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Abstract—The signals of microwave links used for wireless
communications are prone to attenuation that can be signif-
icant due to rain. This attenuation may limit the capacity
of the communication channel and cause irreversible damage.
Accurate prediction of the attenuation opens the possibility
to take appropriate actions to minimize such damage. In this
paper, we present the use of the Long Short Time Memory
(LSTM) machine learning method for short term prediction of
the attenuation in commercial microwave links (CMLs), where
only past measurements of the attenuation in a given link are
used to predict future attenuation, with no side information. We
demonstrate the operation of the proposed method on real-data
signal level measurements of CMLs during rain events in Sweden.
Moreover, this method is compared to a widely used statistical
method for time series forecasting, the Auto-Regression Moving
Average (ARIMA). The results show that learning patterns from
previous attenuation values during rain events in a given CML
are sufficient for generating accurate attenuation predictions.

Index Terms—RNN, Machine Learning Applications, Rain
Attenuation Prediction, Time Series, ARIMA

I. INTRODUCTION

A microwave link is a channel of a communication system
that uses radio waves in the microwave frequency range to
transmit information. Such a system consists of two basic
components: transmitter and receiver. The loss of power of
the propagating electromagnetic wave is known as the path-
loss, and is a result of various factors and depends on the
communication channel. In cellular networks, CMLs are used
for back-hauling and typically operate in a frequency range of
5–40 GHz, and recently extended to the E-band range (60–
90 GHz). The signals at these frequencies are significantly
affected by weather conditions, when fading due to rain has
a significant impact on the signal’s attenuation, mainly above
10 GHz [1].

The relation between the rain-induced attenuation and the
rain rate can be modeled by the simplified the power-law [2].

Ar(t) = ar̄(t)
b
L (1)

where Ar(t) (in dB) is the channel path attenuation due
to rain at time index t, r̄(t) (in mm/h) is the CML path-
averaged rain rate at t, L (in km) is the CML path-length, and
{a, b} are coefficients that depend on the signal frequency,
polarization, and the rain drop size distribution (DSD). It
is worth noting, that while rainfall is commonly the most
significant weather-related source of attenuation, it is not the
only attenuation factor, and other factors have to be considered
such as Wet Antenna effect [3], and other precipitations and

atmospherics phenomena [4], [5]. Therefore, prediction of
attenuation which is based on limited and simplified mod-
eling might produce limited accuracy. CMLs are generally
used in communication networks, which include a network
management system (NMS). The NMS commonly contains
systems designed to react for compensating for changes in the
signal level in real-time such as by increasing the transmit-
ted power level (ATPC - automatic transmit power control)
or switching the transmission modulation scheme (AMC -
adaptive modulation control). The motivation for forecasting
future signal levels is clear: When predictions are available,
the NMS can compensate for fading before it happens to
minimize fluctuations in the signal levels and to improve
the overall network Quality of Service (QoS). Moreover, the
NMS’s ability to rely on its available measurements with no
requirement for side information is essential to guarantee the
stability and the sustainability of the system.

Attenuation predictions algorithms for satellite-
communication systems were suggested, based on probabilistic
weather forecasts [6], and time series methods [7]. Preliminary
uses of artificial neural networks for rain attenuation and
rain-rate prediction were also recently suggested [8], [9].
IIn this paper, we explore the ability to learn from available
real-data patterns of signal attenuation for the NMS to
produce accurate forecasting of future values in a given single
CML. Contrary to previous studies in this field, we focus
on applying short-term forecasting with Recurrent Neural
Network, based on historical time series of the attenuation,
while producing high-resolution predictions of the expected
values in a determined interval of time in the future.

We suggest a data-driven method, and for the first time
for this application, we use an RNN-based LSTM network
for time series forecasting that combines dynamic data of
attenuation values and static information of link’s characteris-
tics. We compare our method to an Auto-regressive Integrated
Moving Average (ARIMA) model, which is a widely used
statistical method for time series forecasting [10], [11]. We
analyze each method’s performance and discuss the limitations
of forecasting attenuation levels for short time intervals of 10
seconds to 2 minutes.

The rest of this paper is organized as follows: Section II
provides a detailed description of our dataset and the neces-
sary needed pre-processing for our experiments. Section III
presents the methodology, including the problem description
of time series forecasting and details the mathematical back-
ground of our considered models. Section IV describes the
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conducted experiments and presents an empirical evaluation
of the results. Section V provides the conclusion of this paper,
as well as a discussion regarding the future potential of our
findings.

II. DATA DESCRIPTION

We created our data set based on CMLs measurements in
Sweden, detailed in [12]. The data include static information,
i.e., a meta-data table that characterizes the CMLs network,
contains descriptions of the CMLs’ physical features, such
as length, location (longitude and latitude), frequency, and
polarization, as well as dynamic datasets which contain records
of the transmitted signal power level (TSL) and received
signal power level (RSL) measurements, samples at intervals
of ∆T = 10 seconds, per CML. Hence, the total channel
path-attenuation level at time t, AT (t) (in dB), can be derived
directly from the measurement by:

AT (t) = TSL(t)−RSL(t) (2)

We use sequences of time series of attenuation values, derived
from the NMS measurements as a dynamic input to the RNN.
The RNN integrates the static information input to the net-
work, which contains the CML physical features. According
to (1), the CMLs’s frequency and path-length are the two main
features that affect the attenuation in the signal. We define the
input to the RNN as follows:

X
(d)
i = [A(ti), A(ti + 1), ..., A(ti +Ni)] (3)

X(s)
n = [Ln, fn] (4)

Where i is an index for the selected day of measurements,
and n indicates the link index. Ln, fn are the link’s length
(in km), and frequency (in Hz), respectively. Time indices
ti and Ni are pre-determined, in order to set the interval of
measurements from each day, in which a rain event is included
in the interval. A(t) is the attenuation value after reducing
the relatively constant attenuation during dry periods, which
commonly referred to as the baseline attenuation [13]. The
data set contains 17 different CMLs in a length range of 1.5 km
to 7 km and a frequency range of 14 GHz to 39 GHz, and
includes measurements from 2015 to 2017 for a total of 1.4k
hours of training.

III. METHODOLOGY

1) Time Series Forecasting
Formally, the approach for time series forecasting can be

expressed as follows: Let yt denote a variable of interest in
a time step t. The target is to forecast the signal value at
t+ h;h > 0, given the previous samples, that is:

ŷt+h = fh(yt, yt−1, . . . , y1) (5)

fh(·) denotes a function of all available observations from
the current time series, and h ∈ (1, ...,H), where the value
H sets the forecast limit of the prediction. Naturally, when
h is larger, the prediction’s uncertainty will be more signifi-
cant. Several different approaches can handle Multi-step time
series forecasting (i.e., h > 1). We demonstrate two of the

approaches through two strategies of performing multi-step
ahead forecasts for the next h signal values. First, we suggest
the usage of RNN with LSTM cells as the data-driven method,
with the implementation of a sequence-to-sequence prediction
model. We compare our method to the ARIMA model, a
well-known method for univariate time series prediction, as
a reference for the comparative evaluation.

2) LSTM Model

Learning techniques and deep learning algorithms have
introduced new approaches to time series problems. RNN
using LSTM cells [14] are designed to improve gradient flow
in deep networks, and allows the model to memorize long term
dependencies in the sequential data. We propose an LSTM-
based Encoder-Decoder Scheme for time-series forecasting
combines dynamic data derived from the attenuation time
series with static information, which relates to the physical
features that affect the attenuation in different CMLs.

a) Pre-Processing

The input data were divided into sets of sub-sequences,
for applying Back-propagation Through Time (BPTT) [15]
efficiently on the unrolled RNN with a fixed length. The
sliding window concept was adopted for preparing the data by
creating input and output sets, fitting the forecasting process as
a supervised learning task. For an input window size of T, the
dynamic input to the RNN in each time step is constructed
from the T previous attenuation values. The output of the
LSTM in each time step is a forecast vector for the next
H attenuation values. This frame of work is based on the
Multi-Input Multi-Output (MIMO) strategy [16] for multi-
step time series prediction, where the objective function is the
mapping is learned as a single multiple-output model. Both the
dynamic and the static data were scaled with basic min-max
normalization:

xscaled =
x− xmin

xmax − xmin
(6)

3) Network Architecture

The Encoder-Decoder architecture with LSTM cells was
implemented. This structure has been found as efficient in
sequence to sequence problems [17] and was proven has
efficient for time series forecasting tasks [18], [19].

The model composed of two sub-models: The encoder that
reads the input sequences of values {x1, x2, ..., xT } sequen-

Fig. 1. LSTM Encoder-Decoder Architecture with external static features.
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tially, and constructs a fixed-dimensional vector of an internal
representation of the series.

The decoder interprets the output hidden state of the encoder
to construct the following time steps, in order to generate
the forecasting of the next time steps as the target sequence
{xT+1, ..., xT+H}. The objective is to find representative and
meaningful features from the input time series.

Then, the sequential output of the decoder layer is con-
catenated with x

(s)
n , the auxiliary information of the specific

CML’s data. The result of this process feeds into a fully
connected (FC) layer, which generates a vector of predictions
for the following H time steps. Fig. 1 presents the network
architecture of the sequence-to-sequence model for attenua-
tion forecasting. The architecture is inspired by [20], which
integrates the time series with auxiliary information through
a fully-connected (FC) layer to create the forecasts for each
time step. In our case, the goal is to give the network the
ability to learn the impact of the link’s physical features on
the attenuation levels.

We use l2 norm as the objective function which minimizes
the absolute squared differences between the target observa-
tions values, yt, and the outputs, ŷt.

L(θ)) = ||yt − ŷt||22 (7)

Where yt, ŷt ∈ RH , and θ are the estimated parameters of the
proposed model.

A. ARIMA models

1) Mathematical Background
Auto-Regressive Integrated Moving Average (ARIMA)

model describes the evolution of the value of variables over
the same sample period as a linear function of only their past
observations.

The ARIMA model is a generalization of an Auto-
Regressive (AR) and Moving Average (MA) models. The
integration part of the process refers to the use of a difference-
based transformation, which creates an approximate stationary
time series. Formally, consider the value of time series in time
step yt:

• AR(p) process is a regression model that uses the de-
pendencies between an observation and a number of p
lagged observations: yt =

∑p
i=1 αiyt−i + εt;

• MA(q) process model the time series as linear combina-
tion of the previous q error terms: yt =

∑q
i=1 βiεt−i+εt.

where εt are uncorrelated residuals with zero-mean and nor-
mally distributed, p is the lag orders (i.e., the number of
lag observations included in the model), d is the degree of
differencing, and q is the size of the moving average window.
α ∈ Rp and β ∈ Rq are the weights coefficients of the
model. ARMA process assumes the data was created from a
stationary process, which requires that the statistical properties
do not change over time. In most real-world cases, we can not
assume that the data do not contain non-stationary components
such as trends. Therefore, we apply differencing operation as
an invertible transformation in order to work in a stationary

frame. The first order differencing transformation of yt is the
operation:

∇yt = yt − yt−1

In most cases, the resulting time series will become stationary
when the transformation stabilizes the mean and reduce the
effect of time in the data. The general form of ARIMA(p,d,q)
process is the combination of the models above:

∇(d)yt =

p∑
i=1

αi∇(d)yt−i +

q∑
i=1

βiεt−i + εt (8)

The process of forecasting using the ARIMA model is often
generalized by the Box-Jenkins method [21], in order to best
fit the model to previous values of the time series. The method
is based on the following three-stage steps:

- Model Identification: Determine the model parameters,
i.e., p, d, q. The order of d was determined by applying the
Augmented Dickey-fuller test (ADF) [22] to verify that our
data is stationary. The order of the AR and MA components,
p and q, were determined by the values which minimize the
Akaike Information Criterion (AIC).

- Estimation: Use the historical data to train the coefficients
of the selected ARIMA(p,d,q) model. We apply maximum
likelihood estimation that best fits α and β to the time series.

- Diagnostic Checking: Evaluate the fitted model by check-
ing if the estimated model corresponds to our stationary model
assumptions, where the residuals should be independent and
constant mean and variance over time.

2) Forecasting Method
In order to produce real-time predictions for the CML’s

attenuation using the ARIMA model, we use the rolling
forecast method [23] on the tested events. Meaning, that for
each time step, the model is re-trained. We can describe the
method by repeating the following stages in each time step t:

- We determine the parameters and estimate the model
coefficients according to the Box-Jenkins method from all the
previous steps.

- The model predicts the next time step, ŷt+1. The prediction
is the inverse transformation of the difference between the
time-steps, which is calculated by the model equation (8).

- Predictions for ŷt+h ,where h ∈ (2, . . . ,H) are computed
via iterations, using the previous forecasts as input to the
model equation (which is also known as the recursive strategy
in performing multi-step forecasting [24]). - The observation
yt+1 is revealed and added to the training set.

We chose to apply a dynamic rolling forecast on the test
data in order to demonstrate a scenario of rain event, in cases
where producing real-time predictions from the available data,
is required.

This approach is known as the walk-forward validation,
where the model is updated in each time step, given that new
data is received. This method has shown better results than
the usage of past data, which was collected from previous
rain events to train ARIMA parameters and to validate the test
events. Using this approach, real-time trends in the attenuation
patterns are better aligned, which allows for a periodic update
of the current values.
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IV. EXPERIMENTS

In this section, we first describe the properties of the tested
datasets that we used for the empirical study and detail the
experimental setup. Then, we introduce the parameter settings
of the RNN network, present the evaluation of our methods
on the available datasets and perform an empirical comparison
of the proposed methods.

A. Experimental Setup

We consider three rain events (detailed in Table II) to
demonstrate our methods and evaluate the performance of pre-
dicting the future attenuation values for three different CMLs
(detailed in Table I), which were not included in the training
dataset and contain a total of 16 hours. The output window size
in each time step is H = 12, setting the maximum prediction
range to ∆ = 120 seconds. The input window for training the
LSTM network was set to 12 samples by conducting a grid
search over the set T ∈ {1, 3, 6, 9, 12, 15, 18}.

For the hidden layer size for the encoder and the decoder, we
conducted a grid search over the combination of the elements
{64, 128, 256, 512}, and found the that the best performance
occurs using a single hidden layer for the encoder and the
decoder, each with 128 LSTM units.

For training the LSTM network, we used the Adam [25]
optimization algorithm for the implementation of stochastic
gradient descent and fit the model with a batch size of 256.

B. Results

We evaluate our method’s accuracy using the Root Mean
Square Error (RMSE) between the observations and the pre-
diction values as a function of the prediction time.

RMSEh =

√√√√ 1

n

n∑
t=1

(
Ât+h −At+h)2 (9)

Where At is the actual attenuation measurements (in dB),
and Ât (in dB) is the predicted value. The error metrics are
calculated as a function of the prediction time Th = 10 ·h (in
seconds). We demonstrate the ability to predict the attenuation
values during a rain event in Fig. 2, where time series

Fig. 2. Actual measurements versus the predicted values by the RNN-LSTM
and by the ARIMA models, for a prediction time of 30 seconds

TABLE I
CHARACTERISTICS OF THE 3 TESTED LINKS

CMLs Length (km) Frequency (GHz)

A 1.83 37.24
B 2.87 37.21
C 3.64 28.20

of the total path attenuation in CML during a rain event
can be seen, versus the predicted values produced by the
two forecasting methods. Each step in the horizontal axis
represents 10 seconds interval, meaning the predicted values
were calculated three step-ahead (i.e., h = 3) and compared to
the observation.

TABLE II
CHARACTERISTICS OF THE 3 TESTED RAIN EVENTS

Date Duration Av. Attenuation (dB)

I. 2017-01-11 4h A: 52.9 , B: 65.7 , C: 63.2
II. 2015-06-02 5h A: 51.2 , B: 57.9 , C: 61.4
III. 2015-05-05 7h A: 53.1 , B: 57.3 , C: 60.4

Fig. 3 depicts the RMSEh of (9) as a function of Th
for both the LSTM and the ARIMA prediction. The results
were derived for 3 different CMLs and for 3 different rain
events (described in Table II). The results suggest that for
all cases, the LSTM-based algorithm performs better than
the ARIMA. Nonetheless, the difference in the RMSE is
negligible in some cases and more significant in others, which
depends on the specific CML and the specific rain event. Both
methods achieve high accuracy in shorter-term prediction, and
as can be expected, the RMSE increases as the prediction lag,
h, increases. The accuracy of the LSTM over the ARIMA
increases as the prediction time grows. The outcome results
fit the ARIMA model’s limitation for generating multi-step
forecasting with recursive strategy, which suffers from the
growth of errors as long as the forecasting horizon increases.
On the other hand, it is worth noting that whereas the LSTM
model was pre-trained on previous events, the ARIMA model
attains comparable results without any additional information.

V. CONCLUSION

In this paper, we demonstrated two methods for forecasting
the attenuation of CMLs signals, based on real data mea-
surements. The presented methods enabled us to generate
short-term predictions for the CMLs future attenuation values,
based on the historical data of the signal, with high accu-
racy, and without any additional information. We focused on
predicting the attenuation during rainfall events, which causes
increased fading in the signal by comparing model and data-
driven approaches. Using LSTM-based RNN encoder-decoder
architecture, we showed that historical measurements could
be used to generate high accuracy predictions of attenuation
future values. The training data was collected from several
different CMLs (in addition to the CMLs used for testing our
model’s accuracy, which we did not use as part of the training).
Therefore, we used an RNN architecture that combines both
static and dynamic information for the adjustment of the
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(a) Event I

(b) Event II

(c) Event III

Fig. 3. RMSE values as a function of the prediction time lag, for all values
between 10 and 120 seconds. Each panel contains results from a different rain
event (see Table II). The RMSE values are derived for each of the 3 CMLs
(see Table I) for both the ARIMA and the LSTM algorithms.

predictions for different CMLs. We compared our results to
the ARIMA model using a rolling forecast method on the test
data. Based on the empirical demonstration we performed,
we show that both methods achieved high accuracy, where
the LSTM-based method performs better, with respect to the
prediction accuracy, as we increase the prediction time. For
future research, we will extend the time interval of the predic-
tions and consider advanced time series forecasting methods,
which is a fast-growing area of research, in order to improve
the forecast accuracy further. Furthermore, we will use our
predictions for the attenuation values to develop algorithms
for predictive weather-aware wireless network management to
compensate for the expected attenuation in the signals in real-
time.
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