

Z. Wang, L. Zheng, Y. Liu, and S. Wang, “Towards real-time multi-
object tracking,” arXiv:1909.12605, 2019.

A. Agarwal and S. Suryavanshi, “Real-time multiple object tracking
(MOT) for autonomous navigation.” http://cs231n.stanford.edu/reports/
2017/pdfs/630pdf, 2017.

Accessed:

