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Estimating Quantum Entropy

Jayadev Acharya™, Member, IEEE, Ibrahim Issa
and Aaron B. Wagner

Abstract—The entropy of a quantum system is a measure of its
randomness, and has applications in measuring quantum entan-
glement. We study the problem of estimating the von Neumann
entropy, S(p), and Rényi entropy, Sy (p) of an unknown mixed
quantum state p in d dimensions, given access to independent
copies of p. We provide algorithms with copy complexity O(d%/®)
for estimating Sy (p) for a < 1, and copy complexity 0(d?) for
estimating S(p), and Sy (p) for non-integral « > 1. These bounds
are at least quadratic in d, which is the order dependence on
the number of copies required for estimating the entire state
p. For integral o > 1, on the other hand, we provide an algo-
rithm for estimating Sy (p) with a sub-quadratic copy complexity
of 0@*~2/ %), and we show the optimality of the algorithms by
providing a matching lower bound.

Index Terms—Quantum information, von Neumann entropy,
Renyi entropy, entropy estimation, weak Schur sampling, copy
complexity.

I. INTRODUCTION

E CONSIDER how to estimate the mixedness or
Wnoisiness of a quantum state using measurements of
independent copies of the state. Mixed quantum states can
arise in practice in various ways. Classical stochasticity can be
intentionally introduced when the state is originally prepared.
Pure states can become mixed by a quantum measurement.
And the states of the subsystems of bipartite states can be
mixed even when the overall bipartite state is pure, which
forms the basis for purification.

In the third case, the level of mixedness of the subsys-
tems indicates the level of entanglement in the pure, bipartite
system. The possibility of entanglement of two separated
systems is arguably the most curious, and the most pow-
erful, way in which quantum systems differ from classical
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ones. Indeed, entanglement has been fruitfully exploited as a
resource in a number of quantum information processing pro-
tocols (e.g., [1]-[5]). The subsystems of a pure bipartite state
are pure if and only if the bipartite state itself is unentangled,
and likewise they are maximally mixed if and only if the bipar-
tite state is maximally entangled. Thus the mixedness of the
subsystems’ states can be used as a measure of entanglement
of the bipartite system [4, Th. 8.6].

Mixedness can be measured in multiple ways. We shall use
the von Neumann and (the family of) Rényi entropies, which
correspond to the classical Shannon and (the family of) Rényi
entropies of the eigenvalues of the density operator of the state,
respectively. A density matrix (or operator) p is a complex pos-
itive semidefinite matrix with unit trace; thus its eigenvalues
are nonnegative and sum to one. The von Neumann entropy
of a density matrix p is

def
S(p) = —tr(plog p).

For o > 0, @ # 1, the Rényi entropy of order o of p is

def
Se(p) =

1 o
- logtr(,o )
Similar to Shannon entropy, in the limit of ¢ — 1,
limg— 1 So () = S(p)-

The classical Shannon and Rényi entropies are well-
accepted measures of randomness, and can be derived
axiomatically [6, pp. 25-27]. Both the classical and quantum
versions can be justified operationally as a measure of com-
pressibility [6]-[9]. The quantum versions have been explicitly
proposed for quantifying entanglement in certain contexts [10].

In principle, both the von Neumann and Rényi entropies
for a quantum state p can be computed if the state is known.
We consider how to estimate these quantities for an unknown
state given independent copies of the state, to which arbitrary
quantum measurements followed by arbitrary classical compu-
tation can be applied. This problem arises when characterizing
a completely unknown system and when one seeks to exper-
imentally verify that a system is behaving as desired. Since
generating independent copies of a state can be quite costly
in the quantum setting [11], [12], it is desirable to minimize
the number of copies of the state that are required to estimate
the von Neumann and Rényi entropies to a desired precision
and confidence. We thus adopt this copy complexity as our
figure-of-merit.

Our results are summarized as follows. We provide algo-
rithms with copy complexity O(d*/%) for estimating Sy (p)
for « < 1, and copy complexity O(d?) for estimating S(p),
and Sy (p) for non-integral o > 1. These bounds are at least
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quadratic in d, which is the order dependence on the number
of copies required for learning the entire state p. For integral
o > 1, on the other hand, we provide an algorithm for estimat-
ing Sy (p) with a sub-quadratic copy complexity of O(d>~2/%),
and we show the optimality of the algorithms by providing a
matching lower bound.

A. Related Work

Our work is related to symmetric distribution property esti-
mation in classical setting and the property estimation of
quantum states (as in the set-up of this paper). We briefly
mention some closely related works. The reader is referred
to Montanaro and Wolf [13] and Wright [14] for additional
references.

1) Symmetric  Property  Estimation  of  Discrete
Distributions: ~ For the Shannon entropy H(p) &
—> p(x)logp(x), a long line of work culminated

in [15]-[17] showing that the sample complexity of estimating
d log?d
elogd + sz .

Shannon entropy to additive ¢ is @(

The problem of estimating Rényi entropy Hy(p) &

log (pr(x)“)/(l — «), was studied in [18]-[20]. The sample
complexity dependence in the classical setting seems to sug-
gest the same qualitative behavior as our results. They show

1/a
d—logd>’ and for

that for ¢ < 1, the sample complexity is 0(81 T

a>1a¢N,itis 0(W
theoretic lower bounds show that the exponent of d cannot be
improved by any algorithm. Finally for o € {2,3,...}, they
show that the sample complexity ®<d:21 /a) up to constant fac-
tors. We note that this complexity is indeed one of the terms
in our copy complexity for integral «, which is the dominant
term for large n.

2) Quantum Property Estimation of Mixed States: There
are now many works on the related problem of quantum prop-
erty testing, where the goal is to find the copy complexity
of deciding whether a mixed state has a certain property of
interest, and on the problem of quantum tomography, where
the goal is to learn the entire density matrix p. The copy
complexity of quantum tomography is quadratic in d, and the
complexity for tomography in various distance measures have
been studied in [21]-[23]. Reference [24, Ch. 6] provides a
number of results on universal quantum information process-
ing, which considers various problems including tomography
in the asymptotic setting where #n is large.

Testing whether p has a particular unitarily invariant prop-
erty of interest was studied in [25] for a number of properties.
Recently, [26] obtained tight bounds on the copy complex-
ity of testing whether an unknown density matrix is equal to
a known density matrix. The optimal measurement schemes
for some of these problems can be computationally expensive.
Testing properties under simpler local measurements was stud-
ied recently in [27]. Reference [28] considers testing various
properties with particular emphasis on the setting where only
local measurements on the copies is allowed.

In a personal communication, Bavarian et al. [29] claim
an algorithm with copy complexity O(d”/e) for the von

). Moreover, their information-
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Neumann entropy estimation, which is an & multiplicative
factor improvement over our bound.

3) Quantum Algorithms for Classical and Quantum
Distribution Properties: Testing and estimating distribution
properties using quantum queries has been considered by vari-
ous authors. Problems of testing properties such as uniformity,
identity, closeness under the regular quantum query model,
and conditional quantum query models have been studied
in [30]-[32].

Recently Li and Wu [33] studied the quantum query com-
plexity of estimating entropy of discrete distributions. They
provide bounds on the query complexity for estimating von
Neumann entropy, and Rényi entropy. For certain values of
o, the bounds on query complexity can in fact be at times
quadratically better than the corresponding sample complexity
bounds. Subramanian and Hsieh [34] consider the problem of
estimating «-Rényi entropy under a different model, in partic-
ular, the purified quantum query access model. In this scenario,
a quantum oracle generates a purified version of the input state
p € C9%d with dimensions (d + a) x (d + a). The authors
then provide a quantum sampling method to estimate Rényi
entropy using O((dax /8€)?) queries. Other recent papers have
considered more practical considerations for the estimation of
quantum properties, where they have access to the purified
quantum state. In particular, Cincio et al. [35], Johri et al. [36],
and Subasi efr al. [37] demonstrate short-depth quantum cir-
cuits that improve and generalize the Swap test in order to
estimate Tr(p¥), with special emphasis for the case k = 2.

B. Organization

The paper is organized as follows. The next section contains
a precise formulation and statement of our results. Section III
provides the preliminary results needed for setting up the
paper. Section IV proves our bounds for integral, but non-
unity, order Rényi entropy. Section V proves the upper bounds
for von Neumann entropy, and Section VI proves the upper
bounds for Rényi entropy of non-integral orders.

II. FORMULATION AND DESCRIPTION OF RESULTS
A. Property Estimation

A property f(p) maps a mixed state p to R. Given n and
d, an estimator is a set of measurement matrices {M,,}>>_ | for
the state space C¢ %" and a “classical processor” g(-), which
maps the natural numbers to R. Given n copies of a state p, the
estimator proceeds by applying the measurement {M,,}>> | to
the state p®" and then applying g(-) to the resulting outcome.
Given a property f, accuracy parameter ¢, error parameter §,
and access to n independent copies of a mixed state p, we
seek an estimator f such that with probability at least 1 — §

V(p) —f(p®")

The copy complexity of f is

< é&.

C({f,d, e, 6) dzefminin : Elf : V,o,f is a = ¢ estimate

of f(p) with probability > 1 — 3},
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the minimum number of copies required to solve the problem.
Throughout this paper we will consider § to be a constant,
say 1/3. We can boost the error to any 6 by repeating the
estimation task O(log(1/§)) times and taking the median of
the outcomes. We denote

def

C(f.d,e) L C(f.d e 1/3). )

B. Unitarily Invariant Properties

Suppose U(d) is the set of all d x d unitary matrices.

Definition 1: A property f(p) is called unitarily invariant
if f(UpU") = f(p) for all U € U(d).

Unitarily invariant properties are functions of only the spec-
trum (that is, the multiset of eigenvalues) of the density matrix.
Since density matrices are positive semi-definite with unit
trace, we can view the eigenvalues as a distribution over some
set. Unitarily invariant properties are analogous to symmetric
properties in classical distributions.

For a density matrix with eigenvalues 5, ..., 4, we have
S(p) = —Y_;im;logn;, and Su(p) = log(3_;71%)/(1 — a).
Quantum entropy can be viewed as the classical entropy of
a distribution defined by n, and in particular is unitarily
invariant.

Working with unitarily invariant properties is greatly sim-
plified by the following powerful result (see [13, Sec. 4.2.2]
and the references therein).

Lemma 1: A quantum measurement called weak Schur
sampling is optimal for estimating unitarily invariant
properties.

Weak Schur sampling is discussed in Section III-A1.

C. Our Results

We will use the standard asymptotic notation. We are
interested in characterizing the dependence of C(S, d, €), and
C(Sy, d, €), as a function of d and . We assume the param-
eter o to be a constant, and focus on only the growth rate as
a function of 4 and e.

Our results are summarized in Table I and Table II. Similar
to the sample complexity of estimating Rényi entropies of
classical distributions from samples, our bounds are also
dependent on whether « is less than one, and whether it is
an integer. (See [19, Tab. 1], and Section I-A1 for the sample
complexity in classical settings.) We organize our results as a
function of « as follows.

When interpreting our results it is useful to recall that the
copy complexity of quantum tomography, where the goal is
to estimate the density matrix p in trace distance is 0(d?).

1) Integral o > 1: We obtain our most optimistic and
conclusive results in this case. In Theorem 1, we show that
C(Sy,d,e) = @(max{d;/a, dz;#} . We note that the lower
bounds here hold for all estimators, not just of the estimators
used in the upper bound. Furthermore, these bounds are sub-
quadratic in d. Namely, we can estimate the Rényi entropy of
integral orders even before we have enough copies to perform
full tomography. The upper bounds are established by ana-
lyzing certain polynomials from representation theory that are
related to the central characters of the symmetric group. For

TABLE I

CoprY COMPLEXITY OF Sy (p) FOR INTEGRAL o > 1
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Upper Bound

Lower Bound

—z
O (max{d2 3

£

T
d o
y 62

P 4
Q | max 7 "2

e

)

TABLE II
CoprY COMPLEXITY OF THE EMPIRICAL ESTIMATOR
«@ Upper Bound Lower Bound
a>1 O(d?/<2) Q(d?/e)
a<1 | O /ey | Qattl/e/el/o)
a=1 O(d?/<2) Q(d?/e)

the lower bound, we design the spectrums of two mixed states
such that their Rényi entropy differ by at least ¢, but require
a large copy complexity to distinguish between them. We use
various properties of Schur polynomials and other properties
of integer partitions [38], [39].

Remark 1: The first term in the complexity dominates when
e < 1/+/d, and is identical to the sample complexity of
estimating Rényi entropy in the classical setting.

2) a < 1: We analyze the Empirical Young Diagram (EYD)
algorithm [40]-[43] for estimating S, (p) for @ < 1. The EYD
algorithm is similar to using a plug-in estimate of the empiri-
cal distribution to estimate properties in classical distribution
property estimation. We show that C(Sy, d, &) = O(d*/%/*/%).
Since o < 1, the EYD algorithm requires more copies than is
required for tomography. We show elsewhere [44] that the EYD
algorithm requires at least §2(d't1/% /&1/%) copies to estimate
the entropy, showing that the super-quadratic dependence on
d is necessary for the EYD algorithm. The upper bound is
proved in Theorem 4. For comparison, in the classical setting
the exponent of d is almost 1/a.

3) von Neumann Entropy, o = 1: Again using the EYD
algorithm, in Theorem 2 we show that C(S, d, ¢) = O(cl2 / 82).
We formulate an optimization problem whose solutions are
an upper bound on the bias of the empirical estimate, and
we bound the variance by proving that the estimator has a
small bounded difference constant. Elsewhere [44], we show
a lower bound of Q(d?/e) for the EYD estimator to estimate
the entropy of the maximally mixed state. This complexity is
still similar to that of full quantum tomography.

4) Non-Integral o > 1: Using the EYD algorithm,
in Theorem 3, we show that C(Sy,d,e) = O(d*/e?).
Elsewhere [44], we provide a lower bound of Q(d?/e) for
the EYD estimator.

III. PRELIMINARIES

We list some of the definitions and results we use in the
paper.

Lemma 2: The total variation distance, KL divergence, and
x? distance between distributions p and ¢ over X satisfy

2
1
2dry(p, ) = 2<Sup (pA) — q(A))> = EIIP —qll}
ACX
<dgL(p,q)
_ 2
BT Rt ()

= q(x)
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English Young diagram for the partition A = (6,4, 3, 3, 1).

Fig. 1.

The inequalities follow from Pinsker’s inequality and the
concavity of logarithms, respectively.

A. Schur Polynomials and Power-Sum Polynomials

A partition A of n is a collection of non-negative integers
A1 > Ay > ... that sum to n. We write A - n and we denote
by A, the set of all partitions of n. The number of positive
integers in A is denoted by £(X), which is called its length. A
partition A can be depicted with an English Young diagram,
which consists of a row of A; boxes above a row of A» boxes,
etc., as shown in Fig. 1. The partition associated with a Young
diagram is called its shape. Note that the number of rows
in the Young diagram of A is ¢(A) and the total number of
boxes is n. A Young tableau over alphabet [d] = {1, ...,d}
is a Young diagram in which each box has been filled with
an element of [d]. A Young tableau is called standard if it
is strictly increasing left-to-right across each row and top-to-
bottom down each column. A Young tableau is semistandard
if it is strictly increasing top-to-bottom down each column
and nondecreasing left-to-right across each row. Given A - n
and d, the Schur polynomial is a polynomial in the variables
., Xg defined by

d
5.0 & Z 1—[ ATD @)

T i=1

X1,X2, ..

where the sum is over the set of all semistandard Young
Tableaus T over alphabet [d] corresponding to the partition
A and #(T,i) is the number of times i appears in 7. Schur
polynomials turn out to be symmetric, namely that they are
invariant to the ordering of the variables xp, ..., x4 [38], [45].

We will also use power sum polynomials. For « € R>¢ and
a distribution n on [d],! let

d
def
Ma(n) = > nf.
i=1

Given A F r, the power sum polynomial is defined as

L)

M) = [ [ M.
i=1

Reference [19, Lemma 1] describes several useful inequalities
for the power sums of distributions.

Ipower sums can are usually defined for general vectors. We will consider
them only for distributions in this paper.
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Schur polynomials and power-sum polynomials are related
through a change of basis. There exists a function y.(-) : A,% =
R such that [45, Th. 7.17.3]

Mu() =Y s 3)
A

The x.(-) function in fact comprises the characters of the
irreducible representations of the symmetric group on [n] =
{1,...,n} [45, Sec. 7.18], although this fact is not needed.
The x)(p) function is defined combinatorially in [45] and is
difficult to compute in general [46], although we shall only
be interested in a particular p, as follows. Let dim(X) denote
the number of standard Young tableaus over alphabet [n] with
shape A. For A - n and u F r define

o (ru1")

.
def ) n= “imm

pﬁ(k) de ifn>r,

otherwise,

where n’ is the falling power, ie., n“t=n-n—1)-(n—2) -
(n—r+1) and pU1""" denotes the partition of [r] consisting
of n followed by n — r ones.

1) Weak Schur Sampling (WSS): We describe some of the
key results about weak Schur sampling (WSS) that we will use
in this paper. The readers is referred to [13, Sec. 4.2.2], [14,
Ch. 3], and references therein for further details.

Weak Schur Sampling is a measurement scheme indexed by
partitions of n. It takes n independent copies of a mixed state
o (denoted p®"), and outputs a A - n. The output distribution
over partitions is called the Schur-Weyl distribution, denoted
SWy, and the probability of A - n is given by

SWyA) = dim() - sy (1), “)

where, recall from the previous section that dim(X) is the num-
ber of standard Young tableaus of shape A, and s) () is the
Schur polynomial with variables 5, and shape A. Since Schur
polynomials are symmetric, this probability is only a func-
tion of the multiset of eigenvalues, namely a function of the
eigenvalue spectrum.

An alternate combinatorial characterization of the output of
WSS is available (e.g., [47]). Suppose p is a mixed state with
the multiset of eigenvalues {9y, ..., n4}.

1) Consider a distribution over [d], where i has probability

;-

2) Draw X" = X, ..
bution.

3) Let A = A1 > Ay > ..., be such that for any £ > O,
A1+ ...+ Ag is equal to the largest sum of lengths of k
disjoint non-decreasing subsequences of X".

The output distribution of this process is the same as the dis-
tribution over partitions given by weak Schur sampling [14].
Furthermore, the output distribution of the above procedure
is independent of the ordering of »;’s and only depends on
the multiset of the eigenvalues [14]. We call this the longest
increasing subsequence (LIS) interpretation of weak Schur
sampling.

The pi(l) polynomial defined in the last section is useful
to us due to the following lemma, which states that the (nor-
malized) polynomial p’(*r) (A) is an unbiased estimator of the

., X,, independently from this distri-
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rth moment of », where (r) is the partition of n that has one
r, and n — r one’s. The lemma follows from the definitions
and results already mentioned, and is implicit in [48], [49],
and explicit in [14, Proposition 3.8.3].

Lemma 3: Fix a distribution », a natural number r, and any
partition p of r. If A is randomly generated according to the
distribution in (4) then

E[pl,(M)] =nt-Myu(n) = n"- [ [ My, (n). ©)

In the special case that u = (), a partition with only one part,
we have

E[pf, )] = n" M. ©)

Proof: Plugging in the probability of A from (4), and the
definition of p?r) (A) from Section III-A, and finally using (3)
gives the lemma. |

2) The EYD Algorithm and Classical Plug-In Estimation:
The EYD algorithm is a simple algorithm for estimating f(p).
The algorithm works in two steps:

1) Compute the empirical distribution, which assigns prob-

ability A;/n to the symbol i.
2) Output the property f of a mixed state with eigenvalues
equal to A;/n.

The EYD algorithm is a quantum analogue of the classical
empirical/plug-in estimator. An observation from the non-
decreasing subsequence interpretation of weak-Schur sampling
is that for any sequence X", the distribution A;/n majorizes
the corresponding empirical distribution. This follows from
the fact that the length of longest £ disjoint non-decreasing
sub-sequences is always at least the sum of the k largest N;’s,
where N; is the number of appearances of i in X".

Lemma 4: Consider the sorted plug-in distribution p of X",
and the distribution A;/n obtained from X" by the WSS pro-
cedure. A/n majorizes p, namely, for all j, Zi':l Ai/n >

Yo PG,
B. Proving Upper Bounds on the Copy Complexity
Consider & # 1 and & € (0, 1). Suppose Am satisfies
M ) — Mo ()| < 2Me ().

Then

‘1 log My (1) —sa<p>‘
—

L Mo ()
og ——
My ()

l—«

IA

1 R
m max{log(l + 8),

log(1 — &)

l—«

log(1 _g)|}‘

=<

Therefore, to obtain a d& estimate of S,(7), it suffices to
derive a 1 — e~¢/1=¢ multiplicative estimate of M, (n). Note
that 1 — e~¢ll-al > _ell=al pee =% < ﬁ for x > —1.

Moreover, in the regime in which & does not grow with d,

Algorithm 1 Estimating Rényi Entropy for Integral «’s

1: Input: n independent copies of the state p, and o € N
2: Run weak Schur sampling to obtain A F n.

3: Let (o) be the partition of o with one part.

4: Compute p?a) A) =n%- 0(@UI®)

P dim(})
A
5: Output: ﬁlog p(%)
lj_lslﬁflx‘ = ©O(¢). Therefore, in the remainder of the paper,

we will be interested in 1 4 ¢ multiplicative estimators.
Finally note by Markov’s inequality that for any X,

1
Pr(lX —EX]>>9- Var(X)) <3
Since ]E[p"(*a)(k)] = n*M,(n) (by Lemma 3), then we get a
1 4+ ¢ multiplicative estimator of M, (y) with probability at
least 8/9 if

(e -E[ply0]) = 9 var(ph,)- ™

IV. MEASURING S, (p) FOR INTEGRAL «

Our main result for integral « > 1 is the following tight
bound (up to constant factors) on the copy complexity of
estimating Sy (p).

Theorem 1: For o € N\{l1},

dl—l/a d2—2/a
C(Sa,d, 8) = @(max{8—2, 827})7

where the constants depend only on « and is independent of d.

A. Achievability

Our estimator is simple and is described in Algorithm 1.

Note that we could remove the n% terms from the algo-
rithm’s description in Steps 4 and 5, but these polynomials
with said factors have a number of applications in represen-
tation theory to study the symmetric group, and we keep the
notations and definitions intact.

To prove the theorem, we bound the expectation and
concentration of p?a) A).

Lemma 5: There is a constant C, depending only on « such
that

B[pl,, 0] = n=Ma (), ®)

Var(ply ) = Coon® (140 Mo ). ©)

1) Proof of Theorem 1 Using Lemma 5: We want (7) to
hold, which happens if

(enMo (0)” 2 9C, -1 (14 0" M1 (). (10)
O (max(£57, £7°)
for (10) to hold. Note that for a fixed «, and large enough
n, n% = ®(m%) and let ¢, > 0 be such that n%& > \/c,n*.

We claim that n = is sufficient
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Now suppose n > cy max{d1 ]/a, d;/zofa} for some constant
Co = max{(18Cq /Ty)'/¥, 18Ca/ca} Then

(en*Ma (1))” = Zue®n® Mo (1)

Ca 2 24 1
= e <d2a—2

EO‘ 2 2a Cg
—& +
¢ <82n"‘

* (Cg + Cozna_lMZa—l (77))
n (1 + 1% Moy (77)),

where (11) follows from the fact that M, () > d'=* and
Moo_1(q) < dVeM,()? [19, Lemma 1(1 v)] and (12)
and n >

Moy
#re?) an

caMoy—1(1) )

ne?

v

Co
= —nNn

2

> 9Cq - 12)

follows from the assumption that n > cad 82
2—2/a
Cadsw.

2) Proof of Lemma 5: Equation (8) has already been estab-

lished in Lemma 3. It remains to bound the variance of the

estimator.
var(p, ) = B[l 2] ~ E[pl, )]

The second term is evaluated from the means of the sz Q)
polynomials, which we know. For the first term, we need to
bound the expectation of the products of such polynomials.
In fact, there is a general result [49, Proposition 4.5], [14,
Corollary 3.8.8] that states that for any g, w2,
Pil(“ 'pftz()“) ZPleUuz
p#’s for partitions of size at most |u U ua| — 1.

(A) 4+ linear combination of

For our particular case, both the partitions p; and p, are (@),
and specializing [14, Corollary 3.8.8] shows that

Py ) Ply ) = Plyuiy @) + D Cupl ),
nesS

where each coefficient C;, is at most (a@h? < exp(O(a log @)),
and S is the set of all partitions p that can be obtained through
the following procedure:
1) Letj be an integer in the set {0, ..., o — 1}.
2) Let o1 be a permutation over [« +/] that has a cycle over
the elements {1, ..., «}, and all the remaining elements
are fixed points (the set {&¢ + 1, ..., a +j} forj > 1).
3) Let 0, be a permutation over [« + j] that has a cycle
over the elements {j+1, ..., j4+«}, and all the remaining
elements are fixed points (the set {1, ...,j} for j > 1).
4) Let u be the cycle structure of o7 o 0.
The set of partitions that can be obtained through the above

procedure for a fixed j € {0, ..., o — 1} will be denoted by S;.
Now consider,
2
# # 2 #
Var(P(a)()t)) = E[P(a) ) :I - E[P(a)(k)]

—E|plo®+ Yl | - 1E[p’g;)(x)]2

=y

= 2 Mg0) (1) + ) CunIM,, ()
nes
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- (ngMoz(ﬂ))z
= (n= — ()" )Mo (n? + Y Cp - nlm, ),

nesS

where we have used that M, (p)> = M,o)(n7). To bound
M,(m) for uw € S, we use the following two lemmas.
Lemma 6 is proved in Appendix A and Lemma 7 is proved
in Appendix B. Recall that for a partition w, £(u) denotes the
length of the partition.

Lemma 6: For all j € {0, ...,
o —].

Definition 2: Let u and u’ be partitions of the same integer

a—1}and p € §;, £(n) <

r. Then p is said to IIla]OI’lZG ', denoted p > p/, if for all
>1, Z, 1 i = ,=1 Wi
Lemma 7: Let p>p'. Then for any distribution 5, M, () >
My (n).
Noting that n2% < (n%)2, we obtain
Var(pfa)(x)) <3 ¢ nliv, )
nesS
a—1
<cay Y nM, @ (13)
J=0 pes;
a—1
<ca Yy Y My gy (14)
J=0 peS;
a—1 )
<co Y Y n My (n) (15)
j=0 ,uESj
a—1
<can® Y Y WMy(n)
J=0 ues;

< con®|SImax{ 1,1~ M1}, (16)

where (13) follows from the fact that C,, < (a))i=cy, (14)
follows from Lemma 7 and the fact that [(o +j — () + 1)U
aw=17 > u, (15) follows from Lemma 6 and the fact that
M,(n) is a non-increasing function in r for fixed 7, and (16)
follows from the fact that for j € {1, ..., o — 2},

WM () < WMo ()
= WMo () < W Mo ().

Note that the above implication follows from Lemma 7 applied
to the partitions (2j + 1,2j+ 1) and (2j — 1, 2j + 3):

(WMo ()" < W Moy () -/ Moy 3 ().

Finally, note that |S| depends only on «. Hence, the lemma
follows by setting C, = ¢ |S]|.

B. Converse

Note that there are two terms in the copy complexity in
Theorem 1. The first is d!~/ «“/ ¢2, which is a lower bound in
the classical setting [19] and thus a lower bound in our setting.

We use Le Cam’s method to lower bound the copy com-
plexity by the second term. We define a hypothesis testing
problem next.
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1) Two Point Testing: Given density matrices p and o with
spectrums 3 and v, respectively, and an integer n,

o Let X be a uniform random variable over {0, 1}.

o If X =0, generate a Young tableau A - n ~ SWy.

o If X =1, generate a Young tableau A - n ~ SW,,.

o Given A, predict X with X.

Let P, = ming Pr ()A( #* X). From basic hypothesis testing
results, we can deduce that

11
Pe=5 - 5dTV(SW,,, SWy).

We construct two spectrums 3 and v, such that Sy(n) —
Sy (v) = B(¢), and

1
EdTV(SW,,, SW,) < 0.05,

unless n = Q(d>~2/*/g%/*). This proves that unless 7 is large
enough, there is no classifier that can test between the spec-
trums 5 and v with probability greater than 2/3, implying our
lower bound.

Note that the second term in the complexity expression of
Theorem 1 dominates when & > 1/+/d. We henceforth assume
in the remainder of this section that & > 1//d.

Consider the following two spectrums:

1/a l/a
I ORI et = i el = wll RS
77— d ’ d LR d ( )

1 1
v=|[-,....=).
d d

Note that for any d > 2, assuming that?> ¢ < logd, we have

(18)

(ed)\/* < d—1. 19)

Thus 7 is a valid distribution. v is simply the maximally-mixed
state. 2
Lemma 8: Suppose ¢ > 1/+/d and d > (3a)aT1. Then

U ojogf14 %
(0] — ).
1 %% 3

o —

1Se (v) = Sa ()| =

Proof: Computing the moments of 5, we have

I\
1 o d)«
Mo,(n)=d—a((1+(ed)é) +(d—l)<l—f;_)1) )

For « > 1 and x > 0, note that (1+x)% > 14+x%, and if x < 1,
(1 —x)* > 1 — ax. Using these two inequalities above with
x = (ed)"/® in the first term and with x = (¢d)!/%/(d — 1) in
the second term (and using (19)), we obtain

I\ o
1 o d)«
Ma(n)—d—a((l+(ed)clt) +(d—1)<1— S_)l) )

1 a(ed)/®
> dia(d—i-sd—a(sd)l/“)

21f ¢ > logd, then 30, = 0 is a valid estimate and the problem becomes
trivial.

> d 1+2
—_— =&
- de 3
2
= My(v) - (1 + 55),

whenever d > %, which is implied by the conditions

2a
e>1//dand d > Ba)e-T. [ ]
Lemma 9: Any algorithm that can test between  and v with
d2=2/«

probability at least 2/3 requires at least Q( 6;/05

Proof: We prove that dTV(SW,,, SWl,) < 0.05. Bounding
the total variation distance is hard to handle, and therefore
other distance measures are used to bound the total variation
distance. By Lemma 2, we know that

) copies.

gy (SWy, SWo)* < x2(SWy, SW,).

The objective is to bound the x? distance between the SW
distributions for the two states with n copies. We use the fol-
lowing formula, derived in [14, Corollary 6.2.4]. The result
in this form was obtained from related results on Schur
functions [50].

Lemma 10: Let xi,...,xg be such that > x; = 0, and
x; > — 1. Let 5 be the spectrum with ; = (14+x;)/d, and v be
the spectrum of the maximally mixed state, namely v; = 1/d.
Then,

5007 1y

2 _
X (SWy, SW,) = Y

)

2

wil<l(u)=d

where for a partition pu, d" is defined below.

Definition 3: Let p be a partition. Index each box in the
Young tableaux for p with an entry (i,j), where i the row
number and j is the column number of the box. For each box
(] in the tableaux, let ¢((J) =j — i be the content of [J. Then
for a real number z € R,

F =[]+ c@.
O

We will use the following bound on these falling powers of
partitions for our lower bound.

Lemma 11: Let u be a partition such that £(u) < d, where
£(w) is the number of non-zero entries of u (which is also the
number of non-empty rows in the Young tableaux). Then

(1]
d* > (51> )
e

This result is proved in Appendix C, and we now prove our
result using this lemma.

The distribution v corresponds to the spectrum defined
in (18), and we choose the x;’s to make the spectrum 3 equal
to (17). In particular, let x; = (ed)'/*, and x; = —(Sjlll/a for
i=2,...,d.Letyy =1,andy; = —1/(d—1) fori=2,...,d.
Then,

x = (ed)V/* . <1,

—1 —1 ) _ (Sd)l/oc .

d—1""""d-1
Recall that the Schur polynomial s, (x) is a homogeneous
symmetric polynomial of degree |w|. This implies,

50 = (ed) % 5,). (20)
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Let y+ be the vector of absolute values of y, namely

(! 1
E\aor o a—t)

Then, < |su(v4)|. Using the fact that d” > (d/e)!"
and n® < n™,
2
Wy swy) = 3 2
1<EG0<d Al gl
- ¥ S ul
il otGn=<d dHldinl
I<|pul=n
el
n(ed)>/®
< Z Su()’+)2 : (m
wil<l(uy=d
I<|pl=n
e e\
= Z su4)* - <dZ——2/a>
wil<t(u)=<d
I<|ul=zn
n 2/ \ M
ene 2
=3 <d2—2/°‘> > s
m=2 wlul=m

where the second equality follows from the fact that nltl =0
for || > n and the fact that the term with || = 1 vanishes
since Zle x; = 0. Let p(m) denote the partition number of
m, i.e., the number of unordered partitions of m. Bounds on
the growth of partition numbers are well established [39]. We
only need the following loose bound that holds for all m

p(m) < SV,
This gives
X2 (SWy, SW,)

g2/e\"
T

The entries of y;+ have the following structure. The first
entry is 1, and all other entries are 1/(d — 1). This allows us
to use the “branching rule” of Schur polynomials. The general
form can be found in [38, eq. 5.10]. A special case appears
in the following form in [51, eq. 1.4].

Lemma 12: The Schur polynomial s,(z) can be decom-

posed as:
su(z) = Z(Zl)‘“lflklsk (Z%)

A<

(22)

where zg denotes the second through last components of z and
the summation is over all partitions A such that u; > Ay >
M2 >Ay >3 >....

Applying this with z =y,

Al
s =Y (ﬁ) sk(ld—l).
A<

From (2), we see that s; (197!) is the number of semistandard
Young tableaux with shape A and entries from [d — 1]. We

(23)
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can trivially bound sk(ld_l) <(d- 1)“", the total number of
ways of filling the Young tableaux with entries from [d — 1],
without any regard to ordering.

We need one final definition.

Definition 4: For a partition u, let prec(u) be the number
of partitions A such that A < u, where < is as defined in
Lemma 12.

Lemma 13: Let || = m. Then

oo
prec(u) = l_[ (mi — pit1 +1) < e
i=1
Proof: The equality is due to a simple counting argument.
For the inequality, let w;, > ui;, > ... > p; > 1 be the
distinct elements in . If k = 1, the inequality is easy to show,
so assume that k > 1. Then, k(k+1)/2 < p;; +...+u;, <m,
implying that k < /2m. Moreover, Wiy —Mi, < lpl—1=m—1
since w; > 1. Then

k
prec(u) < l_[ (1+ iy — pipyy) < mk < m¥m.
=1
| |
Therefore,
IR d—1
o =3 (727) ()
A<p
1\ X
=< (dTl) (d— l)l !
r<p
= prec(u) < |p|V2H. (24)

Plugging (24) in (21),

n / m
g\/‘ ene
SZ( (dZ 2/01)
m=2

eng?/® =
= Z ( (dz Z/a) 2ﬁ)
/ m
< Z ((em)3f(2’;82/a) )

m=2

X2 (SWy, SW5) max s, (y¢) )

wilpl=

Finally note that mY™ < 2.2M for all m > 1. Therefore,
4 m
5 (2e)*ne?/
X (SW,,,SW., ZS< 422/ ) :

2 2
Therefore, unless n > Q( 5
ea
proving the result. |

), the x2 distance is small,

V. VON NEUMANN ENTROPY
A. Empirical Entropy Upper Bound
Analogous to the classical setting, the empirical distribution

; def );l’ and the empirical estimate of S(p) is

Zn,logA.

d

S(X) def Z — log —

i=1
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We prove the following bound on the mean squared error
of this estimator.
Theorem 2: The empirical entropy estimate satisfies:
_ » d* & log’n
E[(ST) - 5(0)’] = 0(—2 T )
n n n

An immediate corollary is the following sample complexity
bound.
Corollary 1:

+ 2

2 2
CS.d. ) = 0<d—2 M).
£

Proof: By Markov’s inequality on Theorem 2, there is a
constant C such that with probability at least 0.9,

— ¢ 4 log’n
|(S(0) = S(m)| < C\| 5+ —+
n n n
c d? N d N logn
< —t+ —=+—).

n  Jn Jn
Bounding each term to at most ¢/3C gives the sample
complexity bound. |

Proof of Theorem 2: The mean-squared error of an estimator
X of a parameter x can be decomposed as

E[( —5()2} =]E[( —E[X’])z] +]E[(5(—E[f(])2],

where the first term is the squared bias, and the second term
is the variance. In particular,

E[ (S - 5(0))’]
= (S(p) — E[SI)])’ + Var(SX)).

The theorem follows by plugging the following two bounds
on the bias and variance, respectively, into (25).
Lemma 14:

(25)

_ d? d
1S(p) —E[SM)]| < —+ 9%.

Lemma 15:

2
Var(@) = 0<10g n)

n

|
1) Bounding the Bias (Proof of Lemma 14): The bias of
the empirical estimate can be bounded as:

d 11
El > (nlog— — f;log =
n; n;

|S(p) —E[SM)]| =

i=1

-]

i=1 !

i=1

=

+ (26)

d 1

Z(ﬂi — E[n;]) log =

i=1 !

<

d (A . ')2
+E|:Z ni —n; j|’ 27)
i=1 mi
where (26) is by the triangle inequality, and (27) is from
Lemma (2). The second term is the expected y2-distance
of the empirical distance and the underlying distribution.

Reference [23, Th. 4.7] states that
d /\' _ . 2 2
E Z (77[ 77:) < d_ ’
i=1 i "

which bounds the second term of (27). To bound the first term,
we again use the following result from [23] that bounds the

expected value of 7; around ;.
Lemma 16 [23, Th. 1.4]:

ni —E[@)]] =2

...cq be the constants such that y; — E[7;] =

min{1, y;d}

. .
Let ¢y, .
Ci %, then by Lemma 16, |¢;] < 2. Since Zf-lzl n;

d ~
Y =1,
d

Y (Z ﬁ) =Y (r. - E[7)) =0,

i=1 i=1

implying that 3¢, ¢;,/7; = 0. Therefore,

d 1 [dfd 1
> (n; — E[@;]) log i /;(Z ciy/1;1og ;) (28)

i=1 i=1

Since % is a constant, to bound the first term of (27) it will

suffice to upper bound the following maximization problem:
d 1
Z ci/m;log —

n;

i=1

P1: maximize

d
subject to |¢;| <2, and Z ci/m; =0.
i=1
By the triangle inequality,
- 1 - 1
Z C,’ﬁi log 77_ Z C,'ﬁi log CZ_
; )

i=1 i=1 i

d

Z ciy/n;log ¢

i=1

=<

+

(29)

We bound the terms individually. We first consider the second
term. Since |¢;| < 2, the largest value of |c¢;log cl-2| is 2log4.
Therefore,
d

Zciﬁi 10gc,~2

i=1

d
<2log4- (Zﬁ,) < (2log4) - Vd,

i=1
where we use that Zle Vi, < V/d by concavity of square
root.

Let x; = ci/n;, then Y ;x; = 0, and since ) 5, = 1,
Zixlz < 4. Therefore, to bound the first term of (29), it will
suffice to solve P2 below.

d 1
P2: maximize Zx,- log;

i=1 i

(30)
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d d
subject to Y "x; =0, and Y x <4. (31
i=1 i=1
We show in Appendix D that
Lemma 17: The maximum value of the optimization
problem P2 is at most 176\/3
Plugging this in (29), the maximum of P1 is at most (16/e+
2log 4)\/6_1. Therefore,

d

>~ E[7]) e -

i=1

_ 16+210 4 d _ 9d
= e g \/ﬁ = ﬁ
Plugging this in turn into (27) yields

& 9

[St0) ~E[sT]| = -+

thus bounding the bias.

2) Proof of Lemma 15: We will use the bounded difference
variance bound [52, Corollary 3.2]. In particular, we consider
the LIS interpretation of weak Schur sampling. Let X" € [d]",
and let A be the shape of its young tableaux through the LIS
interpretation. Let A" be the shape of the Young tableaux cor-
responding to a sequence with Hamming distance at most
one from X". Let S(A), and S(A') denote their respective
empirical von Neumann entropy. The next lemma, proved in
Appendix E, states that changing one of the n symbols has a
small effect on the empirical entropy.

Lemma 18: Let A, and A’ be two Young tableaux shapes
obtained from the LIS of two length-n samples that differ in
at most one symbol. If n > 27, then

— T 501
st - s(v)| = =222
n
We invoke the bounded difference inequality [52,

Corollary 3.2] along with Lemma 18. The empirical entropy
estimate changes by at most 50logn/n when one symbol is
changed. Therefore, the variance is at most

1 501 2 6251og?
Var(S(A))on-< Og”> Lol
n

n

VI. NON-INTEGRAL «
A a>1

We prove the following sample complexity bound for esti-
mating S, (p) for « > 1. Throughout this section, we let 5
denote the true (sorted) spectrum and A /n denote its empirical
estimate.

Theorem 3: For a > 1, the empirical estimator of S (p)
outputs a +¢ estimate with O(‘;—;
at least 0.9.

Proof: Recall that n = )_ ;. Define

def 4\
Mo,(x)éZ(;l) .

i=1

) copies of p with probability

We show that for large enough n, My (X) is within a small
multiplicative factor of My (). The following result, proved
in [44, Appendix G], shows each term (A;/n)* concentrates
around 5¥.
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Lemma 19: Let B > 1. Then there is a constant Cg such
that

E[n = ()’ || < €5 - (72 + Va(wm)"").

’ ()]

B[ — (nim)"]]

M~

E[IMa(X) — Mo ()] = ]E[

i
1

o

M=~

=

S
T

IA
:Qqu

(n2 + Vatim® ™) (32)
1

d + Ma—l (77)
o na/z ﬁ ’
where (32) uses Lemma 19.

By Lemma [19, Lemma 1], for & > 1, My () > d'~%, and
My_1(n) < dMy(n). Substituting in (33),

|
a

(33)

d Mafl(”)
E[|My(X) — M ()] < Ca<na/2 + —Jn )

d* Mo (1)
S CO[ < na/z +

dMa(n))
/i

<C dd—i—dM()
= Cal a2 ﬁ a().

By Markov’s Inequality,

Pr(IMo(A) — Mo ()| > eMa (1))
_ ElMeQ) = Mol _ &( d* d )

= eMe (1) e \n2 T
When n > Cdz(gi2 + #)’ the result follows. Since o > 1,
the first term dominates. |
B. o<1

In this section, we will prove the following:

Theorem 4: The empirical estimator of Sy(p) is a e
estimate with O((d/e)z/ “) copies.

Similar to the case of large o, we need the following result,
which is proved in [44, Appendix H].

Lemma 20: Let B < 1. Then there is a constant Cg such
that

E[[A# — min)P|] < Cp - nP2.

We now prove the copy complexity bound assuming this
result.
Proof of Theorem 4: Recall that n = )_ A;. Define,

def o [ A\
Ma().)éz<;’> .

i=1

Then by the triangle inequality,

d
1 o o
E[IMo (M) = M (1] < = > B[[% = (im)*]

i=1
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C d
n—j Z n®/? (34)
i=1
= Ca%ﬂ, (35)

where (34) follows from Lemma 20. For a < 1, My(n) > 1.
Substituting in (35),

E[IMe Q) = Mol =C, ¢ =C

n/2 o

d Ma(ﬂ)-

na/2

By Markov’s Inequality,

Pr (1Ma () — Mo ()| > &M ()
_ ElMa () = Ma (Il _ ca< d >

- eMy (1) e \n¥/?
d 2/a
Therefore, when n > C (g) , the result follows. [ |
APPENDIX A
PROOF OF LEMMA 6
Fix j € {0,...,a — 1}. First we prove that each cycle in
o = 01 o 0y contains an element in {j + 1, ..., «}. Let

S={+1,....a}, Fi={a+1,...,0+j},
and Fr, ={1,...,j}.

F is fixed under oy, and F, is fixed under o,. Now consider
any cycle in o, and pick an element k in the cycle. If k € S,
then the claim is true. Otherwise:

Case 1: k € F.

Let ny be the largest integer such that
o1(k), alz(k), R J{“‘(k) € Fr. (If o1(k) ¢ F, define
n; = 0.) Note that, since o1 performs a cycle on F, US, there
must exist m such that o{"(k) € S. Hence, n is finite. Then,

() = (01 002" (k) L (01 0 02)™ (01 (k)
© ot g € s,

where (a) follows from the definition of n; and the fact that
points in F, are fixed under o3, (b) follows similarly (by
induction), and (c) follows from the definition of o1 and n.

Case 2: k € F|.

Let ny be the largest integer such that
o2(k), 05 (k), ..., 00 (k) € Fi. (If oa(k) ¢ Fi, define
n; = 0.) Note that, since o performs a cycle on F; U S, there
must exist m such that 62'" (k) € S. Hence, ny is finite. Then,

"L k) = (1 0 02)"H (k) £ (01 0 02) (02(K)
o o1 0 02""+I(k),
where (a) follows from the definition of n; and the fact that
points in Fp are fixed under oy, and (b) follows similarly
(by induction). Now, by definition of o, and ny, 02""+1(k) €
S. Then, by definition of o1, o1 o o3*"'(k) € F» U S.
"t k) e S, then the claim is true. Finally, if
(k) € F3, this falls back to case 1 which has been

If o100
o]0 a;"Jr
resolved.

Since |{j+ 1,...,a}| =« —j it follows that £(u) < o —j.

APPENDIX B
PROOF OF LEMMA 7

Let £ = £(u1) = €(u2), n1 = (x1,...,%x¢), and pup =

1, .--,ye). Then
4 L d
My, () = [ [ Mo =D nf
i=1 i=1 j=1
_ X1 Xe
= Z My =+ Mg -

Jisemje€ld]®

We define an equivalence relation on [d]¢ as follows:
G1s.-nsje) ~ (}1,...,}@) if there exists a permutation o on
[€] such that o(q,...,j¢0) = (}1,...,}@). We denote by &£
the set of equivalence classes created by this relation, and for
each E € £ we pick a representative element and denote it by
(1, ...,je)E. For each E, define gg:E — [£!] as

geGi--.jo) = |{o 1 o (Gr--.joE) = G-},
G1...je) € E.
Now note that, for each E, gg(.) is a constant function.
Indeed, if (ji,...,j¢) and Gl, . ,}g) belong to E, then there
exists o1 such that o1(y,...,j) = Gl, ...,}g). Therefore if
o (1, ---.joE) = (1.....je), then o1 0 0 ((1, ..., jo)E) =
(1, o ,Jje). Similarly, if o ((j1,...,jo)E) = (1,..-,Jj¢), then
oV oo ((i,....j0E) = (i, ..., je). So define g:€ — [£!]
as g(E) = ge((j1, - --,Jjeo)E). Now,

My (=)

Jiseie€ld]t

=2 ) Wy

E€€ (j1....jO)€EE

1 X X

X1 X
My -~ M,

1
= o) Dy Mgy = Mua (D),
Ee&E 8 o

where the inequality follows from Muirhead’s theorem [53],
[54, p. 125].

APPENDIX C
PROOF OF LEMMA 11

Let || = gd +r, where O < r < d, and g are non-negative
integers. We will show that of all & with |u| = gd + r and
£(n) < d, the tableaux with g columns with d boxes, and
one last column with r boxes, minimizes d*. Toward this end
consider a tableaux with at least two non-empty columns that
have less than d boxes in them. Then we can move a box from
the last row with length w; to the end of the first column that
does not have length equal to d. This operation moves a box
to the left and below, thereby decreasing the value of ¢(0J).

We now assume that the partition p has g columns with d
boxes and one column with r boxes. For this partition p, by
Definition 3,

q—1
d" = d+ 9 [[d+pt = @) @r.
Jj=0

(36)
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We will show that for any integer 0 <t <d,

d t
d- > (—) . 37)
e
Plugging this bound in (36), and noting that d! = d<, we
obtain,
_ AN\ sa\T sa\ M
== A=) =~ (38)
e e e

We now prove (37). Let

dt
ﬂn=(0f
Then for any t < d,
fa+1 _ d—-1
f@ (dfe)’

and this ratio is monotonically decreasing with ¢. Therefore,
the smallest value of f(¢) occurs at either t = 0 or t = d. At
t = 0, (37) is true since both sides are 1, and at t = d, we
need to show that d! > (d/e)?, which follows from Stirling’s
approximation.

APPENDIX D
PROOF OF LEMMA 17

We will first show that at the maxima, there can be at most
three distinct values that the x;’s can take, of which at most
one is positive.

Consider x; > 0 and x; > 0. Then, by the concavity of
logarithm, if we replace both by (x;+x;)/2 the objective value
increases. The constraints, on the other hand, are still valid.

We now consider the negative values. Writing the
Lagrangian,

d
s Xds V15 ¥2) =Z(x110g >+J/1<4 ZX)

i=1
n (Z )
i
Differentiating with respect to x;,

AL(XL, ...\ Xd, V1, V2)
3x,’

L(xy, ...

=10gi2—2—2y1x,~+7/2=0.

X
The function —2log(—x) —2y1x — 2+ y» is strictly convex on
(—00,0), and therefore has at most two roots.

Therefore, there are at most three distinct values that x;’s can
take, and at most one of them is positive. Let y; > 0 > —y, >
—y3 be these values, and let di, d», d3 be the multiplicities of
these. Therefore, the optimization problem can be written as:

P3 : maximize diylog iz — dyy; log iz — d3y3 log
N Y2

—dyy, —d3y3 =0,

d1y? + doy3 + dsy3 < 4, and

di+dr+ds <d.

3

subject to diy;
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Substituting d1y; = d>y; + d3y3 the objective becomes

1 1 1
(d2y2 + d3y3) log 7o dayr log — — d3yslog —

1 A V3
2 2
y y
= dyy; log —% + d3y3 log —;
b NS
Since diy1 > drys, we have y»/y1 < di/d», and

2
y d
dry» log —§ < 2dry> log A

l_af<J_ﬁ %)( @n)

Since dgy% <4, J/d2y; < 2. Moreover, for any z > 0,
1 1 2
zlog = =2zlog — < —.
z 7z e
This shows that
2
8 8
doyrlog2 < 2\/dy < 2Vd
yl e e

By a similar argument,
2

y
d3y3 IOg —; <
Y1

Summing up the two terms bounds the objective of P3, and

plugging in (28), we obtain
16 d
< —\/c_i . \/j -
e n

d 1
> (i —E[@]) log —
n;
APPENDIX E
PROOF OF LEMMA 18

8
V.
e

i=1

Proof: In the classical setting, changing one element can
change at most two probabilities of the empirical distribu-
tion, using which one can bound the variance of the empirical
entropy estimator. However, in our case, changing one sym-
bol can change the length of more than one row of the Young
tableaux. Reference [23, Prop. 2.2] showed that the cumula-
tive row sums are bounded (see also [55]). In particular, for
anyj=1,...,d,

j j
PR YED IR VIESE
i=1 i=1

Suppose A; def A/ —Aj, thenforall j=1,...,d,

j
—1§ZA,»§1.

i=1

(39)

This also implies that for each i, —2 < A; < 2. This proves
a bounded difference condition on A;, which can be used
to prove its concentration using McDiarmid’s inequality [52,
Th. 6.2].

Note that A; changes by at most two when one of the inputs
changes, and hence ¢ = 2. This gives

2

Al >0 <2 ¢,

Pr(JA; — E[A (40)
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Without loss of generality assume that £(A) > £(,'), i.e.,
the number of rows in A is at least the number of rows in 1.
By the Taylor series, for any —x < § < x,

(x4 8)log(x 4+ 8) = xlogx + 5(1 + logx)
8§ (=1Y
tL e

j=2

Let f(x) = xlogx. Then

—

5) - 5
()

—Z ’1 g——;l g—
e(x)

=3 (%)
-y () () P

ri>1 =2
14+ A; n 1

1 — -1 .

+xz—1[ nC A nOgn}

We now consider the terms separately, and prove the
following series of (simple) claims.
1) If (39) holds, and A;’s are non-increasing, then

A; A
Z —({1+1log—
Ai>1 n n

' Ai A
+ — log —

Proof: The first term is a direct consequence of (39).
The second term follows from:
Lemma 21: Let x; > xp > > x, > 0 be
nonnegative numbers. Further, let Ay, ..., A, satisfy
—-1< Zjl.zl A; <1 for all j. Then | Y 11, Ajxi| < x.
|
Proof: By induction over m. The case m = 1 is imme-
diate. For general m, the hypotheses in the statement
imply that
m
—X1 — Apxg < Z Aixp < x1 — Ajxy,
i=2
and the induction hypothesis implies that the lower and
upper bounds on the sum are negative and positive,
respectively. Thus since 0 < xp < x1, we have

m
—x1 — Apxp < Z Aixy < x1
i=2

— Apx,
or, equivalently,

m
— Apxp < Z Aixy < x1
i=3

—X1 — A1x1 — A1x1 — Axxp.

2)

3)

4)

Repeating this argument m — 2 times yields the conclu-
sion. ]
For A € N, let I, = {i:A; = A} be the set of rows with
length A. Then,

i€l : Aj#0} <4, (41)

i.e., there are at most four non-zero A;’s for each distinct
value of A;.

Proof: Let A; = A for i € {hy, ..., hp}. However, since
the A}’s are non-increasing, A;’s are non-increasing for
all i € {hy, ..., hp}. If more than four of these are non-
zero, then there are at least three consecutive positive,
or three consecutive negative A;’s. However, this would
violate (39). |

For A; > 2,
> (&) e
o \ki G=Dj| " &~

Proof: Using |Aj| < 2, and X; > 2, we have |A;|/A; < 1.
This implies that for any j > 1, (|A;l/A:Y < |A;l/A;.
This gives

J=2
Si(u)j_l |Al|
Z\n) G-
. o 2
S ST
A'i — (1 - 1)] )‘1 A'1

Therefore, the second term in the first summand can be
bounded as follows:

Lfom (AY 7 A=Y
2, Z<x_> G—1j

Ai>1 j=2
1 A7 _ 32logn
nasl Ai n

where we used (41), |A;] < 2, and that for n > 3,

1
2isizn 7 < 2logn. u
The second summation satisfies

14+ A; n 1 8logn
Z log — —logn|| < ——
= n 1+A; n n

whenever n > 27.
Proof:
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<= )

Ai=1,A;#0
3 1

< 4H:— log i logni|
n 3 n

where the middle inequality holds whenever n > 27.

14+ A; n 1
log — —logn
n 1+A; n

< 8logn

3

Using these five si%le claims, we can bound the difference
between S(A) and S(V). [
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