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ABSTRACT: In multiple time scale molecular dynamics, the use of
isokinetic constraints along with massive thermostatting has enabled
the adoption of very large integration steps, well beyond the limits
imposed by resonance artifacts in standard algorithms. In this work,
we present two new contributions to this topic. First, we investigate
the velocity distribution and the temperature−kinetic energy
relationship associated with the isokinetic Nose−́Hoover family of
methods, showing how they depend on the number of thermostats
attached to each atomic degree of freedom. Second, we investigate the
performance of these methods in the calculation of solvation free
energies, the determination of which is often key for understanding
the partition of a chemical species among distinct environments. We
show how one can extract this property from canonical (constant-
NVT) simulations and compare the result to experimental data obtained at a specific pressure. Finally, we demonstrate that large
time steps can, in fact, be used to improve the efficiency of these calculations and that attaching multiple thermostats per degree of
freedom is beneficial for effectively exploring the configurational space of a molecular system.

1. INTRODUCTION
Physically meaningful states of molecular systems are often
distinguished by integer numbers, such as the number of
molecules of a given species. In computational chemistry, so-
called alchemical methods enable us to link these states together
through unphysical but continuous paths, making it possible to
assess their relative stability. This information is essential for
applications that involve the partition of species among different
phases, from the design of industrial processes to the study of
ecosystems and environmental science. For instance, the
coupling/decoupling of a single molecule (solute) from its
surrounding medium (solvent) can be evaluated by defining a
parameter 0 ≤ λ ≤ 1 that governs the magnitude of the solute−
solvent interactions while keeping the intrasolvent and intra-
solute interactions intact. This approach has been used for the
calculation of hydration free energies of organic molecules,1,2

binding free energies of protein−ligand3−6 and other host−
guest systems,7,8 activity coefficients,9,10 and various other
thermodynamic properties. In the case of protein systems,
alchemical methods have also been used to effect changes in the
protonation state of residues11 or in the chemical identity of
ligands,12 to mention just a few examples.
For a given model system, one can improve the calculation of

alchemical free energies by devising techniques for efficiently
sweeping across the λ domain and concomitantly rapidly
exploring the configuration space. A large body of literature deals
with the first issue of sampling the λ domain using adaptations of
enhanced sampling algorithms. These include, for example,

concerted sampling of multiple λ states, as has been done via
expanded ensemble13 or replica exchange14 methods, or by
turning λ into a dynamical variable, such as is done in λ-
metadynamics15,16 and λ-adiabatic free energy dynamics
(AFED).17,18 In this article, we focus on the second approach
by investigating the application of resonance-free multiple time
step integration to the calculation of solvation free energies.
When simulating the dynamics of a flexible molecular model,

the step size of a standard integration method, such as velocity
Verlet is limited by the time scale of the fastest motions (for
instance, the vibrations of chemical bonds that involve light
atoms). This limit can be increased by classifying forces
according to their time scales and applying an integration
strategy in which the slowest forces are evaluated less frequently.
As these are usually the most computationally expensive forces,
notable gains in efficiency can be achieved. The reversible
reference system propagator algorithm (RESPA)19 provides a
rigorous framework for performing such a multiple time-scale
integration in a time-reversible and symplectic (or, more
generally, geometric) manner. In practice, however, resonance
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artifacts20,21 can cause instability in the RESPA algorithm and
restrict the attainable range of outer time steps to a more severe
degree than the actual system dynamics would. Fortunately, an
effective solution to this problem exists in the case of canonical
or constant-NVT molecular dynamics (MD). The approach
involves coupling a set of thermostats to each atomic degree of
freedom via isokinetic constraints that involve the velocities of
both the atoms and the thermostat variables.22−24 The
stochastic isokinetic Nose−́Hoover RESPA method of ref 25,
referred to as SIN(R) and which is an outgrowth of the original
isokinetic Nose−́Hoover chain algorithm,24 allows outer time
steps approaching 100 fs to be used in simulations of molecular
systems modeled by fully flexible and polarizable force
fields,26−29 effectively eliminating resonance artifacts.
The aim of the present paper is 2-fold. We first seek a deeper

understanding of the isokinetic thermostatting method through
a derivation of its stationary probability density for particle
velocities. We then establish, for the first time, the resulting
relationship between temperature and kinetic energy, which
differs from that of a canonical ensemble and depends on the
number of thermostats attached to each degree of freedom. We
show, by practical examples, that increasing this number causes
the sampled configurations to decorrelate more quickly, thus
rendering the additional effort worthwhile in terms of statistical
quality improvement. We then evaluate the performance of the
SIN(R) method in the calculation of solvation free energies by
alchemical transformations. For this evaluation, we carry out
independent simulations with distinct values of the coupling
parameter λ and use the multistate Bennett acceptance ratio
(MBAR) method30,31 to extract the free energy profiles and to
perform a careful uncertainty analysis. Since this type of
calculation is usually done via isothermal−isobaric (constant-
NPT) simulations to conform to experimental conditions, we
determine the circumstances in which NVT ensemble
simulations can be used instead. Our results demonstrate that
the SIN(R) method is able to provide reliable solvation free
energy estimates in a very efficient way with very large time steps.

2. METHODOLOGY

2.1. Stochastic Isokinetic Nose  −Hoover Method. In
this section, we review the equations of motion of the Stochastic
Isokinetic Nose-́Hoover method.25 We derive their resulting
stationary phase-space probability distribution, showing that the
coordinates obey the desired Boltzmann−Gibbs distribu-
tion.24,25 In addition, we demonstrate that velocities follow a
particular distribution that differs from the standard Maxwell−
Boltzmann type and derive the method’s distinctive definition of
temperature as a velocity-based ensemble average.
Consider a system of N particles in three dimensions. Each

configurational degree of freedom i has coordinate qi, velocity vi,
and associated mass mi. The system is under the influence of a
potential energy field U(q), and therefore, the force acting on

each degree of freedom is given by Fi
U
qi

= − ∂
∂
. Here, q ≡ (q1, ...,

q3N) is the 3N-dimensional coordinate vector. In the isokinetic
Nose−́Hoover method,24 two sets of extended-system velocities
v1 = {{v1,i,j}i=1

3N}j=1
L and v2 = {{v2,i,j}i=1

3N}j=1
L are defined and assigned

inertial parameters Q1 and Q2, respectively. These are used to
couple a number L of stochastic Nose−́Hoover thermostats to
each degree of freedom (massive thermostatting) and, at the
same time, to impose 3N isokinetic constraints involving each
velocity vi and the thermostat velocities v1,i,j. The equations of

motion are written in the form of an Ito̅ stochastic differential
equation (SDE) system as

q v td di i= (1a)

v
F
m

t v td d di
i

i
i iα= −

(1b)

v v t v v td d di j i i j i j i j1, , 1, , 2, , 1, ,α= − − (1c)

v
Q v kT

Q
t v t

kT
Q

wd d d
2

di j
i j

i j i j2, ,
1 1, ,

2

2
2, ,

2
,γ γ=

−
− +

(1d)

where γ is a friction constant, dwi,j denotes an infinitesimal
increment of a Wiener process,32 and αi is a Lagrange multiplier,
introduced as a means of imposing an isokinetic constraint on
each degree of freedom i24,25

m v
Q L
L

v LkT
1i i

j

L

i j
2 1

1
1, ,
2∑+

+
=

= (2)

By differentiating the constraint once with respect to time, we

obtain m v v v vd d 0i i i
Q L
L j

L
i j i j1 1 1, , 1, ,

1+ ∑ =+ = . If we then substitute

dvi and dv1,i,j from eq 1bb and 1cc, respectively, we obtain an
expression for αi as

Fv v v

m v v
i

i i
Q L
L j

L
i j i j

i i
Q L
L j

L
i j

1 1 2, , 1, ,
2

2
1 1 1, ,

2

1

1
α =

− ∑

+ ∑
+ =

+ = (3)

The next step consists of determining the probability density
ρ(x) preserved by eqs 1a−1d, with x being the vector of all
dynamical variables. It has been demonstrated25 that ρ(x) is
equal to the equilibrium distribution of a deterministic version of
eqs 1a−1d obtained by setting γ = 0, thus reducing the SDE
system to a system of ordinary differential equations (ODEs)

q vi i̇ = (4a)

v
F
m

vi
i

i
i iα̇ = −

(4b)

v v v( )i j i i j i j1, , 2, , 1, ,α̇ = − + (4c)

v
Q v kT

Qi j
i j

2, ,
1 1, ,

2

2

̇ =
−

(4d)

Following the non-Hamiltonian statistical mechanical frame-
work of refs 33 and 34, we must first compute the phase-space
compressibility of the ODE system eqs 4a−4d. In general, if a
system of ODEs takes the form ẋ = η(x), then the
compressibility is defined as κ(x) = ∇x·η(x), where x is the
vector of all dynamical variables. One of the necessary
conditions for these equations to preserve a measure e−w(x)dx

in phase space is that w
t
xd ( )

d
κ = .33,34 In the present case, the

phase-space compressibility of eq 4a−4d is

v
v

v v
vi

N

i i
i

i j

L

i i j i j
i

i j1

3

1
2, , 1, ,

1, ,
∑ ∑κ α

α
α

α
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∂
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∂

∂= =
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(5)

Performing the derivatives in eq 5 and simplifying, we obtain

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00698
J. Chem. Theory Comput. 2020, 16, 7314−7327

7315

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00698?ref=pdf


L
Fv Q v v

m v v
v

i

N
i i j

L
i j i j

i i
Q L
L j

L
i j j

L

i j
1

3
1 1 2, , 1, ,

2

2
1 1 1, ,

2
1

2, ,
1

∑ ∑κ = −
− ∑

+ ∑
+

=

=

+ = =

i

k

jjjjjjjj

y

{

zzzzzzzz
(6)

Using the constraint in eq 2, which is satisfied over any exact
trajectory described by eqs 4a−4d, we obtain

Fv v v

LkTi
i i

Q L
L j

L
i j i j1 1 2, , 1, ,

21

α =
− ∑

+ =

(7)

so that

kT
Fv v Q v kT

1
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Since FvU
t i

N
i i

d
d 1

3= − ∑ = as a consequence of the chain rule, and

( )Q v v Q v kT( )
t i j i j i j
d
d

1
2 2 2, ,

2
2, , 1 1, ,

2= − due to eq 4d, we can

conclude that the measure preserved in the extended phase

space is e xdU Q kTq v( ) /1
2 2 2

2−[ + ∥ ∥ ] . Assuming ergodicity within the
constrained manifold in which the dynamics occurs, the
stationary phase-space distribution34 is

e m v
Q L
L

v LkTx( )
1
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where δ is the Dirac delta function and Ω is the corresponding
generalized partition function.34 Thus, the marginal distribution
of coordinates is clearly of the Boltzmann−Gibbs type, that is,

exp U
kTq
q( )ρ ∝ −

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ. In turn, the thermostat-related velocities v2

o b e y a m u l t i v a r i a t e G a u s s i a n d i s t r i b u t i o n

( )exp
Q

kTv
v

22

2 2
2

ρ ∝ − ∥ ∥
.

What is less evident, thus far, is how the particle velocities v≡
(v1, ..., v3N) are distributed. To derive this distribution, we start
by integrating out all components of the (extended) vector v1
and determining a corresponding marginal distribution. This
can be achieved by resorting to a general identity for Dirac delta
functions (see Hörmander,35 Theorem 6.1.5), which is

f
f

Sz z( ( ))d
1

d
z

∫ ∫δ =
∇ (10)

where dS is the Euclidean measure on the hypersurface defined
by the condition f(z) = 0. The specific case of f(z) = ztz − R2,
with z L∈  and R≥ 0, defines the surface of a hypersphere with
radius R in L dimensions. The gradient of f is ∇z f = 2z, thus
making ∥∇z f∥ = 2R for any z on this surface. Finally, the
remaining integral ∫ dS is taken over the surface area of the

hypersphere36 given by R
L

L2
( / 2)

1L/2π
Γ

− , where Γ(·) is the complete

Gamma-function. Therefore,

( )
z R Rzd

j

L

j

L

L
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1

2 2
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−
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which we can use to integrate ρ(x) with respect to v1,i,j for all i, j.
For every degree of freedom i, we can set R = (LkT − mivi

2)1/2

and change variables from v1,i,j to ( )z vj
Q L
L i j1

1/2

1, ,
1= + for all j.

Finally, we find that the desiredmarginal probability distribution
is

e

LkT m v LkT m v

q v v( , , )
1

( ) ( )

U
Q

kT

i

N

i i
L

i i

q v
2

( ) 2 /

1

3
2 ( 2)/2 2

2
2

2

∏ θ

ϱ =
Ξ

×

− −

−[ + ]

=

−

(12)

where the new partition function Ξ incorporates all constant
factors. Here, θ(x) is the Heaviside step function. Note that the

isokinetic constraints make ϱ(q, v, v2) = 0 if vi
LkT
mi

= ± for any

i when L > 2, and for this reason, they confine the dynamics
inside the “hyperbox” defined by such limits. It is interesting to
observe that the distribution becomes independent of v (hence
uniform throughout hyperbox) when L = 2. By integrating q and
v2, as well as all particle-related velocities except vi, we deduce

that ( ) ( )v( ) 1 1i
m v
LkT

L
m v
LkT

( 2)/2
i i i i
2 2

θϱ ∝ − −
−

. Figure 1 contains

graphical representations of this marginal distribution, with
proper normalization, for several values of L. This is in contrast
with the standard Nose−́Hoover chain method,37 in which the
inclusion of more thermostats has no influence on the particle
velocity distribution, at least after ergodicity issues due to hidden
integrals of motion have been solved.34 Interestingly, in the case
of L = 1 (i.e., a single thermostat per degree of freedom), the
velocities are concentrated near the boundaries of their
accessible ranges rather than in the middle. Due to Bernoulli’s
identity ex = limn→∞(1 + x/n)n, it is clear that the Maxwell−
Boltzmann (that is, Gaussian) distribution is approached as L
increases.
To end this section, we consider the mean-square kinetic

energy ⟨(1/2)mivi
2⟩ of each degree of freedom i and its relation

to the system temperature. By employing the change of variables

v z LkT m/i i= and realizing that the isokinetic constraint

would make z ∈ [−1, 1], we can write

m v
LkT z z z

z z

L
L

kT1
2 2

(1 ) d

(1 ) d 1 2i i

L

L
2 1

1 2 2 ( 2)/2

1

1 2 ( 2)/2

∫

∫
=

−

−
=

+
−

−

−
−

(13)

Figure 1. Probability density functions of a particle velocity
component, theoretically determined for both the deterministic and
stochastic versions of the Isokinetic Nose-́Hoover method, in which L is
the number of thermostats attached to each degree of freedom. The
black dashed line corresponds to the Maxwell−Boltzmann distribution,
which is the limit that L → ∞.
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Thus, kinetic energy equipartitions among all degrees of
freedom in the isokinetic ensemble as it does in the standard
canonical ensemble. However, particles are slightly slower on
average than they would be in a canonical ensemble at the same
temperature unless L → ∞. As the example applications in
Section 3.5 will show, small values of L (∼L = 1 − 4) lead to an
efficient sampling of the ensemble distribution while effectively
avoiding resonances. Finally, because all individual kinetic
energies are independent and identically distributed, we can sum
up the expression above for all i and conclude that

K
L

L
NkT

1
3
2

⟨ ⟩ =
+ (14)

2.2. Multiple Time Scale Integration. By constructing a
palindromic operator decompositionmethod, known as a Strang
splitting38 or Trotter−Suzuki splitting,39,40 it is possible to
devise explicit, time-reversible integrators for the SIN(R)
equations of motion. Leimkuhler et al.25 presented two such
integrators that achieve multiple time stepping by means of the
reference system propagator algorithm (RESPA).19 These were
based on the eXtended-system Outside RESPA (XO-RESPA)
and eXtended-system Inside RESPA (XI-RESPA) schemes,
both introduced previously by Martyna et al.41 They can be
viewed as generalizations of the traditional, single time scale
method in which a velocity Verlet step is surrounded by the
integration of the thermostat variables and evaluation of their
effect on the particle velocities.42 More recently, Zhang et al.29,43

showed that a different splitting, the “middle” scheme, generally
yields a more accurate sampling of the coordinate distribution
than does the traditional scheme. As its name suggests, in the
newer scheme, the thermostat integration goes in the middle of
each step, similar to the BAOAB integrator44,45 used for
Langevin dynamics. The impressive success of BAOAB in

reproducing exp U
kTq
q( )ρ ∝ −

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ is due to a property known as

“superconvergence”.44 In certain circumstances, e.g., at the high-
friction limit, the leading term of the discretization error on ρq
cancels out.45 Particularly for systems with quadratic Hamil-
tonians, such as coupled harmonic oscillators, there is no such
error at all.45,46 Zhang et al.29,43 also observed that, like BAOAB,
the middle scheme degrades the sampling of velocities, whose
distribution departs from theoretical prediction for the specified

temperature. This is not often a drawback, especially with
methods like SIN(R) that are devised for configurational
sampling rather than actual dynamical simulation.
In the present work, we employ a variant of the recently

introduced middle-SIN(R) integrator, which has also shown
superior performance in comparison to the original formula-
tions.29 For this, we start by splitting the force on each degree of
freedom i into a sum ofM terms as Fi =∑k=1

M Fi
[k]. By convention,

the characteristic time scale of each component increases with
index k. If we write the equations of motion as ẋ = iLx, where iL
represents a non-Hamiltonian extension of the Liouville
operator,33 we can introduce a partitioning of the operator as

iL iL iL iL
k

M
k

A
1

B bath∑= + +
=

[ ]

(15)

where iLA is the universal kinetic component that generates
changes in the particle coordinates, iLB

[k] depends on the forces
with index k, and iLbath generates transformations in the
thermostat variables as well as their effects on the particle
velocities. In the usual notation with exponential operators, a
step of the middle RESPA scheme can be written in a recursive
manner as

e t( )tiL
M= ΔΔ

(16)

where M is the endpoint of a sequence of nested operators
whose members are defined recursively as

t e
t
n

e k( ) , if 1k
t iL

k
k

n
t iL( /2)

1
( /2)k

k
k

B Bδ δ= >δ δ
−

[ ] [ ]
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Ç

ÅÅÅÅÅÅÅÅÅÅ
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k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (17)

meaning that every step of size δt taken at a given time scale kwill
involve nk substeps of size δt/nk. The recursive process comes to
an end when operator 2 invokes its nested operator 1, which is
defined as

t e e e e e( ) t iL t iL tiL t iL t iL
1

( /2) ( /2) ( /2) ( /2)B
1

A bath A B
1

δ = δ δ δ δ δ[ ] [ ]

(18)

In the case of SIN(R), the innermost propagator eδtiLbath

requires further splitting. The scheme we employ in the present
work is

Figure 2. Stochastic isokinetic Nose−́Hoover (RESPA) equations of motion with a double time scale splitting of the forces and middle-scheme
integration of the thermostat variables. Regarding the colored exponential propagators in the bottom, the effect of each one on the dynamical variables
can be obtained by solving a modified system of equations in which the terms that share the same color remain, while all other colored terms are
replaced by zero, as discussed in the main text.
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e e e etiL t iL tiL t iL( /2) ( /2)bath IsoK DOU IsoK=δ δ δ δ (19)

In this equation, IsoK refers to isokinetic transformations
exclusively induced by the thermostats (that is, with no physical
forces involved) and DOU denotes a drifted Ornstein−
Uhlenbeck process performed for each v2,i,j. The latter is the
source of randomness of an otherwise deterministic dynamics.
To provide a panoramic view of the whole splitting scheme,

we present, in Figure 2, a colored diagram containing the
SIN(R) equations of motion and operator splitting for the case
of a middle RESPA integrator with two time scales. Note that αi,
as in the simplified form of eq 7, has already been substituted
back into the equations of motion.

In order to proceed, the action of eδtiLB
[k]

is obtained by
analytically solving the ODE system composed of

v
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(20b)

along with the trivial equations q̇i = 0 and v̇2,i,j = 0. For this
system, in particular, we work out a solution here whose form
differs from the scheme presented originally22,23 and employed
afterward.24−29 Aside from being mathematically equivalent, the
new solution is computationally more robust than the original
one, as it dispenses with the conditional treatment of a numerical

indeterminacy (see ref 25). Clearly, the propagator eδtiLB
[k]

leaves
the coordinates q and, consequently, all forces Fi

[k] unchanged.
The same occurs for the thermostat variables v2. To facilitate the
solution, let us define dimensionless variables for each degree of

freedom i as y vm
LkT i1

i= and y vj
Q

L kT i j1 ( 1) 1, ,
1=+ +

, so that the

isokinetic constraint, eq 2, becomes

y y 1
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meaning that the dimensionless vector y L 1∈ + is constrained
to have unit norm and be restricted to the surface of a unit
hypersphere. After performing the variable transformation, eqs
20a and 20b becomes

y b y(1 )1 1
2̇ = − (22a)

y by y j Lfor 2, 1j j1̇ = − ∈ [ + ] (22b)

where b F
Lm kT

i
k

i
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[ ]

. It is assumed that the initial conditions, yj(0)

= yj
0 for all j, satisfy eq 21. Note that eq 22a can be solved for y1(t)

independent of the other equations. A straightforward solution
is given by arctanh y1(t) − arctanh y1

0 = bt. Using hyperbolic
trigonometric identities and the fact that 1 − (y1

0)2 =∑j=2
L+1(yj

0)2,
we can rewrite it as
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Then, once y1(t) is known, the solution of eq 22b can be

determined as yj(t) = yj
0e−b∫0

t y1(s)ds. Note that the same scaling
factor applies for all j’s > 1. It can be obtained by solving eq 21

after substituting yj(t) for all j’s. From this procedure, it turns out
that for j ∈ [2, L + 1],
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The common denominator in the equations above is the norm
of a vector y* defined such that y1* = y1

0 cosh(bt) + sinh(bt) and
yj* = yj

0 for j > 1. Thus, the solution of eqs 22a and 22b can be
written as

y
y
y

=
*
* (25)

This gives the solution an “update and renormalize” form,
which is computationally attractive, as it guarantees that the
isokinetic constraints will remain free of accumulated rounding
errors. By recasting the solution in terms of dimensional
variables, with initial condition v(0) = v0 and v1(0) = v1

0, the

action of the propagator eδtiLB
[k]

involves the following sequence
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The effects of all other propagators present in Figure 2 are
evaluated exactly as described in the original SIN(R) paper.25

Therefore, for each degree of freedom i
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Note that the effect of eδtiLIsoK is also expressed above in an update
and renormalize form. In the case of the Ornstein−Uhlenbeck
propagator, ξi,j represents a random variable drawn independ-
ently from a standard normal distribution. Note, further, that the
operator actions in eqs 26and 27 are evaluated for a generic time
step δt; however, in applying these relations, one must follow the
scheme in Figure 2 in order to determine the correct step length
to be fed in for δt.
2.3. Solvation Free Energy Calculation. In this work,

relative free energies are computed by independently simulating
a system at several equilibrium states and then collectively
analyzing configurations sampled from all of the simulations. All
simulations are carried out using SIN(R) with constant numbers
of molecules N, volume V, and heat-bath temperature T. To
compute the free energies, we use the multistate Bennett
acceptance ratio (MBAR) estimator,30,31 wherein the reduced
free energy f i = Fi/kT of every state i in a set ofm simulated states
is estimated using the self-consistent solution of m equations
given by31

f
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n e
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Here, nj is the number of uncorrelated configurations sampled in
state j, n =∑j=1

m nj is the size of the pooled sample obtained from
simulating all states, and ui(qk) is the reduced potential, in state i,
of the kth configuration in the pooled sample. This means that
the probability density of configurations in state i is proportional
to e−ui(q). It is worth noting that a unique solution to the system
in eq 28 can only be found if one of the free energies is set to a
constant beforehand. It is common to set f1̂ = 0, meaning that we
are actually estimating relative free energies relative to the first
state. For the configurations to be uncorrelated, the sampling
period in each simulation must be larger than the corresponding
correlation time. Because this property is usually not known
beforehand, in practice, we might need to eliminate chunks of
correlated configurations in a postprocessing stage known as
subsampling. This is done by estimating the correlation time by
means of the autocorrelation function of some appropriate
collective variable.47 Here, in general, we use the reduced
potential, ui(q), at the simulated state as such a variable. The
pooled sample must cover a continuous region in phase space,
meaning that there must be overlaps among the distributions
sampled at the distinct states. Finally, we remark thatMBAR also
includes an estimator for the uncertainties of the computed free
energies.30,31

In the calculation of solvation free energies via alchemical
decoupling of a solute molecule a from its surrounding solvent b,
the reduced potential is

u
U

kT
q

q
( )

( , )
i

ab i
alchem λ

=
(29)

whereUab
alchem(q, λ) is the alchemical potential energy describing

solute−solvent interactions, which are affected by the value of a
coupling parameter λ. This parameter can vary continuously
from 0 to 1 and must be defined so that Uab

alchem(q, 0) = 0 and
Uab

alchem(q, 1) = Uab(q), where Uab is the actual (or chemical, as
opposed to alchemical) solute−solvent potential energy. In
contrast, the solute−solute and solvent−solvent interaction
energies, respectively, Uaa(q) and Ubb(q), are completely
independent of λ. The set of states to be simulated is defined
as a grid ofm values of λi from 0 to 1. The number and locations

of the grid points must be chosen to provide the aforementioned
distribution overlaps. The molar coupling free energy estimated
from these simulations is

F kT f f( )coup 1 0Δ = ̂ − ̂
λ λ= = (30)

In practice, molar solvation free energies are determined from
liquid−gas-phase equilibrium experiments at specified temper-
atures and pressures. At low pressures, they are computed by48

G kT
y P
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a
lsolv ρ

Δ =
(31)

where ya is the solute mole fraction in the gas phase and ρa
l =Na/

V is the solute concentration in the liquid phase, both measured
at equilibrium. Due to this fact, liquid-phase simulations aimed
at determining solvation free energies of model systems are
usually carried out at constant-NPT conditions as opposed to
the constant-NVT conditions simulated here. Through careful
analysis, Shirts et al.49 derived the equation
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where the molar coupling free energy ΔGcoup and the ensemble
averages ⟨·⟩ are all computed from NPT simulations. Therefore,
a comparison of ΔGcoup to an experimentally measured ΔGsolv
requires a volume correction, which is often negligible.
Based on the procedure of Shirts et al.,49 we can justify the use

ofΔFcoup as a direct estimator forΔGsolv. The chemical potential
of the solute species a in the liquid phase is
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(33)

where Q is the canonical partition function, whose dependence
on Nb, V, and T is kept implicit for simplicity, and F = −kT lnQ
is the Helmholtz free energy. While Na is the number of
molecules of the solute species, the vector Nb represents the
numbers of molecules of all species present in the solvent. All of
these quantities refer to the liquid phase. The coupling free
energy computed from the set of NVT simulations is

F kT
Q N
Q N

ln
( , 1)
( , 0)

a

a
coup

λ
λ

Δ = −
=
= (34)

where the partition functions refer to a system in which one of
the solute molecules is distinct from the others due to its
attachment to the coupling parameter. In the case of λ = 1, the
only difference with the partition function of a solution with Na
indistinguishable solute molecules is the fact that it includes a
factor 1/1!(Na − 1)! instead of 1/Na!. In the case of λ = 0, we
actually have two independent systems sharing the same
simulation box: a solution with Na − 1 solute molecules and a
single, isolated solute molecule. Based on these facts, we can
write

F kT
NQ N

Q N T V
ln

( )
( 1) ( )

a a

a a
coup θ

Δ = −
− (35)

where θa(T)V is the ideal gas canonical partition function of a
single solute molecule. Therefore, from eq 33,

F kT
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(36)
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For an ideal gas phase at temperature T and pressure Pgas, the
solute chemical potential is given by49
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kT T
ln

( )a
g a

a

gasμ
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=
(37)

Now, considering phase equilibrium between such a gas and
the liquid with Na solute molecules, it turns out that μa

g = μa
l and

Pgas = ⟨P⟩λ=1. The latter equality stems from the fact that the
average pressure, unlike the free energy, is insensitive to the
mere tagging of a molecule. Therefore, we conclude that
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ρ
Δ =

⟨ ⟩λ=

(38)

which is directly comparable to eq 31 as long as the average
pressure of the NVT simulation with λ = 1 is close to the
experimental value.

3. SIMULATION RESULTS
3.1. Common Simulation Details. In the simulations

carried out here, unless stated otherwise, integration of the
SIN(R) equations of motion is done exactly as described in
Section 2.2. For this purpose, we implemented themethod using
the custom integrator functionality of OpenMM,50 which is a
very efficient MD code, especially when run on graphics
processing units (GPUs). In all runs, the friction coefficient was
set to γ = 0.1 fs−1 and the characteristic time scale chosen for the
thermostats was τ = 10 fs. The inertial parameters of the
thermostats are determined using Q1 = Q2 = kTτ2, as
usual.19,41,42 These are the same parameter values employed in
previous MD studies using the SIN(R) method.25,26 The
temperature was set to 298.15 K in all simulations.
A truncated/smoothed Lennard-Jones potential is used to

model the van der Waals (i.e., repulsion and dispersion)
i n t e r a c t i o n s . T h e s t a n d a r d p o t e n t i a l
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The interactions are evaluated using rc = 12 Å and δr = 1 Å,
along with standard long-range corrections. Every simulation
employed a cubic simulation box with a case-specific edge length
L and subject to periodic boundary conditions. Electrostatic
interactions are computed using the Ewald summation method,
with the same cutoff distance rc as was used for the real-space
part . The Ewald damping parameter was set to

rln(2 ) / cα δ= − , where δ = 5 × 10−4, while the reciprocal-
space part was solved by using the particle mesh Ewald (PME)
method51 with nmesh ≈ (2/3)αLδ−1/5.
To implement multiple time stepping, we split the interaction

forces according to the so-called RESPA2 scheme.52,53 In the
most general case, described as follows, such a splitting is done
based on three time scales. The fastest forces include bonded
interactions, namely, bond stretching, angle bending, and

torsion. A step size of 0.5 fs is used for integration at this fastest
time scale. The middle time scale comprises the short-ranged
components of the Lennard-Jones and Coulomb interactions,
including scaled 1−4 interaction terms, with an internal cutoff
distance rc

in = 8 Å and a smooth decay to zero starting from 5 Å,
yielding a healing length δrin = 3 Å. In this case, a switching factor

( )f r r r
r5

in
c
in

in
δ
δ

+ −
multiplies the forces derived from the Lennard-

Jones and Coulomb potentials, rather than the potentials
themselves. The Coulomb potential included at this level
includes short-range contributions from the full potential
evaluated in real-space according to the so-called RESPA2
formulation.25,52,53 The step size chosen for the middle time
scale is 3 fs, meaning that each step at this scale involves 6
substeps for the fastest forces. The slowest forces comprise the
long-range components of nonbonded interactions, which
include the reciprocal-space part of the electrostatic potential
(with the proper subtraction of 1−2 and 1−3 Ewald exclusions,
as well as short-range contributions already accounted for at the
intermediate scale).52,53 From a computational standpoint,
these are the most expensive force terms. The step size used for
integration in this largest scale is the key parameter to be
evaluated in the forthcoming sections. In specific cases where a
two time scale scheme is employed, only the bonded forces are
split from the nonbonded forces.When a single time step is used,
mostly for benchmarking, no force splitting is employed. These
various splittings were also implemented inOpenMM50 using its
custom nonbonded force functionality. It is worth mentioning
that for the alchemical solute−solvent interactions (see Section
3.3 for details), the same truncation, smoothing, and time scale
splitting as the solute−solute and solvent−solvent interactions.
In our experience, for the aforementioned splitting scheme to

remain stable when very large time steps are employed, it is
essential to apply the internal switching directly to the forces, as
mentioned above. This observation seemingly contradicts an
assertion by Morrone et al.53 that switching on the force or on
the potential leads to similarly smooth trajectories. This, in fact,
remains true at smaller outer time steps (those employed with
the slowest forces), but at the very large time steps employed in
this study, applying the switching on the potential is not as
effective as applying it directly on the forces. For a defined
potential V(r), the force that a particle j exerts on a particle i is

computed by V rF ( )ij ij r

rij

ij
= − ′ , where rij = ri − rj and rij = ∥rij∥.

Applying the internal switching on the forces simply means that

a modified force f V rF ( )ij
r r

r ij r

r

5
ij s ij

ij

in

in
̂ = − ′

δ

−i
k
jjj

y
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zzz will be used instead.

Because this force only appears in intermediate calculations, it is
never actually necessary to evaluate its originating potential.
Nevertheless, our particular implementation required us to feed
such a potential intoOpenMM,50 and the details of its derivation
are given in the Supporting Information.
For every system simulated in the canonical ensemble, the box

volume was determined beforehand by carrying out a constant-
NPT simulation at 298.15 K and 1 atm. For this, we employed a
standard Langevin dynamics integrator50 with Δt = 1 fs and a
Monte Carlo barostat54,55 acting every 20 steps, with the
maximum allowable volume change adjusted to yield an
acceptance rate of roughly 50%. These simulations were carried
out for 4 ns, and the average box volume sampled during the final
half was taken over for the subsequent NVT simulations. In the
case of solvation free energy calculations, this procedure is
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applied only for the state in which the solute molecule is fully
coupled to the solvent, as explained in Section 2.3.
3.2. Velocity Distribution in the Isokinetic Ensemble.

Our first test is a simple determination of the velocity
distributions sampled during an equilibrium SIN(R) simulation
as a function of the number of thermostats attached to each
degree of freedom. Our goal is to confirm the theoretical
predictions in Section 2.1. For this test, we simulated a water
system with density ρ = 0.998 g/cm3, obtained by placing 500
molecules in a cubic box with Lbox = 24. 653 Å. The force field is
the fully flexible SPC-Fw model.56

As we seek only to reproduce the velocity distributions of the
SIN(R) equations of motion with small time-discretization
effects, we do not use RESPA in this particular study. Instead, we
generate single time step trajectories with a time step sizeΔt = 1
fs and a traditional “side” integration scheme,43 which is known
to yield better velocity distributions than the middle scheme
adopted throughout the rest of this paper. The total time of each
trajectory is 5 ns, from which 104 configurations are sampled at
regular intervals during the final 2 ns. This provides us with 1.5×
107 velocity values, thus enabling us to build high-quality

histograms. Reduced velocities v vi
m
kT i

î = are used so that

oxygen and hydrogen atoms can be analyzed together. Four
simulations are carried out at T = 298.15 K, each one with a
different number of thermostats L from 1 to 4. Normalized
histograms constructed by uniformly dividing the interval
[−√L, √L] into 50 bins are shown in Figure 3. Comparison

with Figure 1 shows that the theoretical predictions are
confirmed by the numerical results and, in particular, that the
distribution only starts to approach a Boltzmann distribution for
the larger values of L.
3.3. Hydration Free Energy of a Lennard-Jones

Particle. In this section, we report a study on the hydration
of a very simple solute, which is a single, electrically neutral
Lennard-Jones particle. For the alchemical solute−solvent
interactions, we employed two different strategies for incorpo-
rating the continuous coupling parameter λ such that the full
Lennard-Jones potential is recovered when λ = 1 and no
interaction occurs when λ = 0. The first strategy consists of
scaling the solute−solvent interaction potential by a coupling
function g(λ) that increases monotonically from g(0) = 0 to g(1)
= 1. In this case, for pairs of solute and solvent atoms, we have
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where g(λ) = λ4 (5 − 4λ). The second coupling strategy
employed here is the well-known softcore potential of Beutler et
al.57 given by
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Both the scaled and softcore potentials are widely used
alchemical pathways.1−12 Other approaches also exist that aim
to combine features of both.58−63 We provide a few additional
arguments on this subject in the Supporting Information,
specifically regarding the use ofVscaling with different forms of the
coupling function g(λ).
To model the solute molecule, we use the parameters for

methane taken from the TraPPE united-atom force field,64 σ =
3.73 Å and ϵ = 1.2305 kJ/mol. This model has been shown to
reproduce experimentally determined properties of pure
methane in a wide range of thermodynamic conditions.65 For
the solvent, we adopt the fully flexible SPC-Fw water model.56

The experimental hydration free energy of methane is about 2.0
± 0.2 kcal/mol.1,48,66 The system contains 1 methane and 499
water molecules in a cubic box with edge length Lbox = 24.470 Å,
thus resulting in a density ρ = 1.0206 g/cm3. These values were
determined according to the procedure described in Section 3.1.
Within each of the two coupling strategies, simulations were
carried out independently at 21 regularly spaced values of λ
between 0 and 1. Each simulation consists of 4.5 ns of total
simulation time, with the final 3.6 ns used for sampling
configurations every 900 fs. For each coupling strategy, we
repeat the procedure several times, each with a different size for
the external time step of the SIN(R) simulation method. The
outer time step (Δt) values are 1 fs, 3 fs, 6 fs, 9 fs, 15 fs, 30 fs, 45
fs, and 90 fs. A force splitting with only two time scales (M = 2) is
considered for the two first cases. In all other cases, the three-
scale splitting described in Section 3.1 is applied. The number of
Nose−́Hoover thermostats per degree of freedom in the SIN(R)
method is L = 1.
Statistical inefficiency is usually very high when considering a

single solute molecule in a surrounding solvent. Using an
integrated autocorrelation function approach,47 we estimate the
correlation time in the simulation at each state i based on the
corresponding alchemical component of the potential energy,
Uab

alchem(q, λi). An exception is made for the first state, with λ1 = 0,
whose alchemical component is null by definition. In this case,
we use Uab

alchem(q, λ2) instead. For each coupling strategy and
each state i, the results obtained from simulations with different
sizes of the outer time step were averaged and plotted against λ
in Figure 4. It is interesting to observe the distinct behavior of
the scaling and softcore approaches at mid-range values of λ,
where the use of a softcore potential seems to make the
alchemical energy more difficult to decorrelate.59

When performing subsampling prior to MBAR calculations,
we adopt, regardless of the employed Δt, the mean correlation
times of Figure 4. By doing this instead of using the individual
estimate for every simulation, comparable free energy values are
obtained from equally sized samples. After subsampling, we end
up with 27 998 configurations in the pooled sample obtained
using scaling as the coupling strategy. This number is small

Figure 3. Reduced velocity histograms obtained for all atoms in a set of
four SIN(R) simulations of SPC-Fw water56 using different numbers L
of thermostats attached to each degree of freedom. The circles
represent theoretical predictions from eq 12. The equations of motion
were solved using a single time scale and the standard side integration
scheme.43
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considering that the total production time for the combined set
of simulations is 0.756 μs. The corresponding number of
configurations using the softcore potential is 25 963.
The free energy profiles and the final solvation free energies of

methane in water obtained via MBAR are shown in Figure 5.

The symbols in each curve of Figure 5a correspond to the
relative free energies computed for the 21 simulated states. The
solid lines were obtained through reweighting while the dashed
lines are simple linear interpolations. The distinction between
the scaling and softcore profiles is clear. For scaling, a sharp
increase in the profile occurs when λ departs from 0, and a
relatively high peak of about 4.2 kcal/mol must be overcome
before the fully coupled state is reached, whose free energy is
approximately 2.2 kcal/mol above that of the uncoupled state.
Both the scaling and softcore approaches result in profiles that

converge, within statistical sampling error, to the same final free
energy. Due to time step discretization effects and the use of
different outer time steps, a systematic component is expected to
exist in these deviations.67,68 It is important to determine
whether such a component can be overlooked in practice

(especially in the case of more complex molecules, as will be
discussed in Section 2.2). For this, we can analyze the computed
solvation free energy as a function of the time step size. The
results are given in Figure 5b. For better visualization, a
logarithmic scale is used to represent the outer time step sizes.
Each error bar corresponds to a 95% confidence interval (1.96
times the mean standard error) obtained from the MBAR
analysis. As is clear from the figure, both coupling schemes yield
standard errors of similar magnitudes. Perceivable changes in
free energy occur when Δt changes from 1 to 3 fs and when it
changes from 45 to 90 fs.We conjecture that these are systematic
deviations due, in the first case, to an increase in the time gap
between nonbonded force updates and, in the second, to the
large increase in the value of Δt. From a practical standpoint,
however, the variations in free energy over all time steps
employed are within typical experimental uncertainties. For
instance, an uncertainly of 0.6 kcal/mol is the default value in the
FreeSolv database,1 and the particular value for methane is 0.2
kcal/mol. The maximum error in Figure 5b is well within this
value. Therefore, the SIN(R) method is adequate for computing
hydration free energies of single Lennard-Jones particles using
outer time steps up to 45 fs or even 90 fs.

3.4. Hydration Free Energy of Polar Solutes. In this
section, we evaluate the performance of the SIN(R) method
with large time steps in the calculation of hydration free energies
of polyatomic molecules. Four polar molecules of distinct sizes,
shapes, and charge distributions are considered, namely,
methanol, phenol, 1,4-dioxane, and dibenzo-1,4-dioxin, whose
structures are shown in Figure 6. With respect to their bonded

and van der Waals interactions, the solute molecules are
modeled according to the general AMBER force field (GAFF).69

As is usual for this model, the partial atomic charges are
computed by using the semi-empirical AM1-BCC method,70

which is implemented in the Antechamber code.71,72 Once
again, the fully flexible SPC-Fw water model56 is used for the
solvent. All other simulation details are exactly as described in
Sections 3.1 and 3.3, including the numbers of molecules of each
type and the procedures used to determine the box volume. The
edge lengths that resulted from this procedure are 24.464 Å for
methanol, 24.512 Å for phenol, 24.510 Å for 1,4-dioxane, and
24.560 Å for dibenzo-1,4-dioxin. Although such small boxes
might appear susceptible to finite-size effects, this is not a
particularly important issue as far as solvation free energies are
concerned.73

As usual, when electrostatic interactions play a role, we split
the solvation free energy into two stages. First, the solute

Figure 4.Mean correlation times estimated by means of the integrated
autocorrelation function method47 from the solute−solvent alchemical
potential energy in methane−water simulations. Each error bar extends
up and down to one standard deviation, determined from SIN(R)
simulations executed with eight different outer time step sizes.

Figure 5. Solvation free energies computed for TraPPE-UA methane64

in SPC-Fw water56 using the middle-scheme SIN(R) method with one
thermostat per degree of freedom. (a) Coupling free energy profiles
computed via MBAR.30,31 (b) Estimated solvation free energy as a
function of the outer time step size (log scale). The error bars and
shaded areas denote a 95% confidence interval according to the MBAR
uncertainty estimator. Empty symbols discriminate double from triple
time scale RESPA integration. The inner time step size is always equal
to 0.5 fs and the middle time step, when used, is always equal to 3 fs.

Figure 6. Structures of the polar molecules whose hydration free
energies are computed in this work. Top-left, methanol; top-right,
phenol; bottom-left, 1,4-dioxane; bottom-right, dibenzo-1,4-dioxin.
The three-dimensional visualization was prepared using VMD74 and
Tachyon ray tracing.75
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coupling is carried out by completely disregarding the
electrostatic interaction with the solvent. Only the Lennard-
Jones contribution is considered, with its intensity modulated by
a coupling parameter λvdW. We remark that the intramolecular
interactions are always present, including the electrostatic
components. Both the scaling and the softcore potential
approaches are employed, as was done for the single particle
in Section 3.3, and the calculation of ΔFvdW is also done exactly
as described in that section. In the second stage, with the
Lennard-Jones interaction in its fully coupled state (λvdW = 1),
we proceed with the coupling of the electrostatic contribution.
This is done by a linear scaling such as

V r
q q

r
( , )

4ij
i j

ij
coulomb coul

coul

0
λ

λ
π

=
ϵ (42)

where rij is the distance between a solute atom i and a solvent
atom j with electric charges qi and qj, respectively. As already
noted, the actual electrostatic calculation is performed via the
PME algorithm.51 By simulating independent states with
different values of λcoul ∈ [0, 1], we can finally apply MBAR to
compute the total free energy difference ΔFcoul. Finally, the
coupling free energy of a solute molecule is calculated as

F F Fcoup vdW coulΔ = Δ + Δ (43)

To compute the van der Waals contribution to the solvation
free energy, we employ the same sets of states as in Section 3.3.
Once again, the total simulated time of each run is 4.5 ns, and the
production time is 3.6 ns. All results in this section are obtained
by using SIN(R) with a single thermostat per degree of freedom,
that is, L = 1. We obtained free energy profiles via MBAR after
carrying out, for every distinct size of the outer time step, 21
simulations using Vscaling and 21 simulations using Vsoftcore. The
Supporting Information contains an analysis of these profiles,
while here we focus on the total free energy difference computed
in each case. Figure 7 depicts the van der Waals components of
the coupling free energies obtained from the softcore potential
simulations. Once again, increasing the outer step size causes
small variations in the free energies obtained. The curves suggest
systematic deviations, as expected due to the existence of
discretization effects,67,68 but the magnitude of the uncertainties

and the presence of some possible outliers make it difficult to
draw an unequivocal conclusion.
Clearly, the systems considered in Figure 7 are more

challenging than that treated in Section 3.3 and would thus
require longer production times to yield results with a similar
degree of precision. Nevertheless, comparing uncertainties
obtained for different systems after spending virtually the
same amount of computational effort is a reasonable way of
evaluating performance. In Figure 7, the magnitudes of the
deviations and of the corresponding uncertainties are mutually
consistent. In this sense, for estimating the van der Waals
component of a coupling free energy, we argue that it is safe to
employ outer time steps of tens of femtoseconds in the SIN(R)
method without causing significant systematic deviations.
It is worth noting that if the force components assigned to the

outer time scale had a negligible contribution to the free energy,
then the SIN(R) method would play no role in keeping ΔFvdW
nearly independent of Δt. However, we can demonstrate that
such force components are indispensable by switching them off
completely and then analyzing the resulting free energies. This is
shown in the narrow box on the right-hand side of Figure 7.
These results were obtained by simply skipping the outermost
operators of the RESPA integrator in eq 17. As one can see, they
differ considerably from the free energies obtained when all
interactions are included, thus confirming that the near
constancy of ΔFvdW is an actual achievement of the SIN(R)
method.
As an additional test for the validity of the sampling

algorithm,49,76 we compared the potential energy distributions
obtained for dibenzo-1,4-dioxin in water at 298.15 and 306.15 K

and checked how well the relation e
U
U

U( )

( )
( )2

1

2 1∝ρ β
ρ β

β β|
|

− − , where

i kT
1

i
β = , is satisfied for different combinations of Δt and λ.

Details are given in the Supporting Information. As expected, the
sampling quality diminishes somewhat as Δt approaches large
values but is, nevertheless, satisfactory even for Δt = 90 fs.
Finally, we comment on the electrostatic component of the

coupling free energy. Electrostatics are usually responsible for a
significant shift in the total free energy value due to a decrease in
the overall interaction potential between solute and solvent.
However, as no cavity opening or major molecular rearrange-
ments are necessary, it is relatively easy to switch the Coulomb
interactions on and off once the van der Waals term is already
switched on. Results that support this well-known aspect of
computing solvation free energy are shown in the Supporting
Information. Therefore, as the primary difficulty lies in the van
der Waals contribution, our earlier conclusions regarding that
part remain unchanged after the inclusion of the electrostatic
contribution.
Before concluding this section, we comment briefly on gains

in computational efficiency when such large time steps are used.
In particular, the gains that can be achieved depend sensitively
on the force decomposition employed, e.g., RESPA1 versus
RESPA2,25,52,53 and general implementation details. In refs
25−27, we showed that factors of 10−20 could be gained in
codes such as TINKER28,77 and PINY_MD78 when large outer
time steps are employed by ensuring that the short-range forces
could be evaluated with an optimal speed relative to the long-
range forces. As our purpose in this paper is to show that
solvation free energy calculations could be performed accurately
with large time steps, we have not focused on optimizing our
OpenMM50 implementation. In simulations of 512 flexible

Figure 7. Estimated van der Waals contributions to the solvation free
energies of different GAFF69 solutes in SPC-Fwwater.56 The results are
obtained via MBAR30,31 from independent simulations using the
middle-scheme SIN(R) method with one thermostat per degree of
freedom. The error bars and shaded areas denote 95% confidence
intervals according to theMBAR uncertainty estimator. Empty symbols
discriminate double from triple time scale RESPA integration. The
inner time step size is always equal to 0.5 fs and the middle time step,
when used, is always equal to 3 fs. Results shown in the narrow box on
the right-hand side were obtained by switching off the long-range
contribution of the nonbonded interactions.
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water molecules carried out in a single GPU (model Nvidia
Tesla V100-SXM2), we achieved a speed of 179 ns/day in a
single time scale run with Δt = 0.5 fs, while the speed attained
using 0.5/3/15 fs as the inner/middle/outer time steps was 645
ns/day. This corresponds to a 3.6 speed-up factor over an
already impressively efficient simulation. On the other hand,
increasing the outer step size up to 90 fs in the present OpenMM
implementation resulted in a marginal gain, with a speed of 663
ns/day. Adding a solute molecule and its partially coupled
interactions with the water does not change these numbers
substantially. This illustrates the importance of optimizing the
evaluation of bonded and short-range nonbonded forces when
such large outer time steps are employed. Optimizing this part of
the force evaluation in OpenMM will be the subject of future
work.
3.5. Multiple Thermostats per Degree of Freedom.

Considering that the number L of thermostats per degree of
freedom has a direct impact on the system evolution, the
question naturally arises as to how beneficial it is to employ L > 1
in SIN(R) simulations. Some benefit is expected since eqs 13
and 14 show that, for a given temperature, larger values of L
would impart higher speeds, on average, to the atoms with
corresponding improvements in mixing and decorrelation.
Clearly, increasing L to very large values increases the
computational overhead with no clear gain in performance.
Nevertheless, the effect of using large values of L is an interesting
one from a numerical perspective and will be the subject of a
future study.
To address the question of optimal choices of L, we repeated

the simulations of Section 3.4 with four thermostats per degree
of freedom (L = 4) instead of one. This number has been applied
successfully in previous studies.25−27,29 In Figure 8, we show the

size of the pooled sample obtained in every case after
decorrelation is performed. We start by noting that, as
anticipated in Section 3.4 for L = 1, the softcore-based
calculations result in longer correlation times and, consequently,
smaller sample sizes than their scaling-based counterparts.
Despite this, the former calculations are able to produce results
with smaller uncertainties due to their more effective exploration
of the continuous phase-space regions that connect the
uncoupled and fully coupled states. Another observation is
that the solutes simulated possess similar degrees of difficulty in
all types of calculations. Interestingly, we observe, in Figure 8,
that using L = 4 always leads to better sampling than using L = 1,
as expected. Average improvements of 46.8 and 30.9% in the
numbers of uncorrelated configurations are achieved in the
calculations of the van derWaals and electrostatic contributions,
respectively.

Figure 9 shows the final solvation free energies obtained using
MBAR on the combined samples. The fluctuations observed in

the computed values are reasonable, particularly for the smallest
solutes and for time step sizes up to 45 fs. In units of kcal/mol,
the difference between the maximum and the minimum free
energy estimates obtained with all Δt values up to 90 fs is 0.11
for methanol, 0.31 for phenol, 0.30 for 1,4-dioxane, and 0.57 for
dibenzo-1,4-dioxin. If we consider Δt ≤ 45 fs only, these
numbers are 0.11, 0.23, 0.19, and 0.26, respectively. In both
cases, these are within the standard 1 kcal/mol for chemical
accuracy.

4. CONCLUSIONS
In this paper, we have tested a protocol for the computation of
hydration free energies via multiple time scale molecular
dynamics (MTS-MD) in which very large time steps can be
used without resonance artifacts. Our results for organic solutes
with various molecular sizes and charge distributions exhibit an
acceptable variability when simulations with different parame-
ters were applied to the same system condition. The innermost
time step size is 0.5 fs in all cases. If bonded and nonbonded
forces are split into two distinct time scales, perceivable but small
shifts occur when the outer time step increases from 1 to 3 fs. By
further splitting the nonbonded forces into short- and long-
range contributions, thus adding one more time scale, and using
3 fs as the size of intermediate steps, we were able to employ
outer steps ranging from 6 to 90 fs without observing substantial
deviations in the computed free energies. The largest observed
variations remained below 0.3 kcal/mol with time steps
increasing up to 45 fs and below 0.6 kcal/mol if they were
extended up to 90 fs. The free energies were also only marginally
sensitive to the type of alchemical transformation applied for the
van der Waals interactions; however, using a softcore potential
proved to be generally better in terms of the resulting
uncertainties than doing a simple scaling of the Lennard-Jones
potential.
In addition to the solvation free energy calculations, we

carried out a theoretical analysis of the isokinetic ensemble
distribution of atomic velocities and its dependence on the
number L of thermostats attached to each degree of freedom.
This analysis allowed us to anticipate that having L > 1 is
beneficial for the decorrelation of configurations sampled along
a simulation, which we subsequently confirmed through
statistical analysis.
After proving the principle that solvation free energies can be

accurately computed viaMTS-MDwith very large time steps, an
interesting follow-up study would be a performance comparison

Figure 8. Sample sizes after subsampling are carried out by an
integrated autocorrelation function method.47 The original sizes are
84 000 for each Scaling and Softcore calculation and 44 000 for each
Coulomb calculation.

Figure 9. Final hydration free energy results. For each solute and outer
time step size, MBAR analysis was carried out using the decorrelated
samples obtained from SIN(R) simulations with both L = 1 and 4,
combined. Error bars were determined by applying uncertainty
propagation to eq 43.
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between static λ protocols, such as the one employed here, and
λ-dynamics approaches such as the adiabatic free energy
dynamics (AFED) method. In addition, optimization of the
calculation of bonded and short-range nonbonded forces in our
implementation will be an important next step now that the
proof of concept has been established.
One final comment on the incorporation of MTS into the

framework of emerging machine learning (ML) potential
models such as Gaussian process regression79 and neural
network80,81 potentials is in order. The promise of these
methods is that when they are trained on high-quality ab initio
data, they can then be used in lieu of these methods while
retaining the accuracy but at a small fraction of the computa-
tional cost. However, these methods can still involve a high
computational overhead compared to typical empirical force
fields, and as a result, MTS methods have the ability to impact
the use of these emerging models as well. For example, if a force
field of reasonable quality exists for a system, then the training of
theMLmodel could be focused on the difference between the ab
initio and force field energies and forces, an approach known as
Δ-learning. Not only would this require smaller training sets but
also, after training, the force field could be used as the reference
system in an MTS calculation with the ML model used as a
correction applied with a large outer time step. In such a scheme,
a long-range correction, either separately parameterized or
extracted from the force field, could be applied along with the
ML model or possibly using yet a third, larger step. These are
questions that will also be explored in future work.
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(79) Bartoḱ, A. P.; Payne, M. C.; Kondor, R.; Csańyi, G. Gaussian
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