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Abstract

We analyze Local SGD (aka parallel or federated SGD) and Minibatch SGD in the heterogeneous
distributed setting, where each machine has access to stochastic gradient estimates for a different, machine-
specific, convex objective; the goal is to optimize w.r.t. the average objective; and machines can only
communicate intermittently. We argue that, (i) Minibatch SGD (even without acceleration) dominates
all existing analysis of Local SGD in this setting, (ii) accelerated Minibatch SGD is optimal when the
heterogeneity is high, and (iii) present the first upper bound for Local SGD that improves over Minibatch
SGD in a non-homogeneous regime.

1 Introduction

Given the massive scale of many modern machine learning models and datasets, it has become important to
develop better methods for distributed training. A particularly important setting for distributed stochastic
optimization/learning, and the one we will consider in this work is characterized by, (1) training data that is
distributed across many parallel devices rather than centralized in a single node; (2) this data is distributed
heterogeneously, meaning that each individual machine has data drawn from a different distribution; and
(3) the frequency of communication between the devices is limited. The goal is to find a single consensus
predictor that performs well on all the local distributions simultaneously [2, 3]. The heterogeneity of the
data significantly increases the difficulty of distributed learning because the machines’ local objectives may
be completely different, so a perfect model for one distribution might be terrible for all the others. Limited
communication between devices can make it even more challenging to find a good consensus.

One possible approach is using Minibatch Stochastic Gradient Descent (SGD). Between communications,
each machine computes one large minibatch stochastic gradient using its local data; then the machines
average their local minibatch gradients, yielding one extra-large minibatch gradient comprising data from
all the machines’ local distributions, which is used for a single SGD update. Minibatch SGD can also be
accelerated to improve its convergence rate [7, 8]. This algorithm is simple, ubiquitous, and performs very
successfully in a variety of settings.

However, there has recently been great interest in another algorithm, Local SGD (also known as Parallel
SGD or Federated SGD) [14, 20, 27], which has been suggested as an improvement over the naive approach
of Minibatch SGD. For Local SGD, each machine independently runs SGD on its local objective and, each
time they communicate, the machines average together their local iterates. Local SGD is a very appealing
approach—unlike Minibatch SGD, each machine is constantly improving its local model’s performance on the
local objective, even when the machines are not communicating with each other, so the number of updates is
decoupled from the number of communications. In addition to the intuitive benefits, Local SGD has also
performed well in many applications [13, 25, 26].

But can we show that Local SGD is in fact better then Minibatch SGD for convex, heterogeneous
objectives? Does it enjoy better guarantees, and in what settings? To answer these questions we need to
analyze the performance of Local SGD and Minibach SGD.

A number of recent papers have analyzed the convergence properties of Local SGD in the heterogeneous
data setting [e.g. 10-12, 22|. But, as we will discuss, none of these Local SGD guarantees can show improvement



over Minibatch SGD, even without acceleration, and in many regimes they are much worse. Is this a weakness
of the analysis? Can the bounds be improved to show that Local SGD is actually better than Minibatch
SGD in certain regimes? Or even at least as good?

Until recently, the situation was similar also for homogeneous distributed optimization, where all the
machines’ data distributions are the same. There were many published analyses of Local SGD, none of
which showed any improvement over Minibatch SGD, or even matched Minibatch SGD’s performance. Only
recently Woodworth et al. [23] settled the issue for the homogeneous case, showing that on the one hand,
when communication is rare, Local SGD provably outperforms even accelerated Minibatch SGD, but on the
other, Local SGD does not always match Minibatch SGD’s performance guarantees and in some situations is
provably worse than Minibatch SGD.

How does this situation play out in the more challenging, and perhaps more interesting, heterogeneous
setting? Some have suggested that the more difficult heterogeneous setting is where we should expect Local
SGD to really shine, and where its analysis becomes even more relevant. So, how does heterogeneity affect
both Local SGD and Minibatch SGD, and the comparison between them? Do any existing analyses of Local
SGD show improvement over Minibatch SGD in the heterogeneous setting? Is Local SGD still better than
Minibatch SGD when communication is rare? Does the added complexity of heterogeneity perhaps necessitate
the more sophisticated Local SGD approach, as some have suggested? What is the optimal method in this
more challenging setting?

In fact, Karimireddy et al. [10] recently argued that heterogeneity can be particularly problematic for
Local-SGD, proving a lower bound for it that shows degradation as heterogeneity increases. In Section 4, we
discuss how this lower bound implies that Local SGD is strictly worse than Minibatch SGD when the level of
heterogeneity is very large. However, even with Karimireddy et al.’s lower bound, it is not clear whether or
not Local SGD can improve over Minibatch SGD for merely moderately heterogeneous objectives.

In this paper, we expand on Karimireddy et al.’s observation about the ill-suitability of Local SGD to
the heterogeneous setting. We prove that existing analysis of Local SGD for heterogeneous data cannot be
substantially improved unless the setting is very near-homogeneous. This is disappointing for Local SGD,
because it indicates that unless the level of heterogeneity is very low, the performance it can ensure is truly
worse than Minibatch SGD, even without acceleration and regardless of the frequency of communication.
At the same time, we provide a more refined analysis of Local SGD showing that Local SGD does, in fact,
improve over Minibatch SGD when the level of heterogeneity is sufficiently small (i.e. the problem is not
exactly homogeneous, but it is at least near-homogeneous). This is the first result to show that Local SGD
improves over Minibatch SGD in any non-homogeneous setting.

We further show that with even moderately high heterogeneity (or when we do not restrict the dissimilarity
between machines), Accelerated Minibatch SGD is in fact optimal for heterogeneous stochastic distributed
optimization! This is because, as we show, Minibatch SGD and its accelerated variant are immune to the
heterogeneity of the problem. Perhaps the most important conclusion of our study is that we identify a regime,
in which the data is moderately heterogeneous, where Accelerated Minibatch SGD may not be optimal and
where Local SGD is certainly worse than Minibatch SGD, and so new methods may be needed.

2 Setup

We consider heterogeneous distributed stochastic convex optimization/learning using M machines, each of
which has access to its own data distribution D™. The goal is to find an approximate minimizer of the
average of the local objectives:

1 Y 1 &
;Iel%RI}l F(I) = M;Fm(z) = M Z meDmf(z; zm) (1)

This objective captures, for example, supervised learning where z = (Zfeatures, Zlabel) and f(z; z) is the loss of
the predictor, parametrized by x, on the instance z. The per-machine distribution D™ can be thought of
as the empirical distribution of data on machine m, or as source distribution which varies between servers,
regions or devices.

We focus on a setting in which each machine performs local computations using samples from its own
distribution, and is able to communicate with other machines periodically in order to build consensus.



This situation arises, for example, when communication is expensive relative to local computation, so it is
advantageous to limit the frequency of communication to improve performance.

Concretely, we consider distributed first-order algorithms where each machine computes a total of T
stochastic gradients, and is limited to communicate with the others R times. We divide the optimization
process into R rounds, where each round consists of each machine calculating and processing K = T/R
stochastic gradients, and then communicating with all other machines!. Each stochastic gradient for machine
m is given by V f(x;z™) for an independent z™ ~ D™.

A simple algorithm for this setting is Minibatch SGD. During each round, each machine computes K
stochastic gradients {gf}k}ke[ K] at the same point z,, and communicates its average g,". Then, the averages
from all machines are averaged, to obtain an estimate g, of the gradient of the overall objective. The estimate
gr is based on all KM stochastic gradients, and is used to obtain the iterate z,11. Overall, we perform R
steps of SGD, each step based on a mini-batch of KM (non-i.i.d.) samples. To summarize, initializing at
some xg, Minibatch SGD operates as follows,

gf?k:Vf(:rT;szk), 20 ~D" m=1...M,k=0...K -1,
1 U 1 &
gr = Mmz::IgT where g = % kilgr’k’ (2)
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Alternatively, we can perform the same stochastic gradient calculation and aggregation of g, but replace the
simple SGD updates with more sophisticated updates and carefully tuned momentum parameters. Throughout
this paper, we use “Accelerated Minibatch SGD” to refer to two accelerated variants of SGD: AC-SA [7]
for convex objectives, and multi-stage AC-SA [8] for strongly convex objectives. Algorithmic details including
pseudo-code are provided in Appendix A.2.

Unlike Minibatch SGD, where each machine spends an entire round calculating stochastic gradients at
the same point, Local SGD allows the machines to update local iterates throughout the round based on
their own stochastic gradient estimates. Each round starts with a common iterate on all machines, then
each machine executes K steps of SGD on its own local objective and communicates the final iterate. These
iterates are averaged to form the starting point for the next round. Using z, to denote the iterate after r
rounds and k local steps on machine m and initializing at g’y = x¢ for all m e [M], Local SGD operates as

follows,
9 = Vi@ 2%), 2 ~D", m=1... M,k=0...K -1,
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An alternative viewpoint: reducing communication. Another way of viewing the problem is as
follows: consider as a baseline processing T' stochastic gradient on each machine, but communicating at
every step, i.e. T times, thus implementing T steps of SGD, using a mini-batch of M samples (one from
each machine). Can we achieve the same performance as this baseline while communicating less frequently?
Communicating only R times instead of T precisely brings us back to the model we are considering, and
all the methods discussed above (R steps of MB-SGD with mini-batches of size KM = TM/R, or Local
SGD with T steps per machine and R averaging steps) reduce the communication. Checking that R < T
rounds achieve the same accuracy as the dense communication baseline is a starting point, but the question
is how small can we push R (while keeping T'= KR fixed) before accuracy degrades. Better error guarantees
(in terms of K, M and R) mean we can use a smaller R with less degradation, and the smallest R with no
asymptotic degradation can be directly calculated from the error guarantee [see, e.g., discussion in 5].

In order to prove convergence guarantees, we rely on several assumptions about the problem. Central to
our analysis will be a parameter ¢2 which, in some sense, describes the level of heterogeneity in the problem.
It is possible to analyze heterogeneous distributed optimization without any bound on the relatedness of
the local objective—this is the typical setup in the consensus optimization literature [e.g. 3, 15, 16, 19] and

1Variable-length rounds of communication are also possible, but do not substantially change the picture.



indeed our analysis of Minibatch SGD does not rely on this parameter. Nevertheless, such an assumption is
required by the existing analyses of Local SGD [10-12] which we would like to compare to, and, as we will
show, is in fact necessary for the convergence of Local SGD. Following prior work [10, 12], we define

1 M
=17 2 IVEn )| (4)

Since ﬁ 2%21 VFE,(x*) = VF(z*) = 0, this captures, in some sense, the variation in the local gradients
at the optimum. When (2 = 0, all F,, share at least one minimizer, and when (2 is large, there is great
disagreement between the local objectives. While homogeneous objectives (i.e. F,, = F) have (2 = 0, the
converse is not true! Even when (2 = 0, VF,,(z) might be different than VF, (z) for = # z*.

Throughout, we assume that f(-;z) is H-smooth for all z meaning

F:2) < F@s2) + (V@2 y—a) 4 e —yl? Veys )
We assume the variance of the stochastic gradients on each machine is bounded, either uniformly
Eomnpm||Vf(2;2™) = VE (@) < 0% VYom (6)
or only at the optimum z*, i.e.

Vi(x* ") — VFm(Jc*)H2 < o2, Vm (7)

B

We consider guarantees of two forms: For strongly convex local objectives, we consider guarantees
that depend on the parameter of strong convexity, A, for all the machines’ objectives,

Fnl) > Fa(2) + (VE(2) y— ) + Sl —yl® Ve Q

as well as the initial sub-optimality F'(0) — F(z*) < A, besides the smoothness, heterogeneity bound, and
variance as discussed above.

We also consider guarantees for weakly convex objectives that just rely on each local objective F,
being convex (not necessarily strongly), as well as a bound on the norm of the optimum ||z*|| < B, besides
the smoothness, homogeneity bound, and variance as discussed above.

3 Minibatch SGD and Accelerated Minibatch SGD

To begin, we analyze the worst-case error of Minibatch and Accelerated Minibatch SGD in the heterogeneous
setting. A simple observation is that, despite the heterogeneity of the objective, the minibatch gradients g,
(2) are unbiased estimates of VF, i.e. the overall objective’s gradient:

Eg, —IE[ ZZW% 2

mlkl

1 M K
= = 2. Y VEu(w,) = VF(x,) (9)

m=1 k=1

We are therefore updating using unbiased estimates of VF', and can appeal to standard analysis for (accelerated)
SGD. To do so, we calculate the variance of these estimates:

1
Ellgr — VF(mT)| =Bl 5 Z Z (@r; 27%) — VF(2r) (10)
m=1k=
e 2 0'2
M2K2 ;;EHVJC xm rk; VFm(xT)H S MK (11)

Interestingly, the variance is always reduced by M K and is not effected by the heterogeneity (.. Plugging
this calculation? into the analysis of SGD (see details in Appendix A) yields:

2A similar calculation establishes the variance at =* is 02/M K.



Theorem 1. A weighted average of the Minibatch SGD iterates satisfies for a universal constant c

under the convexr assumptions,

2

R MKR
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P Fr<e. [ 22 il _ O ions.
EF(z)—F*<c ( 3 exp( 5 ) + \ ) under the strongly convex assumptions

And for Accelerated Minibatch SGD? it guarantees

HB? B
EF(z)—-F*<c- ( — + g ) under the convex assumptions,
R MKR
AR 2
EF () —F* <c- (A exp (— cl(/ﬁ) + )\]\;KR> under the strongly convexr assumptions.

The most important feature of these guarantees is that they are completely independent of ¢2. Since
these upper bounds are known to be tight in the homogeneous case (where ¢? = 0) [17, 18], this means that
both algorithms are essentially immune to the heterogeneity of the problem, performing equally well for
homogeneous objectives as they do for arbitrarily heterogeneous ones.

4 Local SGD for heterogeneous data

Recently, Khaled et al. [11] and Koloskova et al. [12] analyzed Local SGD for the heterogeneous data setting.
Their guarantees are summarized in Tables 1 and 2 along with the analysis of (Accelerated) Minibatch
SGD. Also included is the table is a guarantee for SCAFFOLD* [10], a related method for heterogeneous
distributed optimization.

Upon inspection, among the previously published upper bounds for heterogeneous Local SGD (that we
are aware of ), Koloskova et al.’s is the tightest, and dominates the others. However, even this guarantee is the
sum of the Minibatch SGD bound plus additional terms, and is thus worse in every regime, and cannot show
improvement over Minibatch SGD. But does this reflect a weakness of their analysis, or a true weakness of
Local SGD? Indeed, Woodworth et al. [23] showed a tighter upper bound for Local SGD in the homogeneous
case, which improves over Koloskova et al. [12] (for ¢, = 0) and does show improvement over Minibatch SGD
when communication is infrequent. But can we generalize Woodworth et al.’s bound also to the heterogeneous
case? Optimistically, we might hope that the ({./ R)Q/ 3 dependence on heterogeneity in these bounds could
be improved. After all, Minibatch SGD’s rate is independent of (2, so perhaps Local SGD’s could be, too?

Unfortunately, it is already known that some dependence on (, is necessary, as Karimireddy et al. [10]
have shown a lower bound® of ¢2/(AR?) in the strongly convex case, which suggests a lower bound of (,B/R
in the weakly convex case. But perhaps the Koloskova et al. analysis can be improved to match this bound?
If the ¢, B/R term from Karimireddy et al.’s lower bound were possible, it would be lower order than HB?/R
for {, < HB, and we would see no slow-down until the level of heterogeneity is fairly large. On the other
hand, if the (¢./R)?/3 term from Koloskova et al. cannot be improved, then we see a slowdown as soon as
¢« = Q(HB/R), i.e. even for very small ,! Which is the correct rate here?

We now show that the poor dependence on (, from the Koloskova et al. analysis cannot be improved.
Consequently, for sufficiently heterogeneous data, Local SGD is strictly worse than Minibatch SGD, regardless
of the frequency of communication, unless the level of heterogeneity is very small.

3This analysis can likely also be stated in terms of o, but this does not easily follow from existing work on accelerated SGD.

4 Karimireddy et al. [10] also analyzed a variant of heterogeneous Local SGD (refereed to as FEDAVG), that, as we discuss in
Appendix G, ends up essentially equivalent to Minibatch SGD. The guarantee is thus not on the performance of Local SGD
as in (3), but rather a loose upper bound for Minibatch SGD, and so we do not include it in the Tables. Karimireddy et al.
consider the more general framework where only a random subset of the machines are used in each round—in the Tables here we
present the analysis as it applies to our setting where all machines are used in each round. See Appendix G for more details.

5As stated by Karimireddy et al. [10, Theorem II|, the lower bound is for their FEDAvG method, which is the same as (13) in
Section 6. However, their lower bound should be qualified, since with an optimal choice of stepsize parameters the (.-dependence
can be avoided and the lower bound does not hold (see Section 6 and Appendix G). The more accurate statement is that their
lower bound is for “traditional” Local SGD, i.e. when %inner = Mouter in the notation of Section 6, or ny = 1 in Karimireddy
et al.’s notation.
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Table 1: Guarantees under the convex assumptions. See (12) for a definition and discussion of (.

Theorem 2. For any M, K, and R there exist objectives in four dimensions such that Local SGD initialized
at zero and using any fized stepsize n will have suboptimality at least

2 H2B4 1/3 H 2B4 1/3
EF(3) - F* > - mind 257 <*2 ) (Ho°BY) ~ | oB
R R /3 K2/3R2/3 MKR

) . ) 6AR\ H(? ) Ho? o?
EF(¢)—F*>c- (mln{AeXp<—H>, )\2R2} —|—mln{A, VCRIRE + VKR

under the convex and strongly convex assumptions (for H > 16)), respectively.

This is proven in Appendix B using a similar approach to a lower bound for the homogeneous case from
Woodworth et al. [23], and it is conceptually similar to the lower bounds for heterogeneous objectives of
Karimireddy et al. [10]. Koloskova et al. [12] also prove a lower bound, but specifically for 1-strongly convex
objectives, which obscures the important role of the strong convexity parameter.

In the convex case, this lower bound closely resembles the upper bound of Koloskova et al. [12]. Fo-
cusing on the case H = B = 02 = 1 to emphasize the role of (2, the only gaps are between (i) a term
1/(KY3R?/3) vs 1/(K?/3R?/3)—a gap which also exists in the homogeneous case [23]—and (ii) another term
max {1/R, (¢./R)?/3} vs min {1/R, ({./R)*?}. Consequently, for (2 > 1/R = ((./R)*? > 1/R, the lower
bound shows that Local SGD has error at least 1/R 4+ 1/v/M KR and thus performs strictly worse than
Minibatch, regardless of K. This is quite surprising—Local SGD is often suggested as an improvement over
Minibatch SGD for the heterogeneous setting, yet we see that even a small degree of heterogeneity can make
it much worse. Furthermore, increasing the duration of each round, K, is often thought of as more beneficial
for Local SGD than Minibatch SGD, but the lower bound indicates it does little to help Local SGD in the
heterogeneous setting.

Similarly, in the strongly convex case, the lower bound from Theorem 2 nearly matches the upper bound
of Koloskova et al.. Focusing on the case H = B = ¢ = 1 in order to emphasize the role of (., the only
differences are between a term 1/(K R?) versus 1/(K?R?)—a gap which also exists in the homogeneous case
[23]—and between exp(—AR) + ¢2/(A*R?) and min{exp(—AR), (2/(A\*R?)}. The latter gap is somewhat
more substantial than the convex case, but nevertheless indicates that the ¢(2/(A\2R?) rate cannot be improved
until the number of rounds of communication is at least the condition number (or (2 is very large).
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Table 2: Guarantees under the strongly convex assumptions, with log factors omitted. See (12) for a definition
and discussion of (.

Thus, the lower bounds indicate that it is not possible to radically improve over the Koloskova et al.
analysis, and thus over Minibatch SGD for even moderate heterogeneity, without stronger assumptions.

In order to obtain an improvement over Minibatch SGD in a heterogeneous setting, at least with very
low heterogeneity, we introduce a modification to the heterogeneity measure (, which bounds the difference
between the local objectives’ gradients everywhere (beyond just at z*):

M
swp < S IVE ()~ VF@) < & (12
x m=1

This quantity precisely captures homogeneity since ¢? = 0 if and only if F,, = F (up to an irrelevant
additive constant). In terms of (%, we are able to analyze Local SGD and see a smooth transition from the
heterogeneous ((? large) to homogeneous ((? = 0) setting.

Theorem 3. When sup,, -7 Z%:l |V Fyn(z) — VF(2)||* < C2, an average of the Local SGD iterates guarantees

under the convex and strongly convex assumptions, respectively

HB2 (HEQB4)1/3 (HO_QB4)1/3 U*B>

EF(z)—F*<c- (KR + R2/3 + K1/3R2/3 MKR
H2B? HE  Ho? H o
AP N AP - —— .
EF(#)-Fr<e (HKR+)\K2R2 * (AQRZ - AQKRQ) log< A +KR) " AMKR)

We prove the Theorem in Appendix C. This is the first analysis of Local SGD, or any other method
for heterogeneous distributed optimization, which shows any improvement over Minibatch SGD in any
heterogeneous regime®. When ¢ = 0, Theorem 3 reduces to the homogeneous analysis of Local SGD of
Woodworth et al. [23, Theorem 2|, which already showed that in that case, we see improvement when K 2> R.
Theorem 3 degrades smoothly when ¢ > 0, and shows improvement for Local SGD over Minibatch SGD also
when ¢? < 1/R in the convex case, i.e. with low, yet positive, heterogeneity. It is yet unclear whether this
rate of convergence can be ensured in terms of ¢2 rather than (2.

6Karimireddy et al. [10] establish a guarantee for SCAFFOLD that improves over Minibatch SGD in a setting where only
a random subset of the machines are available in each iteration and (. is sufficiently small. Here we refer to the distributed
optimization setting of Section 2, where all machines are used in each iteration.
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Figure 1: Binary logistic regression between even vs odd digits of MNIST. Twenty-five “tasks” were constructed, one
for each combination of ¢ vs j for even ¢ and odd j. For p € {0, 20,40, 60, 80,100}, we assigned to each of M = 25
machines p% data from task m, and (100 — p)% data from a mixture of all tasks. For several choices of R and K, we
plot the error (averaged over four runs) versus the value of ¢Z resulting from each choice of p. For both algorithms, we
used the best fixed stepsize for each choice of K, R, and (. individually. Additional details are provided in Appendix
D.

Experimental evidence Finally, while Theorem 2 proves that Local SGD is worse than Minibatch SGD
unless (2 is very small in the worst case, one might hope that for “normal” heterogeneous problems, Local
SGD might perform better than its worst case error suggests. However, a simple binary logistic regression
experiment on MNIST indicates that this behavior likely extends significantly beyond the worst case. The
results, depicted in Figure 1, show that Local SGD performs worse than Minibatch SGD unless both (, is very
small and K is large. Finally, we also observe that Minibatch SGD’s performance is essentially unaffected by
(« empirically as predicted by theory.

5 Accelerated Minibatch SGD is optimal for highly heterogeneous
data

In the previous section, we showed that Local SGD is strictly worse than Minibatch SGD whenever (2 > HB/R
(in the convex case). But perhaps a different method can improve over Accelerated Minibatch SGD? After
all, Accelerated Minibatch SGD’s convergence rate can only partially be improved by increasing K, the
amount of local computation per round of communication. Even when K — oo, Accelerated Minibatch SGD
is only guaranteed suboptimality 1/R? or exp(—AR). Can this rate be improved? Now, we show that the
answer depends on the level of heterogeneity—unless (2 is sufficiently small, no algorithm can improve over
Accelerated Minibatch SGD, which is optimal. To state the lower bound, we follow Carmon et al. [4] and
define:

Definition 1 (Distributed zero-respecting algorithm). Let supp(v) = {i € [d] : v; # 0} and m,(t,m’) be



the last time before t when machines m and m' communicated. We say that an optimization algorithm is
distributed zero-respecting if the tth query on the mth machine, xi* satisfies,

supp(ay') € | Jswp(Vi@rszr)u U U swn(VF@rs=)).
s<t m/#m s<mpy (t,m’)

That is, the coordinates of a machine’s iterates are non-zero only where gradients seen by that machine were
non-zero. This encompasses many first-order optimization algorithms, including Minibatch SGD, Accelerated
Minibatch SGD, Local SGD, coordinate descent methods, etc.

Theorem 4. For any M, K, and R, there exist two quadratic objectives satisfying the convex and strongly
convex assumptions (for H > T\) such that the output of any distributed zero-respecting algorithm will have
suboptimality in the convex and strongly convex case respectively,

. " . (2 HB? oB
F — F* >
(%) > c(mln{ IR 2 + Tin)

A2 AV SRV o2
F(#) — F* > i x ZVA _ )
(%) > c(mln{ > i exp Wi + 3 7
This is proven in Appendix E using techniques similar to those of Woodworth and Srebro [24] and Arjevani

and Shamir [1]. However, care must be taken to control the parameter ¢, for the hard instance and to see
how this affects the final lower bound.

Corollary 1. In the convex case, Accelerated Minibatch SGD is optimal when (. > HB, and in the strongly
convex case, it is optimal up to log factors when (? > H?’/z/ﬁ,

Thus, Accelerated Minibatch SGD is optimal for large (., but when (, is smaller, the lower bound does
not match, and it might be possible to improve. Indeed, focusing on the convex case, there is a substantial
regime HB/ VR < ¢, < HB in which it may or may not be possible to improve over Accelerated Minibatch
SGD. Is it possible to improve in this regime, and if so, with what algorithm? From the previous section, we
know that Local SGD is certainly not such an algorithm. Thus, an important question for future work is
what can be done when (, is bounded, but not insignificant, and what new algorithms may be able
to improve over Accelerated Minibatch SGD in this regime?

6 Inner and outer stepsizes

In understanding the relationship between Minibatch SGD and Local SGD, and thinking of how to improve
over them, it is useful to consider a unified method that interpolates between them. This involves taking SGD
steps locally with one stepsize, and then when the machines communicate, they take a step in the resulting
direction with a second, different stepsize. Such a dual-stepsize approach was already presented and analyzed
as FEDAvG by Karimireddy et al. [10]. We will refer to these two stepsizes as “inner” and “outer” stepsizes,
respectively, and consider

Ty = Tpp_q — Uinnervf(lekfﬁ Z:«Tfkq) Ve M), ke[K]
M K

Tri1,0 = Tro ~ Touter 77 Z Z V(@120 1) Vme[M],relR]
n=1k=1

Choosing Minner = 0, this is equivalent to Minibatch SGD with stepsize 7outer, and choosing Minner = Mouter
recovers Local SGD. Therefore, when the stepsizes are chosen optimally, this algorithm is always at least
as good as both Minibatch and Local SGD. I.e. we have that using (13) with optimal stepsizes, under the
weakly convex assumptions:

2
EF(#) — F* < min {0 (H}f + E§R>
i 14
o (1B (HEZBY'Y?  (He*BY' 0B 14
KR R2/3 K1/3R2/3 MKR



where the first option in the min is obtained by choosing 7inner = 0 and the second by choosing 7inner = Mouter-
We can also get a similar minimum of Theorems 1 and 3 for the strongly convex case. This analysis (14)
improves over Karimireddy et al.’s analysis of FEDAVG as we discuss in Appendix G. An important question
is whether this method might be able to improve over both alternatives by choosing 0 < Ninner < Nouter-
Unfortunately, existing analysis does not resolve this question.

7 Using a Subset of Machines in Each Round

An interesting modification of our problem setting, recently formulated and studied by Karimireddy et al.
[10], is a case in which only a random subset of S < M machines are used in each round, as is the typical
case in Federated Learning [9]. In the homogeneous case this makes no difference, since all machines are
identical anyway. However, in a heterogeneous setting, having all machines participate at each round means
that at each round we can obtain estimates of all components of the objective (1), which is very different
from only seeing a different S < M components each round, while still wanting to minimize the average of all
M components.

We could still consider Minibatch SGD in this setting, but in each round we would thus use a gradient
estimate based on SK stochastic gradients, K from each of S machines chosen uniformly at random (without

replacement). This is still an unbiased estimator of the overall gradient V F'(x,.), with variance g—; (1— %)%

(and at 2* the variance is < Iz +(1- %)%), resulting in the following guarantee under the convex assumptions
HB?>  0.B S ¢B

EF(3) — F* <O T 12 , 15

@ ( r "t USKR M VSR ) (19)

and under the strongly convex assumptions

—AR o2 S ¢?
EF (&) — F* <O AB? * 1—— ) =) 16
&) - F"< ( eXp( H )+ASKR+( M) )\SR) (16)
Similar guarantees are also available for Accelerated Minibatch SGD with ¢ and ( replacing o, and (.. The
guarantees (15) and (16) are valid also for Minibatch SGD (i.e. with 7inner = 0) and thus for the inner/outer
stepsize updates (13). These guarantees improve over what was shown for the inner/outer stepsize variant by

Karimireddy et al., but Karimireddy et al. also presents SCAFFOLD which shows benefits over Minibatch
SGD in some regimes under this setting (see discussion in Appendix G)

8 Discussion

Despite extensive efforts to analyze Local SGD both in homogeneous and heterogeneous settings, nearly
all efforts have failed to show that Local SGD improves over Minibatch SGD in any situation. In fact, as
far as we are aware, only Woodworth et al. [23] were able to show any improvement over Minibatch SGD
in any regime, and their work is confined to the easier homogeneous setting. This raised the question of
what happens in the heterogeneous case, which is substantially more difficult than the homogeneous setting,
and where it is plausibly necessary to deviate from the quite naive approach of (Accelerated) Minibatch
SGD. In this paper, we conducted a careful analysis and comparison of Local and Minibatch SGD in the
heterogeneous case and showed that moving from the homogeneous to heterogeneous setting significantly
harms the performance of Local SGD. For instance, in the convex case Local SGD is strictly worse than
Minibatch SGD unless (2 < H2B?/R. This indicates that any benefits of Local over Minibatch SGD actually
lie in the homogeneous or near-homogenous setting, and not in highly hetrogenous settings (unless additional
assumptions are made). We also show similar benefits for Local SGD as those shown by Woodworth et al.,
extending them to a near-homogeneous regime, whenever ¢? is bounded and less than 1/R. This is the first
analysis that shows any benefit for Local SGD over Minibatch SGD in any non-homogeneous regime. At the
other extreme, with high heterogeneity (. > H B, we show that Accelerated Mini-Batch SGD is optimal. But
this leaves open the regime of medium heterogeneity, of HB/ VR < (. < HB, where it might be possible to
improve over (Accelerated) Minibatch SGD, but not using Local SGD—can other methods be devised for
this regime?
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A.1 Minibatch SGD for heterogeneous objectives

For the proof, we will use the following standard property of convex functions:

Lemma 1 (Co-Coercivity of the Gradient). For any H-smooth and convex F, and any x, and y,
IVF(2) = VFE(y)|* < H(VF(z) = VF(y), z —y),

and
IVF(x) = VF(y)|* < 2H(F(x) — F(y) — (VF(y), = — y)).

Also note the following result from Stich [21], which is useful for optimizing the step-sizes.

Lemma 2 (Stich [21], Lemma 3). Consider non-negative sequences{r,}i>0 and {s;}+>0, which satisfy:
rer1 < (1—ang)r — bygse + cny (17)

for non-negative step-sizes ny < %,Vt, for a parameter d > a, d > 0. Then there exist a choice of step-sizes n
and averaging weights wy, such that:

T

— Z swy + arryy < 32drg exp [—
=0

al 36¢
) 1
2d] g (18)

for Wy := E;‘F:O Wy
Finally we can prove the following result for Minibatch SGD in this setting.

Theorem 5. Under the convex assumptions, the average of the iterates of Minibatch SGD guarantees for a
universal constant c,

HB? B
EF(#) ~ F* e = +c- LKR.

Under the strongly convex assumptions, a weighted average of its iterates guarantees
HA [ )\R} o2
c .

*< e — .
EP(@) - F" <c-—=exp =gy AMKR

Proof. By the A-strong convexity of F', where A might be equal to zero:

M K
E(xz: — 77t ZZfot,zt’ ) —a*

m=1 k=1
= Ellw; — «*|* = 2B (VF(21), 2, — 2*)
2

1 M K
+77tE KM Z g $tazt * ) (20)

< (1= Mp)E|z; — 2*||> = 20E[F(2,) — F*]
2

1 . omk
+ 1 E MZZVf(xt,zt )| - (21)

m=1 k=1

2

Ellzi11 — 90*”2 = ) (19)
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By the H-smoothness of f(-;z), we can bound the final term with

1 M K
m,k
El|oar 2o D Ve
m=1 k=1
1 MoK 2
=E KM Z Z[vf(xt’ztm’k) - vf(l’*7zrlk) + Vf(:v*;ztm’k)} ;
m=1 k=1
1 M K 2
< 2E| or D0 D [VH ) - V)
m=1k=1
1 M K 2
+2B)| e 2 2 VI
KM m=1 k=1
9 M K
m,k x. _m,k
i }:EHVf@mzt )= Vf(z*; 2! w
m=1 k=1
1 M K 2
+2E | 2= Y0 Y V(2" = V()|
KM m=1k=1
M K
4H 92
< — myky x,  miky x. mk o Z
=K ;;E{f(xtazt ) f(x y Rt ) <vf(qj 2 )’ Ty T >] + MK’
X 202
= AHE[F(2,) - F*] + ~ =

Where, for the third inequality we used Lemma 1. Plugging this back into (21), then for 1 < &,

2nio?

Ellzepr —2*)* < (1 = Ane)Ellze — 2*||° — 20, (1 — 2Hn, )E[F (2) — F*] + JZ;K ;
20202
< (1= )E|z — 2*||* — nE[F(x;) — F* L
<( ne)Ellze — 2 [|” — nE[F () 1+ MK

277t0'3
MK~

1 N 1 *
BIF(er) - P < (o = 3 )Elles = o”[ = - Bllowsa = o°[ +
Ur Ur
Now we look at A = 0 and A > 0 separately.

Convex case (A =0): Choose a constant step-size,

14

(23)

(30)



Then the averaged iterate xp = % Zil x; satisfies:

R
= * 1 *
EF(Zr) - F" < ;Eﬂxt) - F*, (31)
R
1 1 o 1 9 2no?
< ST ZE|z —a2t|* - “E — 2 - 32
< 7 2 Bl ="l = CBlen —oI+ T2 (32)
%12 2
— 2
nR MK
4H B? «B 20.B
< max{ , 7 } + g , (34)
R MKR MKR
4H B? 3o.B
< i . 35
R MKR (35)
Strongly convex case (A > 0): Rewriting (28),
2 2 o, 2niod
Ellziyr —a|” < (1= Ap)Ellwe — 2] — nE[F(z) — F7] + ) (36)
MK
we note that it satisfies the conditions for Lemma 2 for the specific assignment:
re = E||lvy — 2*|%, s, = E[F(a) — F*], (37)
web=1 c= 25 g4 T-R (38)
- N ) - MK’ - ) — 1Lt

Thus using Lemma 2, and applying Jensen’s inequality we can guarantee the following convergence rate for
the averaged iterate T = WLR D oteq Wiy,

E[F(ig) — F*] < 128H ||zo — 2*||” exp [—;ﬂ + AECI’ER, (39)
using step-size 1, and w; given by,
if R< %, U ia wy = (1= Agy)~ Y,
ifR>%andt<t0, ntzé, wy = 0,
ifR>$andt2t0, "t:m’ wy = (k 4+t —tg)?,
where = 8 and to = [£]. We conclude by observing that HB? < £2&. O

A.2 Accelerated Minibatch SGD for heterogeneous objectives

We first recall some classical results from Ghadimi and Lan [7, 8] for accelerated variants of minibatch SGD.
These results are for minimizing F(z) := E,..p f(z, z) where F is H-smooth and A(> 0)-strongly convex. The
algorithms use unbiased stochastic gradients {g; };¢[71, i.e., for all ¢, E[g;(x)] = VF(x) which have bounded
variance for all z, i.e., E|g,(z) — VF ()| < o2.

First consider the AC-SA algorithm Ghadimi and Lan [c.f., Sec 3.1, 7]), with step-size parameters {ay }i>1
and {v;}i>1 st. a1 =1, oy € (0,1) for any ¢t > 2 and 4; > 0 for any ¢ > 1. The algorithm maintains three
intertwined sequences {x;}, {z{?}, and {z7*?}, updated as follows:

1. Set the initial points z? = 29 € X and ¢t = 1;

d_ (I—a)(0+ 1— + .
2. Set aprd = (e geo 4 adloadidadg,
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3. Call the stochastic oracle to get the gradient g; at the point z7%;

S

. 2
- Set @y = argmingex {aul{gn, @) + 3 opd = o|*] + [(1 = a3 + Flles — o) 3
5. Set 239 = apwy + (1 — o)y ;5
6. Set t + t+ 1 and go to step 1.

We have the following (almost optimal) convergence rate for strongly convex functions using AC-SA (see,
Sec 3.1 in [7]).

Lemma 3. (Ghadimi and Lan [7], Proposition 9) Let %9 be computed by T steps of AC-SA using stochastic
gradients of variance o2, then for a universal constant c,

H||zo — z*|° o?
C- C

- T2 AT

It can be adapted to the weakly convex case by noting that, if F(z) := F(z) + Slzo — z||? for any A, zg,
and z* = arg min F(z) then,

= E[F(z)— F(2*)] <E {F(x) — rnylnﬁ'(y)} + ngo - x*HQ,VJc.

This also holds if we optimize the right hand side w.r.t. A. In other words, a guarantee for the strongly
convex case, can be converted to the weakly convex case, by regularizing with %on — x*H2 with optimal
value of A. This gives the following result,

Lemma 4. Let 29 be computed by T steps of AC-SA on the reqularized objective ﬁ'(x) = F(z)

xo||?, where the stochastic gradients have variance o, then for a constant c

g
e v 18

Hljeo —a*|*  olleo —a”|
E[F(:0) - F(e")] < o =0 VT

This is minimax optimal for weakly convex functions. Next we consider the multi-stage accelerated SGD
algorithm Ghadimi and Lan [c.f., Sec 3, 8] which uses the above AC-SA algorithm. Let py € X, have bounded
sub-optimality F(pg) — F(2*) < A, then for k =1,2,...,

1. Run Ny iterations of the generic AC-SA by using zo = pr—1, {@}i>1, and {y:}i>1, with relevant

definitions as follows,
2H 12802
N@‘[HMX{4VA73AA2w+u}L

_ 2 A
Tt T ey

Qi

)\0_2 1/2
= 2H :
¢r = max ) [3A2—(k—1)Nk(Nk A +2)} ;

2. Set p, = x%’k where x‘}vgk is the solution obtained in the previous step.

We have following optimal rate for strongly convex functions for this algorithm,
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Lemma 5. (Ghadimi and Lan [8], Proposition 7) Let £%9 be computed by T steps of multi-stage AC-SA
using stochastic gradients of variance o2, then for a universal constant c,

[ A
— ET

Theorem 6. Under the convex assumptions, performing AC-SA on the regularized objective F(:v) =F(z)+
m\\xﬂz guarantees for a universal constant c

o2
+c—

E[F(z%) — F(z*)] < c-Aexp ST

HB? ocB
EF(#)—F*<c- B +c- TR

Under the strongly convex assumptions, the multi-stage AC-SA algorithm guarantees

[ A
— ER

Proof. In order to use the previous lemmas, first note that the stochastic gradient at time ¢ at point z is given
by ﬁ Zi\r{:l Zszl Vf(x; zfmk), where an,k ~d-Dm for all machines. Fortunately, its still an unbiased

gradient estimate, i.e., E {ﬁ Z%zl Zszl V f(w; 2t

o2

EF(z) — F* <c-Aexp MER

+c

; mk)] = VF(x) since the iterates on each machine are

sampled i.i.d. Its variance is given by,

M K
1
E W;;Vﬂx,zm k) — VE(z) (40)
1 MoK 2
= TR Z ZEHVf(x,zfn k)—VFm(x)H (41)
m=1 k=1
1 M K
2
< p Y>> o (42)
m=1 k=1
2
o
_ 43
R (43)
Plugging this into Lemmas 4 and 5 completes the proof. O
B Proof of Theorem 2
Consider the following function F : R* — R:
1 1
F(z) = i(Fl(I) + Fy(z)) = i(Eleplf(x; )+ B ope f(x; 22)) (44)

The distribution z! ~ D! is described by 2! = (1,2) for z ~ N(0,0?). Similarly, 22 ~ D? is specified by
2% = (2,2) for z ~ N(0,0?). The lower bound construction will be based on just two functions. For M > 2
machines, we simply assign the first | M/2| machines F; and the next | M /2| machines Fy. This diminishes
the lower bound by at most a (M — 1)/M factor. Therefore, we continue with the case M = 2.

Following Woodworth et al. [23], we define the local functions F} and F via the auxiliary function

2
o H e H
g(xl,l'g,l'g, Z) = 5(.%1 — 0)2 + 5 (.’EQ — %) + g (.’E% + [1’3]3_) + ZTx3 (45)
G(x1,22,23) = E.g(21, 22,23, 2) (46)
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where ¢ > 0 and p € A, £] are parameters to be determined later, and where [z], := max{x,0}. Then, we

) 16
define

2

F(@;(1,2) = glon, 02,5, 2) + 23 + Goa (47)
2

F(a:(2.2)) = glan, a2, 25,2) + 23— G (48)

for a parameter L € [\, H] to be determined later. Therefore,

La?

Fi(z) =B f(z;2') = G(ay, 32, 23) + 74 + G4 (49)
2 )‘3@21

Fy(x) =E2np2 f(x; 2°) = G(21, 22, 23) + - Ca1y (50)

It is clear from inspection that both F; and F5, and consequently F', are H-smooth and A-strongly convex.
Furthermore, the variance of the gradients is bounded by o? for both D! and D2.

It is clear that GG attains its minimum of zero at {c, ﬂ, 0} so VG (c, Ve O) =0, and thus

VH VH’
VF c,@,0,0 =VG c,ﬂ,o + G es =0 (51)
vVH vVH 2 2
From now on, we use x* = [c, %, 0, 0] to denote the minimizer of F', which has norm
%2 = (1 + %)02 < 2¢? (52)

We can therefore ensure ||z*||?> < B? by choosing ¢? < %2. Furthermore, the initial suboptimality
F(0,0,0,0) — F* = pc? (53)
Therefore, we can ensure F(0,0,0,0) — F* < A by choosing ¢ < %. We conclude by showing that for this

objective, (2 bounded by

Y IVEL@)P = V@) = VR @) = ¢ (54)

N | =

Therefore, this objective has the desired level of heterogeneity.
Therefore, we have shown that the objective satisfies all of the necessary conditions for the lower bound.
All that remains is to lower bound the error of Local SGD with a constant stepsize i applied to this function.

Lemma 6. For p < 2L, then Local SGD with any constant stepsize n < % applied to Fy and Fy after being
mitialized at zero results in T4 such that

(L+pwii _ CG(L+p) (L—p <\ 2
T e T 0mmmT ) ey Yamumr<izey

Proof. Since the coordinates of F; and Fy are completely decoupled, the behavior of the fourth coordinate of
the iterates can be analyzed separately from the others.

Let 33,(613 denote the fourth coordinate of machine 1’s iterate at the kth iteration of round r, and similarly

for a:,(fl The local SGD dynamics give

C* C*
oy, =2l —n(Lal) +¢.) = =2+ (- Ln) (2 + T (55)
G <
Ty = 1)~ n(—C* + uw;(f,l) =, T Ty m (56)
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and 4 = %(w%)R + xg()R) = xg,p+1. Unravelling this recursion, we have that

1 2 C* C* C* K C*
Tor41 = 95(() 7)~+1 = 37((),7)>+1 =3 (M -7 (1= pn) (l‘o,r - u) + (1 - Ln) (J?o,r + L)) (57)
Furthermore, if n < + then (1 — Lp) > 0, so if 29, > 0 then
C* Ce K[ Zo,r Cs G (L—p K
1> 22 (1 oo ) s> (2R
Tort1 = 2 2L + (1 —pn) 9 21) =2\ L (1 —pn) (58)

Finally, since x990 = 0 > 0, the condition xy, > 0 will hold throughout optimization, so

> 24; (F" - a-m") (59)

Therefore, if n < + and (1 — /m) < LK then

(L+mw)a3 _ G(L+p) (L—p k\°
TR T <L (1un))

This completes the proof. O
We now prove the theorem:

Theorem 2. For any M, K, and R there exist objectives in four dimensions such that Local SGD initialized
at zero and using any fived stepsize n will have suboptimality at least

2 (He2BA 1/3 Ho2B* 1/3
EF(%) — F* > c- | min HB? (HCEY) (Ho*BY) = oB
R R2/3 K2/3R2/3 MKR

A 6AR\ H( , Ho? o?
—F*>c. - .
EF(z) - F*>c¢ (mm{Aexp< > A2R2}+mm{A, /\2K232}+ AMKR)

under the convex and strongly convex assumptions (for H > 16)), respectively.

Proof. Since the four different coordinates are completely decoupled from each other, it suffices to analyze
each coordinate separately.
In the course of proving [Theorem 3 23], Woodworth et al. prove that

EG (i1, &2, 83) — G<c, Ve 0>

VH’
2 KR 2 2 2
pe (1 — pm) pc Hn'o
> - - - 2 T e~ 2
= 2 T s a) T Tame Yo (61)
Furthermore, by Lemma 6
(L+Nid  CUL+p)(L—p ©)’
T T N IR (RS S SRR (62)
Therefore, choosing L = %
. L He H+2\ 4
EF (&) — F* = EG(&y, &9, 23) — G ,L,o 63
(#) (1,2, ) (Cm )+ e (63)
(1 — )" Hio? |
- 2 +71{”>H}+ 18432 {’7<H} {n>wir
G(H+2u) (H—2p K
e 7~ (L= um) 1{773%}]1{(1—#77)’(3—”;2“} (64)
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Stochastic terms

First, we will show a lower bound in terms of o2 using solely the first three terms of (64). Consider three
cases:

Case 1 n> Z: In this case, from the second term of (64) we see that

2

EF(z)— F* > - (65)
Case 2 ﬁ <n< %: In this case, the third term of (64) shows
Hn?0?
EF (%) — F* > 66
) = 18432 (66)
where we recalled that pu < %, somn > ﬁ > ﬁ. This is non-decreasing in 7, so for any n
Ho?
EF(2)—F*> —————— 67
() = 7372812 K2 R? (67)
Case 3 nn < % and 7 < m: In this case, from the first term of (64),
201 _ KR 2(1 _ 1L KR 2
EF() _ pr > PEA )T pe (1= sxm) o ne (68)
2 2 4
Combination: Combining these three cases, we conclude that for any n
2 2 2 2 2
R N . [ pe Ho ue . [ uc Ho
EF(z) — F* > —_— e — = —_— 69
() = mm{ 2 T372842K2R?2’ 4 } mm{ 3 73728u2K2R2} (69)

This lower bound holds for any stepsize, and any p € [)\7 %] and regardless of (.. In the strongly convex
case, we recall that F(0) — F(z*) = uc?, therefore, we choose y = )\, and ¢ = % so the lower bound reads

(for a universal constant ()
. « . Ho?

To conclude, it is well known that any first-order method which accesses at most M K R stochastic gradients
2

with variance o2 for a A-strongly convex objective will suffer error at least 3 sirg in the worst case [17].

Therefore, the strongly convex lower bound is

R N . Ho? o2
EF(z) — F* > - minq A, VCRIRE Jrﬂ.)\MKR (71)

*|12 2 2 B? Ho? 1/3
In the convex case, we recall that ||z*[|” < 2¢?, so we choose ¢® = 5, and set y = (m> so the
lower bound reads
(Ho?B*)

BF(®) —F" 28 1appars

(72)

To conclude, it is well known that any first-order method which accesses at most M K R stochastic gradients

. . 2 . . . || < A1 o oB .
with variance o for a convex objective with ||z*|| < B will suffer error at least g —— in the worst case

[17]. Therefore, the convex lower bound is

(HO‘QB4) s oB (73)
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Heterogeneity terms

Next, we consider solely the first, second, and fourth terms of (64) in order to show a lower bound with
respect to (.. Again, we consider three cases:

Case 1 7> %: Again, in this case, from the second term of (64) we see that
2
EF(z) — F* > % (74)
Case 2 n < % and (1 — ;m)K > H;IQ“: In this case, from the first term of (64), we have
2 1_ KR
ER(7) — F* > 1 ( 2m7) (75)
2 R
pe 2u
St I R 76
> (1- %) (76)

vV
M‘E
[\v]
/N
/N

—

\
.
SES
I/~
—

|
| =
~——
S~
|

b
N~
Jus

—
)
\]
S~—

2
ue 4uR
S _ 78
2 ( 7 ) (78)
Case 3 n< # and (1— un)K < %: In this case, from the first and fourth terms of (64), we have
2 2 2
X . < HC kr | G(H+2p) (H—2p K
EF(z) — F* > —(1 — —(1-
() > 5 (L= )™+ 32 i (1= pum) (79)
Suppose that (1 — my)K > H;f“ - &, then
2 2 R
pe KR _ M 2p 1
B - >HO (2B
g (o)™ =75 ( H 43) (80)

Then, if R > £ then
o

2 2 R 2 &N\ H 2
pe KR _ HC 3 pe 6 LY ° pe 6uR
iyl > (1-28) > ((1-LE(1-= > _ P 81
5 (=)™ 2 = ( H) > (( H( e)) ) > —-exp| —— (81)

2 2 R 2 2
He KR _ MC 1 pue® _pe 6uR
— (1 - > (1—-— ) >=—F— > = 9
2( #77) _2< 2R>_4_4exp( H) (8)
K o H-2
Therefore, when (1 — pun)™ > =7 — ﬁ7
’ 6uR
EF(z) - F* > %exp <“H> (83)
On the other hand, if (1 — pun)™ < H=24 _ L then
H iR
s GUH+2) (H—2p k)
EF(z) - F* = 3212 H (1 —pn) (84)
GH+2p) (1)
=752 \iR (85)
HE
= 512u2R? (86)
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Combination: Combining these three cases, we conclude that

2 2
R . | pe 6urt H¢;
EF(z) - F* > mln{ 1 &P (— ) 2R (87)

In the strongly convex case, we recall that F/(0) — F(z*) = uc?, so we choose = A and ¢? = £ so that
the objective satisfies the strongly convex assumptions. Now, the lower bound reads (for a universal constant

B)

. . . 6AR H(?
In the convex case, we recall that [|2*||? < 2¢2, so we choose ¢* = g so that the convex assumptions are

2 \1/3
satisfied. We now have two options, if R < %, then we pick pu = (BHT%Q) so that the lower bound reads

/3 2/3
e (HEBY 0
HE B 1/3
>B- (RQ/?)) exp(—6) (90)
HEBY)
> 6 (32/3) (91)
On the other hand, if R > %, then we pick p = % so the lower bound reads
HB? (? HB?
Consequently,
/3
- [HB> (HZBY'
EF(z)— F 25~m1n{ 7 ( R2/3) (93)
Combining these with the stochastic terms completes the proof. O

C Proof of Theorem 3

We prove the theorem with the help of several technical lemmas.

. 1
Lemma 7. For any stepsize ny < 1977

M

_ 1 _ 2 1 _ 2 30'2T]t 2H _ 2
E[F(z,) - F*] < (= — \E|z — &> — —E|Fep1 — * T 2N Bl — o
[F(Z+) ] < ("7t ) [E | e |Zer1 — 2" + M =+ M2 |z: — x|

Proof. This lemma and its proof are nearly identical to [Lemma 8 12]. We include a proof here in order to
keep the paper self-contained.
Let 2441 = ﬁ Zn]\le " be the average of the machines’ local iterates at time ¢. Then,

2

M M
1
El|zes1 —2*|% = E||z, — % > VEula}) —a*|| +0E| 2 Y VI ") - V() (94)
m=1 m=1
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Beginning with the first term of (94):

xtf—ZVF ) —

2

M M
1 2
= B[z —2*|* + 0B == 3 VEn(al)| - 37 Y. E (@ — 2", VEn(a}")
m=1 m=1
We can bound the second term of (95) with:
| M 2
2 m
| Y ra)
1 i 1
< 27K+ > VEn () = VEn(2:)| +207E 7 > V() = VEn(z")
m=1 m=1
277t2 - m *\ (2
<3 Y E[VEu(2]") = VEu(2)|* + 207 EIVF (2,) — VF(2")|
m=1
2H?n?
<SP 5" Bllaft - a0l + LHPELR(E:) - Fla)]
m=1

For the third term of (9

5):

2
ilia Z E (% — 2%, VEFp(z))

Kl
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(100)

(101)



Finally, for the second term of (94)

2

M
N E|— Z (& 2) — V Epy ()
n? M
m m m\ |12
= - M2 Z va(zt 3 Ry ) — VFm(xt I
3n; .
m T m T m * m\ |12
< [Evf B 2) = V(@ 2P|+ IV S (@2 - Vit o)
+E|V (@5 2") = VEL ()]
3n? M
t 2 m _ 2 B N 9
< MZmz_l[H Ella" - 2ll” + 2HE[F(7) — Fn(2*)] + 0]
37]2 M 02
t 2 m — 2 _ N .
< Mmz_:1|:H E|lxf* — &¢||” + QHE[F(xt) — F(x )] 4 M]

Combining all these results back into (94), we have

) i} e Hp45HME L
Elzer1 —a*|® < (1 - Ap)El|z, — o*|* + T2 220 N gllap — )

M m=1
oy Buka?
+ (L0HD? — 2)E[F (&) — F(a")] +

2Hn, &
< (1= B[z, — a*|* + Wt Z Ellz" — 2]

m=1
3njo}
M

— nE[F(Z) — F(a¥)] +

where for the final line we used that n; < Rearranging completes the proof.

— 10H

Lemma 8. Ifsup, ,||VFn(x) — VE(z)|? < €2, then for any fized stepsize 1

M
1 _
i > Ela} - z,* < 3Ko™n® + 6K>°¢?

m=1

Similarly, the decreasing stepsize n; = W for any a

M
= Z Elle" —2.|* < 3Ko™ni_ +6K>C*ni_,

Proof. By Jensen’s inequality

Ellz" — <= ZEth — x|
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(105)
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Therefore, it suffices to bound Ellz — 27|, which we do now:

Elzy" — oy H
<E H'Tt—l —xy g = Wt—l(VF(z?il) - VF(ZE?—l))
m m n n 2
+ -1 (VFE (")) = VE, (2" ) = VF(z} ) + VE,(x}_))) H + 17407 (109)
. " 2
S;r;f(’)(l 7>]E||117t 1~ 1~ - 1(VF($t 1) — VF(:Et—l))H
m m n n 2
+(1+ ’Y)’??—lEHVF(xt—l) = VE, (2" ) = VEF (2 )+ VFn(xt—l)H +n7_y0° (110)

1
< inf (1 + 7) (1= Ap—1)E|| 2}, — 95;11H2 + 07 ,0°

v>0
m 2
+(1+7)77t271EHVF i) — VFmWﬁﬂH
n 112
+(1+ 7)77t271E||VF () — VFn(xtfl)H
—2(1+7y)n;_,E (VF(z}")) = VFy(z]" ), VF(z}_ ) — VF?L(17?—1)> (111)

For the third inequality we used Lemma 1. Therefore,

M2 Z ZE”xt _xt

m=1n=1

2 Z;&%( ) L= Ay EH% 1= T 1|| + 0710+ 2(1 4+ 7)n;_1 ¢ (112)

We will unroll this recurrence, using that i =z, for all m,n where ¢y is the most recent time that the
iterates were synchronized, so t —typ < K — 1. Taking v = K — 1, we have

— ZZEII% | —§(77302+2(1+7)n?52) ﬁ 1+ 1) (1= ) (113)
] ¥

m=1n=1 i=tg Jj=i+1

t—1 7 t—1 1

< S tuto? 262 T (14 07 )a— ) (114)
i=to j=it1
t—1 B 1 K-1 t—1

< 3 (20? + 2623) (1+K_1) [[a-x) (15
i=to j=it1

B t—1 t—1
<3(0*+2K3) w2 T (- ) (116)

i=to  j=i+1

For a constant stepsize 7,

;] MoM t—1
el Z ZIEth —a? <3(co® +2K(? Zn (117)
m=1n=1 1=t
< 3K (0% +2K%)n? (118)
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For decreasing stepsize n; = W

t—1

L MM ) t—1 a1
WZZEH% — 27 |* < 3(0® + 2K Zm H atit1

m=1n=1 i=to j=i+1

1
= 3(02 + 2K0?) Z 2lati)atitl)

(a+t)(a+t+1)

—3 +2K 277t 17t
(U C 1275 MNi—1Mi

t—1
3(0_ +2K<2 Z 27715 1

1=to l

=3K(o® +2K%)n;_,

(119)

(120)

(121)

(122)

(123)

O

Theorem 3. When sup,, 17 Zf\f:l IV E.(z) — VF(z)||* < 2, an average of the Local SGD iterates quarantees

under the conver and strongly convex assumptions, respectively

HB? (HEBY'Y®  (Ho2BY)'? .B
EF(3) - F* <c. L (HEBY) T (Ho®BY) o |
KR e KBRB ' JMEKR
2B HE  Ho? H o2
EF(3) - F* < c- og( 2+ kR =),
@) -F'<c (HKR+>\K2R2 * <)\2R2 * )\QKR2> Og< y ) * AMKR)
Proof. By Lemma 7, for any n; < ﬁ
1 1 N 302
BIF(@) - 771 < (2~ )8l - I = TBlaw - o7+ 222+ Z Eljz, — 2|1
t t

By Lemma 8, when 7; = 7 is constant then

M
1 _
i Z Ellz — z||* < 3Ko?n? + 6K

m=1

and when N = W
1 M
m = 112 =
77 O Blle = @|* < 3Ko*n? , +6K3Cn

We now consider the convex and strongly convex cases separately:

Convex case: In the convex case, we use a constant stepsize 7, so

E[F(z;) — F"]
1 . 1 . N 30*
S el 7 Z E|z; — a7"|
1 1 302 -
< E]EH:ft e HIEH@H — )P+ 22 6HK oM + 12HEK 22 C
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Therefore, by the convexity of F

| KR | kR
E|F| — T, | —F*| < — E[F(z;) — F* 12
(mZ) < g L BiF @) — P (129)
B? 302 _
< 22+ 6HKo?*n® + 12HK*n*(? 130
S KRT ar T o'y’ + UNS (130)
Choosing
= min ! BV M B v 372 v (131)
= 10H' o,vKR \HK?02) ' \HK?
then ensures
KR = 1/3 1/3
1 10HB? 13(H(*B* 7(Ho*B* 40.B
BlF( 3 ) - Fr| <2 HEBY) | THEY) © | Ao (132)
KR & KR R?/3 K1/3R?/3 MKR
Strongly convex case: In the strongly convex case, we take the stepsize 7, = W for a = 20H/A
which ensures 7, < 10%. In addition, we define weights w; = (a 4 t) and define
| kR
T=— Z Wy T (133)
[
where W = ZtK:}f wy > LK R(a+ KR). By the convexity of F,
EF(z) — F*
| kR
< W (a+t)EF(z;) — F* (134)
t=1
ANa+1D@+2)B2 1 <8[652 2H(a+1t) o~ . 2
< _ e\ _am
< T + Wt; VTR 7;1@\\% | (135)
AMa+1)(a+2)B2  602KR G6HKo?+ 12HK2(? <X )
t 136
< Mex o Ll = > (ot (136)
Ma+1)(a+2)B?> 602KR 6HKo?+12HK?(?
< * 1+1 K 1
< i + WM + 2T (1+log(a+ KR)) (137)
132H2B? 12HC?  6Ho? 13H 602
log| — + KR - 138
= NKR(10H/» + KR) ( MRz A?KR2) ( N ) K (138)

Note that in the strongly convex case, it is likely possible to achieve a first term scaling with exp(—KR)
using a method similar to Lemma 2. However, the recurrence we derived here has a different form, and it is
difficult to determine the correct stepsize and weighting schedule to achieve linear convergence. O

D Details of Experiments

The training set of MNIST (60,000 examples) was divided by digit into ten groups of equal size n =~ 6,000
(which required discarding some examples from the more common digits). PCA was used to reduce the
dimensionality to 100, but no other preprocessing was used.

Then, for each of the 25 combinations (4,7) for even 7 and odd j, a binary classification “task” was created,
i.e. classifying even (41) versus odd (—1). These tasks were arbitrarily labelled task 1,2,...,25.

For each p € [0.0,0.2,0.4,0.6,0.8,1.0], machine m was assigned data composed of p - 2n random examples
from task m, and (1 — p) - 2n random examples from a mixture of all the tasks.

27



Local and Minibatch SGD were then used to optimize the logistic loss for each of the six described local
datasets. The constant stepsize was tuned (from a log-scale grid of 10 points ranging from e=5,... e for
Minibatch SGD, and a log-scale grid of 10 points ranging from e=%,...,e~! for Local SGD) for each value of
p, K, and R individually, and the average loss over four runs is reported for the best stepsize for each point
in the plot. That is, each point in the plot represents the best possible performance of the algorithm for that
p, K, and R specifically.

Finally, we computed the value of (? as a function of p by using Newton’s method to compute a very
accurate estimate of the minimizer, and then explicitly calculating ¢?(p) at that point.

E Proof of Theorem 4

For this lower bound, the gradients will always be noiseless, so we simply define the expectation of the local
functions. Furthermore, we will construct just two local functions F} and F5. For the case M > 2, F; will
be assigned to the first | M/2] machines, and F» to the next | M /2] machines. If there is an odd number of
machines, we simply assign the last machine F3(z) = 3||z||?, which will reduce the lower bound by a factor
of at most Mgwl Therefore, we proceed by focusing on the case M = 2.

We define the following H-smooth and A-strongly convex functions on R? for even d:

1
F(z) = 5 (Fi(z) + Fa(z)) (139)
d/2—1
H— ) A
Fi(r) = == o — 207 + Bri+ Y (wai —a2) | + 5||a:H2 (140)
1=1
d/2
H -\ A
Fy(w) = == D_(@ai = w2i0)” | + Gl (141)

i=1

Here, 5 and C are constants which will be chosen later.

These functions are identical to ones used by Woodworth and Srebro [24] to prove lower bounds for finite
sum optimization, and are very similar both to classic work by Nesterov [18] on lower bounds and to more
closely related work by Arjevani and Shamir [1]. Arjevani and Shamir also prove lower bounds for distributed
optimization algorithms, but their slightly different construction made it more difficult to tune (2, which is
necessary for our lower bound.

These functions have the following important property: let Ej = span{es,...,ex} be the set of vectors
whose k + 1,...,d coordinates are all zero, then for all x; € E for even k
VFl(.Tk) S Ek-‘,—l and VFQ(Ik) € Ey (142)

and for z € E} for odd k
VF, (l‘k) € Ey, and VFQ(l‘k) € Ex11 (143)

For algorithms whose iterates, for example, remain in the span of previous gradients, the only way to access
the next coordinate is to query the gradient of one of the two functions—F if the next coordinate is odd,
and F; if the next coordinate is even. Since each machine will only have access to one of the two functions
throughout each round of communication, this means that each round of communication can only unlock a
single new coordinate. We now formalize this.

Following Carmon et al. [4], we define:

Definition 2 (Distributed zero-respecting algorithm). For a vector v, let supp(v) = {i € {1,...,d} : v; # 0}.
We say that an optimization algorithm is distributed zero-respecting if for all t and m, the tth query on the
mth machine, 7" satisfies

supp(e}") € (Jsuwpp(VF2ls20 )0 | U supp(VF@52")

s<t m/#m s<m, (t,m’)

where m,, (t,m’) is the most recent time before t when machines m and m’ commaunicated with each other.
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This definition captures a very wide variety of distributed optimization algorithms, including minibatch
SGD, accelerated minibatch SGD, local SGD, coordinate descent methods, and many more. Algorithms
which are not distributed zero-respecting are those whose iterates have components in directions about which
the algorithm has no information, meaning that in some sense, it is just “wild guessing.” Using techniques
similar to Woodworth and Srebro [Theorem 7 24| and Carmon et al. [4], it should be possible to extend this
lower bound beyond distributed zero-respecting algorithms to arbitrary randomized algorithms.

We now argue that the progress of distributed zero-respecting algorithms is controlled by the number of
rounds of communication, R, regardless of K:

Lemma 9. Let & be the output after R rounds of communication of a distributed zero-respecting algorithm
optimizing F = L(Fy + F) as defined in (139). Then,

supp(z;*) € Eg

Proof. The definition of a zero-respecting algorithm requires that every machine’s initial iterate a{* = 0. We
will now prove the Lemma by induction on the round of communication.
As a base case, for the first iteration of the first round of communication:

(A — H)C

VFi(zg) = VF(0) = =

e1r€E;  and  VF(a1) = VF(0)=0¢ Ey (144)
Therefore, by the distributed zero-respecting property, z3 € E; and 23 € Ey. Furthermore, for all y; € Ey,
VFi(y1) € Fy and for all yg € Ey, VFy(yo) € Eo. Therefore, further gradient queries on each machine will
not change the set of coordinates that the distributed zero-respecting property allows to be non-zero. We
conclude that x% € F; and ;vf € Ey for all t until machines 1 and 2 communicate with each other.

Now, suppose that after r — 1 rounds of communication, x},z? € E,_1. If r is even, then VFy(z}) € E,_;
and VFy(2?) € E,. Furthermore, additional gradient computations within the rth round of communication
will not expand the set of coordinates that the distributed zero-respecting property will allow to be non-zero.
Therefore, both machines’ coordinates will remain in FE, until the end of the rth round of communication. A
similar argument can be made for odd r. O

Now, we will compute the minimizer of F. We note that by the definition of F; and F3,

H-\ 2 b
F(x) = == (ﬁ —2Cxy + Baf + Y (i — x“)2> + 5 llzl? (145)
=2

Calculating the gradient of F', we see that * = argmin, F'(x) must satisfy
8\ . .
C= (2+ H_)\)xle

8A o x
0= (2 * H — /\)Ii T Tip1 T T Vie{2,....d-1} (146)

8A . N
0= (1+B+H-_)\>xd_md—l

Let ¢ be the smaller solution of the quadratic equation

8\
1—(2+ —"— 2 = 14
< +H_)\>q+q 0 (147)
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That is,

AN 162 8\

¢=1+ \/(H—)\)2+H—)\ (148)
AN H—\

:1+H_A<1—\/1+2)\ > (149)

2 (1 1+H2_AA> (150)
1- ,/1+HA>(1+,/1+H;Q>
VIS ! (151)
/+

Let a=4/1+ T so that g = +1’ and define 8 =1 — ¢. Then it is straightforward to confirm that

d
x* = CZqiel- (152)
i=1

satisfies all of the conditions (146), and is thus the minimizer of F. This point has value

d d
; 8A .
F * ) 2d 1— 2i—2 21 153
(¢*) = (q g+ B4 + (1-¢q)? ;q +H_/\;q (153)
d N
1 2d 1 )2 2i—2 2 154
( + B¢ +(1-q) ;q +7H_)\Z;q (154)
BA . _
< 1+ q2d + T Zq%fl + q2z> (155)
i=1
8\ (q1—¢*)  ¢*(1—¢*)
1 ¢* 1
( * +H—)\< —¢ 1 (156)
1-9) (¢ -¢*) ¢ —¢*)
1 2(1 ( 157
( * " q ( 1—¢? * 1—¢2 (157)
= CZN (1t (- g + (- )1 — ) (158)
—qC’2 H-))
-7 16 159
16 (159)
For the third equality, we used that (147) implies (1 — ¢)? = 8/\‘1 . For the fifth inequality, we used that
2= %. This solution has norm
d 2 2d 2,2 2 2 2
*)2 2 2i 2q"(1=¢*") _ ¢°C C*’(a—1)2 _aC
— — < _ <
lz*|* = C ;q S e el < (160)
Furthermore,
qC%(H — \)

(161)

30



Finally, we evaluate the degree of heterogeneity:

2

1
=3 D IVEL@)” = [VE@E)* = [VE")| (162)
m=1
2
H-\?| & 4\
= (674) 2> (3, — a5 1) (e — e2i1) + T (163)
i=1
72 d/2 AN 2 AN 2
S (e 25)) (s (10 525) a6
1=1
O (H = A (=50 | (H+3))
- e e ) 1o
H +3))?
< A o (166)
aC?(H + 3))?
<= (167)

With this, we are ready to prove the lower bound.

Theorem 4. For any M, K, and R, there exist two quadratic objectives satisfying the convex and strongly
convex assumptions (for H > TA) such that the output of any distributed zero-respecting algorithm will have
suboptimality in the convexr and strongly convex case respectively,

. « . Cf HB? oB
F — F* >
(2) > c(mln{ I R’ TRE )

A2 AV SRVA o2
F(z)—F* > i :  — — .
(2) c(mln{ ERN exp NG + VKR
Proof. By Lemma 9, the output of the algorithm & € FEg. Furthermore, since F' is A-strongly convex,
F(z)— F* > 3¢ — 2*||%. Therefore,

F@) -~ P Y=o s
F(0)— F* = ¢C2(H=N)
16
8\ d
> 7 169
q(H = A) i:zR:H 1o
- M (170)
(H =M1 -¢?)
(- a)*(@*" — ¢*)
= 171
— (1)
_ =@ =) (172)
1+gq
2R _ 2d
g —q
= 173
. (173)
For the third equality we used that (147) implies % = (1—q)?. For the final equality, we used that ¢ = Z—:
Taking d > R+ m ensures that q2d < g SO
, \2R
p g (1-)
F@)-F > " o+l (174)



Therefore,

F(0)—F*
hl( (2)046 ) . «
R<—— £ = F(&)—F">¢ (175)
1+ :2;)
Using the fact that In(1 + «) < x and solving the above inequality on R for ¢, we conclude that
N .. F0)—F* 2R
_ > _
F(z)—F* > % exp< - 1) (176)

In order to satisfy the strongly convex assumptions, we recall from (167) and (161) that we must choose C
such that

aC?(H + 3))? < aC?H? 9

< 1
64 - 16 — G (177)
qC*(H —)\) _C°’H
< <A 1
16 - 16 - (178)
Therefore, we choose C? = 16 min{ Cf}*;, %} meaning that
N .. F(0)—F* 2R
_ >\ - -
F(z)—-F* > 50 exp( o 1) (179)
. ¢?
mm{ > A} 2R
> v J _
> o exp< - 1) (180)
N BYCERYAV.N 8VAR
> min z, —— pexp| ———=— 181
. { 2 wﬁ} p( Vi sy
For the convex case, we note that in order to satisfy the convex assumptions, we must choose C' such that
2 2 2 772
aC?(H + 3X) < aC*H < (182)
64 16
2
ol” _ p2 (183)
4
We therefore choose C? = 4min{ Oﬁ% %2} Returning to (176), this means
. F(0) — F* 2R
_ >N 7 _
F(z)—F* > o exp( o 1) (184)
qC?(H — )\) 2R
= — 1
32a P a—1 (185)
. 2 2
N q(H =) mln{ﬁ}z %} . 8VAR (156)
wp | =22t
- 8a "\ VA
[ ¢ HB? 8VAR
> - 1
- qmm{ 1602H’ 16a2 [ P VH (187)

From here, we use that H > 7\ implies & > 2 so ¢ > 1/3, so

X2 \B? 8V AR
F(#) — F* > mi Il B 1
(2) > mm{ si? ag [P B (188)
Finally, this holds for any A > 0, so it holds, in particular, for A = % thus
. . . 2 HB?
F@)—F">c- mln{ e e (189)
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Finally, it is well known that any first-order method which accesses at most M K R stochastic gradients

2
with variance o2 for a A-strongly convex objective will suffer error at least /3 iR 0 the worst case for a
universal constant 8 [17]. Similarly, any first-order method which accesses at most M K R stochastic gradients

with variance o2 for a convex objective with ||2*|| < B will suffer error at least 3 J&LKR in the worst case for

a universal constant 5 [17]. O

F Proof of Corollary 1

Corollary 1. In the convex case, Accelerated Minibatch SGD is optimal when (, > HB, and in the strongly
convex case, it is optimal up to log factors when ¢ > H3/2/\[\.

Proof. In the convex case, Theorem 1 ensures Accelerated Minibatch SGD converges at a rate proportional to

HB? cB
+ 190
R? MKR (190)
The lower bound for convex functions in Theorem 4 precisely matches this whenever
HB? ) 2 HB?

For the strongly convex case, Theorem 1 ensures convergence at a rate porportional to

Aexp ( ‘AR) L (192)

csVH |  AMKR

The lower bound is given by

H? H VH AMKR
When ¢2 > H?/2/+/), this reduces to

L\/Xexp (— SR\f)\) i Aexp(—SRﬁ ﬁ) + o

= VA oe 42
VH VI AMER JH  ®VH ) T MMKR

Comparing this with (192), we see that the R needed to guarantee error € using Theorem 1 is larger than the
minimum possible R, as lower bounded by (194), by at most a log factor. O

min{ ACE M} exp (— SR\/X> + o (193)

(194)

G Discussion of Karimireddy et al. [10]

We compare our results to Karimireddy et al. [10], who presented an analysis of the inner/outer stepsize
variant of Section 6 (as FEDAvG, with a different stepsize parametrization—see below) as well as the novel
method SCAFFOLD which incorporates variance reduction.

Karimireddy et al. [10, Theorem V| show that for the inner/outer stepsize updates (13), with optimal
choice of stepsizes, in the weakly convex case

HB? oB (H@B‘*)” ° S (B
I * _ Lo
EF(3) - F* <O < 3 R T 1 NG (195)

and in the strongly convex case,

IEF(i:)—F*gO()\B2exp(_/\R)+ oo LHG 45 2) forREQ(Ij). (196)

H ASKR = A2R2 M’ ASR
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But these are loose upper bounds: as discussed in Section 6, the Minibatch SGD guarantees also apply to
the inner/outer variant (by using 7ipner = 0). The Minibatch SGD guarantees (15) and (16) can therefor be
viewed also as guarantees on the inner/outer variant (i.e. Karimireddy et al.’s FEDAVG) that improve over
(195) and (196) in several ways: (a) they avoid the the third terms in (195) and (196); (b) they improve the
fourth terms by a factor of VS and S respectively; and (c) they avoid the requirement R > H/\.

Karimireddy et al.’s presentation actually uses a different step-size parametrization that does not allow
for Tinner = 0: they Us€ 7); = Tinner and Ng = nouter/ninner- We prefer the presentation USing Minner and Touter
in order to emphasize the relationship with Minibatch SGD and in order to explicitly allow 7ipner = 0. But in
any case, even using their parametrization, 7; = Minner could be taken arbitrarily close to zero making the
deviation from Minibatch SGD arbitrarily small. Indeed, the Karimireddy et al.’s bounds (195) and (196)
are obtained when 7, is already so small that the algorithm is essentially equivalent to Minibatch SGD.

But Karimireddy et al.’s main contribution was the presentation of SCAFFOLD, which incorporates
machine-specific control iterates that reduce the inter-machine variances. For SCAFFOLD, [10, Theorem
VII| show that in the weakly convex case”:

(197)

. HB?2  oB M2 o/
_ < *
EF@) - F —O< 7t Vekn T HSE T HSURE)

and in the strongly convex case

MC2 . A S o2 H M
P — F* < 2 * — - = - > - =t
EF(z)— F* <O ()\(B + 5 2) exp( mln{ , }R) + G ) for R_max{ 3 S} (198)

These guarantees are also obtained when ;e 1S S0 close to zero that this is essentially a minibatch method,
in this case “Minibatch SAGA” [cf. 6].

Although SCAFFOLD is aimed specifically at the setting where a subset of machines are used in each
round (i.e. S < M), let us first check whether it provides benefits in our “standard” setting (introduced in
Sections 2), where all machines are used each round (i.e. S = M). In this case, the SCAFFOLD bounds (197)
and (198) may improve over the loose upper bounds (195) and (196), but this is only due to the looseness
in these upper bounds. The SCAFFOLD upper bounds (for S = M) do not actually improve over the
Minibatch SGD guarantees of Theorem 1, and only include additional terms (see Tables 1 and 2). That is, the
SCAFFOLD upper bounds, when S = M, are valid also for FEDAVG (since as discussed above, Minibatch
SGD gurantees are valid also for FEDAVG) and so do not show a benefit in the setting where all machines are
used each round. This is perhaps not surprising, since in this setting there is no need to reduce inter-machine
variance, and so no benefit from variance reduction.

Let us turn then to the setting of Section 7, where only a random subset of S < M machines are used in
each iteration, and for which SCAFFOLD was developed. In this setting, SCAFFOLD does show a benefit
in some regimes. Let us focus on the weakly convex case and compare the SCAFFOLD guarantee (197)
with the Minibatch SGD guarantee (15). We can verify that, e.g. when ¢ =0 and (., = HB, SCAFFOLD
improves over Minibatch SGD if % < % < £ and S < M, but the SCAFFOLD guarantee (197) is worse
then Minibatch SGD if % < %. More generally, the SCAFFOLD guarantee is worse than Minibatch

SGD if ¢ = 0 and % < Hg*;z min(1, %) Also for strongly convex objectives, SCAFFOLD improves over

Minibatch SGD in some regimes but the guarantee (198) is worse than Minibatch SGD in other regimes.
Care is required to map out the precise regimes and how they depend on the various problem parameters.

"This is different than the bound stated as [10, Theorem III], but is what was proven [10, Theorem VII, Appendix E].
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