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Abstract

Summation-by-parts (SBP) finite difference methods have several
desirable properties for second-order wave equations. They combine
the computational efficiency of narrow-stencil finite difference oper-
ators with provable stability on curvilinear multiblock grids. While
several techniques for boundary and interface conditions exist, weak
imposition via simultaneous approximation terms (SATS) is perhaps
the most flexible one. Although SBP methods have been applied to
elastic wave equations many times, an SBP-SAT method for general
anisotropic elastic wave equations has not yet been presented in the
literature. We fill this gap by deriving energy-stable self-adjoint SBP-
SAT methods for general anisotropic materials on curvilinear multi-
block grids. The methods are based on fully compatible SBP oper-
ators. Although this paper focuses on classical SBP finite difference
operators, the presented boundary and interface treatments are gen-
eral and apply to a range of methods that satisfy an SBP property. We
demonstrate the stability and accuracy properties of a particular set
of fully compatible SBP-SAT schemes using the method of manufac-
tured solutions. We also demonstrate the utility of the new method in
elastodynamic cloaking and seismic imaging in mountainous regions.

1 Introduction

This paper considers numerical solution of elastic wave equations in complex
geometries. We deal with the most general form of the anisotropic elastic
wave equation (AEWE), which includes the isotropic elastic wave equation
(IEWE) as a special case. Generally speaking, high-order finite difference
methods are computationally efficient for wave-dominated equations with
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smooth solutions [28|. Finite difference (FD) operators with the summation-
by-parts (SBP) property [30] lead to energy-stable discretizations on curvi-
linear multiblock grids when combined with suitable methods for imposing
boundary and interface conditions. SBP FD methods may be used alone in
moderately complex geometries, or as part of efficient hybrid solvers 31, 21|
when unstructured meshing capabilities are required in parts of the domain.
Recent applications of SBP methods to elastic wave equations include [47],
which applied a second-order accurate scheme to tilted transversely isotropic
media, and [55], which solved the first-order form of the IEWE. Another
noteworthy contribution [16] introduced dual first-derivative SBP operators
to solve the AEWE.

To minimize the number of unknowns, this paper discretizes the second-
order form of the AEWE. For second order equations, narrow-stencil second-
derivative SBP operators [36, 33| typically provide superior accuracy com-
pared to applying a first-derivative operator twice. As a rule of thumb, the
global convergence rate is one order higher [36] and the numerical dispersion
relation mimics the exact dispersion relation better for marginally resolved
modes [29]. Hence, we only consider narrow-stencil operators in this paper.

While SBP operators may be combined with various techniques for im-
posing boundary and interface conditions, weak enforcement via simultane-
ous approximation terms (SATS) [10] has proven competitive in a wide range
of applications [14, 57]. The SAT boundary and interface treatment does
not introduce systems of equations to solve and extends naturally to non-
conforming grid blocks (see for example [35, 31, 4]) and nonlinear frictional
interface conditions (see for example [26, 27]). Previous works that used
narrow-stencil SBP operators combined with other boundary treatments in-
clude [45, 18, 17|. In [45], Petersson and Sjogreen presented a fourth order
SBP scheme for the AEWE on curvilinear single-block grids. Boundary con-
ditions were imposed with a ghost-point technique, which requires solving
small linear systems for the ghost-point values on boundaries and interfaces.
In [18], Duru and Virta presented an SBP-SAT scheme for the IEWE on
curvilinear multiblock grids. Traction boundary conditions were imposed
using SATs and displacement boundary conditions were strongly enforced,
using the injection method [17]. Herein, we construct an SBP-SAT method
for the AEWE on curvilinear multiblock grids. Robin boundary conditions
(which include traction conditions), displacement boundary conditions, and
interface conditions, are all imposed using SATs. We prove that the spatial
discretization is energy stable and self-adjoint. While we only perform nu-
merical experiments with classical finite difference SBP operators on uniform
grids, the presented methodology is general and may be applied to a wide
range of methods that satisfy the SBP property. Examples include finite
differences on non-uniform grids [34, 13|, multidimensional finite differences
[23], and discontinuous Galerkin spectral element methods [22, 13].

The methods derived in this paper are based on fully compatible diagonal-



norm second-derivative SBP operators [37] (see Section 4 for the definition).
The assumption of full compatibility greatly simplifies the stability analysis
when using SATs to impose displacement boundary conditions and inter-
block couplings. The significant simplifications facilitated by the fully com-
patible operators were noted in [18| for the IEWE, and later in [3| for the
acoustic wave equation. The fully compatible operators are to be contrasted
with compatible operators, which are more commonly used. The compatible
operators constructed by Mattsson in [33] with interior order 2¢ have bound-
ary closures of order ¢ and boundary derivative operators of order g+1, yield-
ing (¢ 4+ 2)th order global accuracy in most numerical experiments. Fisher
and Carpenter [20] constructed a fully compatible 2¢ = 4 operator with gth
order closures and boundary derivatives of order q. The reduction of the
boundary derivative order (compared to Mattsson’s compatible operators)
increases the local truncation error by one order for Neumann-type bound-
ary conditions and inter-block couplings. To the best of our knowledge, fully
compatible operators for variable coefficients with gth order boundary clo-
sures and (¢ + 1)th order boundary derivative operators are not yet available
in the literature. We strongly encourage efforts to construct such operators.
Until they become available, we resort to so-called adapted fully compatible
operators, which can be constructed from any set of compatible operators
[17] (see Section 4). The adapted operators are identical to the original op-
erators except at the first and last grid points, where the accuracy is reduced
to (¢ — 1)th order. By the general result in [56], we expect the £2 error of
pointwise stable schemes to be of order min(g, + 2, 2¢), where g, denotes the
boundary accuracy. This implies that the adapted operators might yield up
to one order lower convergence rates than the corresponding compatible op-
erators. Remarkably, however, experiments with the IEWE in [18] showed
no loss in convergence rates. The adapted 2¢ = 6 operator even yielded
smaller errors than the original operator. Although a theoretical explana-
tion of this super convergence is currently lacking, the adapted operators
seem attractive from a practical point of view. In this paper, we investigate
how the adapted operators fare when applied to the AEWE.

The rest of this paper is organized as follows. We introduce notational
conventions in Section 2. In Section 3, we review the equations of linear
anisotropic elasticity and discuss how they change under coordinate trans-
formations. We introduce compatible and adapted fully compatible SBP
operators in Section 4, and combine them with proper SATs to construct
energy-stable self-adjoint schemes for Robin and displacement boundary con-
ditions in Section 5. In Section 6, we derive SATs for grid-block couplings.
Numerical experiments are presented in Section 7. We evaluate the conver-
gence rates of the new multi-block SBP-SAT scheme against a manufactured
solution and show the applicability of the scheme in elastodynamic cloaking
and seismic imaging of the Earth. Conclusions follow in Section 8.



2 Notation conventions

Let  C R? denote a bounded domain in d dimensions and let u,v € L2(€).
We use the L? inner product:

(1, 0) g = / w2, (1)

Q

Similarly, we use the notation

(u,0) 50 = /uv ds (2)

o

for surface integrals. Note, however, that (-,-),q is not an inner product but
a bilinear form. We use the summation convention for repeated subscript
indices so that

d
UV = Z U;V;. (3)
=1

The summation convention applies to inner products too, i.e.,

M-

(ui,v;) . (4)

(uisvi) =

=1

The summation convention only applies to indices t, j, k, £, m, 1, J, K, and L.
In particular, it does not apply to x, v, or NV.

Boldface font is reserved for vectors u whose elements approximate some
scalar field u evaluated on the grid. We will later define discrete inner prod-
ucts and use the summation convention in the discrete setting too, so that

d
(i, vi) = > (wi,vi). (5)

=1

For all spatially variable coefficients, we use the same symbol also in the
discrete case, which then is understood to denote a diagonal matrix with the
values of that coefficient on the diagonal. The outward unit normals 7 and ©
(see Figure 1) are regarded as variable coefficients that take non-zero values
only at boundary points. In the discrete setting, the values of n and © at
edge and corner points change with context. When integrating over a face, n
(or ©) is understood to denote the unit normal to that face even at edge and
corner points. The same convention applies to the surface area scale factor
J.



3 Equations of linear elasticity

Let {EI} denote an orthonormal basis in R%, let X = XIEI, and let O, =
0/0X;. The generalized Hooke’s law for an elastic medium relates stress to

strain and reads
O = CIJKLaKuLa (6)

where uy, is the displacement vector, oy is the stress tensor, and Ciyky, is the
elastic stiffness tensor. Note that all indices range from 1 to d. The stiffness
tensor has the major symmetry

CIJKL - CKLIJ' (7)

Normal elastic materials also have the minor symmetry
CIJKL = CJIKL; (8)

which implies that the stress tensor is symmetric, i.e., oy = oy. In this
paper, we consider the more general theory of Cosserat elasticity [11], in
which stress is not necessarily symmetric. That is, we do not assume that
the stiffness tensor has the minor symmetry (8). Requiring a non-negative
elastic strain energy density results in the condition

SIJCIJKLSKL 2 0 \V/SIJ7 (9)
which we assume that C,i;, satisfies. The momentum balance reads
piiy = ooy + [, (10)

where p is density and f; denotes external body forces. Substituting Hooke’s
law (6) in (10) yields the elastic wave equation for displacements,

pliy = O Cryxr, Ok ur, + fJ7 X €,

- 11
LIJUJ - O, X S 897 ( )

where Q € R? is a bounded domain with outward unit normal n = nIEI
and the linear operator L;; represents well-posed boundary conditions. The
traction vector 7 = 7y E; acting on 0 is

Ty = Moy = MClyk, Ok U - (12>
For future use we define the traction operator
Ty, = niCryxr. Ok (13)

such that 75 = T uy,.



In the absence of external body forces, the energy method, which amounts
to multiplying the first equation in (11) by 4, and integrating over €2, leads
to

(iLJa PﬁJ)Q = (QJ; aICIJKLaKuL)Q

= (uJa nICIJKLaKuL)aQ - (8171J7 CIJKLaKuL)Q (14)
= (aJa TJ)@Q - (817%7 CIJKLaKuL)Qa

where we used integration by parts and the definition of 7;. We have

1d

(qupuJ)Q = 2 dt (uJ’PuJ)Q- (15)

The major symmetry of the stiffness tensor (7) yields

1d

(Ortb, CIJKLaKuL)Q = (Okty, CIJKL&UJ)Q = ST (

8IUJ7 CIJKLaKuL)Q . (16)

The total energy £ is the sum of kinetic and strain energy,

1. . 1
E= 5 (Ub PUJ)Q + 5 (alub CIJKLaKuL)Q . (17)
The positive semidefiniteness of the stiffness tensor (9) ensures that the strain

energy is non-negative. Rearranging terms in (14) leads to the energy rate

d€ .
E == (UJ,TJ)@Q. (18)

We note that homogeneous displacement boundary conditions (u; = 0) and
homogeneous traction boundary conditions (7; = 0) both yield energy con-
servation.

3.1 Wave speeds in anisotropic solids

A plane wave propagating in unit direction é’ can be described by the equiv-
alent expressions

uy = UJe’L'(k‘[XI—QOt) — UJeik(EIXI—’Ut) — UJeiSD(SIXI_t), (19)

where Uj is the polarization vector, k; = k& is the wave vector, ¢ is the
angular frequency, v is the phase velocity, and s; = k;/p is the slowness
vector. Assuming a homogeneous solid and no external forces, inserting the
plane wave ansatz into the elastic wave equation (the first equation in (11))
yields the Christoffel equation [58, 2]

(UQ(SJL - p_lglclJKLgK) U.=0. (20)

For nontrivial solutions to exist we must have det (025 L — ,0_15101 JKLﬁK) =
0, which is the dispersion relation. The phase velocities are the positive



square roots of the eigenvalues of the operator p~1¢,Cyxi.éx. The eigenvalues
depend on the direction of propagation, v = v(g) In two spatial dimensions
there are two body-wave solutions to (20): the quasi-P-wave and the quasi-
S-wave. In the isotropic case these waves reduce to the P- and S-waves.

In Section 7.3 we will use slowness surfaces to illustrate the properties of
an anisotropic medium. Slowness surfaces are drawn in the slowness vector
space and satisfy :

I

- (21)

where v is one of the phase velocities. For isotropic solids, the phase veloci-
ties are direction-independent and hence the slowness surfaces are spherical
(circular in two dimensions). The faster the wave, the smaller the radius of
the slowness surface.

3.2 Coordinate transformation

Let {¢;} denote an orthonormal basis in R? and let ¥ = z;¢;. Introduce a
smooth one-to-one mapping X; = X;(z1,...,24) from the reference domain
w = [0, 1]¢ to the physical domain Q, as illustrated in Figure 1. We will use

n v

o0 Ow

ij- mj_

Xl Ty

Figure 1: Schematic of the physical domain 2 and the reference domain w

uppercase letters for quantities related to the physical domain and lowercase
letters for similar quantities in the reference domain. We define 9; = 9/0x;.
Let

FIZ' = al'z/aXI (22)

denote the transformation gradient. Note that the object Fj; is not a second
order tensor because it maps from one domain to the other [40]. By the
chain rule,

Further, let
J = det[(F1)y] (24)

denote the Jacobian determinant of the mapping from w to 2. We assume
J > 0. The following metric identities are well known (see [59]):

JF;0; = 0;JFy;. (25)



Let @; denote the covariant basis vectors:

—

@ =0,X = 0,X,E; = (F V) Ey. (26)
3.2.1 Transforming the PDE
Using first (23) and then (25), we have
0Ok = Fi0iCu kO = J 1 0:F1id Cryser Fck - (27)
Introduce a change of variables
uy = Ayui, T = Ay, (28)

for some Aj; to be discussed later. We can now write the equations of motion
in (11) as

Jpiij = (A71);,0;FJ Coyxer Frck Ok Avgue + J(A7Y) s fi. (29)
In this paper we will use the trivial change of variables
Ay = by, (30)
which yields the equations of motion
Jpii; = 0;F1; J Cjwce Ficr,Opue + J f;. (31)
Define the transformed density and stiffness tensor
0=Jp, cijte = FuJCrjxeFyk. (32)
The transformed equation, posed on the unit cube w, reads

Qiij = 3icijkgakUg + ij7 T Ew,

Aijuj =0, T € dw, (33>

where A;; denotes the transformation of Ly;. Using the definition of c¢;jxe
and (27) shows that
aICIJKLaK = J_laiCiJk:Lalv (34)

In Section 4 we use formula (34) to construct an SBP operator that approx-
imates 0;Ch;k.0k.-
The transformed stiffness tensor retains the major symmetry,

ceeij = FuJ CuxjFri = FuJ CjueFyi = Frd CrjxeFii = cijre, (35)

and the semidefiniteness

SijCijkeSke = SijFyi JCrjxe Frpspe > 0 Vs, (36)
—— ——
Z:SIJ‘ =:5ke



where we used the semidefiniteness of Cyyx, (9) and the positivity of J. We
conclude that the transformed PDE is of the same form as the original PDE
n (11). However, even if Cyyk;, has the minor symmetry (8), the transformed
stiffness tensor generally does not, because

Cijke — Cjike = Fri JCrjweFr — FrjJ CrixeFik
= (FIZ'CIjKZ - FIjCIz'Ké) JFKk (37)
= (Flz‘CIjKK - FIjCiIKZ) JFKku
which is nonzero, in general. Hence, the equations of Cosserat materials
are invariant under coordinate transformations, but the equations of nor-
mal materials are not. It is, however, possible to symmetrize the effective

transformed stress tensor by setting (see [40] for a thorough discussion of
coordinate transformations in elastic wave equations)

Ay = Fy. (38)

This approach introduces additional terms in the transformed equations of
motion, similar to those required for Willis materials [38, 39|, and will not
be pursued in the present study.

In the semidiscrete stability proof we will make use of the property

UjCmjmette > 0 Yy, (39)

which follows from (36), because

UjCrjmethe = UjOim Cijkt WeOkm = E UijmCijkeUgem > 0. (40)
~—— SN——" ™ ——
::Uijm =:Ukem >0Vm

3.2.2 Integrals and normals
Since Jdw is the volume element, we have d2 = Jdw, and hence
(u,v)q = (u, Jv), . (41)

Similarly, we let J denote the surface area scale factor such that

(4, )5 = <u, jv) N (42)

The surface area scale factor J is related to the covariant basis vectors a;
defined in (26) as follows. In two space dimensions

J=\a]|, xz;€{0,1}, 14,j cyclic, (43)
and in three space dimensions
J=\a; xa;y|, xe{0,1}, 4,4,k cyclic. (44)

Let © = y;€; denote the unit normal to w. The normals 7 and o are related
by Nanson’s formula [32], X
JTLI = JEZVZ (45)



3.3 Numerical approximation of the transformation gradient

In this subsection we comment briefly on how numerical approximations of
properties of the coordinate transformation may be computed. We com-
pute an approximation Fj; &~ F}; of the transformation gradient by applying
derivative approximations to a given grid. To retain the order of accuracy,
F1; needs to be at least as accurate as the finite difference operators used to
discretize the PDE. Higher-order approximations, or even the exact Fy;, if
available, could also be used. For all numerical experiments in this paper,
we compute Fl; using first-derivative SBP operators of the same order as we
use to solve the PDE. That is, F}; is computed to order g near boundaries
and order 2¢ in the interior.

Once Fy; is computed, we use relations between the corresponding con-
tinuous quantities to define all other approximations. We set

J = det[(F)ul, (46)
Cijke = FiiJ CrjiceFr, (47)
@z‘ = (E_l)ilﬁla (48)
_j == |@z’7 wj € {07 1}7 Zv.] CyCliC, (Hl 2D)7 (49)
or R

J == |QZ X @]’7 Tk € {O) 1}7 iajv k CyCIica (ln 3D)7 (50)

and .
n = J ' JF;. (51)

The only requirements for stability of the semidiscrete scheme (to be intro-
duced later) are J > 0, cijre = Creij, SijCijkeSke > 0 Vsi;, and J > 0. We
suggest checking the condition J > 0, which could be violated due to trunca-
tion errors. Assuming J > 0, the remaining three conditions are guaranteed
to be satisfied, regardless of how Fj; was computed, because

Cktis = EIkJCIéKjEKi = EIkJCKjIEEKi = EKkJCIjKZEi = Cijke, (52)
SijCijkeSke = SijFri JCrjie Firske > 0 Vsij, (53)
~—— ——
=:SIJ' =:5ke

and J > 0 follows from formulas (49) and (50), combined with the assump-
tion J > 0, which implies that F}; is nonsingular and thus guarantees @; # 0.

Note that since we used Nanson’s formula (45) to define f, Nanson’s
formula holds identically for the approximated quantities. We conclude that
F; may be computed with any sufficiently accurate method, as long as the
resulting Jacobian is positive. With a slight abuse of notation, we henceforth
drop the underline notation and let it be implied that we may be dealing
with approximations in the discrete setting.

10



3.3.1 The transformed stiffness tensor of isotropic materials

Isotropic materials are characterized by the two Lamé parameters A and p
and have the stiffness tensor

Crikr, = ANiy0xr, + M ((5IK5JL + 5IL5JK) . (54)
The isotropic stiffness tensor transforms into

Cijie = FriJ CrjxeFxr = FiiJ [Moyjoxe + p (61cje + 0uedjx)] Ficr

(55)
= J [AFjiFy + p (FxidjeFr + FriFjr)] -

In 3D, there are 9 independent parameters in Fj;, which leads to a total of 11
independent parameters in ¢;jr¢. In general, the transformed stiffness tensor
does not have the minor symmetry even in the isotropic case, because

Cijke — Cjike =J N (Fji — Fij) JFyy,

(56)
+Jp [(Fxibje — Fjoie) Far + Foi i — FojFig]

which is nonzero in general.

4 Summation-by-parts operators

Most of the definitions in this section are not new but are restated here for
completeness. The notation follows [3] closely. We consider only diagonal-
norm SBP operators. That is, the so-called norm matrix H, has the structure

H, = diag(hi, ha, ..., ha, h1), (57)

where all h; are proportional to the grid spacing h. The first-derivative SBP
operators D, = 0, have the integration-by-parts-mimicking property

H,D, = —DYH, — egel + eneX, (58)

where the vectors eg and ey interpolate or extrapolate to the left and right
boundaries, respectively. We herein restrict our attention to grids that in-
clude the boundary points of the interval [z}, zg], in which case one may
set

eo=[1,0,...,0]", ey=10,...,0,1]". (59)

We will use the first-derivative operators presented in [36], which (for orders
2q > 6) correspond to a particular choice of the free parameters in the
operators developed in [30, 51, 41, 54]. These operators have a repeating
interior stencil of order 2¢ and boundary closures of order q. The compatible
narrow-stencil second-derivative operators D, (b) ~ 0,00, derived in [33]
are based on the same norm matrix H, and have the property

H,D,(b) = —DYH,bD, — Ryr(b) — e0elbD, + enekbD,,  (60)

11



where the first and last rows of D, approximate the first derivative and the
interior of D, is zero (ﬁx was denoted S in [33]). Just like D,, D, is
gth order accurate in the boundary closures and 2¢th order accurate in the
interior. Note that for the SBP operators derived in [33], ea NDz # e%ﬂy D

If eg’NDx = eaNﬁx, then the SBP operators D, and D,, are said to be

fully compatible [37). The SBP operators derived in [33] have D, that are
accurate of order g 4+ 1, i.e., one order higher than the boundary closure of
D,.

The matrix Rg;(b) is symmetric positive semidefinite and consists of
undivided difference approximations in such a way that uTRm(b)v is zero
to order 2¢ [33]. Its structure is

Ryz(b) =  h**?DI.EL H,Bo(b)EaDye, (61)

(e
where a > ¢+ 1; Dyo = 0%/0z%; the E, are of order 1; and the B, are
diagonal matrices whose entries are convex combinations of b(x) evaluated
on the grid. Let by denote b evaluated at the sth grid point, and let (Bg)s

denote the entry in B, associated with the sth grid point. The structure of
B, (b) is

(Ba(0), =Y Bamsbs:  Bars >0VYa,r,s. (62)
To simplify the notation we define
Dyo = h* 'HY?2E, Dy (63)
such that
Ryz(b) = > DIaBa(b)Dae. (64)

For future use we prove the following lemma, which states that R, preserves
semidefiniteness of two-tensors.

Lemma 1. If u;S;ju; > 0 Vu,, then
u; Ry (Sij)u; > 0 Vu,. (65)
Proof.
W Rea(Sij)05 = Y (Dget;)” Ba(Sij)Dae

«

- Z (Dzowi), (Ba(Sij)), (Dzeuy),  [Use (62)]

a,r

= Z (Dxaui)r 5a,r,s<5ij)s ('Dxauj)r [USG uiSijuj Z 0]

a,r,s

> 0.

12



In particular, Lemma 1 shows that R,, preserves the semidefiniteness of
the two-tensor ¢y, jme (cf. (39)):

ujR;m(ijmg)Ug Z 0 Vu]‘. (66)

4.1 Adapted fully compatible SBP operators

Any compatible second-derivative operator can be turned into a fully com-
patible operator, here denoted DES, by simply replacing the boundary deriva-
tives D, by D, |18]. We refer to such operators as adapted fully compatible
operators. For the operators derived in [33|, swapping boundary derivatives

amounts to adding terms of order ¢ — 1 at the grid end points,

DFS = Dy, + HL (eoegb(ﬁx - DI)) —H! (eNeﬁb(f)x - DI)) . (67)

O(hi-1) O(ha-1)

Hence, the adapted fully compatible operators are one order less accurate
than the original operators at precisely one grid point at each boundary. It is
not obvious how the local reduction in accuracy affects the global convergence
rate. A pessimist would expect reduction by a full order, but [18] did not
observe any reduction for isotropic elasticity. Our numerical experiments in
Section 7 indicate a reduction by half an order for orders 2q = 4 and 2q = 6,
and no reduction for 2¢g = 2, for anisotropic materials.

In the following derivations we shall assume fully compatible operators.
This assumption greatly simplifies the stability proofs (for a discussion on
how non-fully compatible operators complicate the stability proofs for the
acoustic wave equation, see [3|). In all numerical experiments we will use
the adapted fully compatible operators.

4.2 Positivity properties

To prove stability for displacement boundary conditions and interface cou-
plings in subsequent sections, we shall need to bound certain discrete volume
integrals from below by discrete surface integrals. We refer to such bounds
as positivity properties. All positivity properties in this paper follow from the
structure of the discrete quadrature H,. It follows immediately from (57)
and (59) that we have

H, = diag(O, ho, ..., ho, 0) + hleoeg + hleNejA} > hleoeg + hleNejA}, (68)
or, equivalently,

u? Hyu > hy(el w)? + hy(efu)* vu (69)

13



4.3 Multi-dimensional first-derivative operators

Let operators with subscripts z; denote one-dimensional operators corre-
sponding to coordinate direction x;. The multi-dimensional first derivatives
D; = 0; are constructed using tensor products:

D1:Im1®®jx171 ®Dzl®Ix2+1®®de> (7())

where the I, are one-dimensional identity matrices of appropriate sizes. In
analogy with the chain rule (23), we define

D, = Fy;D;, (71)

where D; = 0;. Note that in the discrete setting, F}; is to be interpreted as
a diagonal matrix holding the grid-point values of the continuous coefficient
Fy; for each fixed I and ¢. Similarly, D; is a matrix for each fixed i. The
implied summation in Fy; D; hence adds matrices in RV*N | where N denotes
the total number of grid points, not elements of such matrices.

The multi-dimensional quadrature is

H:Hm@...@de. (72)

Let dw; and awj denote the boundary faces where x; = 0 and z; = 1,
respectively. For integration over boundary faces, we define

Hawi = Hy, ®”'®H33i71 ®Hx¢+1 ®"'®de' (73)

Note that Hp,, can be used to integrate over 8wi+ as well as Ow; . For
discrete integration over the volume, we define

(u,v), =u’ Hv. (74)

We use the same inner product notation as in the continuous case without
risk of confusion since the boldface font denotes discrete solution vectors.
Let e? denote a restriction operator that picks out only those solution

values that reside on the face f. For discrete integration over the face &uf ,
for example, we write

(u, V)awj. = (egwju)THawi(egw:v). (75)
Let dw denote the set of all faces of w,
5c\u:{wa,...,Ow;,awfr,...,aw:[}. (76)

For integration over the entire boundary dw, we define

(u,v)y, = Z (w,v);, (77)

fEdw

14



i.e., the integration is performed over one face at a time. If the integrand
contains the unit normal or the scale factor J, their values at edges and
corners are defined to be the same as on the remainder of that face. In
analogy with (41) and (42), we define

(W, v)g = (u,Jv),, (78)

and

(W, V)gq = <u, jv) e (79)

With the notation established in this section, we have the discrete integration-
by-parts formula

(u,D;bDjv), = (u,v;bD;v),  — (Diju,bD;v), . (80)
4.4 Multi-dimensional narrow-stencil second-derivative op-
erators

For any fixed 7, we construct
DP(b) ~ 0;b0; (no sum over 1), (81)

by using the one-dimensional operator DES for each grid line. The multi-
dimensional fully compatible SBP property for the second derivative that
follows is

(u, Dif (b)v),, = (u,v;bD;v)y, — (Diju,bD;v),, — uTRii(b)v

(no sum over i),

(82)

where the R;; matrices are multi-dimensional versions of R,,. More precisely,
the operator H 6_51 R;i(b) (no sum over i), is the operator that applies R, (b)
to each grid line in the ith coordinate direction. The R;; operators inherit the
symmetry and semidefiniteness-preserving properties of R,.. In particular,

Rii(b) = RE(b)  (no sum over 7) (83)
and

w; Rii(cmjme)uy > 0 Vu;  (no sum over i). (84)

4.5 Multi-dimensional positivity properties

We here extend the one-dimensional positivity property (69) to multiple
dimensions. To suppress unnecessary notation, we assume that the grid
spacing in the reference domain is the same in each dimension (the analysis
does not rely on this assumption). It follows from (69) that (see [3])

(sij» Cijreske), > M ((Sija CijktSke) g+t (Sijs Cz’jkeSk:z)a%) , (8)
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for m=1,...,d. Using (85) we can derive

SHE

(sijs Cijreske),, =

d
> (sijs cijresie),,
m=1

d
1 86
2 - Z hq ((Sz‘j, CijktSke) g+ t+ (Sij, Cz’jkéskf)aw;l> (86)
m=1
h1
== (Sijs CijktSke) 5 »
which we summarize as
hi
(Sij, CijheSke) , > "l (Sij» CijreSke) g, - (87)

Using (87), we can derive a similar property for integrals in the physical
domain,

h1
(SIJ7 CIJKLSKL)Q = (SIJa JCIJKLSKL)w > F (SIJ7 JCIJKLSKL)&U

= E <s £C’ S > (%)
d 175 7 LJKLSKL 8(2,
which we sumimarize as
h s
(SIJv CIJKLSKL)Q > gl (SIJ) J 1JCIJKLSKL) . (89)

4.6 Combining narrow-stencil derivatives and mixed deriva-
tives

To discretize a term such as 0;b0;, using narrow-stencil second derivatives
when possible, we define the operator D;; as

We use blackboard bold for discrete two-tensors such as D;; (where each
tensor element is a square matrix). Combining the two integration-by-parts
formulas (80) and (82) leads to the integration-by-parts formula

(u,Di;(b)v),, =

(u, VibDjV)aw — (Diu7 bDjv)w > i # J (91>

(w,vbD;jv), — (Dju,bD;v) —ulRi(b)v, i=j
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4.7 The discrete elastic operator

The discrete operator that approximates 0;c;ijreOk is D (cijre). By (91), we
have

(uj, Dix(cijre)ve),, = (W), vicijreDive) o, — (Dig, cijreDive)
= u] Ry(crjre)ve. (92)
k

To simplify the notation in what follows, we define

Wie = Rik(Ccrjne)- (93)
K

Due to the major symmetry of c;jxe (35) and the symmetry Ry, = R, , we
have

Wje =W = W), (94)
By (84), W, is positive semidefinite, i.e.,
U?WjKUK >0 Vuj. (95)

Another property that W;, inherits from R, is that it is zero to the order
of accuracy in the sense that

u) Wjpv, = O(h*) (96)

for all uj, v, that are restrictions of smooth functions to the grid. Thus, W,
is a consistent approximation of the zero operator and we write W;, ~ 0.

We restate (92) as
(wj, Dig(cijue)ve),, = (0j, vicijreDipve) 5, — (Diug, ¢ijreDive) (07)
- H?ngVg.

At this point, we introduce the following two new definitions, which extend
the SBP concept to operators of the form 0;c;;reOy.

Definition 1. Given a discrete inner product that approximates (-, -), and a
non-negative bilinear form that approximates (-, -),,,, we say that D?P" (¢;jxe)
is an SBP operator for 0;c;;re0r on w if

(uj, D77 (cijre)ve),, = (uj, Vicz'jkeﬁkve)aw — (Divy, cijeeDive),, (98)
— U?ngVg,
where D; ~ 8;, D; ~ 0;, W = WZ. ~ 0, and ujTngug > 0 Vu;.
Definition 2. An operator D5PF (¢;jx¢) is called a fully compatible SBP op-
erator for 0jc;jreOr on w if it satisfies (98) with D; = D;.
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The statement (97) shows that Dj;(cijre), which was defined in (90) and
is based on fully compatible one-dimensional SBP operators, is a fully com-
patible SBP operator for 0;c;;xe0k.

The following lemma shows that an SBP operator for d;c;;1¢0) also mim-
ics the formula that follows from using integration by parts twice:

(ug, Oicijrekve) , = (Uj, VicijreOke) g, — (ViCijreOrte, vj) g,

(99)
+ (OicijreOkug, vj) , -
Lemma 2. If D327 (cijre) is an SBP operator for 0;cijreO, then
(w;, D3 (cijre)ve),, = (uj, ViCiijDkV£> o (VicijkéDkuéyvj>6w (100)
+ (D5 (cire)ue, vi),, -
Proof. By Definition 1,
(w;, DT (cijre)ve),, = (uj, Vicijkéﬁkvé) — (Diuy, cijreDive)
o (101)

T
- u; Wieve.

Using the symmetry of (-, ), and (-,),,,, the major symmetry of ¢;jre (35),
and W;, = WKT]-, we can write (101) as

(5" (cijre) Ve, uj),, = (ViCz‘jkszVe, uj)aw — (Divj, cijreDruy)

(102)
— V?ngllg.
Swapping u; and v; in (102) leads to
(D" (cijre)ug, vj),, = (Vicijkéﬁkuéavj)a — (Diwy, cijreDive) (103)
W
- uijng.
Subtracting (103) from (101) yields
Ommﬁﬂ%MWHW—mﬁW%MN&WLﬁ:@mw%mﬁwa
Ow
_ (104)
- (ViCz’ijDkuﬂvvj)
Ow
and the result follows after rearranging terms. O

We are now in position to use formula (34) to construct an FD operator
that approximates 0;Cryk.0x. We define

D2 (Cuyke) = J Dy (Cispr)s (105)

where Dy, is defined as in (90), i.e., constructed from fully compatible second-
derivative operators. The main result of this section is stated in the following
theorem.
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Theorem 1. The operator D (Cryxr) = J " Dix(cise) is a fully compatible
SBP operator for 0,Cyyx.0x on the physical domain 2.

Proof. We first derive a formula that simplifies the proof of the theorem.
Using first the definition of ¢;;xe and then Nanson’s formula (45), we obtain

ViCijke = ViFIiJCIjKKFKk = J_ljnIJCIjKZFKk = jnICIjKéFKk:- (106)
We are now ready to prove the result. We have
(uJu D&(OIJKL)VL)Q = (UJ7 JﬁlDik(CiJkL)VL)Q

= (uy, Dig(cisk) Vi), (use (97))
= (UJ, VZCZJkJLDkVL)aw - (_D1UJ, CiJkL‘DkVL)w - U?WJLVL (use (106),(32))
= (U-J7 jnICIJKLFKk-DkVL)a - (DiuJa FIiJCIJKLFKkaVL)w

(%)

—ulW, v, (use (71),(78),(79))

T
= (uJ7 nICIJKLDKVL)aQ - (DIuJa CIJKLDKVL)Q —u; Wipve.
]

In analogy with the continuous traction operator Ty, defined in (13), we
define the discrete traction operator

TJL == TLICUKLDK. (107)
The integration-by-parts formulas satisfied by D$ (Cyyx.) now read

(uJa D&(CIJKL)VL)Q = (uJa TJLVL)aQ - (DIuJa OIJKLDKVL)Q

(108)
- u?WJLVL

and
(uhDIsE((CIJKL)VL)Q = (uJ7TJLVL)8Q - (TJLuLa VJ)aQ

(109)
+ (D&(CIJKL)uLa VJ) Q-

5 Energy-stable and self-adjoint boundary SATs
We discretize the problem (11) in space as
pﬁJ — D%(CIJKL)UL + fJ + SATJ7 (110)

where the SATs in SAT) impose the boundary conditions and will be specified
later. For notational convenience we assume f; = 0 in the following analysis.
Multiplying (110) by ¢ JH, where ¢, is an arbitrary test function, leads to
the equivalent weak form:

(@y: py)q = (¢J7 D&(CIJKL)HL)Q + (@, SATy), - (111)
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After using the integration-by-parts formula (108), the weak form reads

((;ijpﬁJ)Q - (¢J7TJLuL)8Q - (DI¢J7 CIJKLDKuL)Q - ¢§FWJLU-L

(112)
+ (d)J: SATJ)Q .
Define the inner product
M(J)a i) = (é;, puy)q (113)
the symmetric positive semidefinite bilinear form
K((ga ﬁ) = (DI¢J7 CIJKLDKuL)Q + ¢?WJLUL7 (114)
and
B(¢, 1) = (¢, Tyour)yg + (¢, SAT))q - (115)

In this paper SAT; is always linear in u and thus B(,-) is a bilinear form
in the case of homogeneous boundary conditions. The weak form can now
be written as

—

M(, 1) + K (¢, 1) = B(, 1), (116)
We define the discrete energy

1,. ) 1 1
E :25 (uJa PuJ)Q + 5 (DIuJa CIJKLDKuL)Q + iu?WJLuL
1 - - 1
=5 M, ) + DK (5, 8).

(117)

Recalling that W, is zero to order 2¢q, we conclude that the discrete energy
E approximates the continuous energy & defined in (17). It follows from
the non-negativity of M and K that E is a non-negative quantity. Setting

-

¢ =uin (116) yields the discrete energy rate

dE R

For future use we note that the integration-by-parts formula (108) can be
written as

(¢J,D¥<(CIJKL)UL)Q = (¢, ToLur) g — K(,1). (119)

5.1 Robin boundary conditions
Consider Robin boundary conditions,

Ty ur, + Usur, = g5, X: € 09, (12())

where U;;, = Upy; and u;Uzrur, > 0 Vu;. Robin conditions include the im-
portant case of traction conditions, obtained by setting U;, = 0 in (120).
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It follows from (18) that, for g; = 0, the continuous solution satisfies the
energy balance

&
— = 121
= =0, (121)
where 1
g - g + 5 (’U/J, UJLUL)QQ . (122)
If SAT; satisfies
(b5, SATJ)Q = — (¢, Tsru, + Usruy, — QJ)aQ ) (123)

then, for g; = 0, we obtain

B($a ﬁ) = (¢J7TJLuL)aQ - (d’p Tyug + UJLuL)BQ

(124)
= - (¢J? UJLUL)aQ s
which is a symmetric bilinear form. It follows that
ER 1d
B(d, ) = Todt (us, UJLUL)aQ ) (125)
which yields the energy balance
d ~
—FE=0 126
SB=o (126)
where 1
E - E + 5 (UJ, UJLuL)BQ Z 0, (127)

which shows that the scheme is energy stable. We achieve (123) by setting

SATy = —(JH)™' > epJHy (ef (Towus + Unur) — g,) (128)
fEbw

where 0w denotes the set of all faces and was defined in (76). The SAT (128)
is the standard SAT for Robin boundary conditions, see [17].

Remark 1. Robin boundary conditions can be generalized by introducing
an additional term V) 1, where u; Vi u, > 0 Vuy, on the left-hand side of
(120). This term introduces energy dissipation in the continuous problem.
It is straightforward to generalize the SAT (123) to such BC and obtain
corresponding dissipation of discrete energy, see [17]. To streamline the
discussion of self-adjointness, however, we restrict our attention to Robin
and displacement conditions in this paper.
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5.2 Displacement boundary conditions

We now consider displacement conditions,
u; =g;, X €. (129)

The homogeneous conditions obtained by setting g; = 0 are energy-conserving
for the continuous equations. However, there are no consistent SATs that
make B(¢, ) vanish (it is clear from e.g. (115) that the unique SAT that
makes B vanish is (128) with U;;, = 0, g, = 0, which is consistent with homo-
geneous traction conditions). Instead, we shall choose SATs that symmetrize
the form B(-,-). Suppose that

((f’u SATJ)Q = (TLy¢;,ur — gL)BQ — (Zypyy,ur, — gL)8Q7 (130)

for some yet unspecified Z;;, that is symmetric with respect to the boundary
quadrature in the sense that

(ZLJ'7 ')aQ = ('7 ZJL')@Q : (131>
Then, for g; = 0, we obtain
B(J’?ﬁ) = (¢, Toeur) g + (Trs@ys un)pg — (@5, Zywuin) oq » (132)
which is a symmetric bilinear form. It follows that
dE Lo 1d o
We obtain the energy balance
dFEy
— =0 134
= (134)
where the modified energy Fg is
1_.. . 1
Ed = E - Q_B('l_l7 11) — E - (UJ, TJLUL)BQ + 5 (uJ7ZJLuL)OQ . (135)

Note that Ej, just like F, is a high-order approximation of the continuous
energy £ because B(, U) is zero to the order of accuracy due to the boundary
condition.

The SAT that satisfies (130) is

SAT) = (JH)il Z (Tyy — ZLJ)T efij(e?uL —9g.), (136)
fedw

where Z;, remains unspecified at this point. The ansatz (136) ensures that
the SATs are consistent with displacement boundary conditions. For fixed J
and L, Z;; is an N x N matrix with units of force per unit volume. For SAT}
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to have the same h-dependence as ]D)&(CUKL), which is a second derivative
and hence scales as h™2, the entries of Z;; must be proportional to h~1.
Because the boundary quadrature operator is diagonal, the condition (131)
is satisfied if Z;, = Z.; and Z;, is diagonal for each J and L.

To prove stability, it remains to prove that we can choose Z; so that Ejy
is a non-negative quantity. To accomplish this, we use the positivity of F.
Since the indefinite term in E, is a surface integral, we bound F from below
by a surface integral. We have

2F = (ilm pﬁJ)Q + (DIuJ7 CIJKLDKUL)Q + uE]FWJLuL

h J (137)
> gl <DIUJ, ACIJKLDKUL) )
J a0

where we used the positivity property (89) in the last step. Using (137) in
(135) yields

h .
2Eq > j (DluJa J 1JCIJKLDKuL>BQ -2 (qu TJLuL)aQ

(138)
+ (uJ7 ZJLuL)aQ .
Recalling the definition of T, (107) lets us write
(uJa TJLuL)aQ = (uJanICIJKLDKuL)aQ = (nIuJa CIJKLDKuL)aQ- (139)
Due to the major symmetry of Cyky, (35), we have
(nIqu CIJKLDKuL)3Q = (nKuLa CIJKLDIuJ)BQ . (140)
By completing the squares, we obtain
908, > " (Do, J!
d = F < 1y, J JCIJKLDKUL)aQ -2 (nIuJ7 CIJKLDKuL)aQ
+ (uJa ZJLuL)aQ
h dJ J dJ
== Diuy; — —nuy, =Chkr, | Dxu, — —nkuy,
d hiJ J hiJ
00 (141)
dJ
— | niay, —Cykunkuy + (uJ) ZJLuL)aQ
hiJ
o0
dJ
> |\ uy, | Zy — ——mCuxing | ug .
hiJ
o0N
We achieve E; > 0 by setting
dJ
Ly, = B—mCpyxing, S >1. (142)
hiJ
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Since J , J, ny, and Cpyip, are diagonal matrices in the discrete case, the Zj;,
are diagonal matrices. Using the major symmetry of Cyky, (7), we have
dJ dJ
Ly, = 6mnICIJKLnK = 6mnICKLIJnK = 2y, (143)

which verifies that Zj;, satisfies the symmetry assumption (131). We have
now proven the following theorem.

Theorem 2. The scheme

pit; = D (Cryr)ur, + (JH)™H Y (Tyy — Zoy)" epJHp(efu, — g,), (144)
fedw
with .
dJ
Ly, = anICIJKLnK (145)
is stable if B > 1.

In all simulations in this paper, we set 5 = 1, i.e., right on the limit
of provable stability. The drawback of using larger values of § is that this
increases the spectral radius of the operator.

Remark 2. Note that the analysis in this subsection would become signifi-
cantly more involved without the assumption of fully compatible SBP oper-
ators. Due to full compatibility, the positivity property

h1 J
(DIuJaclJKLDKuL)Q > g <DIuJ7 ACIJKLDKuL> (146>
J 80

is sufficient to prove that E; > 0. Without full compatibility, however, the
discrete traction operator takes the form

Ty = nICIJKL(DK + ADK)? (147)

where A Dy denotes the difference between compatible and fully compatible
boundary derivatives and is of order ¢q. Proving that E; > 0 by completing
the squares then requires, in addition to (146), at least one of the following
two positivity properties:

(Druy, Ciyxr Dxcur)g > (ADruy, aCryxi ADxuy) 5 for some oo > 0, (148)
uJTWJLuL > (ADyuy, fCyxADxuy),y,  for some 5> 0. (149)

Our numerical tests (not reported here) reveal that (148) does not hold for
the operators derived in [33]. Thus, the only possibility appears to be to
prove (149). When solving the scalar wave equation, [3] proved a simpler
version of (149). Extending that proof to the elastic operator remains an
open problem. For the idealized case of constant material properties and
affine coordinate transformations, [18| claimed that (149) holds, but did not
show a complete proof for multi-dimensional settings.

Not assuming full compatibility would complicate the interface analysis
in Section 6 in the same manner.
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5.3 Self-adjointness

The adjoint of the discrete operator plays an important role in PDE-constrained
optimization problems such as seismic imaging, where the adjoint state
method is frequently used to compute the gradient of the objective func-
tional. The continuous elastic operator is self-adjoint, and this subsection is
devoted to proving that the discrete elastic operator is also self-adjoint. A
consequence of this property is that one may use the same solver for the for-
ward and adjoint PDEs and still obtain the exact (up to roundoff error) gra-
dient of a discrete objective functional (provided that the time-discretization
is also adjoint-consistent).

Let U and ® be subsets of L?(Q2). We think of &/ as the primal space
and ® as the dual or adjoint space. The adjoint EEL : ® — L2(Q) of a linear
operator Ly, : U — L%(Q) satisfies

(@5, Lyrur)q = (EngbL)uJ)Q Vuy €U, ¢; € P. (150)

The operator L;, is said to be self-adjoint if EEL = L;1,, which implies that

d =U [|50].
We here consider the elastic operator Dy, = 0;Cryk.0x. For now, we leave
the domain of D;;, unspecified. We define the space of admissible functions
U=A{u, € LZ(Q) | DyLuy, € LQ(Q)}. (151)

We further assume that u; satisfies either Robin boundary conditions (120)
or displacement boundary conditions (129). Let Ur and Up denote the
corresponding spaces:

Z/{R = {UJ ceu | TJLUL + UJLUL =0on aQ}, (152)
Up ={u; €U | uy =0 on 9N}.

Two partial integrations yield (cf. (99))

(¢J7DJLUL)Q = (¢J7TJLUL)aQ - (TLJ¢JuUL)aQ + (DJL¢L)UJ)Q' (153)
It follows that

(¢JaDJLUL)Q = (DJL¢La UJ)Q Yu; € uRa ¢J S UR (154>

and
(¢J7DJLuL)Q = (DJL¢L7UJ)Q Vuy; € Up, ¢; € Up, (155)

which shows that D;, is self-adjoint both with domain U (Robin conditions)
and with domain Up (displacement conditions).

We now consider the total discrete elastic operator, including SATs for
Robin or displacement boundary conditions. Assuming homogeneous bound-
ary conditions, we can define Sj;, such that

SATJ = SJLuL, (156)
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and the total discrete elastic operator is
D?ﬁt = D& (Cuskw) + Soe- (157)

Theorem 3. The total discrete elastic operator, including SATs for Robin
or displacement boundary conditions, is self-adjoint, i.e.,

(¢, D u), = (D' py,uy), Vo, uy. (158)
Proof. In deriving the weak form (116), we showed that
(¢, D 1) = —K($, ) + B(o, 1), (159)

where K is symmetric and B is symmetric both in the case of Robin con-
ditions (cf. (124)) and in the case of displacement conditions (cf. (132)).
Hence, we have

(d)J? DgituL)Q = _K((z;? ﬁ) + B((z;v ﬁ) = _K(ﬁ7 (2;) + B(ﬁ7 (5)

= (qu]Dgitq,)L)Q . (160)

After using the symmetry of (-, ), the result follows. O

6 Energy-stable and self-adjoint interface SATs

We may want to introduce multiple grid blocks to: handle discontinuous
material parameters p and Cik, facilitate grid generation, or model earth-
quakes or fractures, in which case there are prescribed discontinuities in
either displacement or traction. The discussion below covers all cases. The
Jacobian J and transformation gradient Fy; may be discontinuous across the
interface.

Let T’ denote the interface between two domains Q, and Q,. We use
superscripts v and v to distinguish between quantities that correspond to
the two different sides of the interface. We consider the problem

pUiiy — O C% Oxup =0, X € Qy,

PPV — 01CP k.. OxvL = 0, Xc Qs
uy — vy = Vi, X:GF,
Ti4TV =0, XEeT,

(161)

augmented with suitable boundary conditions. The functions V; and O,
denote data for jumps in displacement and traction, respectively. Define the
energies

Lo . 1
&y = ) (s, pou)Qu + 9 (Oruy, CIIfIKLaKuL)Qu )

2 ; (162)
& = ) (05, p%J)Qv + 9 (Orvy, CIUJKL‘?KUL)QU )
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Assuming energy-conserving boundary conditions and V; = ©; = 0, the
energy method yields

d o o
& (Eu+ &) = (g, 7" )p + (03,77 )p = 0. (163)

We assume that the surface Jacobian J is the same on the two sides of the
interface so that grid points that coincide in the reference domain coincide
also in the physical domain. In the following equations, we suppress super-
scripts v and v on the interface restriction operators er, because it is clear
from context that, for example, el uy denotes (e%)?uy.

Omitting SATs for outer boundaries for convenience, we discretize (161)
as

pliay = D%"(C’%KL)uL — (J“H“)_IZZJeerF(e?uL — e%vL —-V.)
1 _ N
+ 5 (JUH"Y) L) epJHy (efuy, — vy, — V)
1 ~
— 5(JUHU)*1epJHp(e%’]r§‘LuL + el T v, — ©)),
(164)
PV, = D&”(CEKL)VL — (J”Hv)_lszeijp(elrvL — eilfuL + V)
1 .
- §(JUHU)_1 (T )' epJ Hp (el vy — efug + Vy)

1 o
- §(J”H”)—16FJHF(6%T§LVL + ek T% v, — 9)),

where

d ~ (nPCEnE  nYCheny
7 — B 1 YIJKL''K 1 YIIKL YK > 1. 165
=g d (MR MO 1 o)
Note that Zsv satisfies (Zy;-,)p = (-, Zs-)p. The remainder of this section
is devoted to proving that the scheme (164) is energy stable and self-adjoint.

To derive the weak form of (164), we multiply the first equation by
quTJ“H“, which, with V; = ©; = 0 for convenience, yields

(d’yﬂuﬁJ)Qu = (Q’)J?Dg(u(CEKL)uL)Qu ~ (Zypy by, ur — VL)F

1, 1 y ) (166)
+ 5 (TLJ¢J7 UL — VL)F - 5 (¢J7 TJLuL + TJLVL)F .
Let .
Mu(¢> ﬁ) = ( J?pou)Qu )
Ku(¢7 ﬁ) = (DI¢J7 CﬁIKLDKuL)Qu + d)?W?LuL? (167)

L5 1 - =
Eu = 5 u(ua u) + iKu(ua u)a
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and define M,, K,, and F, analogously. Using the integration-by-parts
formula (119) in (166) yields

oo o 1
MU(¢> ﬁ) + Ku(d), ﬁ) = (ZLJ¢J7 up — VL)F + 5 (Tgﬁbw UL — VL)F (168)

1
+ ) (¢;, T ug, — T?LVL)F )

where we have again omitted outer boundary terms. Multiplying the second
equation in (164) by xTJYHV similarly leads to

oo - 1
Mv(Xa V) + Kv(Xa V) = (ZLJXJ7 VL — uL)F + ) (TEJXJv VL — uL)F
1 (169)
+ 5 (s, TS v — T?LUL)F .

We add (168) and (169) to obtain
M,(f,0) + Ku(, ) + Mo(X, V) + Ko(X,¥) = 1($, 8%, ¥),  (170)
where [ is the sum of interface integrals,

I(éa ﬁ? )27‘7) = - (¢J - XJ»ZJL(UL - VL))F

1

+ 5 (T?L L T?}}LXL7 u; — VJ)F (171)
1

+ B (@, — x5, ThuL — T?LVL)F .

Note that I is symmetric with respect to trial and test functions in the sense
that

(¢, 1,X,¥) = I(4,$,V.X)- (172)
Setting (25 =4 and X = v yields the energy rate
B+ B = 1(6,4,9,9) = - L1, 6,9, 9) (173)
—_— = V.V) = ——— V,V).
dt u v ) ) b th ) k) )
We define the discrete energy
1
Er=E,+FE,— 5[(13,1‘1’,\7’,\7’)
1
=E,+FE,+ B (uy — vy, Zy(u, — vi))p (174)
1
- 5 (U-J — Vy, T?LU-L - T?LVL)F ’
which satisfies dE
1
— =0. 175
v (175)

Note that Ey, just like E, + E,, approximates &, + &,, because the surface
integrals in I would be zero if the interface conditions were fulfilled exactly.
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Theorem 4. The scheme (164) is stable.

Proof. We have shown that the scheme conserves the discrete energy Ej. It
remains to prove that Ej is a non-negative quantity. To keep the notation
concise in the following, let

[u]; =u;, — v, (176)

denote the jump in displacement. The positivity property (89) yields (cf.
(137))

h ~
2B, > = (DIuJ, J—ljucgf,KLDKuL)F,

I ) (177)
2B, > = (DIvJ, J—RJ”C})JKLDKVL)F
We set Z;x = Z%,. + ZY,. and obtain
2FE1 > A, + Ay, (178)
where
h 7—1 u u u u
A, == (Druy, I Gl D)+ (s 28 [l = (Pl Thwo )
h 7—1 v, v v
Ay = j (DIVJ’ J 1'] CIJKLDKVL)F + ([[u]]b ZJL[[U]]L)F + ([[u]]J’TJLVL)F :

We choose ZY, so that A, is non-negative. Using the definition of Ty, (107)
yields

(Tuls, TSoue)p = ([u]s, ni' Cii Dxun)p = (nf [uly, Cie Dxcun)p - (179)
Due to the major symmetry of Cyyky, (35), we have
(ni'[u]s, Ol Dxur)p = (ngc[u]r, Cli, Diy)r (180)
Completing the squares in A, yields
dj JU aj
Au = E (DIuJ — WTLI u]]J, 7CIJKL <DKuL — WnK[[u]]L>>F

- <nﬂ[u]]b WCgKan[[u]]L>F + ([u]s, Z5, [u])r

([[u]]b (ZJL - mnl CIJKL”K) [[u]]L> ’
r

which is non-negative if

v

Ly, = IBWTLI Changs B =1 (181)
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A similar derivation yields

v dj v v v
Av > [[u]]b ZJL - vnI CIJKLnK [[u]]L ’ (182)
4hyJ -
which is non-negative if

dJ

Zy, = ﬂm"fcﬁmnﬁ’ g =1 (183)

We conclude that E; is non-negative if

Ly, =73, + 7L,

_ g (niCani | i Chan
Ju JV

i X ),ﬂZL (184)

O

In all simulations in this paper, we set § = 1, i.e., right on the limit of
provable stability.

6.1 Self-adjointness
Let Q = Q, UQ, denote the full domain. Introduce the notation

o, Xeq, s, Xe,
= { Vg, X € QU and wJ B { X35 X € QU ’ (185)

where we think of w; as the primal field and v; as the adjoint field. The
continuous elastic operator satisfies

Dywy, = { OiClya O, X € {Ly (186)

O vy, X €y

Requiring that D, w;, be square-integrable over each subdomain leads us to
define the space

v:{weL%m (187)

BiC% . Our, € L2()
010 Oxvy € LA(Q) [

We further require that w; satisfies appropriate interface and boundary con-

ditions. We define
uy—v; =0 onl
Thu, +Thoe=0 onI 5, (188)
LJL’UJL = 0 on 89

W: 'U)JGV

where the boundary operator may be either Ly, = T}, + Uy, for Robin
boundary conditions, or Ly, = d;, for displacement boundary conditions.
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The operator Dy, : W — L?(Q) is self-adjoint, because integrating by parts
twice yields

(¥5, Dyvwr) g = (¢s, Ty un)r + (Xo, Ty o)

— (T51.00, wy)p — (Tyxws va)p

(01CY 51, Ok P, UJ) + (01019 XL, UJ)QU
(DJLvawI) Vwy, 1y € W.

. (189)

Now consider the discrete elastic operator, including interface SATs. Let
u, P,

wy = , = . 190

=[] w2 (190)

Omitting SATs for boundary conditions, the total discrete elastic operator
n (164) can be written as

]D)Qu (Cu ) + Suu Suv :|
]D)tot — |: 1K IJKL JL JL , 191
s D (Clha) + 5% oy

where the S;;, operators correspond to the interface SATs. We define discrete
integrals over the full domain as the sum of integrals over the subdomains,

(5, wy)g = (@, uJ)Qu + (XJ?VJ)QU . (192)

Theorem 5. The total discrete elastic operator DI, corresponding to the

scheme (164), including interface SATs, is self-adjoint, i.e.,

(leyD.t]itWL)Q = (]D)ﬁitd)L,WJ)Q Vip,, wy. (193)
Proof. In deriving the weak form (170), we showed that
(%5, DS w) g = (s, (DI (Cliyes) + S ue, + SSEve)
+ (X (DR (Clier) + S5)ve + Situe) (194)
= ~Ku(¢.1) - K,(X. ¥) + 1(¢,6,%. 7).
where we are omitting all terms corresponding to outer boundaries for con-

venience. Using the symmetries of K, , and I and the symmetry of (-,-)q
yields

(,,Di'w,) g = —Ku(, 1) — K,(X,¥) + I($, T, X, V)
= — K, (i, ) — K, (¥,%) + I(d, $, ¥, X) (195)
— (WJa ]D)tOt ) (DtOt'l»bL’ Wy Q-
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7 Numerical experiments

This section contains three numerical experiments. First, we use the method
of manufactured solutions to assess the global convergence rates of the new
SBP-SAT schemes based on the fully compatible operators adapted from
Mattsson’s operators [33]. Second, we use the new methods to evaluate
the performance of an elastodynamic cloak. Third, we solve an application
problem inspired by seismic exploration in mountainous regions.

Before presenting the numerical experiments, we briefly discuss how the
time step is selected. In general we cannot rely on von Neumann analysis,
which is restricted to constant coefficient problems in unbounded domains;
the maximum stable time step is often influenced by boundary closures and
penalty terms. Computing eigenvalues of the spatial discretization allows
one to precisely determine the stability limit, but eigenvalue computations
are prohibitively expensive for large problems. Instead, we seek a relatively
cheap procedure that, for the majority of cases, yields a stable time step
close to the stability limit; one can then adjust the time step around this
estimate through trial-and-error. We consider the transformed problem (33)
in the reference domain w, because the grid spacing h is well defined in w.
We choose the time step according to

At =CFL x min h , (196)

all gridpoints Umazx

where U4, denotes the largest quasi-P-wave speed. Given a direction of
propagation, computing v,,q, amounts to inserting the transformed material
properties into the Christoffel equation (20) and finding the largest root of a
degree d polynomial whose coefficients are functions of density and stiffness
[58]. Finding the direction of fastest propagation is a (d — 1)-dimensional
optimization problem, which we here solve using MATLAB’s fmincon. The
dimensionless constant CFL depends on the order of accuracy. Appropriate
values of CFL are determined empirically but are generally O(1).

7.1 Convergence studies

Consider the domain depicted in Figure 2a. We use the method of manufac-
tured solutions and choose the exact solution

Uy = sin(2X1 + 3Xo — t), Ug = sin(3X1 +2Xo — Qt), (197)

and the material parameters

X, + X apkL, |=Kand J=L
p=2-+sin <1+2> , CukL = s , (198)
2 Bk, otherwise
where .
apk, = 8+ sin(IX] + JXs) + 3 sin(KX; — LX5) (199)
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and
1
Busce. = 3 (sIn(IX1 +JX5) +sin (KX + LX)
1 (200)
+ E (Sin(IXl - JXQ) + SiH(KXl — LXQ)) .

We impose traction conditions on the outer boundaries and displacement
conditions on the interior scatterer, and use the exact solution as bound-
ary and initial data. For time-integration we use the classical fourth order
Runge-Kutta method with CFL = 0.5, which proved to be small enough
to make the spatial errors dominate. We set T = 1 as the final time. Ta-
ble 1 and Figure 2b show the ¢2 errors as functions of h, where h denotes
the grid spacing in the reference domain. Table 1 also shows the number of
grid points per solution wavelength (PPWL) used near the outer boundaries,
where the grid spacing is the largest. The exact solution (197) is not a plane
wave but both u; and ug equal waves with wavelength 27/1/13; hence we use
27 /+/13 as the “wavelength” when computing the PPWL. The convergence

Error

s
S5
S "I

S>3

== —~=7 -+ 2nd order wide

r -~  p45  —s—2nd order narrow

] - -o- 4th order wide
~ - —e— 4th order narrow
10 = 6th order wide

6th order narrow

.
0.01 0.02
h

(a) Domain and grid configuration (b) Convergence plot

Figure 2: (a) Multiblock grid used in the computations. (b) Convergence
plot, comparing the narrow and wide stencils. h denotes the smallest grid
spacing in the reference domain.

rates appear to be 2, 3.5, and 4.5, for interior orders two, four, and six. Re-
call that the adapted operators used here have reduced boundary accuracy
g» = q — 1. In numerical experiments with second-derivative SBP operators,
the convergence rate is often observed to be min(g, +2,2q). For the adapted
operators, this rule of thumb predicts rates 2, 3, and 4, and for operators
with full boundary accuracy q, = ¢, it predicts rates 2, 4, and 5. The second
order adapted operator yields rate 2, as predicted by the rule of thumb. For
orders four and six, the adapted operators suffer from a reduction by only
half an order compared to their g, = g counterparts. Their rates are half
an order higher than predicted by the rule of thumb. Explaining this “super
convergence” will have to be the topic of another paper. For now, we con-
clude that—as fully compatible operators with full boundary accuracy are
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second order fourth order sixth order

h=! | PPWL | logio(error) 7 | logig(error)  r | logip(error) 7
40 22 -1.42 -3.12 -3.85
60 33 -1.74 1.85 -3.75 3.56 -4.64 4.51
80 44 -2.00 2.03 -4.21 3.72 -5.26 4.90
100 95 -2.18 1.88 -4.55 3.44 -5.69 4.44
120 67 -2.34 2.05 -4.84 3.67 -6.06 4.75
150 83 -2.53 1.94 -5.17 3.48 -6.50 4.50
200 111 -2.78 1.99 -5.62 3.59 -7.07 4.59
250 139 -2.97 2.00 -5.96 3.46 -7.52 4.61
300 166 -3.13 2.00 -6.24 3.58 -7.88 4.55
350 194 -3.26 2.00 -6.48 3.52 -8.18 4.56

avg. rate 1.96 3.56 4.60

Table 1: ¢? errors and convergence rates r for the anisotropic problem, using
the narrow stencil.

currently lacking—the adapted operators provide a reasonable compromise
that allows for a straightforward stability proof at the cost of no more than
half an order reduction of global accuracy.

To demonstrate the advantage of the narrow-stencil second-derivative
operators over the wide-stencil operators, which results from applying first-
derivative SBP operators twice, Figure 2b shows the convergence behavior for
both methods. We use exactly the same SATs in both cases. It is straightfor-
ward to verify that the wide-stencil operator also is a fully compatible SBP
operator and that the resulting scheme is energy-stable and self-adjoint. In
the second-order accurate case, the narrow-stencil method is slightly more
accurate. For higher orders, the narrow-stencil method is more than an order
of magnitude more accurate. The spectral radius of the spatial operator is
for this problem slightly larger for the narrow scheme than for the wide. For
the grid corresponding to A = 0.01 the relative differences in spectral radius
are:

second order: 5.34%, fourth order: 1.28%, sixth order: 1.23%.

Note that the largest stable time-step is approximately proportional to the
square root of the spectral radius. Hence, compared to the big difference
in accuracy, the slight increase in spectral radius has very little impact on
performance.

Although [18] did not observe any accuracy reduction for the adapted op-
erators applied to isotropic materials, we can hereby conclude that schemes
based on the adapted operators of orders 2¢ = 4 and 2¢g = 6 both suffer a
reduction by half an order, at least for general anisotropic materials. To in-
vestigate also the isotropic case, we use the same exact solution and domain
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as for the anisotropic problem but with spatially uniform isotropic material
properties p = 1, A = = 1. We impose traction conditions on all bound-
aries. The results are shown in Table 2. We observe a clear reduction for
2q = 6, for an average rate of 4.54. For order 2q = 4, it is not entirely
obvious whether the asymptotic rate (average 3.70) is 3.5 or 4. We conclude
that reductions in convergence rate can manifest even in the isotropic case
and the rates of ¢ + 2, as observed in [18], cannot be expected in general.
Fully understanding this matter is, however, out of the scope of the present
study.

second order fourth order sixth order

h=t | PPWL | logig(error) = | logig(error) = | logip(error) 7
40 22 -1.20 -2.87 -3.62
60 33 -1.52 1.80 -3.49 3.49 -4.38 4.30
80 44 -1.76 1.95 -3.96 3.78 -4.95 4.53
100 95 -1.94 1.84 -4.31 3.99 -5.36 4.23
120 67 -2.10 1.98 -4.61 3.85 -5.73 4.66
150 83 -2.28 1.90 -4.97 3.71 -6.16 4.47
200 111 -2.52 1.94 -5.44 3.78 -6.74 4.66
250 139 -2.71 1.95 -5.81 3.77 -7.20 4.72
300 166 -2.87 1.95 -6.11 3.78 -7.97 4.76
350 194 -3.00 1.96 -6.36 3.76 -7.90 4.79

avg. rate 1.91 3.70 4.54

Table 2: (2 errors and convergence rates r for the isotropic problem, using
the narrow stencil.

7.2 Stability and self-adjointness

To verify that the schemes are energy conserving and self-adjoint, we again
use the domain in Figure 2a. We use random material properties. Let p
be a grid function of random numbers drawn from the standard uniform
distribution #(0,1). Similarly, let all independent components of Clyxr, be
drawn from ¢(0,1) (remaining components are determined by the major
symmetry). We then set the discrete material properties

. 61JKL+47 I=Kand J=1L
p=1+p, CuyxkL=14 - : (201)
Clkr, otherwise

Theorems 3 and 5 prove that the total discrete elastic operator D' is self-
adjoint in the inner product defined by the physical quadrature JH. In
two spatial dimensions, this is equivalent to the matrix A being symmetric,
where ]Dtot ]D)tot

11 12

JH
A—H[ o 0] and 7—[—[ 202
DY Dy 2

-
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We set the smallest grid spacing in the reference domain to h = 0.01, which
leads to a total of 19796 grid points. The relative deviations from symmetry
HA - ATH |A||,,. for this problem are:

max / | max

second order: 1.61 x 10716, fourth order: 3.64 x 10716,
sixth order: 2.08 x 10716,

which verifies that the schemes are self-adjoint to machine precision.
In the absence of external forces and boundary data, the semidiscrete
equations take the form

PHuU = Ad, where P = [p p} . (203)
Since A is symmetric, the semidiscrete problem preserves the quantity
1 \T LT 4
e=5 ((u) PHu —d Au> , (204)

which is precisely the semidiscrete energy given by (127), (135), and (174).
Our stability analysis further guarantees that the semidiscrete energy is non-
negative, and hence a seminorm of t. That is, we have proved that, with
proper SATs; A is negative semidefinite. For the random material properties
above and h = 0.01, the largest eigenvalues of h A are:

second order: — 6.981 x 107°, fourth order: — 6.977 x 107,
sixth order: — 6.976 x 107°,

which verifies that A is negative semidefinite.

7.3 Elastodynamic cloaking

Elastic cloaking is the art of making an object impossible to detect by means
of elastic waves by surrounding the object with carefully chosen materials.
These material properties are chosen such that waves, incident from any
direction, pass around the object and reform on the other side in such a
way that the wavefield outside the cloak is (approximately) the same as if
the object were absent. Elastodynamic cloaking may be used to conceal
military objects [42], shield buildings from seismic waves from earthquakes,
and reduce vibrations in cars [19].  To design a cloak, we utilize coordinate
transformation theory [38, 40, 12]. As an example, we cloak the impenetrable
object shown in black in Figure 3a. We assume that the background medium
is homogeneous with p = 1 and A\ = g = 1 and model impenetrability by
imposing homogeneous displacement conditions on the object’s surface. To
construct the cloak we proceed as follows:
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1.

Choose the exterior boundary of the cloak (see Figure 3a). Let Q¢
denote the region that the cloak will occupy. That is, the material
parameters will be adjusted only within Q€.

Introduce a fictitious object, significantly smaller than the original ob-
ject, which the cloaked object will mimic. We will refer to the region
between this fictictious object and the exterior boundaries of the cloak
as Q/ (see Figure 3b).

Given a mapping between Qf and Q¢ (we discuss how to obtain this
mapping later), transform the equations of motion with homogeneous
material properties in Q/ to equivalent equations posed on Q°¢. That is,
repeat the transformation analysis in Section 3.2 with Q = Qf, w = Q¢.
Since the transformed equations are equivalent, filling the cloak with
the transformed material guarantees that the cloaked object will be
indistinguishable from the fictitious object, when probed from outside
the cloak. If the fictitious object is small enough, the cloaked object
will be practically undetectable.

7 ~
7 N
1 ’ \
’ \
05 1 Qf \
1 \
! I
S A ° k
E /
-0.5 \ /
A ’
1 \ Vi
S 7’
S o - _-
1.5 ——
2 1.5 1 0.5 0 0.5 1 15 2 2 1.5 1 0.5 0 05 1 15 2
Xy X
(a) Object to be cloaked (b) Fictitious object

Figure 3: (a) The object to be cloaked, with the dashed circle marking the
extent of the cloak. Q¢ denotes the region that the cloak will occupy. (b) The
small disk is a fictitious object that the cloaked object will mimic. ©/ denotes
the region between the fictitious object and the outer boundary of the cloak.

In theory we can achieve perfect cloaking by choosing the reference ob-
ject as a point, but such coordinate transformations are singular and would
require singular material properties in the cloak. In practice, one usually
settles for partial or near cloaking [12|, where the reference object is finite
but much smaller than the original object, as in Figure 3b. Since the equa-
tions of Cosserat materials are invariant under coordinate transformation,
they always allow for cloaking [40], at least at a mathematical level. Not all
nonsingular cloaks are realizable in practice, because the material properties
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prescribed by the coordinate transformation may be infeasible to engineer
[24, 25].

Let us now discuss how to establish a mapping between Q¢ and Q/ and
compute the transformation gradient. If the cloak has a simple shape, for
example circular or spherical, the transformation gradient can be computed
analytically [9, 15]. Here, we allow for more complicated objects and cloak
shapes. There may be many ways to do this and our approach is just one
option. We grid Q¢ and Qf with grids whose block topology match so that
each block can be paired with a block in the other grid. We describe the
procedure for one such pair of grid blocks. With a slight abuse of notation,
let Q% denote the regions occupied by these blocks in what follows. In the
gridding process the blocks have been associated with one-to-one coordinate
mappings X/ from the unit square w such that

Q° = X°(w), & =X/(w). (205)

It follows that G = X¢o (X’f)_1 is a one-to-one mapping from Qf to Q€.
To determine the transformed material it remains to compute an approx-
imation of the transformation gradient

C

F= 8)_(, . (206)

oxX/

We interpolate X7 to the cloak grid (this provides flexibility because we do

not need to assume anything about the number of grid points in either block).

The interpolation is performed between the Cartesian reference grids in w

and X7 is treated as a grid function. Next, we apply the numerical derivative

operators defined in (71) (note that the transformation gradient appearing

in (71) concerns the mapping to w and not the mapping G) to compute an
approximation of the inverse transformation gradient

F1_ X/
oXe’

(207)

Finally, F is obtained by inverting F~!.

To illustrate the spatial heterogeneity and anisotropy of the resulting
cloak, we shall need to introduce some notation. Let ¢y, and cys denote
quasi-P- and quasi-S-wave speeds in the cloak, and let ¢, and ¢, denote the
isotropic wave speeds in the homogeneous background medium. To illustrate
the spatial heterogeneity of the cloak, Figure 4a shows In(cyp/cp) in Q°, for
a wave propagating parallel to the Xj-axis. We use the log-scale to better
illustrate the fast variations in wave speed near the scatterer. Figure 4b
illustrates the anisotropy of the cloak by showing the slowness surface at
the point [X1, X2] = [0.5,1], with the slowness surfaces for the isotropic
background material included for reference. We remark that the cloak is
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" ——quasi-S-wave
—-—-quasi-P-wave
-------- isotropic S-wave
— — isotropic P-wave |
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X, s1

(a) In(cqp/cp) (b) Slowness surfaces

Figure 4: (a) Quasi-P-wave speed relative to the background P-wave speed,
for a wave propagating parallel to the X;-axis, with colors corresponding to
In(egp/cp). (b) Slowness surface at [X1, Xa] = [0.5, 1], with the slowness sur-
faces of the isotropic background medium included for reference.

spatially heterogeneous and the slowness surfaces are significantly different
at other points in the cloak.

To quantify the performance of the cloak, we probe the scatterer by
applying a time-harmonic line force outside of the cloak. In the presence of
a time-harmonic line force, the 2D equations of motion read

p'i,lJ = 8ICIJKL8KUL + f‘](s(X — X()) COS Oét, (208)

where f; here is force per unit distance (not force per unit volume as in
(11)). We use super-grid absorbing layers [5, 46] to approximate (208) in an
unbounded domain. The semidiscrete system of equations then reads

pﬁJ - (D&(CIJKL) + SJL) uy, + EJLuL + de(X - XO) COS O[t, (209)

where S;;, denotes the SATs, d is a discrete approximation of the d-function
[44], and E;;, provides dissipation in the super-grid layers. In the domain of
interest, [E,p, is zero. Inside the super-grid layers, HE;, is symmetric negative
semidefinite.

We choose to compute the time-harmonic solution to (209) (rather than
solve the time-dependent equations) because it reveals the steady-state re-
sponse of the system (instead of the response at arbitrarily selected times).
The time-harmonic solution can be written as

u; = v, cosat + wy sin at. (210)
Inserting the ansatz (210) in (209) yields the system of equations

—POézVJ = (DS((CIJKL) + SJL) vy + aE; wy, + de(X: - XO);

) o (211)
—poWy; = (DIK(CIJKL) + SJL) wy, — aE; vy,
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which we solve for v; and wj.

We choose force position X, = [1.5,1.5], force vector f = [—%, %},
angular frequency o = 27, and use the sixth order SBP-SAT method to
discretize (208). Figure 5a shows the resulting displacement magnitude
V/Viov] +vyovy, where o denotes the Hadamard product, in free space,
with no scatterer present (corresponding plots of w are qualitatively similar
and are omitted here). A perfect cloak would yield the same displacement
outside of the cloak. Figure 5b shows the displacement field in the pres-
ence of the uncloaked scatterer. There are obvious differences compared to
the free-space solution—in particular the shadow zone to the southwest of
the scatterer. Figure 5Hc shows the displacement around the cloaked scat-
terer. Outside the cloak, the displacement is quite similar to the free-space
solution, with minor differences—note in particular the faint shadow zone
to the southwest of the scatterer. Outside the cloak, the displacement due
to the cloaked scatterer is in fact identical (up to numerical errors) to the
displacement produced by the small disk-shaped scatterer in Figure 5d, with
homogeneous material parameters. In this numerical experiment we could
easily improve the performance of the cloak by making the disk in Figure
5d even smaller, but that would make the coordinate transformation near-
singular and would likely make the prescribed cloak material more difficult
to engineer.

7.4 Seismic imaging in mountainous regions

The topic of the second application problem is seismic imaging on land,
in particular in mountainous regions where topographical variations may
be large. Other studies that have developed finite difference methods on
curvilinear grids for use in seismic imaging in the presence of topography
include [52, 53]. As a structural model representative of mountainous regions
we choose the SEG SEAM Foothills model [43|, which is an isotropic model
with heterogeneous material properties and very pronounced topography.
We select a vertical cross section of the original 3D structural model with
pressure and shear wave speeds as shown in Figures 6a and 6b. To mimic
a vibrator source, we impose homogeneous traction boundary conditions on
the free surface and apply a vertical point force at the surface (alternatively,
one could impose inhomogeneous traction boundary conditions, which, for
a particular choice of the discrete delta function, yields an identical semi-
discrete problem). Note that with the wide-stencil method the discrete 6-
function must satisfy appropriate smoothness conditions [44], which we have
incorporated. The force vector is (note that we use the symbol ¢ to denote
both the Kronecker delta and the Dirac delta function)

fJ = _5J2fW(t)5(X - XO)a (212>
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(c) Cloaked scatterer (d) Fictitious scatterer

Figure 5: Plots of displacement magnitude /v o vi + vy o vo caused by a
time-harmonic point force applied at X = [1.5,1.5] with (a) no scatterer; (b)
an uncloaked scatterer; (c) a cloaked scatterer; and (d) the small fictitious
scatterer that is equivalent to the cloaked scatterer.

where f is a scalar force amplitude and W (t) denotes the Ricker wavelet
[48, 49| with peak frequency ap centered at time tg, i.e.,

W(t) = (1 — 2n2a3(t — tg)2)e ™ “p(t=t0)”, (213)

To further characterize the source we define the maximum source frequency
ayps > ap as the frequency for which the amplitude spectrum is 5% of peak
amplitude, i.e.,

[FIWl(aar)] = 0.05 | F[W](ap)], (214)

where F[W] denotes the Fourier transform of W. This definition yields
ay =~ 2.40ap. We think of ajps as the highest frequency that needs to be
resolved for accurate simulation results. We choose ap = 4 Hz, which yields
ay = 9.59 Hz. We further set ¢y = a;l and let the horizontal position of the
point force be X7 = 6 km. We select p = 1340 kg/m? and é; = 600 m/s as
reference values for density and shear wave speed near the source and define
nondimensional particle velocity i, as
552
iy = 2 g, (215)
fop

41



4500 2500

4000

3500 2000

x g ” =

£ ys-,/ / /;/“’ = 3000
) .

©

N
= W 2s0o 1500
6 2000
1000

1500

1000

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
horizontal distance (km) horizontal distance (km)

500

(a) Pressure wave speed (m/s) (b) Shear wave speed (m/s)

Figure 6: Wave speeds in a vertical cross section of the SEG SEAM Foothills
model

Our implementation utilizes the PETSc [8, 6, 7] implementation of the
classical fourth order Runge-Kutta method in the TS ODE/DAE solver
library [1]. We set CFL = 0.4 and use the sixth order SBP-SAT method
with grid spacing ~ 7 m (in the physical domain 2), which corresponds
to 7.2 points per wavelength (PPWL). We compute PPWL based on the

min (here equal

maximum frequency aps and the minimum shear velocity ¢

to 500 m/s) according to
Cmin

s (216)

PPWL = ——
OéMAXl ’

where AX; denotes the horizontal grid spacing. The grid is generated by
transfinite interpolation with uniform spacing in the horizontal direction.
We again use super-grid absorbing layers at the artificial boundaries. We use
only one grid block to discretize the domain shown in Figure 6a and hence
differentiate across the discontinuities in material parameters associated with
the many media layers. While this constitutes a first order error, we remark
that the method remains energy stable.

The top three rows of Figure 7 show snapshots of particle velocity in the
vertical direction. The bottom panel shows a space-time plot (shot gather)
of vertical particle velocity recorded at the surface. Figure 8a shows seis-
mograms, recorded at the surface at horizontal position X7 = 10 km. With
1.8 PPWL, the computations are under-resolved. The narrow-stencil simula-
tions with 3.6 PPWL and 7.2 PPWL show good agreement, indicating that
with 7.2 PPWL the numerical errors are small. This is further corroborated
by the fact that the wide- and narrow-stencil seismograms with 7.2 PPWL
are practically indistinguishable. To assess the performance of the wide-
and narrow-stencil methods in marginally resolved simulations, Figure 8b
shows seismograms generated with 3.6 PPWL along with a 7.2 PPWL ref-
erence seismogram. The wide- and narrow-stencil methods produce slightly
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different seismograms.

To assess the influence of the structural model, we repeat the experiments
above with constant material parameters p = 2300 kg/m®, pressure wave
speed ¢, = 3500 m/s, and shear wave speed ¢, = 2000 m/s (note that
PPWL values for this example are based on this value of ¢s). Figure 10 shows
snapshots of vertical particle velocity. Dashed vertical lines in the bottom
panel relate scattering of waves to topographical features. Figure 9a shows
seismograms, recorded at the surface at horizontal position X; = 10 km.
The 7.2 PPWL simulation shows excellent agreement with the 28.9 PPWL
simulations. Figure 9b compares the wide- and narrow-stencil seismograms
generated with 2.9 PPWL. In this case, the narrow-stencil method is a clear
winner; the wide-stencil method significantly underpredicts the amplitude of
the largest peak and produces a tail of waves of much larger amplitude than
in the reference solution.

8 Conclusions

We have developed an SBP-SAT method for the anisotropic elastic wave
equation on curvilinear multiblock grids in d dimensions. Robin boundary
conditions, displacement boundary conditions, and interface conditions are
all imposed using SATs, which are designed so that the spatial discretiza-
tion is energy-stable and self-adjoint. The method assumes fully compatible
diagonal-norm SBP operators for variable coefficients. In the numerical ex-
periments, we formed fully compatible operators (here referred to as adapted
fully compatible operators) by adding a correction to the compatible opera-
tors constructed by Mattsson [33]|. Although the resulting fully compatible
operators are one order less accurate at grid end points, our numerical exper-
iments indicate that the global convergence rate is reduced by only half an
order, for orders four and six, and not at all for order two. The convergence
rates are 2, 3.5, and 4.5, for interior orders two, four and six.

We have applied the new method to problems inspired by elastodynamic
cloaking and seismic imaging. In elastodynamic cloaking, anisotropic mate-
rials are essential. Hence methods such as ours, which can handle general
anisotropy, are the key to evaluating the performance of proposed cloaks via
numerical simulation. In the seismic imaging experiment we considered the
SEAM Foothills velocity model [43], which features large variations in eleva-
tion. Our method offers accurate approximation of the topography and the
free surface boundary condition, both of which are necessary to model the
highly complex surface waves accurately.

MATLAB code that reproduces figures 1-5 is available at https://sourceforge.
net/projects/elastic-curvilinear/ .
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Figure 7: Plots of s, the vertical component of particle velocity, with the
Foothills structural model. The top three rows show snapshots of iy at different
times. The bottom panel shows a space-time plot (shot gather) of o, recorded
at the surface.
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Figure 10: Plots of s, the vertical component of particle velocity, with
constant material parameters. The top three rows show snapshots of s at
different times. The bottom panel shows a space-time plot (shot gather) of
ls, recorded at the surface. Dashed vertical lines in the space-time plot relate
wave scattering to topographical features.
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