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ABSTRACT: CLC channels and transporters conduct or transport various kinds of anions, with the exception of fluoride, which
acts as an effective inhibitor. Here, we performed sub-nanosecond DFT-based QM/MM simulations of the E. coli anion/proton
exchanger CIC-ecl and observed that fluoride binds incoming protons within the selectivity filter, with excess protons shared with
the gating glutamate E148. Depending on E148 conformation, the competition for the proton can involve either a direct F~/E148
interaction or the modulation of water molecules bridging the two anions. The direct interaction locks E148 in a conformation that
does not allow for proton transport, and thus inhibits protein function.

he CLC family encompasses anion channels and anion/

proton exchangers across the three kingdoms of life'
and fulfills various cell functions. Human CLC channels and
transporters contribute to the regulation of cellular excitability,
epithelial ion transport, or CI” and pH homeostasis in
intracellular organelles.””” Mutations in genes encoding these
proteins cause a variety of diseases, including muscle
overexcitability, deafness, epilepsy, intellectual disability,
nephrolithiasis, and osteopetrosis.'”'" The significant physio-
logical importance as well as the intriguing coexistence of
voltage-gated anion channels and anion/proton transporters in
one gene family makes the CLC family a highly interesting
topic for studying the chemical basis of transmembrane ion
transport.

The CI7/H" antiporter CIC-ecl was the first member of the
CLC family that was studied by X-ray crystallography.'>"* The
protein mediates the transmembrane exchange of Cl~ for H"
with a 2:1 stoichiometry.'* Anion/proton exchange occurs in a
permeation pathway limited by two glutamates, one pointing
toward the intracellular side (E203, the so-called proton
glutamate)lz’15 and the other toward the extracellular side
(E148, the so-called gating glutamate).lz’m’m’17 Protons from
the cytosol bind the carboxyl group of E203 and subsequently
reach E148 via a water wire'®™”' between these two residues.
After protonation, E148 rotates outward and thus exposes itself
to the external side of the channel (from a down to an up
conformation), to release the proton to the extracellular side
and to open a permeation pathway that allows for chloride
transit.'>*»** CLC anion channels and transporters allow for
the transport of various anions, with significant permeability
not only for CI™ but also for larger and polyatomic anions, such
as Br, I, NO, ™, and SCN~.>***

Transport of F~ anion, which is smaller than CI~,*” has not
been extensively studied across the CLC proteins. Intriguingly,
it is negligibly permeant through CLC-1 and CLC-2,”>" and it
inhibits anion/proton exchange in ClC-ec1.>>*'~*
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Indeed, flux assays and current measurements show that
reconstituted transporters do not transport F~. Fluoride efflux
from CLC-ecl-containing liposomes is indistinguishable from
protein-free liposomes,™ while other anions can pass the
protein-containing liposomes even without exchange with
H*.”’ Neutralization of the gating glutamate by mutation to
Ala permits high F~ conductance and effective F~ equilibrium
binding.”® In contrast, mutants that only disrupt the anion
pathway’s inner gate (Y445A) or impair H" binding from the
cytoplasmic side (E203Q) are still highly selective for Cl~ over
F~.>*** Hence, F~ inhibition is likely to be caused by specific
F~—H" interactions at the central binding site, rather than by a
strong Cl7/ F~ selectivity of the anion conduction pathway.

X-ray studies on E148Q ClC-ecl show that Q148 (in down
conformation) directly interacts with the F~ within a hydrogen
bond distance.’® A neutral E148 in down conformation could
keep F~ blocked in the protein binding site through a strong
hydrogen bond interaction, whereas protonation of E148
triggers the down/up transition and hence proton release to the
extracellular side with chloride as the main anion and in the
absence of fluoride.'¥**

Here, we investigate the molecular basis of fluoride
inhibition on the ClC-ecl transport cycle by multiscale
molecular simulations. Our model system consists of the
CLC-ecl X-ray structure,'” embedded in a POPC***° bilayer
in the presence of counterions (Figure 1), in which F~ replaces
the CI” in the central binding site in both the subunits. Our
project takes advantage of a recently developed, massively
parallel DFT-based QM/MM interface between the CPMD
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Figure 1. QM/MM MD simulations at the B3LYP/CHARMM level
of theory for different initial proton locations. (Top panel) E. coli
CLC antiporter (CLC-ecl) in a lipid bilayer. Water and counterions
are not shown for clarity. (Bottom panel A) Snapshot from our
classical MD simulation. Here 12 water molecules form a hydrogen
bond network connecting E203, E148, and F~ (yellow sphere). The
excess proton is added to different water molecules in five simulations.
Only three are shown here. (B—D) QM/MM configurations after 0.5
ps. The proton, after hopping through a chain of water molecules, has
already formed either H-F (B, C) or protonated E148 species (D).
The starting configurations, as well as the other two trajectories, are
depicted in Figure S3A—E. The QM region includes F~, E148, R147,
hydronium, the water molecules connecting them, and (in D) also
Y445 and S107.

and GROMACS codes®”** that was run on the computational
facilities at the Juelich Supercomputing Center. Overall, this
has allowed us to model 16 ps of DFT-based QM/MM
molecular dynamics (MD) and 4SS ps of well-tempered
metadynamics (MTD™) free energy calculations®”*® (at the
B3LYP***' and BLYP levels of theory, respectively). Since the
crystallographic structure lacks water molecules inside the
channel, we obtained the average solvation around the anion
within the transporter core through 300 ns of classical MD
simulations using the CHARMM force field.”

The central region is hydrated with up to 12 water
molecules, forming a continuous water chain connecting

E203 and E148 (Figures 1A and S1). The E148 side chain
(in its deprotonated state) does not change conformation
during the simulation time (Figure S2).

On average, two water molecules lie in between E148 and F~
and four solvent molecules coordinate the fluoride in its
binding site, where Y445 and S107 side chains complete the
coordination around the anion with either direct or water-
mediated H-bonds (Figures S1 and S2).

As mentioned above, the proton transfer (PT) from E203 to
E148 is a crucial step in CIC-ecl proton transport.'”*

We performed five independent QM/MM MD simulations,
in which one proton is added in different positions of the water
network connecting F~, E203, and E148 (Figure 1A). In all
circumstances, PT processes via the water wire occur already
within less than 1 ps, either to E148 or to F~, leading to the
formation of HF. The resulting acids (protonated E148 and
HF) do not dissociate afterward (Figure S3A—E). No
significant conformational changes of E148 occurred over the
remaining simulation time. The formation of a stable HF
molecule is fully consistent with the well-known halogens’
acid—base properties: HF dissociation in water is rather
unfavorable (AG = 4.3 kcal/mol), while this is not the case for
other binary acids including HCl (AG = —9.5 kcal/mol*”).
However, in the case of the CI™ ion, the PT process toward the
E148 could include a transient state in which the proton binds
the chloride for a short time,** while a direct interference of
the4f_ with the excess proton has only been hypothesized so
far.

Next, we investigate whether E203 may affect these PT
pathways. By including E203 and its hydration sphere in the
QM region, our QM/MM simulations mostly reproduced the
same results as above. Yet, in one QM/MM simulation, the
proton does migrate to E203 (Figure S4E). We thus conclude
that, in the presence of fluoride, E203 only serves as part of the
proton pathways toward the two negatively charged groups,
while playing no role for fluoride inhibition as proton acceptor,
as established by the experiments.*

To estimate the relative stability of the two states
characterized by the proton bound to either the F~ anion or
E148, we investigated the free energy landscape associated
with the PT between the two anions with two intervening
water molecules (Figure 2A) via QM/MM MTD simulations.
The free energy, as a function of chosen collective variables
(the fluoride— and E148—proton distances), shows two
minima at d(H-F) = 1.0 A, d(H-E148) = 1.7 A and d(H—
F) = 1.6 A, d(H-E148) = 1.0 A, corresponding to the two
protonation states (Figure 2A). The minima are similar in free
energy (~1 kcal/mol), and they are separated by a free energy
barrier of a few kcal/mol* (Figure SS). In this conformation,
the proton goes back and forth, through two water molecules,
from F~ to E148 in a kind of competition/sharing mechanism.
The position of the E148 side chain may change depending on
its protonation state.'®*” In particular, the calculations so far
relied on the E148 crystallographic conformation, in which the
carboxylic side chain is exposed to the external side of the
permeation pathway (up). In contrast, E148 in its down
conformation is exposed to the inner part of the channel,
where it can interact with the anion. We therefore investigated
the down/up conformational change by calculating the
associated free energy as a function of E148’s N—Ca—Cp—
Cy (x;) torsional angle, which dictates the transition (Figure
2C and D). In both cases the anion is present in the binding
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Figure 2. Free energy profiles (in kcal/mol) emerging from QM/MM
MTD simulations at the BLYP/CHARMM level of theory. (A) Free
energy associated with the PT process between fluoride and E148
modulated by two water molecules. The schematic representation of
the two free energy minima is displayed on the top of the figure. Here,
E148 is in the up conformation. (B) Free energy profile associated
with the direct PT process between F~ and E148 in the down
conformation. The minimum is reached at H—F and H—O(E148)
(Figure S8D) distances of 1.5 and 1.0 A, respectively. No barrier
separates the state in which the proton is bound to the fluoride (H—F
1.0 A). (C, D) Free energy as a function of E148’s y, dihedral angle
for E148 protonated (C) and deprotonated (D). The relative
positions of the E148 carboxyl group above or below the backbone
unit define the up or down conformations. The transition from one
conformation to the other is indicated by dashed red lines.

site as F~ and HF when E148 is protonated and deprotonated,
respectively.

In the presence of F~ anion, the down conformation is far
more favored than the up one regardless of the protonation
state, in agreement with previous calculations.”>*° In addition,
up is a local minimum only if E148 is deprotonated (Figure 2C
and D). Upon protonation, the up — down transition is
actually a barrierless process. There is no longer a minimum
near the up conformation region.

Once exposed to the internal side of the channel, E148 can
form a direct hydrogen bond with F~. To investigate the nature
of this interaction, we performed an MTD-based free energy
calculation using the H—F distance as a collective variable. It
turns out that the proton is fully shared by fluoride and E148,
as shown by the presence of a single minimum in the H—F free
energy (Figure 2B). This may be consistent with the
similarities of the pK, value of Glu (4.2)*" and HF (3.2).”’
While this direct interaction was invoked already as the key
structural determinant for the inhibition mechanism,* our
findings point to a much more complex scenario than a simple
H-bond interaction: the H—F distance ranges between 1 A
(HF—E148) and 2 A (F—HE148, Figure 2B).

Bringing the proton from its complex with E148 and F~ to
the bulk requires the down — up transition of the protonated

E148. The estimated free energy barrier of this transition (~15
keal/mol, Figure 2C) is much higher than the corresponding
one for chloride (5 kcal/mol).”” The inverse (up — down)
process is basically barrierless (Figure 2C), leading to the
rather stable*® F—H-E148 triad structure (Figure 2B).

These considerations lead us to suggest the following
mechanism of inhibitions: protons coming from the extrac-
ellular side will migrate spontaneously to the protein cavity and
will be trapped there by E148 (in a down conformation) and
F~ (Figure 2B). This explanation is consistent with the
available experimental data on CLC-ecl, from the formation of
a fluoride-Gln H-bond in the E148Q mutant to the fact that
the E148A variant allows for F~ transport.”

In conclusion, we here identify the high affinity of both F~
and E148 for protons as the basis of the transport inhibition of
the CLC anion/proton exchangers from E. coli. Our hypothesis
predicts impaired fluoride inhibition of CLC channels that lack
a glutamate at this position, like the renal CLC-K,* and
restored block in mutant channels with reinserted glutamate.>’
The comparative analysis of fluoride inhibition in multiple
CLC channels and transporters, some of which differ in
binding affinity and selectivity of binding sites within the anion
transport pathway,”’ may identify additional determinants of
fluoride block across this important anion channel/transporter
family.
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