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ABSTRACT in particular on how to define fairness for problems in supervised

What does it mean for a clustering to be fair? One popular approach
seeks to ensure that each cluster contains groups in (roughly) the
same proportion in which they exist in the population. The norma-
tive principle at play is balance: any cluster might act as a repre-
sentative of the data, and thus should reflect its diversity.

But clustering also captures a different form of representative-
ness. A core principle in most clustering problems is that a cluster
center should be representative of the cluster it represents, by be-
ing “close” to the points associated with it. This is so that we can
effectively replace the points by their cluster centers without sig-
nificant loss in fidelity, and indeed is a common “use case” for
clustering. For such a clustering to be fair, the centers should “rep-
resent” different groups equally well. We call such a clustering a
group-representative clustering.

In this paper, we study the structure and computation of group-
representative clusterings. We show that this notion naturally paral-
lels the development of fairness notions in classification, with direct
analogs of ideas like demographic parity and equal opportunity.
We demonstrate how these notions are distinct from and cannot be
captured by balance-based notions of fairness. We present approx-
imation algorithms for group representative k-median clustering
and couple this with an empirical evaluation on various real-world
data sets. We also extend this idea to facility location, motivated by
the current problem of assigning polling locations for voting.

KEYWORDS

algorithmic fairness, clustering, representation

ACM Reference Format:

Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. 2021.
Fair Clustering via Equitable Group Representations. In Conference on Fair-
ness, Accountability, and Transparency (FAccT "21), March 3-10, 2021, Virtual
Event, Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3442188.3445913

1 INTRODUCTION

Growing use of automated decision making has sparked a debate
concerning bias, and what it means to be fair in this setting. As a
result, an extensive literature exists on algorithmic fairness, and
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learning [18, 19, 22, 34-36]. However, these notions are not readily
applicable to unsupervised learning problems such as clustering.
One reason is that unlike in the supervised setting, a well-defined
notion of ground truth does not exist in such problems. In 2017,
[15] proposed the idea of balance as a notion of fairness in cluster-
ing. Given a set of data points with a type assigned to each one,
balance asks for a clustering where each cluster has roughly the
same proportion of types as the overall population. This definition
spawned a flurry of research on efficient algorithms for fair clus-
tering [3, 14, 15, 27, 28, 37, 39]. Further work by other researchers
has extended this definition, but with the same basic principle of
proportionality [2, 6, 7, 9, 23, 24, 42].

Balance draws its meaning from the perspective of clustering as
a generalization of classification from two to many categories. If
we select individuals into multiple categories where each category
has some associated benefits (or harms), balance asks that differ-
ent groups receive these benefits or harms in similar proportions.
For example, a tool that assigns individuals to different categories
based on the loan packages being offered might attempt to ensure
demographic balance across all categories.

But an important purpose of clustering is to find representatives
for points by grouping them and choosing a representative (like a
cluster center). Consider for example the problem of redistricting
— where the goal is to partition a region into districts, each served
by one representative who can speak to the concern of the district.
The criterion of balance, applied (say) to partisan affiliation, will
result in districts that have a proportional number of residents
associated with each party. This is unfortunately the worst kind of
redistricting! It is a form of gerrymandering known as cracking, and
results in the majority party being able to control representation in
all the districts.

In fact the vast majority of clustering formulations focus on the
problem of quality representation. And the quality of representa-
tion is usually measured by some form of distance to the chosen
representative — the greater the distance, the poorer the represen-
tation. There are serious implications for fairness as measured in
terms of "access", and we illustrate this with an example of current
concern.

Consider the placement of polling locations. A study showed
that in the 2016 US presidential election, voters in predominantly
black neighborhoods waited 29 percent longer at polling locations,
than those in white neighborhoods [13], and in 2020 we are cur-
rently seeing polling locations removed or merged because of the
pandemic. The clustering here is the induced clustering where each
resident is associated with a specific polling location (the repre-
sentative) and the quality of representation can be measured as a
function both of the distance to the polling location and the waiting
time at the location itself.
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Figure 1: Balance is preserved in the left hand figure but the
centers are much more representative of the red points. In
contrast the clustering on the right represents both groups
comparably

It is easy to see that balance criteria cannot accurately capture
the goal of representation equity. To illustrate why, see the example
presented in Figure 1, which shows a balance-preserving k-means
clustering on the left for two groups denoted by the colors red
and blue, and regular k-means clustering on the right. Here, the
number of red points is larger than the other group. Therefore, each
cluster center is chosen close to its respective red group’s centroid.
As a result, red points are better represented by chosen centers
compared to blue points.

1.1 Our contributions

In this paper we introduce a new way to think about fairness in
clustering based on the idea of equity in representation for groups.
We present a number of different ways of measuring representative-
ness and interestingly, show that they a) naturally parallel standard
notions of fairness in the supervised learning literature and b) are
incompatible in the same way that different notions of fairness
in supervised learning are. We present algorithms for computing
fair clusterings under these notions of fairness. These algorithms
come with formal approximation guarantees — we also present an
empirical study of their behavior in the context of the problem of
polling location placement.

A second key contribution of this work takes advantage of the
relation between clustering and the associated problem of facility
location. In most clustering problems, the number of clusters that
the algorithm must produce is fixed in advance. In the context
of polling, this is equivalent to specifying the number of polling
locations to be established ahead of time. But we can associate
a cost with opening a new facility (or cluster center), giving us
a choice of either assigning a point to a center that might be far
away or opening a new center that might be closer. This is the
well known problem of facility location[40] - it is closely related to
clustering!. Again returning to the context of polling, the framing
in terms of facility location allows for the possibility of creating
new polling locations if the cost of opening can be “paid for” in
terms of improved access. We define what representation equity
means in the context of facility location and present algorithms
(and experimental support) as well. Our algorithms also allow us
to incorporate load balancing between different facilities. In the
context of polling, we can ensure that no more than U voters are
assinged to a polling location, for a user-specified threshold U.

!We can think of facility location as the Lagrangian relaxation of clustering where the
hard constraint on the number of clusters is replaced by a term in objective function.
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1.2 Related Work

Chierichetti et al. [15] introduced balance as a fairness constraint
in clustering for two groups. Considering the same setting with
binary attribute for groups, Backurs et al. improved the running
time of their algorithm for fair k-median [6]. Résner and Schmidt
[37] proposed a constant-factor approximation algorithm for fair
k-center problem with multiple protected classes. Bercea et al. [9]
proposed bicriteria constant-factor approximations for several clas-
sical clustering objectives and improved the results of Rosner and
Schmidt. Bera et al. [8] generalized previous works by allowing
maximum over- and minimum under-representation of groups in
clusters, and multiple, non-disjoint sensitive types in their frame-
work. Other works have studied multiple types setting [42], mul-
tiple, non-disjoint types [23] and cluster dependent proportions
[24].

In a different line of work, Ahmadian et al. [3] studied fair k-
center problem where there is an upper bound on maximum fraction
of a single type within each cluster. Chen et al. [14] studied a variant
of fair clustering problem where any large enough group of points
with respect to the number of clusters are entitled to their own
cluster center, if it is closer in distance to all of them.

A large body of works in the area of algorithmic fairness have
focused on ensuring fair representation of all social groups in the
machine learning pipeline [1, 10, 38]. Recent work by Mahabadi et
al. [33], studies the problem of individually fair clustering, under the
fairness constraint proposed by Jung et al. [25]. In their framework,
if 7(x) denotes the minimum radius such that the ball of radius r(x)
centered at x has at least n/k points, then at least one center should
be opened within r(x) distance from x. In recent independent work,
Ghadiri et al. [20] propose a fair k-means objective similar to one
of our objectives, and study a variant of Lloyd’s algorithm for
determining cluster centers.

2 FAIR CLUSTERING

In this section we introduce notions of fair clustering that are rooted
in the idea of equitable representation. To that end, we introduce
different ways to measure the cost of group representation. We can
then define a fair clustering.

We start with some basic definitions. Given a set of points X, a
clustering is a partitioning2 of X into clusters C1,Ca, ..., Cy. For
most of the paper we will consider clustering objectives that sat-
isfy the Voronoi property: the optimal assignment for a point is
the cluster center nearest to it. This includes the usual cluster-
ing formulations like k-center, k-means and k-median. For such
clusterings, the cluster center defines the cluster and thus we can
represent a clustering more compactly as the set of cluster centers
C ={c1,c2,...,cx}. The cost of a clustering C of a set of points P
is given by the function costc(P). For any subset of points S, we
denote the cost of assigning S to cluster centers in a given clustering
C as costc(S). Finally, given a cost function cost and a set of points
X we denote the set of centers in an optimal clustering of X by
OPTcost (X). When the context is clear, we will drop the subscript
and merely write this as OpT(X). As usual, an a-approximation

21t is possible to define so-called soft clusterings in which a point might be assigned
fractionally to multiple clusters. We do not consider such clusterings in this paper.
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algorithm is that one that returns a solution that is within an a-
multiplicative factor of OpT(X).

Each point in X is associated with one of m groups (e.g., demo-
graphic) that we wish to ensure fairness with respect to. We define
the subset of points in group i as Xj.

Definition 1. (Fair Clustering). Given m groups X1, Xa, ..., Xm,
fair clustering minimizes the maximum average (representation)
cost across all groups:

i L coste(Xp). .., ——coste(Xm)
arg min max | ——COS C 1),..., =5 COS C
CecC 1X1] [Xoml "

where C is the set of all possible choices of cluster centers.

Note that we are not trying to force all groups to have the same
representation cost; that constraint can be trivially satisfied by
ensuring all groups have a large cost (i.e via a poor representation).
Rather, we want to ensure all groups have good representation
while still ensuring that the gap between groups (measured by the
group with the maximum cost) is small. This also distinguishes our
definition from proposals for clustering cost that try to minimize
the maximum cost across clusters [41] instead of across groups.

2.1 Quality of group representation

We now introduce different ways to measure the group representa-
tion cost costc (Xj).

Absolute Representation Error. In supervised learning, statistical
parity captures the idea that groups should have similar outcomes.
Rephrasing, it says that groups should be represented equally well
in the output. In the case of binary classification, statistical parity
requires

Pr(h(x) = 1|S = a) = Pr(h(x) = 1|S = b)

for two groups a and b, where S denotes the sensitive attribute.
When clustering, the equivalent notion of statistical parity asks
that cluster centers represent all groups equally well, regardless
of their potentially different distributions. More specifically, the
average distance between members of a group and their respective
cluster centers should look the same across groups. Motivated by
this, we introduce the following definition of representation cost.

Definition 2 (AbsError). The absolute (representation) error of a
clustering is defined as

AbsErrorc(X) = Z d(x,C),
xeX
where X is a set of points, C is a set of centers and d(x, C) is a an
arbitrary distance function between x and nearest center to it in C.

An AbsError-fair clustering is a fair clustering that uses AbsError
to measure group representation cost in Definition 1.

Relative representation error. AbsError does not take underlying
distributions of demographic groups into account. However, in
cases where different groups have drastically different underlying
distributions, it may be necessary to acknowledge such a difference.
Consider the example provided in Figure 2, where one demographic
group (orange) has a much smaller variance compared to the other
(blue). Assume that the within-group distances for the orange group
can be ignored compared to distance d. An AbsError-fair clustering
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Figure 2: For groups with different underlying distributions,
AbsError and RelError lead to different locations for the cen-
ter.

picks CapsErrorFair s the center which minimizes the maximum
average AbsError. However, such a clustering may seem unfair, as
itinduces a large cost on the orange group compared to its “optimal”
representation cost, which is close to zero if the orange group’s
center is picked.

The issue of differences in base distributions motivates fairness
measures like equality of opportunity based on balancing error rates
rather than outcomes [22]. As with statistical parity, we can define
a natural analog in the context of representation. Rather than look
at the error in representation in absolute terms, we compare the
average distance between members of a group and their respective
cluster centers, to the corresponding “optimal” value for that group
(if we only clustered the members of that group).

This relative measure of representation error yields the following
definition.

Definition 3 (RelError). The relative (representation) error of a
clustering is given by

2xex d(x,C)
Yxex d(x, OpT(X))
where X is a set of points, C is a set of centers and d(x, C) is a an
arbitrary distance function between x and nearest center to it in C.

RelErrore(X) =

One can also try to capture the relative error via a difference
instead of a division.

RelErrorDiffc (X) = % Z d(x,C) — Z d(x,OrT(X))
xeX xeX
This is similar to the formulation used by [38] in their work on fair
PCA. However, in the case of clustering, this quantity can be NP-
hard to compute even for a given set of centers C. This is because
2x d(x, OPT(X)) cannot be computed exactly. For this reason, we
will not discuss this formulation further.

2.2 How the different measures of fairness
compare

We have drawn on an analogy to fairness in supervised learning
to formulate two measures of group representation fairness. We
now make the informal case that the analogy also carries over to
the incompatibility between the two notions, similar to the well-
known result in the supervised learning setting [16, 26]. To see this,
consider a point set X with two defined groups A and B. Without
loss of generality, assume that B can be clustered better than A
i.e that costops, (A) > costopry (B). Now consider Figure 3 where
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Figure 3: Unless the two groups have the same base rates,
we cannot achieve fairness with respect to AbsError and
RelError.

any clustering of X is represented as a point whose x-coordinate
is the cost costc(A) and whose y-coordinate is the cost costc(B).
The AbsError fair line represents all clusterings where the two
groups have equal AbsError costs and the RelError fair line (which
passes through the point (costopt, (A), costops; (B))) represents all
clusterings where the two groups have equal RelError costs.

Consider an optimal unconstrained clustering represented by
point c. Consider the position of a fair clustering under either of
the above two measures relative to c. Clearly such a clustering
would not be in either of the areas marked in red dots (because
either the costs for both groups increase, making it inferior to c
or both costs decrease, contradicting the optimality of ¢). Further
note that a clustering that is better with respect to AbsError must
be closer to AbsError fair line compared to c, and one that is better
with respect to RelError must be closer to RelError line compared
to c. The only way in which these two notions can coincide in a
single clustering is if either both groups have the same optimal cost
(costopr, (A) = costopry (B)) in which case the two lines coincide
(analogous to the two groups having the same base distribution),
or if the optimal clustering happens to achieve zero cost for both
groups (analogous to the point set admitting perfect clustering).
This (informal) reasoning hints at a more general incompatibility
theorem (for > 2 clusters) analogous to the works of [16, 26], which
we leave as an open direction.

2.3 Fairness using standard clustering methods

Sections 3 and 4 will present algorithms for fair clustering under
the measures of fairness introduced above. Before that, we make a
simple observation about approximation guarantees we can achieve
by using standard clustering algorithms with minor modification.

If our data X is composed of groups X1, X2, ..., X, as we dis-
cussed, then optimizing the cost function on X would correspond
to the minimization problem:

min Z coste(Xj).
C
ieX;
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For most known cost functions and algorithms, it turns out that
adding a weight for each point still allows for efficient algorithms.
Let us consider assigning a weight of 1/|Xj| to all the points in Xj.
Then the weighted minimization problem is

1
min ——coste(Xj). (1)
¢ i;Xi IXil l

The observation is now the following.

Observation 4. Let C be a clustering produced by an a-approximation

algorithm for the problem (1). Then C achieves an am approxima-
tion to the fair clustering problem (definition 1) with the same cost
function.

PRrOOF. Let © be the objective value for the fair clustering prob-
lem, and let C* be the corresponding clustering. Then by definition,
we have

1 1

max —coste+ (X;) =0 = ——coste+ (Xj) < m@.
i |Xl l Zl: |Xil l

Because the solution found by the algorithm (C) is an & approxima-

tion, we have that

1 1
——coste(Xj) < a- ——costes (Xj) < mO.
Z Xl ' Z Xl '

This implies that each term is < m®, implying the desired approxi-
mation bound. O

This observation implies, for example, that for the fair versions of
k-means and k-median, we can use known constant factor approx-
imation algorithms to get O(m) factor approximation algorithms
directly.

3 APPROXIMATION ALGORITHMS FOR FAIR
k-CLUSTERING

For the fair k-median and k-means problem, we now develop ap-
proximation algorithms by writing down a linear programming
relaxation and developing a rounding algorithm.

3.1 Relaxation for AbsError-Fair clustering

We start by considering the AbsError objective for fair clustering
(definitions 1 and 2). To recap, we have a set of points X that is
composed of m (disjoint) groups, X1, X, ..., Xp,. We first describe
the algorithm for k-median, and then discuss how to adapt it to the
k-means objective (see Remark 8).

At a high level, the algorithm aims to “open” a subset of the X as
centers, and assign the rest of the points to the closest open point.
The choice of the points as well as the assignment is done by using a
linear programming (LP) relaxation for the problem, and rounding
the obtained solution. The variables of the LP are as follows: for
u,v € X, zyp is intended to denote if point u is assigned to center v.
These are called assignment variables. We also have variables y,
that are intended to denote if v is chosen as one of the centers (or
medians). The LP (called FAIRLP-ABSERROR) is now the following:
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min A  subject to

Zzuuzl for all u, Zyu <k,

v veX
Zup < Yo forall u,o, 0<zyp yp <1 foralluy,o.

1
m . Z Z d(u,v)zyy < A for all groups i, (2)
ueX; veX

The only new constraint compared to the standard LP formu-
lation for k-median (e.g., [11]) is the constraint for all groups i,
Eq. (2). This is to ensure that we minimize the maximum k-median
objective over the groups.

THEOREM 5. The integrality gap of FAIRLP-ABSERROR is > m.

Proor. Consider an instance in which we have m groups, each
consisting of a single point. Formally, let X; = {x;} for all i € [m].
Suppose that d(x;,xj) = D forall i # j,and let k = m — 1.

Now, consider the fractional solution in which y; =1 - % for
all i. Also, let z;; = 1 — %, and let z;; = 1/m for some j # i (it does
not matter which one). It is easy to see that this solution satisfies
all the constraints. Moreover, the LP objective value is A = D/m.

However, in any integral solution, one of the points is not chosen
as a center, and thus the objective value is at least D. Thus the
integrality gap is > m. O

Theorem 5 makes it difficult for an LP based approach to give
an approximation factor better than m (which is easy to obtain
as we saw in Observation 4. However, the LP can still be used to
obtain a “bi-criteria” approximation, where we obtain a constant
approximation to the objective, while opening slightly more than k
clusters.

THEOREM 6. Consider a feasible solution (z,y) for FAIRLP-ABSERROR
with objective value A. For any € > 0, there is a rounding algorithm
that produces an integral solution (z,v) such that 3., y, < k/(1—¢),
all other constraints of the LP are satisfied, and the objective value is
< 2/e.

There has been extensive literature on the problem of rounding
LPs for problems like k-median (see, e.g., [31]). However, due to
our additional fairness condition, we are interested in rounding
schemes with an additional property, that we define below.

Definition 7 (Faithful rounding). A rounding procedure for FAIRLP-
ABSERROR is said to be a-faithful if it takes a fractional solution
(z,y) and produces an integral solution (Zz, §j) with the guarantee
that for every u € X,

Z d(u,0) 2yp < a - Z d(u, ) zyo.
veX veX

A weaker notion that holds for some known rounding schemes
is the following: a rounding algorithm is said to be a-faithful in
expectation if

E

Z d(u,v) iuv} <a- Z d(u,v) zyp.

veX veX
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The advantage of having a faithful rounding procedure is that
it automatically gives a per-group (indeed, a per-point) guaran-
tee on the objective value, which enables us to prove the desired
approximation bound.

Proor or THEOREM 6. The proof is based on the well-known
“filtering” technique ([11, 32]). Define R, to be the fractional con-
nection cost for the point u, formally, R, = >, d(u,v) zyp. Now,
construct a subset S of the points X as follows. Set S =0 and T = X
to begin with, and in every step, find u € T that has the smallest R,
value (breaking ties arbitrarily) and add it to S. Then, remove all
v such that d(u,v) < 2R, /e from the set T. Suppose we continue
this process until T is empty.

The set S obtained satisfies the following property: forallu,v € S,
d(u,v) > (2/€) - max{Ry, Ry}. This is true because if u was added
to S before v, then R, < Ry, and further, v should not have been
removed from T, which gives the desired bound. The property
above implies that the set of metric balls {B(u, R, /€)},es are all
disjoint.

Next, we observe that each such ball contains a fractional y-
value (in the original LP solution) of at least (1 — €). This is by
a simple application of Markov’s inequality. By definition, R, =
20 d(4,0) zyy, and thus 3¢ (R, /e) Zuv < €. This means that
2 0eB(uR, J¢) Xuo = 1 —€,and thus ¥ e R, /e) Yo = 1 —€. As the
balls are disjoint, we have that |S| < k/(1 —€).

Now, consider an algorithm that opens all the points of S as
centers. By construction, all v ¢ S are at a distance < 2R,/e
from some point in S, and thus for any group i, we have that
Yuex; A4, S) < Yyex; 2Ru/e < 2M/e. Setting § to be the indi-
cator vector for S and z to be the assignment mapping each point
to the closest neighbor in S, the theorem follows. O

Remark 8 (Extension to k-means). The argument above can be
extended easily to obtain similar results for the k-means objective.
We simply replace all distances with the squared distances. The
metric ball around each point can be replaced with the [22 ball, and
the same approximation factors can be shown to hold.

Beyond bi-criteria: an LP based heuristic. While Theorem 6 can
achieve }, 7, = k/(1 —€) for any € > 0, it is still weaker than what
is possible for the standard k-median problem. The integrality gap
instance shows that this is unavoidable in the worst case (using
this LP). However, it turns out that there exist rounding algorithms
for k-median that are faithful in expectation (as in Definition 7),
and end up with }} 7, being precisely k. Specifically,

THEOREM 9 ([12]). There exists a rounding algorithm for FAIRLP-
ABSERROR that is a-faithful in expectation with a < 4, and outputs
precisely k clusters.

Corollary 10. Let (z,y) be a solution to FAIRLP-ABSERROR. There
exists a rounding algorithm that (a) produces precisely k clusters,
and (b) ensures that the expected connection cost for every group
is < 4A.

The corollary follows directly from Theorem 9, by linearity of
expectation. This does not guarantee that the rounding simultane-
ously produces a small connection cost for all groups, but it gives a
good heuristic rounding algorithm. In examples where every group
has many points well-distributed across clusters, the costs tend
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to be concentrated around the expectation, leading to small con-
nection costs for all clusters. We will see this via examples in the
experiments section 5.1.

3.2 Relaxation for RelError-Fair clustering

We now show that the rounding methods introduced in Section 3.1
can also be used for RelError-fair clustering. We consider the fol-
lowing auxiliary LP:

min A  subject to
Zzuv =1 forallu, Z Yo < k,
v veX
Zup < Yp forallu,o, 0<zup, yp <1 forallu,o,
Z Z d(u,0)zuy < A - K-MED-APPROX(X;) for all i. (3)
ueX; veX

The constraint (3) now involves a new term, K-MEp-APPROX(X;),
which is an approximation to the optimum k-median objective of
the set X;. For our purposes, we do not care how this approximation
is achieved — it can be via an LP relaxation [11, 30], local search [5,
21], or any other method. We assume that if J; is the optimum

k-median objective for Xj, then for all i, %M < p for
some constant p. (From the works above, we can even think of p

as being < 3.)

Lemma 11. Suppose there is a rounding procedure that takes a
solution (4, z, y) to FAIRLP-RELERROR and outputs a set of centers
S with the property that for some parameter 7,

Z d(u,S) < nA-K-Mep-Approx(X;) forall groupsi. (4)
ueX;
Then, this algorithm provides an 5- p approximation to RelError-fair
clustering.

Proor. Let OPT be the optimum value of the ratio-fair objective
on the instance {X1, ..., Xj; }. The main observation is that the LP
provides a lower bound on OpT. This is true because any solution to
ratio-fair clustering leads to a feasible integral solution to FAIRLP-
RELERROR, where the RHS of the constraint (3) is replaced by A -
8;. Since 9; < K-MED-AprPrOX(Xj), it is also feasible for FAIRLP-
RELERROR, showing that the optimum LP value is < OpT.

Next, consider a rounding algorithm that takes the optimum LP
solution (A%, z*, y*) and produces a set S that satisfies (4) (with A*
replacing A on the RHS). Then, since K-MED-APPrOX(X;) < pd;,
we have

Z d(u,S) < (pn)A* - 8; for all groups i,

uexX;

and using A* < OpT completes the proof of the lemma. O

Thus, it suffices to develop a rounding procedure for FAIRLP-
RELERROR that satisfies (4). Here, we observe that the rounding
from Theorem 6 directly applies (because ensures that every u € X,
d(u,S) < 2Ry /e€), giving us the same bi-criteria guarantee (and the
same adjustment under faithful rounding).

Corollary 12 (Corollary to Theorem 6). For any € > 0, there is an
efficient algorithm that outputs k/(1 — €) clusters and achieves a
(6/€) approximation to the optimum value of the RelError objective.
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4 FACILITY LOCATION

As we discussed earlier, the objective in k-means and k-median
clustering measures how close the points are (on average) to their
cluster centers. There can be situations in which this objective
is more important than having a strict bound on the number of
clusters produced. Consider the example we saw earlier, where
points correspond to clients located in a metric space, and we open
a facility at the cluster center with the goal of serving the clients in
the cluster. In such a context, it is reasonable to open more facilities
if it serves clients better, as long as they collectively “pay” for
opening. This is the motivation for the well-known facility location
problem [17].

Definition 13. Let X be a set of clients and £ be a set of locations
in a metric space with distance function d. For each location v,
we have an opening cost f,, which is the cost of opening a facility
at v. The objective is now a sum of the connection costs and the
opening costs. Formally, the goal is to select a subset L of L, so as

to minimize
dldwrn+ ) f

ueX veL

Now consider the setting in which clients fall into different
demographic groups. We propose our objective based on an equal
division of the facility opening costs among all the clients. Thus,
every client pays an opening cost of ﬁ Yvel fo- Our definition
of fair facility location aims to ensure that the average total cost
(opening plus connection) is small for all the groups.

Definition 14. Let X be a set of clients composed of groups X1, Xo, . . .

and let £ be a set of locations. The goal of fair facility location is to
select a subset L of the locations, so as to minimize

1 1
max | — dlu,L) + — 1
2| Il Z); IXI| Z; ’
We remark that the second term in the objective is independent
of the group (as this is the cost paid by every client).
Our first result is a constant factor approximation algorithm.

THEOREM 4.1. There is an efficient (polynomial time) algorithm
for fair facility location with an approximation ratio of 4.

Proor. The proof turns out to follow easily from classic results
on facility location. Consider the following linear program:

1
in A+ — . bject t
min X] ; Yy - fo  subject to

Z Zup =1 forallu,

i 0<zyy yp <1 forallu,o.

Zyp < Yp forallu,o,
1
M . Z Z d(u,v)zyp < A for all groups i, (5)
ueX; veX

Now we note the rounding algorithm from [40] is a 4-faithful
rounding procedure (as in Definition 7), and also ensures that for
the produced integral solution v, 3, ¥, fo < 4 2., Yo fo. Using this,
the desired approximation factor follows. O
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It is an interesting open problem to improve the approximation
ratio above. We note that there are many better approximation al-
gorithms for facility location (see, e.g., [29] and references therein).
However, many of these algorithm are either faithful only in ex-
pectation, or they use primal-dual rounding schemes which do not
seem applicable in our context.

4.1 Ensuring uniform load for facilities

Definition 14 captures the requirement that all the demographic
groups have a small cost for accessing the opened facilities. How-
ever, this objective does not fully capture real life constraints. Con-
sider the example in Figure 4. Suppose that Ry has a population

Ry Ry

Figure 4: Geometrically similar regions R; and Rz, with
vastly different population density.

density of § and Rs has a population density of 1005. Suppose Ry
consists all the people of the first group, X1, and R has people
of X2. Now, opening 2 facilities in each region is a better solution
(in the objective above), compared to opening 3 in Ro and 1 in Ry,
because the connection cost term in the objective is normalized by
the size of the group. (This is justified in order to avoid an unfair
treatment for a smaller group.)

However, in a time-sensitive application (such as polling), having
a lot of clients allocated to a facility can lead to over-crowding, and
thus a loss of utility. One way to repair this is by adding a delay
term to the utility. This leads to a quadratic objective function,
which appears difficult to optimize. Instead, we propose enforcing
load-balance using a capacity constraint for facilities, the simplest
of which is that for some U, each facility can serve at most U
clients (in total, across all the groups). In practice, these are not
hard constraints, and it is reasonable for an algorithm to violate it
by a small factor.

Most of the standard clustering formulations (including facil-
ity location) have been studied in the presence of capacity con-
straints. Constant factor approximations are known, both using
local search [5] and LP relaxations [4]. In our setting with multiple
groups, we show that the LP methods can be adapted to obtain
approximation algorithms.

Notation. As before, the set of clients X is composed of m groups
X1,X2, ..., Xm and the set of valid locations for facilities is £. They
lie in a metric space whose distance function is denoted by d. U
will always denote the capacity bound. A solution will consist of a
subset S C £ and an assignment function g : X — S. The quantity
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Ort will denote
1 1

min — Zf, + max — Z d(x,g(x)),

Sog X7 eelm] IXel &
where the minimization is over g such that |g~1(s)| < U for all
s € S. We prove that it is possible to achieve a constant factor
approximation, as long as there is a constant (any fixed constant
> 1) slack in the capacity constraint.

THEOREM 4.2. Let X, L,d,U be defined as above, and let OpT
denote the optimum objective value. Then for every € > 0, there is an
efficient (polynomial time) algorithm that finds a solution S, g with
the following properties:

(1) the objective value is < O¢(1) - OPT.
(2) for everys € S, we have |g~1(s)| < (1+¢) U.

Remark. It is an interesting open problem to study the case of
hard capacity constraints. Likewise, we are assuming that the capac-
ity bound U is independent of the facility. Modifying the rounding
algorithm to allow different capacities at different locations is also
an interesting direction. We note that both can be achieved using LP
methods for standard facility location (e.g., [4]), but known round-
ing algorithms are not faithful to the best of our knowledge, thereby
making it tricky to apply to the setting with multiple groups. Mean-
while, we note that in our motivating applications, both uniform
capacities and soft constraints are reasonable assumptions.

ProoF. The proof follows along the lines of [40], but we slightly
adapt it to get a stronger bound on |g™1(s)|. We start by solving a
slight variant of the LP (5), where we add the capacity constraint:

Z Zuo < U - Yy forallo e L. (6)
uex
In an integer solution, the RHS is zero if y, = 0 (v is not opened)
and U if y, = 1 (v is opened), as intended. Starting with the optimal
fractional solution for this LP, the rounding algorithm is then as
follows:

Algorithm 1 FFL-Rounding (z, y), parameters 6,6 € (0, 1)

1: Perform Filtering with parameter 6 on (z,y) to obtain (z’,y")
2: Define F={v e L:y] >1/2}, updatey, =1 forallo € F

3 DefineCs={ueX: Y crzi, <(1-96)}

4: while Cs # 0 do

5 Let u be the client in Cg with smallest Ry,

6: Let S be the set of facilities in B(u, &) with y} € (0,1)

7 Letr=[Tpes vl

8: Open the r cheapest facilities in S (call this set O)

9: Update the set F, setting F < FU O
10: Update y, values, setting y, = 1 forv € O and y, = 0 for

veS\O
11: Move all fractional assignment z;,,, from S\ O to O
12: Update the set Cs using the definition in step 3

13: Close all remaining fractionally open facilities

14: Let By = YyerF zip- If fu < 1, re-scale all z/,,, by 1/,

15: Use bipartite matching to round fractional assignment to an
integral one, denoted g

16: return F, g
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The first step is filtering [40], where we convert a feasible frac-
tional solution (z, y) to the LP to another fractional solution (z’,y’),
with the additional constraint that if z],, > O (i.e., client u has a
non-zero fractional assignment to facility v), then v € B(u, R—“).
This fractional solution satisfies all the constraints of the LP except
the capacity constraint (6), and also satisfies (6) up to a slack factor
of ﬁ on the RHS. The parameters 6,5 > 0 used here will be
chosen later. In the process, the opening cost term in the objective
increases by a factor at most 1/(1 — 6).

The next step is to consider all the facilitiesv € £ withy, > 1/2,
and set y,, = 1, and add all such facilities to the opened set F. Again,
this step only increases the opening cost term in the objective by a
factor of 2.

At every point of time, the algorithm maintains a set Cg, which
is the set of clients u such that

Z 2, < (1-9).

v€EF
In other words, u has a significant (> J) fractional assignment
to unopened facilities. As long as Cg is non-empty, the algorithm
chooses u € Cs with the smallest value of Ry,. It then opens facilities
in the vicinity of u. Define B, = B(u, &), for convenience. Suppose
S is the set of fractionally open facilities in By,. Because u € Cgs, we
have that ) ,cs zyo > 6, which in turn implies that Y cgy;, > &
(because of the LP constraint y;, > zy, for all u).

The algorithm opens r = [} ,¢s y, | centers from S, of the least
cost. We claim that in the process, the sum ), cs foy; increases by
at most max{2, 1/8}. This is easy to see by considering two cases:
if Y yes Y, < 1, then the algorithm opens exactly one center, and
the cost increases by at most 1/6. If the sum is > 1, then since all
the y;, values were < 1/2, there must have been > r non-zero terms
in the summation, and we can argue that the cost increase is at
most 2 (see [40]). As our choice of § will be < 1/2, the (1/5) term
dominates. We thus have that this step of the algorithm increases
only the facility opening cost, and by a factor at most 1/4.

The next step is the re-allocation of clients from S \ O to O. Let
u’ be one such client. If u” = u, we simply note that for allv € O,
d(u,0) < %“ and thus all the (fractional) demand is still routed

to a facility at distance at most %‘ away. Likewise, if v’ # u, then
because R, < R, demand is still routed to a facility at distance at
most 31;“' away.

Following this, we are only left with clients most of whose de-
mand (at least (1 — §) fraction) has already been routed to facilities
in F. The scaling by S, (as defined in the algorithm) increases the
objective by a factor at most 1/(1 — §).

The steps above together help obtain a solution in which y’ is
integral, but the z],, may be fractional. Also, the connection cost
term in the objective is scaled by at most

3 1
0 (1-9)
Moreover, this bound holds for every point (thus the rounding is
faithful). The facility opening cost is scaled by at most
1 1
-0 %F

The capacity constraint is violated by a factor of m
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The final step of the rounding is bipartite matching. Here, since
the demands are all unit, we can show that it is possible to convert
the fractional assignment into an integral one (by solving an in-
stance of the transportation problem, see [40]). Setting 6 = § = €/3,
the result follows. O

5 EXPERIMENTS

In the first two parts of this section we evaluate the proposed
fair k-median and fair facility location algorithms and provide an
empirical assessment for their performance. In the final part, we
compare the balance-based approach to fair clustering with respect
to our representation-based notions. Throughout the experiments,
we consider five datasets:

e Synthetic. Synthetic dataset with three features. First fea-
ture is binary (“majority" or “minority"), and determines
the group example belongs to. Second and third attributes
are generated using distribution N (0, 0.52) in the majority
group, and distribution (3, 0.52) in minority group. Major-
ity and minority groups are of size 250 and 50, respectively.

e Iris.3 Data set consists of 50 samples from each of three
species of Iris: Iris setosa, Iris virginica and Iris versicolor.
Selected features are length and width of the petals.

e Census.? Dataset is 1994 US Census and selected attributes
are “age”, tnlwgt", “education-num", “capital-gain" and “hours-
per-week". groups of interests are “female” and “male".

e Bank.® The dataset contains records of a marketing cam-
paign based on phone calls, ran by a Portuguese banking
institution. Selected attributes are “age", “balance", “duration”
and groups of interest are “married" and “single".

e North Carolina voters. ® In this dataset, we are interested
in “latitude” and “longitude” values of each voter’s residence,
and use “race” attribute to identify different demographic
groups.

We do not evaluate the capacitated version of fair facility location
that we discuss in Section 4.1. This algorithm is more complex and is
beyond the scope of this work. We should also note that throughout
this section we compare the results of proposed fair algorithms to
standard k-median, which is implemented using the standard linear
program formulation.

5.1 Fair k-median

In this section we employ two algorithms to compute k-median clus-
terings which are group-representative. We call these algorithms
LP-Fair k-median and LS-Fair k-median.

LP-Fair k-median. LP-Fair k-median first solves the FairLP linear
program presented in Section3.2. Since it is not possible to compare
the results of bi-criteria algorithm to standard k-median algorithms
due to the varying number of centers, we chose to obtain integral
solutions via the faithful rounding procedure described in Corol-
lary 10. The rounding is based on the matching idea proposed by
Charikar et al. [12], and is done in four phases:

3https://archive.ics.uci.edu/ml/datasets/iris
4https://archive.ics.uci.edu/ml/datasets/adult
Shttps://archive.ics.uci.edu/ml/datasets/Bank+Marketing
®https://www.ncsbe.gov/results-data/voter-registration-data


https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://www.ncsbe.gov/results-data/voter-registration-data
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Filtering: Similar to the filtering technique described in sec-
tion 3, we construct a subset S of the points with a small
adjustment that after adding a point u to the set S, all points
v from the original set such that d(u,v) < 4R, will not be
considered to be added to S anymore.

Bundling: For each point u € S, we create a bundle B,, which
is comprised of the centers that exclusively serve u. In the
rounding procedure, each bundle B,, is treated as a single
entity, where at most one center from it will be opened. The
probability of opening a center from a bundle, By, is the sum
of y¢, ¢ € By, which we call bundle’s volume.

Matching: The generated bundles have the nice property that
their volume lies within 1/2 and 1. So given any two bundles,
at least one center from them should be opened. Therefore,
while there are at least two unmatched points in S, we match
the corresponding bundles of the two closest unmatched
points in S.

Sampling: Given the matching generated in the last phase, we
iterate over its members and consider the bundle volumes
as probabilities, to open k centers in expectation.

The centers picked in the sampling phase are returned as the final
k centers.

LS-Fair k-median. In this section, we propose a heuristic local
search algorithm in addition to LP-Fair k-median. Arya et al. pro-
posed a local search algorithm to approximately solve the k-median
problem [5]. Their algorithm starts with an arbitrary solution, and
repeatedly improves it by swapping a subset of the centers in the
current solution, with another set of centers not in it. We modify this
algorithm to minimize the maximum average cost over all groups.
Assuming we’re given a cost function and X1, Xo, . . ., X, as groups
where X = U;X;, LS-Fair k-median is presented in Algorithm 2.

Algorithm 2 LS-Fair k-median(k, cost, X, X1, .. ., Xm)

S « an arbitrary set of k centers from X
old_cost « inf
new_cost <« max(costs(X1),...,costs(Xm))
while there is ¢’ € X and t € S st
max(costs\rup (X1), - - -, costs\sup (Xm)) < old_cost) do
S—S\tut’
old_cost « max(costs\;up (X1), . - -, costs\ sy (Xm))

return S

Unlike the LP-Fair K-Medians, we do not provide any theoretical
bounds on LS-Fair K-Median. In fact, the following example shows
that LS-Fair K-Medians algorithm with the AbsError-fair objective
can have local optima that are arbitrarily worse than the global
optimum.

Description of the instance. Let A and B two sets that are far apart
(think of the distance between any pair as M — o0). A = A1 U Ag,
where |A1| = 1 and |A2| = ¢, for some integer parameter ¢. Likewise,
suppose that B = By U Ba, of sizes 1, t respectively. Suppose that
all the elements of A2 (so also Bg) are at distance € away from one
another. Suppose the distance between A; and A2 (so also By and
B2) is d.
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Now, suppose the two groups are X1 = Aj UBg and X2 = Bj UAg.
Let k = 2. The optimal solution is to choose one point in A and
another in By. This results in an objective value of

max{te +d,te +d} = te +d.

Consider the solution {a1, b1} that chooses the unique points
from A1 and Bj. The k-median objective for both the groups is td,
and thus the AbsError-fair objective is td. Now, consider swapping
a1 with some point x € Ag. This changes the k-median objective
for group 1 from td to td + €, and so even though the swap signifi-
cantly decreases the objective for the second group, the local search
algorithm will not perform the swap. The same argument holds for
swapping b1 with a point y € Ba. It is thus easy to see that {a1, b1}
is a locally optimum solution.

However, the ratio between the AbsError-fair objectives of this

td

solution and the optimum is ;== ~ ¢ for € — 0. Thus the gap can

be as bad as the number of points.

Results. In this experiment, in order to save space, we focus on
the Census and Bank datasets. However, we consider two subsam-
ples of each dataset: 1:1 Census contains 150 female and 150 male
examples, 1:5 Census contains 50 female and 250 male examples, 1:1
Bank contains 150 married and 150 single examples, and 1:5 Bank
contains 50 married and 250 single examples. The results are sum-
marized in table 2. Group-optimal presents the optimal average cost
for a group, when it is clustered by itself via k centers. k-median
presents a group’s average cost, in a clustering generated by the
standard k-median algorithm performed on all groups together. The
other rows in the table show the percentage increase/decrease in
costs, for either of the described fair algorithms, using the two cost
functions. In general, the results demonstrate the effectiveness of
our algorithms. However, we emphasize on the difference between
1:1 and 5:1 samples. In the 1:1 case, the groups have the same size
and standard k-median treats them roughly the same. But in the 5:1
case, if the groups have different distributions, standard k-median
favors majority group over the other, and the effectiveness of our
proposed algorithms are more evident. We should note that in all
experiments, points were clustered using 3 centers.”

5.2 Fair facility location

In this section we empirically evaluate the algorithm presented in
section 4. We also use the 4-Faithful rounding procedure proposed
in [40] to obtain an integral solution. We use the data for voters
in the state of North Carolina, specifically Brunswick county. This
dataset contains race and ethnicity of each voter as well as latitude
and longitude values of their residence. In this experiment we focus
on black and white demographic groups, which roughly constitute
7000 and 55000 voters, respectively. As for the facilities, we assume
each voter’s residence could be used as a drop-off location. There-
fore, in all experiments we use regular k-means clustering to select
100 locations out of the total 62000 data points as the set of facilities.
We also assume the setup cost for all facilities are equal. The results
of this experiment are presented in Figure 5, for different values of
the facility setup cost. The results show that fair facility location
algorithm lowers the average distance to polling locations for the
worse off group, namely black voters, in comparison to standard

7Each dataset was sampled 10 times and we reported the overall average.
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Table 1: Effects of enforcing balance on group representations

Synthetic Iris Census Bank
Datasets
majority minority Setosa Versicolor female male married single
Standard k-median 0.514 0.678 0.169 0.256 34492 35083 627 682
Balanced k-median 0.430 3.476 0.101 2.819 34019 35876 622 694

Table 2: Clustering Bank and Census datasets using LS-Fair and LP-Fair algorithms. Standard k-median and group optimal
rows present the actual groups’ average costs. AbsError and RelError rows are the percentage increase/decrease in group costs
for proposed algorithms, compared to the corresponding values in standard k-median and group optimal rows, respectively.

1:1 Census 1:5 Census 1:1 Bank 1:5 Bank
Datasets

female male female male married single married single

Standard k-median 35264 32351 40212 32689 596 730 948 665
AbsError (%) LS-Fair 98.7 102.9 94.2 110.5 105.2 98.3 79 111.2
/" LP-Fair 98.3 105 95.5 109.1 105.7 98.2 78 114.7

Group optimal 34499 31528 35349 32619 569 686 659 655

RelError (%) LS-Fair 102.5 102.5 107.7 106.3 107.3 105.9 113 114
’ LP-Fair 102.6 102.5 107.6 103.8 107.7 105.2 116.3 113.4
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Setup cost (per voter)

Figure 5: Average distance to polling location for black and
white voters

version. Also, as we increase the setup cost for facilities, since fewer
number of facilities will be opened, the average distance grows
larger for both groups. We should also note that by opening fewer
number of facilities, it will be harder for the algorithm to find a fair
solution as it is more restricted. This is apparent from the larger
discrepancies between the two groups in the fair(er) solution for
higher values of setup cost.

5.3 On balance and representations

In this section, we empirically study the effects of enforcing bal-
ance on group representations. More specifically, we compare each
group’s average cost for standard k-median to the corresponding

value under balance constraint. As for the balance-fair k-median,
we chose to use the algorithm proposed by Backurs et al. [6].2 In
this experiment, we used the entire Synthetic and Iris datasets, and
sampled 300 examples from each of Census (150 male, 150 female)
and Bank (150 married, 150 single) datasets. In table 1, we present
the average costs for all groups within each dataset, in two cluster-
ings generated by standard k-median and balanced k-median. In
all datasets, we observe enforcing balance amplifies representation
disparity across groups and leads to a higher maximum average
cost. However, it is especially more noticeable in Synthetic and Iris
datasets, where different groups have vastly different distributions.’

6 CONCLUSION

In this work we presented a novel approach to think of and formu-
late fairness in clustering tasks, based on group representativeness.
Our main contributions are introducing a fairness notion which par-
allels the development of fairness in classification setting, proposing
bicritera approximation algorithms for k-medians under different
variations of this notion, as well as approximation algorithms for
facility location problem and providing theoretical bounds for both.
Our results suggest that our formulation provides better quality
representations especially when the groups are skewed in size.
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