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Abstract
Trophic cascades have become a dominant paradigm in ecology, yet considerable debate remains about the relative strength 
of density- (consumptive) and trait-mediated (non-consumptive) effects in trophic cascades. This debate may, in part, be 
resolved by considering prey experience, which shapes prey traits (through genetic and plastic change) and influences prey 
survival (and therefore density). Here, we investigate the cascading role of prey experience through the addition of mos-
quitofish (Gambusia affinis) from predator-experienced or predator-naïve sources to mesocosms containing piscivorous 
largemouth bass (Micropterus salmoides), zooplankton, and phytoplankton. These two sources were positioned along a 
competition-defense tradeoff. Results show that predator-naïve mosquitofish suffered higher depredation rates, which drove 
a density-mediated cascade, whereas predator-experienced mosquitofish exhibited higher survival but fed less, which drove 
a trait-mediated cascade. Both cascades were similar in strength, leading to indistinguishable top-down effects on lower 
trophic levels. Therefore, the accumulation of prey experience with predators can cryptically shift cascade mechanisms from 
density- to trait-mediated.

Keywords Predator experience · Trophic cascades · Consumptive effects · Non-consumptive effects · Competition-defense 
tradeoffs · Cryptic dynamics · Gambusia affinis

Introduction

Trophic cascades—effects of predators that propagate down-
ward through food webs (Paine 1980; Ripple et al. 2016)—
are a dominant but frequently-revisited (Strong 1992; Polis 
et al. 2000; Shurin et al. 2002; Borer et al. 2005) paradigm in 
ecology. Understanding the mechanisms underlying trophic 

cascades is essential to understanding how manipulation of 
one trophic level will affect entire food webs (Finke and 
Denno 2004; Fahimipour et al. 2017). Trophic cascades 
are of broad environmental concern since the addition of 
novel predators (e.g. invasive species) (Walsh et al. 2016) 
or removal of top-predators (e.g. harvest) (Frank et al. 2005; 
Daskalov et al. 2007) can reshape entire food webs.

Trophic cascades can be driven by consumptive—or den-
sity-mediated—effects, in which changes in prey abundance 
propagate through food webs, and non-consumptive—or 
trait-mediated—effects, in which changes in prey func-
tional traits (often behavior) propagate (Schmitz et al. 1997; 
Grabowski and Kimbro 2005; Preisser and Bolnick 2008a). 
There has been persistent debate in the literature over which 
mechanism is stronger or more common, with little practical 
consensus (Peacor and Werner 2001; Křivan and Schmitz 
2004; Schmitz et al. 2004; Trussell et al. 2006; Preisser 
and Bolnick 2008b; Peacor et al. 2013). However, density- 
and trait-mediated interactions are likely inter-dependent, 
as prey traits that generate trait-mediated trophic cas-
cades (e.g. predator avoidance) also increase survival (Sih 
et al. 2010). Thus, interacting density- and trait-mediated 
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processes should be considered together to assess the nature 
and strength of trophic cascades and maximize predictive 
power (Griffiths et al. 2018). Our work aims to elucidate the 
role of prey experience with predators in shaping whether 
density- or trait-mediated processes will dominate.

Prior experience with predators can mediate the extent 
to which predator introductions cause density and trait 
changes in prey populations. Through phenotypic plastic-
ity (McCormick and Holmes 2006; Lönnstedt et al. 2012), 
trans-generational plasticity (e.g. epigenetic and maternal 
effects) (Storm and Lima 2010), and genetic evolution 
(Wund et al. 2015), accrued experience with predators can 
lead prey populations to display antipredator behaviors that 
enhance survival. Experience with native predators may also 
increase prey survival rates in the face of a novel predator 
(Dunlop-Hayden and Rehage 2011). Antipredator behav-
iors that increase prey survival include fleeing (Langerhans 
2009), aggregating (Seghers 1974; Magurran et al. 1992), 
freezing (Vilhunen and Hirvonen 2003; Eilam 2005), hiding 
(Romare and Hansson 2003; Templeton and Shriner 2004), 
and predator inspection (Magurran 1986; Magurran et al. 
1992). Such behaviors may lead to a decrease in feeding in 
a given habitat if they restrict the space or time available 
for foraging (Schmitz et al. 2004). Thus, natural selection 
imposed by predators may shift populations along a feeding-
survival tradeoff where individuals from predator-experi-
enced populations survive longer but feed less in the face of 
predators. Indeed, such tradeoffs have been demonstrated 
across suites of species, following predictable bold and fast 
versus slow and shy trait patterns (Stearns 1989; Johnson 
1991). This adaptive tradeoff could shape the strength of 
trait- and density-mediated processes (Peacor et al. 2013). 
Furthermore, adaptation along this tradeoff can generate 
cascading ecological effects by modifying feeding behavior, 
morphology, and prey capture success (Bassar et al. 2010; 
Palkovacs et al. 2011; Ingram et al. 2012; Ousterhout et al. 
2018; Wood et al. 2018; Start 2018).

We hypothesized that prior prey experience with preda-
tors dictates the extent to which trophic cascades induced 
by predators are density- or trait-mediated (Fig. 1). Naïve 
prey are less likely to exhibit antipredator behaviors, and 
thus may suffer high mortality upon predator introduction, 
driving a density-mediated trophic cascade. Experienced 
prey are more likely to employ antipredator behaviors, 
which decrease mortality rates (Sih et al. 2010). However, 
reduced feeding in risky habitats should alternatively gener-
ate a trait-mediated trophic cascade (Trussell et al. 2006). In 
theory, the form of this competition-defense tradeoff should 
dictate the relative strength of interacting density- versus 
trait-mediated trophic cascades.

Here we investigate the cascading ecological conse-
quences of prior prey experience with predators for west-
ern mosquitofish (Gambusia affinis) exposed to piscivorous 

largemouth bass (Micropterus salmoides). Mosquitofish are 
an ideal study system to address the cascading effects of 
prey experience because they have strong effects on pelagic 
communities (Hurlbert et  al. 1972; Hurlbert and Mulla 
1981; Pyke 2008) and established capacity for antipreda-
tor adaptation (Langerhans et al. 2004; Langerhans and 
Makowicz 2009; Wood et al. 2019; Fryxell et al. 2019). We 
established pond mesocosms seeded with phytoplankton and 
zooplankton, then added bass and predator-experienced or 
predator-naïve source mosquitofish. These two populations 
typified an experience-driven competition-defense tradeoff, 
with the experienced population having higher survival but 
poorer feeding success. Such tradeoffs are a common feature 
of antipredator adaptation and have the potential to drive 
adaptive ecological dynamics (Abrams and Matsuda 1997; 
Yoshida et al. 2004; Hiltunen et al. 2014; Kasada et al. 2014; 
Wood et al. 2018).

Fig. 1  Anti-predator experience, which is driven by genetic and plas-
tic adaptation, may shape the strength of density- and trait-mediated 
trophic cascades. Predator-naïve prey are predicted to have high feed-
ing and high mortality rates, leading to a density-mediated trophic 
cascade. Predator-experienced prey are predicted to have low feeding 
and low mortality rates, driving a trait-mediated trophic cascade
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We quantified cascading effects of bass predators as 
contingent on mosquitofish experience, separating density-
mediated (survival) and trait-mediated (per-capita consump-
tion) effects. Mosquitofish introduction in similar mesocosm 
experiments has repeatedly revealed clear trophic cascades, 
with most zooplankton abundances decreasing and phyto-
plankton increasing as a result (Hurlbert et al. 1972; Fryxell 
et al. 2015, 2016; Fryxell and Palkovacs 2017). Therefore, 
we expected bass introduction to generally cause the oppo-
site response, decreasing mosquitofish abundances, increas-
ing zooplankton, and decreasing phytoplankton. However, 
we expected the dominant cascade mechanism (density or 
traits) to depend on prior exposure of mosquitofish to lar-
gemouth bass, with naïve mosquitofish causing a density-
mediated cascade and experienced mosquitofish showing a 
trait-mediated cascade.

Methods

Fish sources

We collected mosquitofish using hand nets and beach seines 
from two ponds in eastern California in March 2016:

(1) Fish Slough Northeast Spring (N 37.518003°, W 
118.400157°), which is protected from downstream preda-
tors (United States Bureau of Land Management and U.S. 
Fish and Wildlife Service 1985) by a dam and diligent preda-
tor monitoring and removal for at least the past 30 years (US 
Fish and Wildlife Service 2005), and

(2) Furnace Creek Pond (N 36.460453°, W 116.872978°), 
which contains a high density of largemouth bass (Microp-
terus salmoides) since at least 2012 (but probably much 
earlier, DCF, personal observation) and no other piscine 
mosquitofish predators.

Both of these ponds are small, clearwater, spring-fed 
desert ponds. Largemouth bass are a common mosquitofish 
predator and play a strong role in mosquitofish functional 
ecology (Langerhans et al. 2004; Langerhans 2009; Wood 
et al. 2019). We classified mosquitofish from these ponds 
as predator-naïve and predator-experienced, respectively. 
These populations together represent clear endpoints of 
mosquitofish antipredator experience, as predators are 
diligently removed from the predator-naïve source (United 
States Bureau of Land Management and U.S. Fish and Wild-
life Service 1985; US Fish and Wildlife Service 2005), and 
predation is so heavy at the predator-experienced source 
that mosquitofish startled out of hiding by the authors were 
immediately consumed by bass waiting nearby. We con-
firmed in this study that these populations exhibited typical 
patterns of a competition-defense tradeoff, with the pred-
ator-experienced population showing higher survival rates 
but lower feeding rates around bass than the predator-naïve 

population (see below). Thus, this study is an analysis of 
cascading impacts of prey adaptation at endpoints of a 
potential competition-defense tradeoff, not a census of the 
ecological impacts of various mosquitofish populations. 
Furthermore, mosquitofish density and body size in these 
populations are consistent with other experienced and naïve 
populations (Table S-1). Because we were concerned with 
the maximum functional (ecological) scope of mosquitofish 
antipredator experience (plastic and genetic), we used fish 
collected from the wild in this experiment. Prey experience 
thus represents combined influences of genetic evolution, 
maternal effects, and phenotypic plasticity. We held fish in 
100 L tanks (3 tanks per population) for 8 days on a diet 
of TetraMin tropical flakes before they were stocked into 
experimental mesocosms.

Mesocosm experiment

Our experiment used 32 mesocosms in Santa Cruz, Cali-
fornia in March 2016. We filled each 1,100 L mesocosm 
(1.75 m wide, 0.64 m high) with municipal water and 18.5 L 
of sand, then added 4 L of homogenized sediment from two 
nearby ponds: West Lake (N 36.976083°, W 122.045683°) 
and Antonelli Pond (N 36.955566°, W 122.060489°). 
We also added homogenized zooplankton from the above 
ponds. We installed plastic mesh cylinders (29 cm diameter, 
22 mm mesh) filled with plastic artificial macrophytes as 
mosquitofish refuges from predation (mosquitofish could 
enter the refuge and used it freely; bass were excluded by 
the mesh). We allowed mesocosms to equilibrate for 15 days 
prior to fish introductions. We introduced 10 predator-expe-
rienced or predator-naïve mosquitofish into each experimen-
tal mesocosm (16 mesocosms per fish source). This density 
of mosquitofish (3.64 m−2) is within the range of mos-
quitofish densities observed in the wild from ponds with lar-
gemouth bass (Table S-1). We introduced a single one-year-
old bass (mean length ± standard deviation = 11.9 ± 1.0 cm) 
from a hatchery source (Freshwater Fish Co., Elk Grove CA) 
into half of the mesocosms for each mosquitofish treatment. 
We used the bass-present mesocosms to detect the role of 
mosquitofish experience in mediating cascades caused by 
bass; we used the bass-absent mesocosms to confirm the 
presence of a bass-driven trophic cascade.

To measure the effects of largemouth bass on mos-
quitofish density, we conducted weekly visual counts of the 
mosquitofish in each mesocosm. An observer standing adja-
cent to each mesocosm counted all mosquitofish seen during 
a 5-minute interval. A second observer repeated this pro-
cess for an additional 5-minute interval. If the mosquitofish 
counts differed between observation periods, a third observer 
did an additional 5-minute observation. At the end of the 
experiment, we used paired visual counts (using the methods 
above) and exhaustive netting of all mosquitofish in each 
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mesocosms to build an observed ~ actual mosquitofish count 
relationship (see Supplemental Methods, Figure S-1, Table 
S-2). We used this relationship to correct our mosquitofish 
counts from earlier in the experiment; these corrected 
counts were used for all successive analyses. Decreases in 
mosquitofish density in the bass-present mesocosms were 
presumed to be due to predation by bass, as there was no 
mosquitofish mortality in the bass-absent mesocosms, and 
we observed no mosquitofish remains in the bass-present 
mesocosms.

We sampled zooplankton and phytoplankton weekly for 
6 weeks after fish introduction. Zooplankton were collected 
from 1 L depth-integrated water samples, preserved in 80% 
ethanol, and identified under a dissecting microscope. Phyto-
plankton concentrations were measured using pelagic chlo-
rophyll-a (chl-a), collected using 1 L depth integrated water 
samples, filtered onto 0.7 μm filters (Whatman GF/F), and 
measured using fluorometry (Turner Designs, Trilogy Mod-
ule CHL-NA). We estimated 24-h gross primary production 
(GPP) using diel changes in dissolved oxygen concentrations 
(Harmon et al. 2009).

Analyses

We conducted all analyses in this study in R (R Core Team 
2016).

Bass‑induced trophic cascades

We fit the following general linear model to examine the cas-
cading effect of bass presence and mosquitofish experience 
on consumers (zooplankton) and producers (phytoplankton) 
in all mesocosms:

where N is the concentration or density of each response 
variable, β terms are coefficients determined during model-
fitting, B is bass presence, Sbass present and Sbass absent are mos-
quitofish source nested within bass presence or absence, 
respectively, and W is week (numeric).

This model allows us to analyze the ecological conse-
quences of mosquitofish experience within the context 
of bass presence, i.e. separately for bass present vs. bass 
absent mesocosms. This model produces the same predic-
tive result as a factorial model that crosses mosquitofish 
experience × bass presence (by producing a unique intercept 
and slope for each mosquitofish experience × bass presence 
combination), but with the added benefit of allowing us to 

(1)

N = �0 + �1 × B + �2 × Sbass present + �3 × Sbass absent

+ �4 ×W + �5 ×W
2 + �6 × B ×W + �7 × Sbass present

×W + �8 × Sbass absent ×W + �9 × B ×W
2

+ �10 × Sbass present ×W
2 + �11 × Sbass absent ×W

2,

statistically test for ecological effects of mosquitofish expe-
rience separately in bass present vs. absent contexts. This 
design is akin to establishing linear contrasts in an analysis 
of variance. We treat week (W) as continuous linear and 
quadratic fixed variables here as we are also interested in 
how bass presence and mosquitofish experience influence 
the development of trophic cascades over time. We included 
quadratic terms due to obvious curvilinear patterns in the 
data (see “Results”). We used type II likelihood ratio tests 
to examine the statistical significance of each term in the 
model.

Mosquitofish survival

We analyzed weekly mosquitofish survival rate using a gen-
eral linear model of the following form:

where F is number of mosquitofish, t is time (in weeks), 
and LS is a source-specific coefficient. We used a likelihood 
ratio test to determine whether LS varied significantly across 
predator-experienced and predator-naïve sources.

Per‑capita cascading effects of mosquitofish experience

Due to the significant effect of mosquitofish experience on 
zooplankton composition only when bass were absent (see 
“Results”), we dug deeper into the feeding and survival 
trends of the two mosquitofish sources in the presence of 
bass. We analyzed per-capita effects of mosquitofish on con-
sumers (zooplankton) and producers (phytoplankton) within 
the bass-present mesocosms using a two-step general lin-
ear mixed model. The first step predicted responses based 
solely on a random time effect. The second step predicted the 
residuals from the first step with a fixed, source-specific fish 
abundance effect and a random mesocosm identity effect. 
Removing time effects before considering fish abundance 
effects avoided conflating successional changes in mesocosm 
communities with top-down effects of mosquitofish abun-
dance. Our model formulations were as following:

where N is the concentration or density of each response 
variable, β0 and β1 are intercepts, T is a random (categor-
ical) time effect, ε0 and ε1 are residuals, F is number of 
mosquitofish (calculated as the average of fish observed 
at the beginning and end of each week), CS is a source-
specific coefficient, and M is a random mesocosm identity 
effect. We ln(X + 1) transformed zooplankton abundances 
for normality. We included the effect of mosquitofish as a 

(2)F
t+1 = F

t
× LS,

(3a)N = �0 + T + �0,

(3b)�0 = �1 + F
1∕3 × C

S
+M + �1,
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nonlinear term due to obvious non-linear trends in the data 
(see "Results", Table S-3). We included all time points for 
this analysis (i.e. mosquitofish survival data from weeks 1–6 
and ecological data from weeks 2–6—due to the way F was 
calculated). We used maximum-likelihood (non-restricted) 
model fitting within the lme4 package in R for all mixed 
models (Bates et al. 2015). See Table S-4 for full model 
parameter estimates.

For each response variable, we used likelihood ratio tests 
to sequentially test for effects of mosquitofish density, then 
source-specific effects of mosquitofish density. Significant 
source-specific effects of mosquitofish density indicated that 
mosquitofish from the different sources had different per-
capita consumptive or cascading effects on zooplankton or 
producers, respectively. We analyzed the following broad 
taxonomic groups for zooplankton: all adult crustaceans, 
copepods (together or separated into adults, copepodites, and 
nauplii), cladocerans (together, or separated into Bosmina, 
Daphnia, and Ceriodaphnia), and rotifers. Mosquitofish 
consume all of the above taxa (Mansfield and Mcardle 1998) 
and commonly reduce their abundances upon introduction 
(Hurlbert and Mulla 1981).

Results

Here bass introduction resulted in large increases in zoo-
plankton abundance (Fig. 2, Table 1, Table S-5). How-
ever, while predator-experienced mosquitofish had higher 
survival around bass (Fig. 3), there were no differences in 
bass-induced trophic cascade strength due to mosquitofish 
source (Fig. 2, Table 1). Analysis of per-capita impacts of 
the two mosquitofish sources on zooplankton indicate that 
the greater survival of predator-experienced mosquitofish is 
offset by a lower feeding rate (Figs. 4, 5).

Bass‑induced trophic cascades

Our mesocosms showed a clear bass-mosquitofish-zooplank-
ton trophic cascade, such that zooplankton were more abun-
dant in mesocosms with bass (Fig. 2, Table 1). Furthermore, 
we documented negative interactions between bass and 
mosquitofish (Fig. 3), and between mosquitofish and zoo-
plankton (Fig. 4), indicating a clear pathway for a top-down 
trophic cascade. Interestingly, while predator experience in 
mosquitofish led to decreased zooplankton densities when 
bass were absent (Fig. 2, Table 1), there were no effects of 
mosquitofish source on trophic cascade strength when bass 
were present (Fig. 2, Table 1).

Mosquitofish survival

Predator-experienced mosquitofish had significantly higher 
weekly survival rates compared to predator-naïve mos-
quitofish (0.86 ± 0.04 vs. 0.52 ± 0.09, respectively; χ2 = 11.4, 
df = 1, p < 0.001; Fig. 3). This survival difference led pred-
ator-experienced mosquitofish to persist much longer in 
mesocosms than predator-naïve mosquitofish (Fig. 3).

Per‑capita cascading effects of mosquitofish 
experience

Despite the much higher survival rate of predator-experi-
enced mosquitofish (Fig. 3), there were no major differences 
in any observed zooplankton or producer abundances across 
mosquitofish treatments within the bass-present mesocosms 
(Fig. 2, Table 1). When bass were present, predator-naïve 
mosquitofish had stronger estimated per-capita consumptive 
effects on adult crustaceans, nauplii, rotifers, than preda-
tor-experienced mosquitofish (Fig. 4, Table 2). Combining 
the estimated source-specific effects of mosquitofish on 
zooplankton (above) and survival rates revealed a feeding-
survival tradeoff, in which the predator-naïve population had 
higher apparent zooplankton consumption rates but lower 
survival rate (Fig. 5).

Discussion

Our results show that prey experience with predators, likely 
resulting from a mixture of adaptation and plasticity (Arnett 
and Kinnison 2017), determined the extent to which mos-
quitofish density versus traits mediated the strength of the 
bass-mosquitofish-zooplankton trophic cascade. Predator-
naïve mosquitofish had lower survival in the presence of 
bass but higher per-capita feeding rates, whereas predator-
experienced mosquitofish had higher survival and lower per-
capita feeding rates. Thus, the high mortality of predator-
naïve mosquitofish facilitated a stronger density-mediated 
trophic cascade, whereas the low feeding rate of predator-
experienced mosquitofish facilitated a stronger trait-medi-
ated trophic cascade (Fig. 1). Importantly, the competition-
defense tradeoff exhibited across mosquitofish sources when 
bass were present (Fig. 5) mediated net trophic cascades of 
roughly equal strength. In other words, there was no sig-
nificant difference in zooplankton abundances between the 
two treatments despite the predator-naïve treatment having 
significantly lower mosquitofish density following bass addi-
tion. Prior prey experience with predators cryptically shifted 
the dominant trophic cascade mechanism from density-
mediated to trait-mediated.

Prey experience with predators, via plasticity and her-
itable adaptation, can thus mediate the cascading effects 
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Fig. 2  Bass induced a trophic cascade that increased abundances 
of nearly all zooplankton, and this trophic cascade was strongest at 
intermediate time-scales. Bass-experienced mosquitofish (Gambusia 
affinis) led to decreased abundances of some zooplankton and chlo-
rophyll a, but only when bass were absent. When bass were present, 

mosquitofish experience with bass led to no discernable differences in 
any measured ecological trait. Each point within each time represents 
a unique mesocosm. Lines indicate predictions from a general linear 
model (Eq. 1)
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of predator introductions, shifting the cascade mechanism 
from density-mediated to trait-mediated as prey become 
more experienced. The degree to which this shift remains 
ecologically cryptic theoretically depends on the relative 
strength of opposing density (survival) and trait (feeding) 
mechanisms. In our experiment, these opposing mecha-
nisms were roughly equal in effect size. The decrease in 
density-mediated effects was compensated by an increase 
in trait-mediated effects, leading the net strength of the cas-
cade to remain about constant. This scenario represents a 
cryptic shift in the mechanism driving the trophic cascade. 
However, such complete compensation may not be present 
in all instances. Theoretically, the relative balance of den-
sity and trait effects should determine whether antipreda-
tor traits weaken classic density-mediated trophic cascades 

(density > trait), cryptically replace them (density ≈ trait), 
or amplify them (density < trait). For predator introductions 
into communities with predator-experienced prey, trait-
mediated processes may dominate trophic cascades from 
their onset (Carpenter et al. 1987). Thus, strong density-
mediated trophic cascades are probably most-likely to occur 
when the added predator is a novel invasive to which prey 
are naïve (Kimbro et al. 2009; Ferrari et al. 2015; Walsh 
et al. 2016). While mesocosm studies may distort the rela-
tive strengths of density- and trait-mediated interactions—by 
confining organisms to unusually small systems with arti-
ficially-stabilized resource dynamics (Preisser et al. 2009; 
Geraldi and Macreadie 2013)—this work nonetheless shows 
that cryptic trophic dynamics driven by prey experience are 
possible and follow predictable patterns. These distorted 

Table 1  Bass induced a trophic cascade that increased abundances of nearly all zooplankton, and this trophic cascade was strongest at intermedi-
ate time-scales

Bass-experienced mosquitofish led to decreased abundances of some zooplankton and chlorophyll a, but only when bass were absent. When bass 
were present, mosquitofish experience with bass (source) led to no discernable differences in any measured ecological trait. + indicates a positive 
impact on the ecological trait,  indicates a negative impact, indicates a quadratic relationship. For significance tests, see Table S-5. N = 192

Abundance or 
metric

Bass Mosquitofish 
experience, bass 
present

Mosquitofish 
experience, bass 
absent

Week,  week2 Bass × week, 
 week2

Mosquitofish 
experience, bass 
present × week, 
 week2

Mosquitofish 
experience, bass 
absent × week,  week2

Adult crustaceans  + −

Adult copepods  + −
Nauplii  + −

Cladocerans  + 

Daphnia  + 

Ceriodaphnia  + 

Bosmina  + 

Rotifers −  + 
GPP
Chlorophyll a −

Fig. 3  Mosquitofish from a 
from a predator-experienced 
source had higher week-to-week 
survival rates than mosquitofish 
from a predator-naïve source 
(a) and thus persisted longer in 
mesocosms with bass (b). Data 
from weeks 1–6 are pooled for 
a, and points are jittered to aid 
visual comprehension. Lines 
on a show general linear model 
predictions for each source-
type. Bars on b show ± one 
standard error. N = 80 for (a) 
and 8 per point for (b)



774 Oecologia (2020) 192:767–778

1 3

interaction strengths may also explain why our bass-induced 
trophic cascades tended to follow hump-shaped trends, as 
the zooplankton may have surged in density after bass intro-
duction, then experienced a density-dependent crash.

Fig. 4  Zooplankton densities were negatively related to mosquitofish 
densities when bass were present, with the slope of the relationship 
dependent on mosquitofish source. Mosquitofish from a predator-
naïve source had a strong per-capita effect (i.e. consumption rate) 
on copepods nauplii (a), rotifers (b), and adult crustaceans (c), while 
mosquitofish from a predator-experienced source had a weak per-cap-
ita effect. Lines show general linear mixed model predictions for each 
source-type. Data from weeks 2–6 are pooled, with variation from 
time and mesocosm identity effects removed; N  = 80

Fig. 5  Mosquitofish exhibited a feeding-survival tradeoff: predator-
experienced mosquitofish had higher survival but lower consumption 
rates on copepods (a) and rotifers (b). Points are source-level esti-
mates (i.e. LS and CS from Eqs.  2 and 3b, respectively). Bars indi-
cate ± 1 standard error
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Interestingly, when bass were absent, predator-experi-
enced mosquitofish had greater short-term impacts on zoo-
plankton (Fig. 2, Table 1). This trend suggests that predator-
experienced mosquitofish may feed more aggressively in 
the absence of predators than predator-naïve mosquitofish 
(Walsh and Reznick 2008). However, this trend does not 
necessarily indicate that predator-experienced mosquitofish 
have higher fitness than predator-naïve mosquitofish in the 
absence of predators, as differences in metabolism and life-
history may still make predator-naïve mosquitofish have 
higher fitness in the absence of predators (Reznick et al. 
1990).

This work adds to the growing literature suggesting that 
intraspecific variation can generate or alter trophic cascades. 
Contemporary adaptation in upper trophic levels can cause 
cascading top-down effects on food webs (Ingram et al. 
2012; Palkovacs et al. 2012; Walsh et al. 2012; Ousterhout 
et al. 2018; Start 2018). The rearranging of relative inter-
action strengths during a classic density-mediated trophic 
cascade can also alter selection pressures on lower trophic 
levels, driving contemporary adaptation (Wood et al. 2018). 
Prey adaptation at the population (Mooney et al. 2010) or 
community level (Fahimipour et al. 2017) can mediate the 
strength and reach of trophic cascades (Wood et al. 2018), 
and feed-back to impact predator success (Fryxell et al. 
2019). Our work here demonstrates that prey adaptation 
not only affects the strength and extent of trophic cascades, 
but also the specific mechanisms underlying apparent cas-
cades. Thus, future work should examine how patterns of 
prey adaptation along competition-defense tradeoffs extend 
to replicate populations within species and replicate species 
within trophic levels.

At an emergent systems level, cryptic shifts from den-
sity- to trait-mediated trophic cascades could serve as a 
stabilizing process in food webs. The increased survival 
of predator-experienced mosquitofish is a form of rescue 
dynamic (Gonzalez et al. 2013), effectively maintaining 
mosquitofish at higher densities, buffering them against 
numeric collapse and the potential extinction vortex of 
Allee effects (Gascoigne and Lipcius 2004). A more stable, 
defended mosquitofish resource may also prevent bass from 
self-extirpating through resource depletion (Yamamichi 
and Miner 2015). These outcomes imply weaker ecological 
interaction strengths between bass, mosquitofish, and zoo-
plankton, and weaker interactions strengths are associated 
with greater overall food-web network stability (McCann 
et al. 1998; Neutel et al. 2002).

While we found strong evidence for effects of mos-
quitofish on zooplankton, we did not detect a measurable 
effect of mosquitofish experience on pelagic producers 
(Fig. 2, Table 1). This result could be because cladocer-
ans, especially Daphnia, were uncommon in all mesocosms 
throughout the experiment (Fig. 2, Table 1). Daphnia are 
highly efficient grazers, and their reduction by mosquitofish 
is known to have large effects on the abundance and compo-
sition of pelagic phytoplankton (Hurlbert et al. 1972). Thus, 
with Daphnia comparatively rare throughout this experi-
ment, effects of mosquitofish experience on zooplankton 
may not have been transmitted strongly to phytoplankton. 
Alternatively, changes in producer community composition 
(i.e. compensation) can sometimes prevent overall changes 
in producer biomass (Beckerman et al. 1997; Bell 2002; 
Tessier and Woodruff 2002; Sommer et al. 2003). Thus, we 
may have failed to detect compositional changes that might 
have occurred in the phytoplankton community.

Table 2  Mosquitofish had 
source-specific per-capita 
effects on some groups of 
zooplankton but not primary 
producers when bass were 
present

Tests shown are likelihood ratio tests, conducted sequentially (fish, then fish · experience). Null model 
includes fixed time factor effect and random mesocosm identity effect. N = 80 for each model

Dependent variable Explanatory variable

Fish1/3 Fish1/3 · experience

χ2 df p χ2 df p

All adult crustaceans 0.0122 1 0.91 3.67 1 0.055
All copepods 0.11 1 0.74 10.5 1 0.0012
Adult copepods 1.05 1 0.30 0.90 1 0.34
Copepodites 0.49 1 0.48 0.40 1 0.53
Copepod nauplii 0.21 1 0.65 3.93 1 0.047
All cladocerans 0.025 1 0.87 2.01 1 0.16
Bosmina 0.085 1 0.77 1.74 1 0.19
Daphnia 0.17 1 0.68 0.13 1 0.72
Ceriodaphnia 0.31 1 0.58 2.84 1 0.09
Rotifers 2.67 1 0.10 6.01 1 0.014
Chlorophyll a 0.41 1 0.52 0.94 1 0.33
GPP 1.54 1 0.22 0.73 1 0.39
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Our results show that density- and trait-mediated effects 
are functionally interconnected through tradeoffs underlying 
the antipredator traits of prey, and their relative importance 
in trophic cascades can be mediated by prior prey popula-
tion experience with predators. Here we found that increas-
ing prey experience cryptically shifted the trophic cascade 
mechanism from density-mediated to trait-mediated. Our 
results suggest that debates about the dominant cascade 
mechanism in nature may be a false dichotomy, since traits 
that reduce feeding in the presence of predators also increase 
survival. It may therefore be profitable to broadly consider 
cascade mechanisms along a continuum of prey experience 
with predators.
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