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a b s t r a c t

A self-similar nonlinear analytic solution is derived for a case of isolated deep flow over broad sloping
topography. The solution takes the form of an arctangent function and physically manifests as a
compressing jet (narrowing and intensifying) with Ekman pumping controlling the interface evolution.
Notably, this jet travels in the direction with shallow water to the left, which is in contrast to the
expected flow direction of topographic Rossby wave propagation (shallow water to the right). Such
deep flows are not accessible via satellite observations and play an important role ocean-coastal
ocean connectivity. Examples of deep flows over broad shelves include the South Atlantic Bight and
West Florida Shelf, where deep upwelling is thought to influence the generation of red tides, local
ecosystems, and deep carbon sequestration. Relevance of the analytic solution to the South Atlantic
Bight circulation is provided.

© 2020 ElsevierMasson SAS. All rights reserved.

1. Introduction

The objective of this manuscript is to gain insight into the
fundamental physics of an important class of layered ocean sys-
tem: isolated deep circulations over sloping topography (relevant
to shelf and slope dynamics). While this case is accessible to
investigation by direct numerical simulation, here we choose
an analytic approach to isolate particular physics. It should be
emphasized that an important utility of such analytic results is
that they provide a fundamental framework upon which further
analysis can be conducted (e.g. higher order analytic extensions,
stability analysis). Additionally, analytic solutions can assist in
the interpretation of observational and numerical data sets. For
example, consider the lasting impact of works such as [1] and
[2] which, while considered basic by modern computationally
driven standards, continue to greatly influence fluid dynamics
communities.

The case considered is a study of deep subsurface flow along
broad continental shelves and slopes. Such flows are invisible to
satellite observation as they have no surface expression. How-
ever, they may have significant implications for shelf and slope
ecosystems, open-coastal ocean connectivity, and global carbon
sequestration. Though we make no direct comparison with obser-
vational current data here, examples of broad continental shelves
and slopes include the West Florida Shelf (WFS) and South At-
lantic Bight (SAB). Deep upwelling flow on the WFS is thought to
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lead to red tide phenomena and the transport of hazardous mate-
rials [3–5]. Gulf Stream interaction with the broad SAB shelf leads
to upwelled water masses that are important for local ecosystems
[6] and may be significant pathways for carbon sequestration
[7]. While these examples provide motivation for studying such
systems, the treatment here is purely analytic and is formulated
as an idealized rotating fluid basin with sloping topography. Later,
in Section 5, application of the solution to the SAB is discussed.

This manuscript is organized as follows. In Section 2, we
discuss the problem formulation in the context of a rotating
table laboratory experiment. In Section 3, we derive the relevant
vorticity equation which describes the dynamics of bottom in-
tensified flow along a sloping topography and solve the equation
analytically. Section 4 is a discussion of the results and Section 5
discusses application of the solution to the SAB.

2. Problem formulation

We formulate the problem of layered oceanographic flow in
the context of a two-layer rotating table experiment. Consider a
square rotating tank (with dimensions of approximately 1 meter)
in which a two fluid layers are contained between a sloping
rigid-lid and sloping bottom (Fig. 1). Such a setup serves as a
convenient model for the study of idealized ocean dynamics. The
rotation of the platform creates a Coriolis effect which, in con-
junction with the sloping rigid-lid and sloping bottom, induces a
topographic β-effect in each layer. Each layer also has a specified
density (ρi) and depth (hi). The layer depth can further be decom-
posed as hi = h0i +hbi +ηi, where h0i is the mean layer depth, hbi
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Fig. 1. Two-layer rotating fluid tank setup. Left: Side view of two-layer system with sloping lid and bottom shown along with interfacial displacement sense for
each case. Right: Top view of Case A. Dashed lines are isobaths.

is the topographic variation, and ηi is the interface displacement
relative to no motion. It is important to note that the upper-
layer interface displacement (η1) is positive downwards and the
lower-layer interface displacement (η2) is positive upwards. The
right panel of Fig. 1 illustrates the coordinate system and flow
orientation relative to isobaths (indicated by dashed lines). The
flow will primarily be along the topography. Later it will be
shown that at y = 0, a step function boundary condition on
transport is applied and the flow diminishes as x → ±∞.

This work considers a 1.5-layer system in which the upper-
layer is assumed to be quiescent. That is, the flow is concentrated
in the lower-layer with a negligible upper-layer flow. Following
the work of Zavala Sanson and van Heijst [8], the momentum
equations and continuity equation for the single active fluid layer
are:

ut − (f + ω)v = −(p + e)x + ν∇2u
vt + (f + ω)u = −(p + e)y + ν∇2v

ht + (hu)x + (hv)y + ∇ ·ΠE = 0. (1)

The layer identifying subscripts have been dropped as Eq. (1)
are valid for either layer. Details can be found in [9] or, in par-
ticular, the [10] chapter on layered systems. More explicitly, [11]
provide the coupled two-layer system set of equations. Eq. (1)
result from simply taking the 1.5-layer limit and noting the above
mentioned sense of interface displacement.

In Eq. (1): u, v are the cross-slope and along-slope velocities,
respectively, h is the depth of the fluid layer, e = (u2

+ v2)/2
is kinetic energy per unit mass, ω = vx − uy is the vorticity, ν
is the viscosity, f is the Coriolis parameter, and p is the pressure
anomaly relative to no motion, divided by the fluid density (ρ).
As this work considers layered systems, p can also be interpreted
as the Montgomery Potential. Either way, p = g ′h is obtained,
where g ′

= (∆ρ/ρ1)g is the reduced gravity, and ∆ρ = ρ2 − ρ1.
The effect of the viscous bottom boundary layer is accounted for
by a small correction term Π⃗E =

1
2hE k̂ × u⃗, the Ekman flux.

Its divergence, ∇ · (Π⃗E) = −
1
2hEω, represents first-order Ekman

suction at a solid boundary with Ekman layer depth, hE =
√
2ν/f .

Taking the curl of the momentum equations, defining an interior
transport function (ψ) through hu = k̂×∇ψ+∇φ (where ∇

2φ =

−∇ ·ΠE =
1
2hEω represents Ekman divergence), and simplifying

by letting q =
f+ω
h gives us the steady state vorticity-transport

equation,

J(ψ, q) + ∇φ · ∇q = −
hE

2
qω + ν∇2ω. (2)

It is the intention of this manuscript to consider steady state
solutions, and the steady state assumption was implicitly made
to obtain ∇

2φ = −∇ ·ΠE . Note that ∇φ =
1
2
hE
h ∇ψ , which can be

obtained from combining the definition of the transport function
with the Ekman dissipation and expanding in the assumed small
term hE

h [12].

3. Bottom intensified flow along a sloping topography

We now seek a solution to the equations of motion that govern
bottom intensified, weak flow along a broad shelf or slope. Again,
this situation is depicted in Fig. 1, and the flow is assumed
to primarily follow the topography (±y-direction) with shallow
water in the positive x-direction. Beginning with Eq. (2), a series
of approximations are made to further reduce the equation into
an analytically tractable form.

• ∇φ · ∇q → 0. Physically, this term represents the vorticity
advection by the divergent component of the flow field.
In the present case, this is the advection of vorticity by
the boundary layer which is expected to be small. This can
be seen by recalling ∇φ =

1
2
hE
h ∇ψ and noting that the

divergent component caused by the Ekman suction is small.
For the laboratory case, φ/ψ = hE/h = O(10−2) which
justifies the approximation.

• J (ψ, q) →
1
h J (ψ, ω) +

β(x)

h ψy −
β(y)

h ψx −
f
h2
J (ψ, η). This

is accomplished by decomposing the lower-layer depth to
h = h0 + hb + η, as described above. The Jacobian J (ψ, q) =

ψxqy − ψyqx may be expanded to 1
h J (ψ, ω)−

f
h2
J (ψ, hb)−

f
h2
J (ψ, η) with the assumption ω ≪ f . Assuming a

linearly varying topography in the across-slope direction,
the −

f
h2
J (ψ, hb) term may be further expanded to β(x)

h ψy −

β(y)

h ψx, where β (x)
= (f /h)∂hb/∂x and β (y)

= (f /h)∂hb/∂y
are the average topographic beta-effects.

• −
f
h2
J (ψ, η) →

f
h2

f
g ′hψyψx. Across topography gradients

are expected to dominate along topographic gradients so
a semi-geostrophic balance of the form ηx =

f
g ′hψx. Thus,

−
f
h2
J (ψ, η) ≈

f
h2
ψyηx =

f
h2

f
g ′hψyψx.

To this point, the approximations made have been fairly stan-
dard and Eq. (2) reduces to

1
h
J (ψ, ω)+

β (x)

h
ψy −

β (y)

h
ψx +

f 2

g ′h3ψyψx = −
hE

2
qω+ ν∇2ω. (3)

Two more standard approximations will now be made, in
addition to a novel third approximation before we reach our final
form.

• It will be assumed that Ekman friction is dominant over
lateral friction. Because there is weak shear in the flow
and no lateral boundaries, the horizontally boundaries (layer
interface and bottom) will dominate the frictional effects.

• It has been assumed above that along-slope flow is ex-
pected in which the cross-slope gradients are dominant over
along-slope gradients. A consequence of which is that ω ≈
1
hψxx.

• Finally, we seek a scaling in which the nonlinear advec-
tion of vorticity is neglected, but interfacial advection re-
mains. By considering the relevant terms, it is seen that
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this condition is satisfied if the across-slope length scale is
large compared to the internal Rossby radius of deformation(
L2 ≫ L2D =

g ′h
f 2

)
.

Thus, the governing equation for bottom intensified, weak
flow along a broad shelf or slope is

(hb)xfψy − (hb)yfψx +
f 2

g ′h
ψyψx = −

hE f
2
ψxx. (4)

3.1. Solution

Csanady [13] noted the similarity of Eq. (4), without the inter-
facial term (third term on LHS), to the heat equation. Following
this note, [14] found that an analytic solution to this equation,
without the interfacial term, takes the form of an error function.
Kuehl’s solution was extended to consider advective nonlinear-
ities (i.e. vorticity advection described by Eq. (3) but without
the interfacial term) by Ibanez et al. [15], who found an analytic
solution that takes the form of a Lambert W function. Here, we
will follow the same similarity solution approach adopted by
Kuehl [14] and Ibanez et al. [15] to solve the nonlinear ordinary
differential Eq. (4) analytically.

We begin by introducing the nondimensional transport func-
tion Φ =

ψ

Q where Q is the total transport, a similarity variable
of the form ζ = x(ky)n, and assume a sloping bottom topography
of the form hb = −αxy−γ , where k, n, γ , and α are constants to
be determined. The relevant derivatives are

Φy = Φ ′
∂ζ

∂y
= knx(ky)n−1Φ ′ (5)

Φx = Φ ′
∂ζ

∂x
= (ky)nΦ ′ (6)

Φxx =

(
Φ ′
∂ζ

∂x

)
x
= (ky)2nΦ ′′ (7)

hby = αγ xy−γ−1 (8)

hbx = −αy−γ . (9)

Upon substitution and simplification, Eq. (4) takes the form

−(γ +n)αfy−(γ+1)ζΦ ′
+

Q
L2D

nknyn−1ζΦ ′Φ ′
= −

hE f
2

(ky)2nΦ ′′. (10)

Balancing the powers of y between each term in Eq. (10) yields
the relationships −(γ + 1) = (n − 1) = 2n, which gives n = −1
and γ = 1. Ultimately, the system of equations becomes

ζΦ ′Φ ′
= K0Φ

′′ (11)
ζ = k−1y−1x ≡ cxy−1

hb = −αxy−1

K0 =
L2DhE f
2kQ

≡
L2DchE f
2Q

,

where c = k−1 has been introduced for convenience. The result-
ing topography is shown in Fig. 2 (left). Upon substitution and
separation of variables, Eq. (11) has an analytic solution which
takes the form of an arctangent function,

Φ = c2 −
2K0

√
2c1

arctan
(

ζ
√
2c1

)
. (12)

3.2. Boundary and spatial initial conditions

Coefficients c1 and c2 are determined by applying the bound-
ary conditions that Φ varies between 0 and 1 as ζ varies between
±∞. The condition ζ → −∞, Φ → 1 yields c2 = 1 −

πK0√
2c1

.

The condition ζ → ∞, Φ → 0 yields 0 = c2 −
πK0√
2c1

. Therefore,
c1 = 2π2K 2

0 and c2 =
1
2 . Thus, the final solution is

Φ =
1
2

−
1
π

arctan
(

ζ

2πK0

)
. (13)

Assuming y, c > 0 and taking the limit as y → 0 recovers
the spatial initial condition at the singularity. Analytically, the
solution is limiting to a step function in transport and a delta
function in velocity flowing in the −y-direction. Taking the other
limit, as y → ∞, the solution is physically limiting to a broad
uniform flow in the −y-direction of vanishing amplitude, as can
be seen in Fig. 2 (right).

3.3. Layer interactions

The primary interaction between layers will be through inter-
facial Ekman pumping. This can be modeled by modifying the
coefficient of the Ekman term with a scalar factor to account
for interfacial Ekman effects. In the upper-layer equations of
motion, the Ekman term will act as a forcing proportional to the
magnitude of vorticity in the lower-layer. The solution derived
above for lower-layer flow is both broad and weak, thus the
magnitude of vorticity is small and the upper-layer will remain
quiescent.

4. Discussion

Upon consideration of Eq. (4), it is readily observed that the
derived solution is also valid over flat topography and for a
barotropic fluid, given the scaling applies. However, the most
interesting application is to isolated deep flow over sloping to-
pography. Notably the flow is in the opposite direction to what is
normally associated with motion along sloping topography. That
is, currents along sloping topographies are most often thought to
flow with shallow water to the right (consistent with topographic
Rossby wave propagation). However, here we have shown that
deep isolated currents can exist which flow with shallow water to
the left. This behavior can be explained by considering the special
form of the assumed topography (which is later shown to be
relevant to the SAB). Notice that the topographic β-effect terms
(first two terms on the LHS of Eq. (4)) cancel. These terms support
topographic Rossby wave propagation with shallow water to the
right. In their absence, a new fundamental balance is observed
for the given scaling. Inspection of Eq. (11) reveals that the new
balance is between interfacial advection term and the Ekman
dissipation. In that equation, Φ ′Φ ′ is positive definite and K0 > 0.
When ζ < 0 then Φ ′′ < 0, and when ζ > 0 then Φ ′′ > 0,
i.e. positive vorticity on the shallow side and negative vorticity
on the deep side of the current. Physically, the current behaves
as a compressing jet (narrowing and intensifying) in the flow
direction (−y-direction). As the topography steepens, the current
intensifies limiting towards a step function. As the solution ap-
proaches the singularity, the scaling breaks down and the domain
of validity of the solution must be truncated, as discussed in [14]
and [15]. Note that the similarity variable and depth variation
(hb) have a similar form, and thus the flow is predominantly
along topography. This is in contrast to the barotropic solutions
of Kuehl [14] and Ibanez et al. [15], in which Ekman dissipation
cause cross isobath spreading of the topographically controlled
current. Here, the Ekman pumping is directly tied to the evolution
of the layer interface position, with the pumping allowing for the
compression of the current in the −y-direction.
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Fig. 2. Illustration of the stratified topographic β-plume solution, roughly scaled to that of a laboratory experiment (spatial dimensions in cm). Left panel shows
typical bottom topography and right panel shows nondimensional transport function.

5. Application: South atlantic bight

While the analytic solution formulated above was cast in
terms of rotating table laboratory experiments, the general prob-
lem was motivated by oceanographic regions such as the SAB
and West Florida Shelf. Here we consider the topography of
the SAB and discuss implications of our model to circulation in
the region. Fig. 3 illustrates the topography of the SAB. In this
region, a long (250 km+) and broad (≈75 km) shelf is observed.
Numerics and observations in the region show, at times, a broad
northward flow along the topography [16], which is particularly
impactful to the fate of upwelled water masses on the shelf with
potential impact on global carbon sequestration [7]. An analysis
of the topography (Fig. 4) shows an approximately straight slope
which increases linearly (at the rate of 0.0018 per meter) in the
northward direction. We may transform our analytic coordinate
systems into one consistent with the SAB by reversing the sense
of y and expanding h about some distance (y0 ≫ 1) far from
the singularity. At these large distances far from the singularity,
the topography is approximated by one with a linearly increasing
slope when looking towards the singularity (north in the case of
the SAB), or linearly decreasing slope when looking away from
the singularity (south in the case of the SAB). Such a linearly
increasing/decreasing slope is consistent with the topography of
the SAB, thus the form of the topography assumed in the above
analytic formulation is expected to be a reasonable approxima-
tion to that of the SAB. Indeed, the right panel of Fig. 4 shows
that the mean topographic slope measured along the SAB from
the northernmost section to southernmost in a coordinate system
with the singularity transformed to y0 = 175 km and α = 125 is
an excellent fit to the topography of the region.

While most of the mathematical assumptions made in Sec-
tion 3 are fairly standard and are expected to apply to the SAB,
the assumptions of L2 ≫ L2D and the existence of broad, weak
northward flow should be justified. The numerical climatologies
of Blanton et al. [16] show that a broad northward flow over
the SAB develops in response to summer wind forcing. It is also
shown that this broad flow is weak (<0.05 m/s) over the region
of interest. In addition, summer is the stratified season on the
SAB with observations showing a typical 10-15km internal ra-
dius of deformation [17,18]. Thus the assumptions of cross-slope
length scale far exceeding the internal radius of deformation is
also reasonable. Ultimately, we conclude that the above analytic
solution is a reasonable idealized model for the summer stratified
season over SAB. Assuming a current magnitude of approximately
0.05 m/s, a 75km shelf width of averaged depth 35 m, LD ≈

12.5km, f ≈ 7.6 × 10−5, and hE ≈ 10 m, then K0 ≈ 0.45 for the
SAB. For the well-mixed winter season (when wind-driven SAB
flow is predominantly to the south), the barotropic linear solution
of Kuehl [14] is applicable.

Fig. 3. Illustration of the SAB topography with representative cross-slope sec-
tions indicated by black lines. 20, 30, 40 and 50 m isobaths are indicated by
thick gray lines with isobaths between 10 and 100 m indicated by light gray
lines at 5 m intervals.

Fig. 5 show a realization of the analytic solution Eq. (13) to
the SAB at the sections illustrated in Fig. 3 and with parameters
indicated above. The vertical dashed lines represent the 25 m
and 45 m isobaths, which become closer to each other as the
topography steepens. Notice that as the flow moves northward,
the 25 m and 45 m isobaths bracket transport between ≈ 0.1 and
0.9 (80% of the transport). This is consistent with the tendency of
the analytic solution to follow isobaths. In addition to the flow
structure, the increase in peak velocity as the flow moves north
is seen in the right panel of Fig. 5. The topographic constriction
has resulted in more than a doubling of the peak current speeds.

6. Final comment

We have not commented on the stability of this flow pattern,
simply that such a steady base flow pattern exists. However,
it is intriguing to compare this solution with the experimental
and theoretical results of Nost et al. [19], which investigated
cyclonic and anticyclonic flows in basins with sloping boundaries.
Such results suggest the above analytic solution may be unstable.
Though, the analysis of Nost et al. considered a flow pattern
with branching streamline. Such branching, in conjunction with
weak viscous effects, can lead to mismatches in information
propagation along differing paths of the branching streamlines
[20]. Such information mismatches lead to slight discontinuities
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Fig. 4. (Left) Mean topographic slope (at sections indicated in Fig. 3) measured along the SAB from southernmost section to northernmost and linear trend line.
Linear trend indicates an increasing slope at the rate of 0.0018/m with R2

= 0.94. (Right) Dots are mean topographic slope (at sections indicated in Fig. 3) measured
along the SAB from northernmost section to southernmost. Line is the topographic fit in a coordinate system with the singularity transformed to y0 = 175 km with
α = 125.

Fig. 5. (Left) Transport along the SAB at sections indicated in Fig. 3. The transport function steepens because the current is a compressing jet. The vertical dashed
lines represent the 25 m and 45 m isobaths, which become closer to each other as the topography steepens. (Right) Normalized velocity along the SAB at sections
indicated in Fig. 3. The peak velocity increases because the current is a compressing jet. Again, the vertical dashed lines represent the 25 m and 45 m isobaths,
which become closer to each other as the topography steepens.

in transport (that physically manifest as jets) if/when the stream-
lines reconnect, which generate non-intuitive flow patterns. Thus,
the question of stability remains unknown and is a promising
direction for future research.
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