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Abstract—Networked microgrid (NMG) exhibits noteworthy
resiliency and flexibility benefits for the mutual support from
neighboring microgrids. With high penetration of distributed en-
ergy resources (DERs) and the associated controls, the transient
stability analysis of NMGs is of critical significance. To address
the issues of computation burdens and privacy in the centralized
transient analysis, this paper devises an ordinary differential
equation (ODE)-enabled distributed transient stability (DTS)
methodology for NMGs. First, an ODE-based microgrid model
is established to capture the dynamics in the droop control of
DERs as well as network and load. Further, a distributed DTS
is devised for the ODE representation of an NMG, allowing
a privacy-preserving transient analysis of each microgrid while
accurately reconstructing the frequency dynamics under droop
controls in all DERs. Extensive tests are performed to verify
the validity of the ODE-based microgrid model through both
dynamic response and eigenvalue analysis, and the efficacy of
the DTS algorithm in simulating the large signal responses and
the frequent fluctuations in NMG.

Index Terms—Networked microgrids, distributed transient sta-
bility analysis, ordinary differential equations, droop control.

I. Introduction

Microgrids (MGs) have received major attentions for its

flexibility in operation and accommodating the renewable en-

ergy [1]. A networked microgrid (NMG) system incorporating

multiple neighboring microgrids has shown a great potential to

harness resiliency benefits by leveraging the mutual supports

between MGs [2]. Considering the volatility, variability, and

uncertainty of renewable energies as well as the complicated

dynamics of the inverter-based distributed energy resources

(DERs), it is of critical significance to study the transient

stability of the NMG with high penetration of DERs.

Microgrid transient stability investigates whether the system

recovers to a steady state which satisfies operational constraints

after a major disturbance [3]. Transient stability simulations

can either be performed in a centralized or distributed manner

while the centralized algorithms have been the focus of many

studies from the perspectives of, e.g., microgrid dynamic

modelling [4], dynamic response [5], impact of the DER

control strategy [6], impact of the load type [7], etc. However,

the centralized transient stability analysis of NMGs encounters

two major obstacles: (1) the computational burden for solv-

ing large-scale differential algebraic equations (DAE) due to
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inverter-based DERs with complicated controllers embedded

in an NMG and (2) privacy disclosure for microgrids of

different owners.

In view of these limitations, the distributed transient stability

(DTS) analysis emerges [8] for being capable of addressing

the above issues. Several studies have discussed the DTS

methodology for the bulk power system [9]-[12]. Usually, the

states of boundary buses among different regions are employed

for information exchange in the DTS calculation [9]. A DTS

can be implemented based the distributed algorithms [10] with

a decomposition of the dynamic model decomposition [11],

[12]. Yet the following challenges have been recognized for the

NMG applications of the DTS: (1) With high penetration of

DERs, DTS should fully incorporate the controllers’ dynamics;

(2) With droop control of DERs, the system frequency is

influenced by the dynamics of all the DERs in the distributed

calculation; (3) Considering the “plug-and-play” feature in

NMG operation, DTS should be flexible to accommodate the

engagement/disengagement of a single MG at any time.

This paper focuses on the distributed transient stability of

the networked microgrids. The main contributions are two-

fold: 1) an ODE-based microgrid model is established to

accurately capture the dynamics of the DER droop controllers

as well as those of the loads and network; and 2) an ODE-

enabled DTS methodology is devised for the NMGs, with

special consideration of the frequency dynamics. Case studies

are performed to verify the correctness and efficacy of the

ODE-based microgrid model as well as the DTS method.

The remainder of this paper is organized as follows. Section

II reviews the preliminary work in developing the DAE-based

MG model. Section III presents the mathematical details of

converting a DAE-model for a microgrid to its equivalent ODE

counterpart. The ODE-based distributed transient stability

method for the network microgrid (DTS-NMG) is developed

in Section IV. Finally, a case study is discussed in Section V,

followed by Conclusions.

II. Preliminaries

This section introduces the dynamic formulation of an

islanded microgrid.

A DER controller with droop is considered, which employs

the power controller, current controller and voltage controller:

dδi

dt
= ωi −ωre f

dPi

dt
= ωc,i(−Pi + vod,iiod,i + voq,iioq,i)

dQi

dt
= ωc,i(−Qi + voq,iiod,i − vod,iioq,i)

(1a)

(1b)

(1c)
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dφdq,i

dt
= v

∗
odq,i − vodq,i

dγdq,i

dt
= i∗Ldq,i − iLdq,i

diLdq,i

dt
=

−rf ,i

L f ,i

iLdq,i ±ωiiLqd,i +
1

L f ,i

(v∗idq,i − vodq,i)

dvodq,i

dt
= ±ωivoqd,i +

1

Cf ,i

iLdq,i −
1

Cf ,i

iodq,i

diodq,i

dt
=

−rc,i

Lc,i

iodq,i ±ωiioqd,i +
1

Lc,i

(vodq,i − vndq,i)

(1d)

(1e)

(1f)

(1g)

(1h)

where i denotes the DER index; t denotes the time. State

variables of (1) include δi (DER angle), Pi (active power

generation), Qi (reactive power generation), φdq,i = [φd,i;φq,i]

(output signal of the voltage controller in dq-axis), γdq,i =

[γd,i;γq,i] (output signal of the current controller in dq-

axis), iLdq,i = [iLd,i; iLq,i] (current after the output LC filter),

vodq,i = [vod,i;voq,i] (voltage output of DER in dq-axis),

iodq,i = [iod,i; ioq,i] (current output of DER in dq-axis).

The nonlinear ODE in (1) formulates the dynamics of the

droop controlled inverters, and this controller sketch is widely

utilized to study the system transient responses under large

disturbances [13], [14], [15]. Specifically, (1a)-(1c) formulate

the power controller, where ωi = ω0,i −mp,i(Pi − P0,i) is the

angular frequency; mp,i is the active power droop gain of DER

i; ω0,i is the nominal angular frequency; P0,i is the reference

active power; ωre f denotes the angular frequency of the

reference DER [4]; ωc,i is the filter parameter. Equation (1d)

formulates the voltage controller, where v
∗
od,i
= Vn,i − nq,iQi;

v
∗
oq,i
= 0; nq,i is the reactive power droop gain of DER i; Vn,i

is the nominal voltage parameter. Equation (1e) formulates

the current controller, where i∗
Ldq,i

= Fiiodq,i∓ωn,iCf ,ivoqd,i+

Kpv,i(v
∗
odq,i

− vodq,i)+Kiv,iφdq,i; and Fi , Kpv,i , Kiv,i , Cf ,i

are controller parameters. Equations (1f)-(1h) models the LC

filter for DER voltage and current output, where v
∗
idq,i

=

∓ωn,iL f ,iiLqd,i + Kpc,i(i
∗
Ldq,i

− iLdq,i) + Kic,iγdq,i; and Fi ,

Kpc,i , Kic,i , L f ,i are controller parameters; vnd,i and vnq,i

are dq-axis voltage at the bus connected to DER i.

Recently, it has been reported that neglecting the dynamics

in power lines and loads leads to overly optimistic stability

assessment. This motivated us to model the dynamics in the

entire NMG. For each constant impedance load, the dynamics

are described by the load resistance and inductance:

dilDQ, j

dt
= −

rl, j

Ll, j

ilDQ, j ±ωre f ilQD, j +
1

Ll, j

vlDQ, j (2)

where j denotes the load index; ilDQ, j = [ilD, j ; ilQ, j] denotes

the load current j in DQ-axis (i.e., the common reference

frame [4]); vlDQ, j = [vlD, j ;vlQ, j] denotes the DQ-axis voltage

at the bus connected to load j; rl, j and Ll, j are the load

resistance and inductance.

For each branch in the microgrid, the dynamics are modeled

by the branch resistance and inductance:

dibDQ,k

dt
= −

rb,k

Lb,k

ibDQ,k ±ωre f ibQD,k +
1

Lb,k

vbDQ,k (3)

where k denotes the branch index; ibDQ,k = [ibD,k ; ibQ,k]

denote the branch currents in DQ-axis; vbDQ,k = [vbD,k ;vbQ,k]

is the DQ-axis voltage difference along the branch; rb,k and

Lb,k are the branch resistance and inductance.

At each bus of the microgrid, the Kirchhoff’s Current Law

(KCL) should be satisfied:

0 =
∑

i∈SDER
n

ioDQ,i −
∑

j∈Sl
n

ilDQ, j −
∑

k∈Sb
n

ibDQ,k (4)

where n is the bus index; SDER
n , Sl

n and Sb
n denote the sets

of DERs, loads and branches connected to bus n; ioDQ,i =

[ioD,i; ioQ,i] denotes the output current of DER i in the DQ-

axis by the following transformation:
[
ioD,i

ioQ,i

]
=

[
cosδi −sinδi
sinδi cosδi

] [
iod,i
ioq,i

]
(5)

By integrating (1)-(5), the microgrid model can be es-

tablished, which is a nonlinear DAE model addressing the

transient responses of each microgrid component. To solve it,

the differential and algebraic equations should be interactively

solved, which is complicated and time-consuming.

III. ODE-based Microgrid Model

In this section, a full ODE-based microgrid model (ODE-

MG model) is devised by performing a rigorously equivalent

conversion from DAE to ODE.

A. Basic Methodology for DAE-ODE Conversion

This subsection starts from a linear DAE-ODE conversion.

The nonlinear case which addresses the nonlinearity nature of

the microgrid dynamics will be handled in the next subsection.

Consider a linear DAE model abstracted as:{
Ûx = Ax+By

Cx = 0
(6)

where x is a m-dimensional vector of the differential vari-

ables; y is a n-dimensional vector of the algebraic variables;

Am×m,Bm×n,Cn×m are parameter matrices.

We suppose that the following four conditions hold: (1) m ≥

n; (2) A is non-singular; (3) B is column full rank; (4) C is

row full rank. Otherwise, it can be proved that the redundant

variables can be eliminated to satisfy these conditions.

Denote C1 as the sub-matrix of C constructed by its m

independent columns, and C0 as the sub-matrix constructed by

the other columns. Denote the elements of x corresponding to

C0 as x0 and the others as x1. Accordingly, (6) can be written

as the following:




Ûx0 = A00x0+ A01x1+B0y

Ûx1 = A10x0+ A11x1+B1y

C0x0+C1x1 = 0

(7)

where A00,A01,A10,A11,B0,B1 are sub-matrices of A or B by

extracting the columns or rows corresponding to x0 or x1.

Obviously, C1 is non-singular, which yields x1 = −C−1
1

C0x0.

Substituting it into (7) leads to the following:
{
Ûx0 = (A00 − A01C−1

1
C0)x0+B0y

−C0 Ûx0 = C1(A10 − A11C−1
1

C0)x0+C1B1y

(8a)

(8b)

Left multiplying (8a) with C0 and adding it to (8b) yields:

M x0+Ny = 0 (9)
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where M =
[
C0(A00 − A01C−1

1
C0)+C1(A10 − A11C−1

1
C0)

]
; N =

C0B0+C1B1 = CB.

If N is non-singular, the algebraic variables y can be

expressed by the differential variables x as y = −N−1M x0. As

a result, we obtain a m− n dimensional ODE model that is

rigorously equivalent to the original DAE model (6):

Ûx0 = (A00 − A01C−1
1

C0 −B0N−1M)x0 (10)

If N is singular, (6) degenerates to an equivalent DAE

model with a lower order. Hence, above conversion can still

be implemented.

B. DAE-ODE Conversion of Microgrid Model

The conversion from the nonlinear microgrid DAE model

to a nonlinear ODE is delineated here.

Denote ioDQ as the vector form of ioD,i and ioQ,i for all

the DERs. In analogy, denote ilDQ for the loads, and ibDQ for

the branches. We can rewrite the output current equations of

each DER (1h) as well as the dynamics of loads and branches

(2)-(3) into a matrix form:

Lc

dioDQ

dt
= −rcioDQ ±ωre f LcioQD +voDQ −MgvnDQ

Ll

dilDQ

dt
= −rlilDQ ±ωre f LlilQD +MlvnDQ

Lb

dibDQ

dt
= −rbibDQ ±ωre f LbibQD +MbvnDQ

(11)

where voDQ is the vector form of DER output voltages in the

DQ-axis; vnDQ is the vector form of DQ-axis bus voltages; Mg

is the incidence matrix between DER and bus, which contains

1 when DER i is at bus s, and 0 otherwise; Ml and Mb

are incidence matrices between load/branch and bus defined

similarly; Lc is a diagonal matrix with Lc,i as the diagonal

element, and rc, Ll, rl, rb, rb are defined similarly.

The matrix-form KCL equation can be written as follows:

M
T
g ioDQ −M

T
l ilDQ −M

T
b ibDQ = 0 (12)

Denote x = [ioDQ; ilDQ; ibDQ] as the vector of differential

variables, and y = vnDQ as the vector of algebraic variables.

Denote z as the vector of other state variables in the microgrid

model. Accordingly, the microgrid model formulated by (1a)-

(1g), (11) and (12) is abstracted as:




Ûz = f (x,z)

Ûx = Ax+By+g(x,z)

Cx = 0

(13)

where the expression of A, B, C, f and g can be readily

obtained from the microgrid model. Due to page limitation,

the details are omitted.

Following the derivations in subsection III-A, the above

DAE can be equivalently converted to an ODE model as:




Ûz = f̂ (x0,z)

Ûx0 = (A00 − A01C−1
1

C0 −B0N−1M)x0

−B0N−1Cĝ(x0,z)+ ĝ0(x0,z)

(14)

where f̂ (x0,z) = f (x0,x1,z); ĝ(x0,z) = g(x0,x1,z); ĝ0 extracts

the elements of ĝ corresponding to x0. It should be noted

that for the microgrid model, A in (13) is not a constant

matrix (i.e., ωre f is involved). Hence, its sub-matrices (i.e.,

A00,A01,A10,A11) are also time-varying matrices and should

be updated in each time step in the transient simulation.

By appropriately choosing the sub-matrix of C, the DAE-

ODE conversion can be performed. To avoid complicated

reformulation of the DER model, it is recommended to reserve

ioD and ioQ in x0. The main computational effort for DAE-

ODE conversion is related to the inverse of C1 and N . How-

ever, since they are constant matrices, the inverse computation

is performed only once before the transient stability analysis.

The advantages of the ODE-MG model can be summarized

as the following:

(a) Equivalent: ODE-MG is strictly equivalent to the orig-

inal DAE model since the DAE-ODE conversion is rigorous.

(b) Concise: Considering the sparsity feature of the power

grid, the scale of the ODE-MG model mainly depends on the

number of the DERs and power loads.

(c) Efficient: Solving the ODE model is much more efficient

than solving the DAE model.

(d) Adaptive: The DAE-ODE conversion is independent to

the internal model of the DER controller. Hence, it can readily

accommodate various control strategy of the DERs.

Additionally, the DAE-ODE conversion can readily incorpo-

rate the synchronous generators by taking the dynamic of the

DQ-axis outflow currents into (11) and (12). Due to the page

limit, details of the generator dynamics are not presented.

IV. Distributed Transient Stability in Networked

Microgrid

A networked microgrid integrates multiple small-scale mi-

crogrids to a backbone network via the points of common

coupling (PCCs). Using the ODE-MG model, this section

devises a distributed transient stability (DTS) algorithm for

the NMG (DTS-NMG algorithm), which fully considers the

dynamics of the DERs as well as the privacy of each MG.

A. DTS-NMG Algorithm Outline

The interface states between each microgrid and the back-

bone network include: (a) the DQ-axis bus voltages (i.e., vnD ,

vnQ) and branch currents (i.e., ilD , ilQ) at the connection

between the microgrid and the backbone network, which are

denoted by Vpcc and Ipcc in Figure.1; (b) the system frequency

(i.e.,ωre f ). The feature of the DTS scheme for NMG is that,

both the boundary voltage/current and the system frequency,

which is impacted by the dynamics of all the DERs in the

NMG, will be matched in the distributed calculation. This

feature can be further illustrated in Figure 1. The reference

DER is assumed to be located in MG1. Designating the

interface states between each microgrid and the backbone

network as the DQ-axis voltages and currents (i.e., Vpcc, Ipcc)

as well as the system frequency (ωre f ), the following steps are

performed for iterations at each time step in the DTS-NMG

until convergence:

Step 1 (transient of MG1): input of MG1 is the DQ-

axis current injection at PCC, i.e., Ipcc1; output includes

the reference angular frequency (i.e., ωre f ) and the DQ-axis

voltage at PCC.

Step 2 (transient of the backbone grid): input includes the

PCC voltage at MG1, PCC current from other MGs and the

ωre f ; output includes the PCC voltage of other MGs.
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