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ABSTRACT

Modern infrastructures support smart-city operations, which
are based on short millimeter-waves wireless links connected
by a dense network. These links are sensitive to hydrom-
eteors, and their signals attenuated by rain. In this study,
we demonstrate that standard signal-level measurements
being collected by the network can be used to estimate the
movement of an ongoing storm. Parameters characterizing
the movements of the frontal rain cell, as its velocity and
direction, can be accurately estimated. We first estimate the
differential time of arrival of the attenuated signals between
pairs of links, from which we extract the parameters of inter-
est. We demonstrate our results using actual measurements
from an operating system in the city of Rehovot, Israel.

Index Terms— Smart-City, mmWave, Storm Direction
Estimation, TDE, Array Processing

I. INTRODUCTION

Attenuation of transmitted power of an electromagnetic
wave occurs when energy is scattered or absorbed by dif-
fusers in the path of propagation. For Commercial Mi-
crowave Links (CMLs), this is described by the International
Telecommunication Union (ITU) recommendation [1]. The
common approach for modelling attenuation due to rain is
described by the power-law model [2], [3]:

A=aR’ (1)

where A (in dB/km) is the signal attenuation caused by rain,
R (in mm/h) is the path-integrated rain rate (i.e., the rain
intensity) along the link and a, b are coefficients depending
on the link’s frequency, polarization and rain’s drop size
distribution. It was first suggested in 2006 to use CMLs’
susceptibility to rain as opportunistic sensors for measuring
rain rate near ground [4]. Since then, the research field
of environmental monitoring using CMLs, has been greatly
developed, focusing on deeper research [5].

Recently, many cities, on their way to become smart
cities, established an in-city communication network based
on millimeter-waves, as relevant applications are based upon
access to a high-capacity communication infrastructure [6].

In this paper, we aim to demonstrate for the first time
the potential of using smart city CMLs’ measurements as
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opportunistic sensors for environmental parameters estima-
tion in a street-level scale by using operational smart city
network measurements on a use case of estimating direction
and velocity of in-city frontal rain cells. Previous work,
exploiting CMLs for frontal rain observation [7], was done
in a large scale rain. Other works used rain gauges spread in
the city [8], [9]. In-city meteorology is different and not
well studied. In-city environmental parameters, especially
real-time rain intensity monitoring and long period statistics,
can greatly benefit for in-city hydrological application such
as urban watershed, urban drainage planning, flood warning
system, adaptive irrigation system and more.

The rest of the paper is as follows: Section II describes the
data and shows measurements’ example from a city in the
center of Israel. Section III presents the theory and method-
ology of our estimation approach. Section IV details a real-
world demonstration of our suggested approach. Section V
discusses sources of errors and concludes this paper.

II. THE DATA

The measurements discussed are Received Signal Level
(RSL) recorded regularly from all network’s hops by its
operator for management purposes. We received RSL mea-
surements from Rehovot municipality network (see Table I
and Fig 1) [10], with the courtesy of the operator company
SMBIT Ltd [11]

Table I. Rehovot’s network characteristics
No. of Hops 41

City Area 5 x 5 km 2
66 — 2042 m (see Fig 1(b))
Siklu Ltd [12]
74.85 GHz* (TDD)**
Time Sampling Resolutions 30 sec
Power (RSL) Resolution 1dB

*Except two links operating in 84.37 GHz
**TDD - Time Division Duplex

Hops’ Lengths
Equipment supplier

Frequency

RSLs recorded during storm events can be used to esti-
mate frontal rain cell movement velocity and direction in a
city scale. Fig 2 presents attenuation of RSLs during two
(separated) stormy events. In both figures, the RSLs time-
series are presented in the left panels, arranged as follows:
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Fig. 1. (a) Hops in Rehovot. Google Maps, 2019, [13]. (b)
Hops’ length distribution

The upper time-series belongs to the first hop attenuated by
the storm. Beneath it, the time-series depicted belongs to the
hop attenuated secondly and so on. The illustrative-maps on
the right panels present the active hops’ location during the
events. In Fig 2a, the frontal rain cell arrived from north
and we can clearly see its progress south as the hops’ signal
attenuated once the rain cell reaches the hop’s locations. In
Fig 2b the storm arrived from west-north and headed east.

III. THEORY AND METHODOLOGY

As described above, we are facing a tempo-spatial esti-
mating problem, and as such, sensor array processing tools
are naturally examined [14]. A common approach is to
estimate the Time Difference of Arrival (TDOA) between
pairs of sensors [15], followed by source’s spatial parameters
from the noisy TDOAs estimation. Here, the source is the
frontal rain cell approaching the city, where the sensors are
the hops signals attenuated by the rain (see (1)). The first
step of calculating TDOA uses cross-correlation tool and
is described in III-A. The second step of estimating frontal
rain cell position assumes a parametric model, solved by a

RSL (relative units)

RSL (relative units)
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RSL measurements during storm event
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Fig. 2. RSLs time-series and a map (UTM zone 36R) of
active hops during two storms in Rehovot. (a) Storm during
Nov. 6" 2018, crossing the city roughly from north to
south; and (b) Storm during Dec. 6" 2018, crossing the
city roughly from west to east

Non-linear least square (NLS) technique. The deterministic
parameters to be estimated are the in-city frontal rain cell
moving-velocity, v, and its moving-direction, 6. The sug-
gested method, is obviously sub-optimal, and its limitations
are discussed in Section V. However, it demonstrates the
potential of in-city rainfall monitoring using smart city
infrastructures. In particular, we show that actual signal
level measurements from smart-city network hold valuable
information about tempo-spatial characteristic of an environ-
mental phenomenon. We demonstrate it by using basic tools
from sensor array processing framework, while making the
following restrictive assumptions:

1)
2)

The rain is caused by a single rain cell.

During the observation time, the in-city rain cell is
moving in constant velocity and constant direction.
The rain cell is big enough to cover all hops used for
estimation.

3)
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4) During the observation time, the RSL signals are
assumed stationary and ergodic processes.
5) Each hop (or link), is modeled as a point sensor located
in its center.
Here, we demonstrate the feasibility by solving a simplistic
case, which corresponds to the strict assumptions made.
Indeed, considering the general case using relaxed and more
realistic assumptions is important and is being investigated
by us currently, and will be presented in a future work.

III-A. Time Difference of Arrivals

Estimating the TDOA between frontal rain cell attenuat-
ing each pair of hop’s RSLs, is followed by the concept
suggested in [16], using correlation method. The RSL (in
dB) of a link is combined from the following components:

RSL(¢) = round(TSL— A, (t) — Ay (t) — Ae(t) — Ao+ N (t))
)
Where T'SL is the assumed constant Transmitted Signal
Level. The total attenuation consists of several components:
Ay is the constant attenuation caused by the path-loss, A,.(t)
is the attenuation caused by rain, A, (t) is the attenuation
caused by the wet-antenna effect [17] (in the sequel we will
treat the wet antenna attenuation as part of the rain atten-
uation A,.(t), this assumption is discussed in Section V-A),
and A.(t) is the attenuation caused by other environmental
phenomena which can be neglected during storms. N (¢) is an
additive measurement noise assumed independent (among all
links). Lastly, the rounding describes the quantization effect
caused by hardware limitations. The attenuation factors are
described in [18]. Each hop is combined from two links
operating at the same frequency (for bi-directional commu-
nication). For simplicity, we used the measurements from
one arbitrary link per hop. Therefore, the cross-correlation
between hops ¢ and j, for the time difference k, R;;[k], can
be calculated by:
N—k-1

> RSL;n+k|RSLjln] ;>0
n=0 (3)

R”(—k’) ;k‘ <0

To increase the Signal-to-Noise Ratio, before calculating the
cross-correlation, the baseline (T'SL — Ag) is estimated by
a moving-average filter over 10 days, assuming 10 days has
more dry days than wet. There are complex methods for
calculating the baseline [19] but this is beyond the scope
of this paper. The baseline is then subtracted from the RSL
measurements. In addition, the RSL is normalized by each
hop’s length. The arguments k that maximize (3) for each
pair of {4, j} are converted to actual time via multiplication
with the time sampling resolution (30 sec), and are then
used as the dependent variables in Section III-B. Hence, the
dependent variables, the estimated TDOA for each pair, 7,5,
in the time domain is given by:

7ij = (arg I;“ax{Rz‘j [k]}) - 30 4)

Rijlk] =

III-B. Non-Linear Least Square Estimator

Let I denote the full set of N sensors pairs (%, 7). This
includes all M (M — 1)/2 sensors pairs [15]. Thus, I =
{(t,5)1 < i < j < M}. 7;; is an element in the Nx1
vector 7 which consists of all available TDOA pairs. Under
setting of sensor array processing, each link is a sensor in
our problem, assumed to be located at the center of the link
as described in assumption 5. The relation between v, 6 and
the dependent variable, 7;;, is given by the following model:

. dijcos(¢i; —0)

= tng= Tij(v,0) + g ()

¢4; is the angle of the line between each pair of sensors with
x-axis. Thereby d;;cos(¢;; — 6) is the distance projection
between each pair of sensors on the frontal rain cell moving-
direction 6. n;; represents the estimation errors which are
similar among all hops due to the hop’s length normaliza-
tion (which is, however, dependent). We solve the over-
determined equations system (5) using a non-linear least
square (NLS) technique [20]. The simplified cost function
to be minimized is the sum of residual:

J = (2 —z(v,0))" (7 — 2(v,0)) (6)
The estimated parameters are therefore:
(0,0) = argmin{.J (v, 0)} (7)
v,0

We used Matlab function lsgnonlin [21] to solve (7), based
on the optimization algorithm ’trust-region-reflective’ which
requires an initial guess for the parameters that we arbitrarily
set to vp = 20 T; O = 360°.

IV. RESULTS

The method described in Section III was first tested on the
measurements depicted in Section II. In both cases one can
identify, from the raw RSL measurements, the rain induced
attenuation and the delay in which it accrues at the different
links, as summarized in table II. f},é are the results of
the method described in Section III. v, q4;pe and 0,450 are
a simple calculation done by taking only the two extreme
hops (sensors), the first and last one to be attenuated by the
frontal rain cell. The naive calculation is based on picking the
most distinguishable point of the RSL at both links, which
yields the angle between center of the hops relative to the
X-axis, @,qive, and the velocity, viqive, Which is calculated
by Unaive = distance/time, where “distance” is the length
between the centers of the extreme hops, and time” is the
lag between the distinguishable picks. ”Storm strength” is a
metric, defined as the maximal attenuation recorded among
all hops during the storm (after normalization by the hops’
length).

As shown, the naive calculation estimation are close to the
NLS estimated parameters, providing a sanity check for our
procedure. Unfortunately, our results cannot be compared

4912

goooodooooooooodoodooUdoOoOoOoObOOOoOoOOobOOoLOOODOUOUOOOOOO0OOOODOOOOOOODODOUOOOODODOOOODOOO



Table I1. Results for rm
Storm Event Eventl Event2

Date Nov 6, 2018  Dec 6, 2018
Starting Time 02:04 15:47
Duration 30 min 45 min
Storm Strength 15.6 dB 18.8 dB
? 8.66 m/s 10.23 m/s
Vnaive 8.79 m/s 9.25 m/s
0 339° 356°
Gnaive 2910 3310

with other sources of measurements since near ground in-
city direct meteorological measurements are, in general, not
available. In particular, there are no weather stations in
Rehovot with the closest one being 3.64 km far. Its measure-
ments cannot be used as a reference since urbanization has its
own affect on rain characteristics [22] and therefore, in-city
rain cannot be considered the same as that measured outside.
Moreover, there is lack of knowledge about characteristic
of weather in a city scale. After demonstrating the validity
of our approach on two specific events, we have applied it
on measurements taken over 16 months. 405 rainy period,
each of 10 minutes — 90 minutes in length, were analysed
from February 2018 to June 2019. The histogram of Fig
3 illustrates the distribution of the velocity estimates v
over all these cases. Exponential distribution of the tail of
0, commonly used to describe various natural phenomena,
can be identified. Moreover, the resulting mean velocity is
19.8 %, which is in the range of typical measurements ( [23],
which finds the expected value to be 21.1 ¢ (based on the
log-normal distribution)).

v histogram
30 T 9! T
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Fig. 3. Moving-velocity ¢ distribution over 405 rain peri-
ods, collected between Feb. 2018 and June 2019, each of
10 minutes — 90 minutes.

V. DISCUSSION AND CONCLUSION

This paper presented a new approach that uses signal
level measurements taken by CMLs deployed in a smart-
city communication network to estimate the propagation of
the frontal rainfall. By treating CMLs as a sensor array,
and taking pairs of CMLs-based attenuation values, we first
extract the TDOA of the frontal rain cell hitting each of the
CMLs paths (i.e., hops). Next, we use the extracted TDOA
values to estimate the rain cell velocity and moving direction.
We presented an experimental setup in which we show the
feasibility of our methodology to estimate the tempo-spatial
properties of the rain cell, using actual-world measurements.

V-A. Sources of Errors

The restrictive assumptions, specified in Section III, might
introduce errors into the estimation process due to mis-
modelling, and can be divided into two types: 1) Assump-
tions concerning urban rain cell characteristics - Single
rain cell in an event, constant velocity and direction and
a large rain-cell size (compared with the hops’ length); 2)
Assumptions concerning the methodology - Modeling the
sensors to be point sensors whereas in practice, these are
path-integrated sensors, and treating the wet antenna effect
as part of the rain.

V-B. Future Work

Even-though the demonstration presented herein is
promising, we presented preliminary feasibility study. Our
future work will focus on generalizing the presented method-
ology. We aim to face the "point sensor’ model assumption
which might cause errors when working with long links, as
well as the "wet antenna’ assumption - as this phenomenon
causes signals to be attenuated slightly after the storm is
over, and thus, distorts the ’storm’s fingerprint’ in the RSLs.

We believe that our presented methodology contributes
to meteorological research, as ”small scale rainfall” study
is currently challenged by the too wide scales [24], which
the proposed opportunistic sensors tools might solve, espe-
cially in city-scale weather studies. Moreover, the problem
discussed above is advantageous to the future development
of IoT applications, which are based on city-scale fast
communication.
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