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Abstract— Multiple players are each given one independent
sample, about which they can only provide limited informa-
tion to a central referee. Each player is allowed to describe
its observed sample to the referee using a channel from a
family of channels W , which can be instantiated to capture,
among others, both the communication- and privacy-constrained
settings. The referee uses the players’ messages to solve an
inference problem on the unknown distribution that generated
the samples. We derive lower bounds for the sample complexity
of learning and testing discrete distributions in this information-
constrained setting. Underlying our bounds is a characterization
of the contraction in chi-square distance between the observed
distributions of the samples when information constraints are
placed. This contraction is captured in a local neighborhood in
terms of chi-square and decoupled chi-square fluctuations of a
given channel, two quantities we introduce. The former captures
the average distance between distributions of channel output
for two product distributions on the input, and the latter for
a product distribution and a mixture of product distribution on
the input. Our bounds are tight for both public- and private-
coin protocols. Interestingly, the sample complexity of testing is
order-wise higher when restricted to private-coin protocols.

Index Terms— Distributed algorithms, inference algorithms,
statistical analysis, minimax techniques, parameter estimation.

I. INTRODUCTION

LARGE-SCALE distributed inference has taken a center
stage in many machine learning tasks. In these settings,

it is becoming increasingly critical to operate under limited
resources at each player, where the players (who hold the data
samples) may be limited in their computational capabilities,
communication capabilities, or may restrict the information
about their data to maintain privacy. Our focus in this work
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Fig. 1. The information-constrained distributed model. In the private-coin
setting the channels W1, . . . , Wn are independent, while in the public-coin
setting they are jointly randomized.

will be on the last two constraints of communication and
privacy, and, in general, on local information constraints on
each player’s data.

We propose the following general framework for distributed
statistical inference under local information constraints. There
are n players observing independent samples X1, . . . , Xn from
an unknown distribution p over a domain X , with player i
getting the sample Xi ∈ X . The players want to enable a
central referee R to complete an inference task about their
data. However, the players are constrained in the amount of
information they can reveal to R about their observations in
the following manner: Player i must choose a channel Wi

from a prespecified class of channels W whose input alphabet
is X and output alphabet is Y , and use it to report its observed
sample to R.1 That is, player i passes its observation Xi as
input to its chosen channel Wi and R receives the channel’s
output Yi. The central referee then uses messages Y1, . . . , Yn

from the players to complete the inference task of interest,
such as estimation or testing for the underlying distribution
p; Fig. 1 illustrates the setup.

1A channel W from X to Y is a randomized mapping W : X → Y .
We represent it by a |Y|× |X | transition probability matrix W whose rows
and columns are indexed by y ∈ Y and x ∈ X , respectively, and its (y, x)th
entry W (y | x) := Wy,x is the probability of observing y when the input to
the channel is x.
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The family of allowed channels W serves as an abstraction
of the local information constraints placed on each player’s
message to R. Before moving ahead, we instantiate this
abstraction with two important examples, local communication
constraints and local privacy constraints, and specify the
corresponding Ws.
(a) Communication-Limited Inference. Each player can only

send ! bits about their sample, i.e., player i can send
a message Yi ∈ {0, 1}!. This constraint is captured by
considering the set of allowed channels W = W! :=
{W : X → {0, 1}!}, the family of channels with output
alphabet {0, 1}!.

(b) Locally Differentially Private Inference. Each player
seeks to maintain privacy of their own data. We adopt
the notion of local differential privacy which, loosely
speaking, requires that no output message from a player
reveals too much about its sample. This is captured by
restricting W to Wρ, the family of ρ-locally differentially
private (ρ-LDP) channels W : X → {0, 1}∗ that satisfy
the following (cf. [9], [21], [23], [38]): For ρ > 0,

W (y | x1)
W (y | x2)

≤ eρ, ∀x1, x2 ∈ [k], ∀y ∈ {0, 1}∗.

These specific cases of communication and privacy constraints
have received significant attention in the literature, and we
emphasize these cases separately in our results. We emphasize,
however, that our results are valid for arbitrary families W and
can handle other examples from the literature such as the t-
step Markov transition matrices considered in [10].

Our proposed framework and the general tools we develop
are applicable to statistical inference for any family of dis-
tributions, with the caveat that deriving concrete results for
a general family will require more work. Our focus in this
work will be on discrete distributions, i.e., distributions on a
finite alphabet X . For this setting, we consider the canonical
inference problems of estimating p and testing goodness-of-
fit, under both communication and privacy constraints. Moti-
vated by applications in distributed inference under resource
constraints, we seek algorithms that enable the desired infer-
ence using the fewest samples possible, or equivalently, the
least number of players. Our main results present a gen-
eral approach for establishing lower bounds for the sample
complexity of performing a given inference task under the
aforementioned information-constrained setting. Underlying
our lower bounds is a new quantitative characterization of
contraction in the chi-square distance between two output
message distributions, in comparison to that between the
corresponding input distributions, as a function of the imposed
information constraints represented by W .

We allow randomized selection of W s from W at each
player and distinguish between private-coin protocols, where
this randomized selection is done independently for each
player, and public-coin protocols, where the players can use
shared randomness. Interestingly, our chi-square contraction
bounds provide a quantitative separation of sample complexity
for private-coin and public-coin protocols, an aspect hitherto
ignored in the distributed inference literature and which is
perhaps the main contribution of our work.

We summarize our results below, after a formal description
of our problem setting.

A. Information-Constrained Inference Framework

We begin by recalling standard formulations for learn-
ing and testing discrete distributions in the classical non-
distributed setting. Denote by ∆k the set of all distributions
over [k] := {1, . . . , k}. We set X to be [k] and the set of
unknown distributions to ∆k. Let Xn := (X1, . . . , Xn) be
independent samples from an unknown distribution p ∈ ∆k.
We focus on the following two inference tasks.

Distribution Learning. In the (k, ε)-distribution learning
problem, we seek to estimate a distribution p in ∆k to within ε
in total variation distance. Formally, a (randomized) mapping
p̂ : Xn → ∆k constitutes an (n, ε)-estimator if

sup
p∈P

Pr
Xn∼p

[ dTV (p̂(Xn),p) > ε ] <
1
12

,

where dTV(p,q) denotes the total variation distance between
p and q (see Section II for definition of total variation dis-
tance). Namely, p̂ estimates the input distribution p to within
distance ε with probability at least 11/12. This choice of
probability is arbitrary and has been chosen for convenience;
see Footnote 12 to see where it is exactly used.

The sample complexity of (k, ε)-distribution learning is the
least n such that there exists an (n, ε)-estimator for p. It is
well-known that the sample complexity of distribution learning
is Θ(k/ε2), and the empirical distribution attains it.

Identity Testing. In the (k, ε)-identity testing problem, given
a known reference distribution q ∈ P , and samples from an
unknown p, we seek to test if p = q or if it is ε-far from q
in total variation distance. Specifically, an (n, ε)-test is given
by a (randomized) mapping T : Xn → {0, 1} such that

Pr
Xn∼pn

[ T (Xn) = 1 ] >
11
12

if p = q,

Pr
Xn∼pn

[ T (Xn) = 0 ] >
11
12

if dTV(p,q) > ε.

In other words, upon observing independent samples Xn,
the algorithm should “accept” with high constant probability
if the samples come from the reference distribution q and
“reject” with high constant probability if they come from a
distribution significantly far from q. Note again that the choice
of 1/12 for probability of error is for convenience.2

The sample complexity of (k, ε)-identity testing is the least
n for which there exists an (n, ε)-test for p. Clearly, this
quantity can depend on the reference distribution q. However,
it is customary to consider the sample complexity over the
worst-case q.3 In this worst-case setting, while it has been
known for some time that the most stringent sample require-
ment arises for q set to the uniform distribution, a recent

2In other words, we seek to solve the composite hypothesis testing problem
with null hypothesis H0 = {q} and composite alternative given by H1 =

q′ ∈ ∆k : dTV(q′,q) > ε in a minmax setting, with both type-I and
type-II errors set to 1/12.

3The sample complexity for a fixed q has been studied under the “instance-
optimal” setting (see [12], [50]): while the question is not fully resolved,
nearly tight upper and lower bounds are known.
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result of [29] provides a formal reduction of arbitrary q to
the uniform distribution case. It is therefore enough to restrict
q to being the uniform distribution; identity testing for the
uniform reference distribution is termed the (k, ε)-uniformity
testing problem. The sample complexity of (k, ε)-uniformity
testing was shown to be Θ

(√
k/ε2

)
in [41].

We consider the two inference tasks above in our
information-constrained setting. Let W be the set of allowed
channels describing the constraints, and let as before
X1, . . . , Xn be generated independently from an unknown
distribution p ∈ ∆k. Player i chooses a channel Wi ∈ W ,
passes its input Xi through Wi ∈ W and the output message
Yi constitutes information shared by player i with R. For a
given choice of channel W and y ∈ Y , denote by Wp the
probability

Wp(y) :=
∑

x

p(x)W (y | x) = Ep[W (y | X)]; (1)

namely, Wp is the distribution of the output message for a
choice W ∈ W of the channel. The referee R, upon observing
the messages Y n from the players, seeks to solve the two
inference tasks of (k, ε)-distribution estimation and (k, ε)-
identity testing.

In choosing the channels W from W , the players can be
allowed to follow protocols with different information struc-
tures. In the most general case, the choice Wi of each player
can depend on all the messages sent by the previous player and
shared, public coins available to the players. In this work, we
do not allow this most general class of protocols and restrict
our attention to simultaneous message passing (SMP) proto-
cols for communication. In an SMP protocol, the messages
Y1, . . . , Yn from all players are transmitted simultaneously to
the central server, and no other communication is allowed.
However, we consider both the cases where public coins
are and are not available. Note that this is equivalent to
choosing the channels W1, . . . , Wn simultaneously, possibly
using public coins when they are available.

Note that the SMP setting forbids communication between
the players, but does allow them to a priori agree on a strategy
to select different mappings Wi from W . In this context, the
role of shared randomness available to the players is important
and motivates us to distinguish the settings of private-coin and
public-coin protocols. In fact, as pointed-out earlier, a central
theme of this work is to demonstrate the role of shared
randomness available as public coins in enabling distributed
inference. We show that it is indeed a resource that can greatly
reduce the sample complexity of distributed inference.

Formally, the private- and public-coin SMP protocols are
described as follows.

Definition 1 (Private-coin SMP Protocols): Let
U1, . . . , Un denote independent random variables, which
are independent jointly of (X1, . . . , Xn).4 In a private-coin
SMP protocol, player i is given access to Ui and the channel
Wi ∈ W is chosen as a function of Ui. The central referee R
does not have access to the realization of Un := (U1, . . . , Un)

4In this work, we are not concerned with the amount of private or public
randomness used. Thus, we can assume Uis to be discrete random variables,
distributed uniformly over a domain of sufficiently large cardinality.

used to generate the Wis; however, it knows the mapping
from Uis to Wis.

Definition 2 (Public-coin SMP Protocols): Let U be a ran-
dom variable independent of (X1, . . . , Xn). In a public-coin
SMP protocol, all players are given access to U , and they
select their respective channels Wi ∈ W as a function of U .
The central referee R is given access to the realization of U
as well, and its estimator and test can depend on U .

Note that in a private-coin SMP protocol, the channels
W1, . . . , Wn are independent since the Uis are independent.
Further, since Xis are independent samples from p, the
messages Yis are also independent across the players. In
particular, the distribution of Y n = (Y1, . . . , Yn) is a prod-
uct distribution. In contrast, in a public-coin SMP protocol,
the channels Wi (and hence Yis) are chosen as functions
of the same random variable U and therefore need not be
independent. Nonetheless, even for public-coin SMP protocols,
the messages Y1, . . . , Yn are independent conditioned on the
shared randomness U .

Remark 1: Throughout we assume that some randomness
is available to generate the output of the channel Wi given
its input Xi. This randomness is assumed to be private as
well (namely, it is independent across the players and is not
available to R). This assumption stands even for public-coin
SMP protocols, implying the conditional independence of Yis
given U mentioned above, and is important in the context
of privacy where the information available to R is seen as
“leaked” and private randomness available only to the players
is critical for enabling LDP channels.

We now define information-constrained discrete distribution
estimation and testing at the referee.

For (k, ε)-distribution learning, an estimator using W com-
prises an SMP protocol that produces the messages Y n and
an estimator mapping p̂ that is applied by R to the messages
Y n. An (n, ε)-estimator using W is defined analogously to
the centralized setting, by replacing the input Xn of p̂ with
(Y n, U) and Y n, respectively, for public-coin and private-
coin5 SMP protocols. Similarly, for (k, ε)-identity testing, a
test using W comprises an SMP protocol and a test mapping
T applied by R, and an (n, ε)-test using W is defined
analogously to the centralized setting. We emphasize that
the shared randomness used by the players (except that for
realizing W ) is available to R, which only strengthens our
lower bounds. Our main quantity of interest in this work is
the following.

Definition 3: The sample complexity of (k, ε)-distribution
learning or (k, ε)-identity testing (or (k, ε)-uniformity testing)
using W for public-coin protocols, respectively, is the least n
such that there exists an (n, ε)-estimator or (n, ε)-test using
W with a public-coin SMP protocol. The sample complexities
of these tasks using W for private-coin protocols is defined
analogously.

Since we are restricting to one sample per player, the sample
complexity of these problems corresponds to the least number

5It is important to note that R does not have access to the private
randomness Un. In fact, our lower bounds for private-coin protocols may
not hold if the output at R can depend on private randomness of the players.
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of players required to solve them as well. Our main objective
in this line of work is the following:

Characterize the sample complexity for inference tasks using
W for private- and public-coin protocols.

B. Summary of Our Techniques

We are initiating a systematic study of the distributed
inference problems described in the previous section. In this
paper, the first in our series, we shall focus on lower bounds.
For input distributions p and q over X , the output messages
are Wp and Wq over Y . By data-processing inequalities,
the output distributions Wp and Wq are “closer” than the cor-
responding input distributions p and q, which makes it harder
to perform inference using messages Yis than using the inputs
Xis themselves. We provide a quantitative characterization
of this reduction in distance between the output distributions
compared to the input distributions for the chi-square distance,
which we term chi-square contraction, and use it to derive
lower bounds for distributed inference problems.

In more detail, we study chi-square contractions for an
ε-perturbed family (see Definition 5), a collection of prob-
ability distributions that are obtained by perturbing a nominal
distribution. The perturbed family of distributions is chosen
carefully to ensure that in order to accomplish the given infer-
ence task, an algorithm must roughly distinguish the perturbed
distributions. In particular, we relate the difficulty of inference
problems using two notions of distances: (a) the average chi-
square distance between the perturbed distributions to the
nominal distribution and (b) the chi-square distance of the
average perturbed distribution to the nominal distribution. For
our distributed inference setting, we need to bound these two
quantities for the induced perturbed family of distributions at
the outputs of the chosen channels from W .

We provide bounds for these two quantities for channel
output distributions in terms of two new measures of average
distance in a neighborhood: the chi-square fluctuation for the
average distance and the decoupled chi-square fluctuation for
the distance to the average. The former notion has appeared
earlier in the literature, albeit in different forms, and recovers
known bounds for distributed distribution learning problems.
The second quantity, the decoupled chi-square fluctuation,
is the main technical tool introduced in this work, and leads to
new lower bounds for distributed identity testing. Heuristically,
the smaller these quantities are, the closer are the distributions
of a perturbed family to the center, which in turn makes it
harder to distinguish them and results in a higher sample
complexity.

Observe that the general approach sketched above can be
applied to any perturbed family. We obtain lower bounds
for private-coin protocols by a maxmin evaluation of these
bounds, where the maximum is over the choice of channels
from W and the minimum is over the choice of perturbed
families. In other words, since the channels are chosen inde-
pendently of each other, for any given choice of channels,
we will design a specific perturbed family to give rise to a
small fluctuation bound. In contrast, we obtain lower bounds
for public-coin protocols by a minmax evaluation of these

bounds where the minimum is over perturbed families and
the maximum is over the choice of channels from W . In this
case, we design a perturbed family such that for any choice of
channels (chosen using the shared randomness), we can upper
bound the chi-squared fluctuations. Remarkably, we establish
that the maxmin evaluation can be significantly smaller than
the minmax evaluation, leading to a quantitative separation
in performance of private-coin and public-coin protocols for
testing problems.

This separation has a heuristic appeal: On the one hand,
in public-coin protocols players can use shared randomness
to sample channels that best separate the current point in
the alternative hypothesis class from the null. On the other
hand, for a fixed private-coin protocol, one can identify a
perturbed family in a “direction” where the current choice of
channels will face difficulty in distinguishing the elements of
the perturbed family. Further, we remark that this separation
only holds for testing problems. This, too, makes sense in
light of the previous heuristic since learning problems require
us to distinguish all distributions in a neighborhood around
the current hypothesis, without any preference for a particular
“direction of perturbation.”

We develop these techniques systematically in Section III
and Section IV. We begin by recasting the lower bounds for
the standard, centralized, setting in our chi-square fluctuation
language in Section III before extending these notions to the
distributed setting in Section IV. Finally, we evaluate our
general lower bounds for the distribution learning and identity
testing problems.

Our lower bounds are obtained as a function of a channel-
dependent matrix H(W ), defined below.

Definition 4: For any channel W ∈ W , define H(W ) as
the k/2 × k/2 positive semidefinite matrix given by

H(W )i1,i2 :=
∑

y∈Y

(W (y | 2i1 − 1) − W (y | 2i1))∑
x∈[k] W (y | x)

×

(W (y | 2i2 − 1) − W (y | 2i2)), (2)

for i1, i2 ∈ [k/2].
This matrix roughly captures the ability of the channel

output to distinguish between even and odd inputs. Our bounds
are in terms of the Frobenius norm ‖H(W )‖F and the nuclear
norm ‖H(W )‖∗ of the matrix H(W ); see Section II for defin-
itions. In effect, our results characterize the informativeness of
a channel W for distributed inference in terms of these norms
of H(W ), and our final bounds for sample complexity involve
the maximum of these norms over W in W . The smaller these
norms are, the lower is the ability to distinguish consecutive
inputs, and the better are our lower bounds (see Table I).

We summarize in Table I our sample complexity lower
bounds for the (k, ε)-distribution learning and (k, ε)-identity
testing problems for any general information constraints W
for public- and private-coin protocols. The form here is only
indicative; formal statements for results for general channels
are available in Corollaries 1 to 3 in Section IV and impli-
cations for specific W are given in Section V, with results
on the communication-limited setting in Theorems 6 to 8 and
the LDP setting in Theorems 9 to 11. The terms in each cell
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TABLE I

CHI-SQUARE CONTRACTION LOWER BOUNDS FOR LOCAL INFORMATION-CONSTRAINED LEARNING AND TESTING

denotes the Ω(·) lower bound obtained by our approach. The
first row contains our lower bounds for a general family W .
We are specifying the bounds in terms of the multiplicative
factor increase with respect to the central setting in which
the sample complexity for learning and testing is k/ε2 and√

k/ε2 respectively. We can instantiate the centralized setting
by choosing W to contain the identity channel, which leads
to ‖H(W )‖∗ = k, and ‖H(W )‖2

F = k/2 and retrieves the
optimal bounds in the centralized setting.

As a corollary of these general bounds, we obtain
Ω(k2/(ε22!)) and Ω(k2/(ε2ρ2)) lower bounds for both
private- and public-coin distribution learning using W! (the
communication-limited setting) and Wρ (the LDP setting),
respectively. In particular, the multiplicative increase is k/2!

and k/ρ2, respectively, for the communication-limited and
LDP settings compared to the centralized setting. As discussed
later, these bounds have also been obtained in previous works
and are known to be tight.

We note that for communication-constrained identity test-
ing, we obtain Ω(k/(ε22!/2)) and Ω(k3/2/(ε22!)) lower
bounds for public- and private-coin protocols respectively.
Both these bounds are tight, thus establishing the first sep-
aration in sample complexity using public- and private-coin
protocols for a natural distributed goodness-of-fit problem.
In particular, when ! = 1 (one bit of communication per
player) the sample complexity for public- and private-coin
protocols is Θ(k) and Θ(k3/2) respectively. Similarly, for LDP
identity testing, we obtain Ω(k/(ε2ρ2)) and Ω(k3/2/(ε2ρ2))
lower bounds for public- and private-coin protocols, respec-
tively, which are both tight, too, exhibiting the role of shared
randomness in reducing the sample complexity.

As an interesting consequence, our results show that shared
randomness does not help for distribution learning under
communication or LDP constraints, in contrast to iden-
tity testing. Moreover, note that for (k, ε)-identity testing
under general constraints, the factor k/(maxW∈W‖H(W )‖∗)
increase in the lower bound for private-coin protocols is
the same as the increase for (k, ε)-distribution learning
under information constraints; but the corresponding factor
increase for identity testing using public-coin protocols is only√

k/(maxW∈W‖H(W )‖F ), which in general can be much
smaller.

In the subsequent papers in this series ( [1], [3]), we present
public-coin and private-coin protocols to match the bounds
in the communication-limited and LDP settings, respectively,
thereby establishing the optimality of these lower bounds.

C. Prior and Related Work

The statistical tasks of distribution learning and identity
testing considered in this work have a rich history. The former
requires no special techniques other than those used in para-
metric estimation problems with finite-dimensional parameter
spaces, which are standard textbook material. The identity
testing problem is the same as the classic goodness-of-fit
problem. The latter goes beyond the discrete setting considered
here, but often starts with a quantization to a uniform refer-
ence distribution (see [35], [39]). The focus in this line of
research has always been on the relation of the performance
to the support size (cf. [39]), with particular interest on the
large-support and small-sample case where the usual normal
approximations of statistics do not apply (cf. [8], [40]). Closer
to our setting, Paninski [41] (see, also, [50]) established
the sample complexity of uniformity testing, showing that
it is sublinear in k and equal to Θ(

√
k/ε2). As mentioned

earlier, in this work we are following this sample complexity
framework that has received attention in recent years. We refer
the reader to surveys [7], [15], [18], [43] for a comprehensive
review of recent results on discrete distribution learning and
testing.

Distributed inference problems, too, have been studied
extensively, although for the asymptotic, large-sample case
and for simpler hypothesis classes. There are several threads
here. Starting with [49], decentralized detection has received
attention in the control and signal processing literature, with
main focus on information structure, likelihood ratio tests and
combining local decisions for global inference. In a parallel
thread, distributed statistical inference under communication
constraints was initially studied in the information theory com-
munity [5], [30], [31], with the objective to characterize the
asymptotic error exponents as a function of the communication
rate. Recent results in this area have focused on more com-
plicated communication models [53], [54] and, more recently,
on the minimum communication requirements for large sample
sizes [6], [44].

Our focus is different from that of the works above. In our
setting, independent samples are not available at one place,
but instead information constraints are placed on individual
samples. This is along the line of recent work on distributed
mean estimation under communication constraints [14], [28],
[45], [55], [58], although some of these works consider
more general communication models than what we allow.
The distribution estimation problem under communication
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constraints has been studied in [20],6 and, subsequent to an
earlier version of this work, the distribution testing problem
has been considered in [19]. However, in these two papers the
authors consider a blackboard model of communication and
strive to minimize the total number of bits communicated,
without placing any restriction on the number of bits per
sample. A more closely related variant of the distribution
testing problem is studied in [26] where players observe
multiple samples and communicate their local test results to
the central referee who is required to use simple aggregation
rules such as AND. Interestingly, such setups have received a
lot of attention in the sensor network literature where a fusion
center combines local decisions using simple rules such as
majority; see [51] for an early review.

Closest to our work and independent of it is [32], which
studies the (k, ε)-distribution learning problem using ! bits
of communication per sample. It was shown that the sample
complexity for this problem is Θ(k2/(ε22!)). This paper in
turn uses a general lower bound from [33], [34], which yields
lower bounds for distributed parametric estimation under suit-
able smoothness conditions. For this special case, our general
approach reduces to a similar procedure as [34], which was
obtained independently of our work.

Distribution learning under LDP constraints has been stud-
ied in [4], [21], [37], [52], [56], all providing sample-optimal
schemes with different merits. Our lower bound when special-
ized for this setting coincides with the one derived in [21].

In spite of this large body of literature closely related
to our work, there are two distinguishing features of our
approach. First, the methods for deriving lower bounds under
local information constraints in all these works, while leading
to tight bounds for distribution learning, do not extend to
identity testing. In fact, our decoupled chi-square fluctuation
bound fills this gap in the literature. We remark that dis-
tributed uniformity testing under LDP constraints has been
studied recently in [46], however the lower bounds derived
there are significantly weaker than what we obtain. Second,
our approach allows us to prove a separation between the
performances of public-coin and private-coin protocols. This
qualitative lesson – namely that shared public randomness
reduces the sample complexity – is in contrast to the pre-
scription of [49] which showed that shared randomness does
not help in distributed testing when the underlying problem is
that of simple hypothesis testing.7

We observe that the unifying treatment based on chi-square
distance is reminiscent of the lower bounds for learning under
statistical queries (SQ) derived in [24], [25], [47]. On the
one hand, the connection between these two problems can be
expected based on the relation between LDP and SQ learning
established in [38]. On the other hand, this line of work only
characterizes sample complexity up to polynomial factors.
In particular, it does not lead to lower bounds we obtain using
our decoupled chi-square fluctuation bounds.

6To the best of our knowledge, only an extended abstract with the result
statements is available, and a full version including the proofs is yet to appear.

7As discussed earlier, identity testing is a composite hypothesis testing
problem with null hypothesis q and alternative comprising all distributions p
that are ε-far from q in total variation distance.

We close with a pointer to an interesting connection to
the capacity of an arbitrary varying channel (AVC). At a
high level, our minmax lower bound considers the worst
perturbation for the best channel. This is semantically dual
to the expression for capacity of an AVC with shared ran-
domness, where the capacity is determined by the maxmin
mutual information, with maximum over input distributions
and minimum over channels (cf. [17]).

D. Organization

We specify our notation in Section II and recall some basic
inequalities needed for our analysis. This is followed by a
review of the existing lower bounds for sample complexity
of distribution learning and identity testing in Section III. In
doing so, we introduce the notions of chi-square fluctuation
which will be central to our work, and cast existing lower
bounds under our general formulation. In Section IV, we
generalize these notions to capture the information-constrained
setting. Further, we apply our general approach to distribution
learning and identity testing in the information-constrained
setting. Then, in Section V, we instantiate these results to
the settings of communication-limited and LDP inference
and obtain our order-optimal bounds for testing and learning
under these constraints. We conclude with pointers to schemes
matching our lower bounds which will be reported in the
subsequent papers in this series.

II. NOTATION AND PRELIMINARIES

Throughout this paper, we denote by log2 the logarithm to
the base 2 and by log the natural logarithm. We use standard
asymptotic notation O(·), Ω(·), and Θ(·) for complexity
orders.8

Let [k] be the set of integers {1, 2, . . . , k}. Given a fixed
(and known) discrete domain X of cardinality |X | = k,
we write ∆k for the set of probability distributions over X ,
i.e.,

∆k = { p : [k] → [0, 1] : ‖p‖1 = 1 } .

For a discrete set X , we denote by uX the uniform distribution
on X and will omit the subscript when the domain is clear
from context.

The total variation distance between two probability distri-
butions p,q ∈ ∆k is defined as

dTV(p,q) := sup
S⊆X

(p(S) − q(S)) =
1
2

∑

x∈X
|p(x) − q(x)| ,

namely, dTV(p,q) is equal to half of the !1 distance of p and
q. In addition to total variation distance, we will extensively
rely on the chi-square distance dχ2 (p,q) and Kullback–
Leibler (KL) divergence D(p‖q) between distributions p,q ∈

8Namely, for two non-negative sequences (an)n and (bn)n, we write an =
O(bn) (resp., an = Ω(bn)) if there exist C > 0 and N ≥ 0 such that
an ≤ Cbn (resp., an ≥ Cbn) for all n ≥ N . Further, we write an = Θ(bn)
when both an = O(bn) and an = Ω(bn) hold.
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∆k, defined as

dχ2 (p,q) :=
∑

x∈X

(p(x) − q(x))2

q(x)
, and

D(p‖q) :=
∑

x∈X
p(x) log

p(x)
q(x)

.

Using concavity of logarithms and Pinsker’s inequality, we can
relate these two quantities to total variation distance as follows:

2 · dTV(p,q)2 ≤ D(p‖q) ≤ dχ2(p,q) . (3)

In our results, we will rely on the following norms for
matrices. Given a real-valued matrix A = (aij)(i,j)∈[m]×[n]

with singular values (σk)1≤k≤m∧n, the Frobenius norm (or
Schatten 2-norm) of A is given by

‖A‖F =




m∑

i=1

n∑

j=1

a2
ij




1/2

=

(
m∧n∑

k=1

σ2
k

)1/2

=
√

TrAT A.

Similarly, the nuclear norm (also known as trace or Schatten
1-norm) of A is defined as

‖A‖∗ :=
m∧n∑

k=1

σk = Tr
√

AT A ,

where
√

AT A is the (principal) square root of the positive
semi-definite matrix AT A. For any A, the Frobenius and
nuclear norms satisfy the following inequality

‖A‖F ≤ ‖A‖∗ ≤
√

rankA · ‖A‖F , (4)

which can be seen to follow, for instance, from an !1/!2

inequality and Cauchy–Schwarz inequality. Finally, the spec-
tral radius of complex square matrix A ∈ Cn×n with eigen-
values λ1, . . . , λn, is defined as ρ(A) := max1≤i≤n |λi|.

III. PERTURBED FAMILIES, CHI-SQUARE FLUCTUATIONS,
AND CENTRALIZED LOWER BOUNDS

To build basic heuristics, we first revisit the derivation
of lower bounds for sample complexity of (k, ε)-distribution
learning and (k, ε)-identity testing in the centralized setting.
As mentioned previously, for the latter it suffices to derive
a lower bound for (k, ε)-uniformity testing. For brevity,
we will sometimes refer to distribution learning as learning
and identity testing as testing. We review both proofs in a
unifying framework which we will extend to our information-
constrained setting in the next section.9

Lower bounds for both learning and testing can be derived
from a local view of the geometry of product distributions
around the uniform distribution. Let u be the uniform distri-
bution on [k] and un be the n-fold product distributions over
[k]n, denoting the distribution of n independent and identically
distributed (i.i.d.) draws from u. A typical lower bound
proof involves designing an appropriate family of distributions
close to u such that the underlying problem is information-
theoretically difficult to solve even for this smaller family of

9Although we restrict ourselves to the discrete distributions over [k] here,
the framework extends to more general parametric families.

distributions. We call such a family a perturbed family and
define it next.

Definition 5 (Perturbed Family): For 0 < ε < 1 and a
given k-ary distribution q, an ε-perturbed family around q is
a finite collection P of distributions such that, for all p ∈ P ,
dTV(p,q) ≥ ε.

When ε is clear from context, we simply use the phrase
perturbed family around q.

As we shall see below, the bottleneck for learning distrib-
utions, which is a parametric estimation problem, arises from
the difficulty in solving a multiple hypothesis testing problem
with hypotheses given by the elements of a perturbed family
around u. Using Fano’s inequality, we can show that this
difficulty is captured by the average KL divergence between
u and the elements of the perturbed family. In fact, for a
unified treatment, we shall simply bound KL divergences by
chi-square distances. This motivates the following definition.

Definition 6 (Chi-square Fluctuation): Given a perturbed
family P around q, the chi-square fluctuation of P is given
by

χ2(P) :=
1
|P|

∑

p∈P
dχ2 (p,q) ,

the average chi-square distance of the distributions in P from
q.

From Eq. (3), it follows that the average KL divergence
mentioned above is upper bounded by the chi-square fluctua-
tion of P , which will be used to obtain a lower bound for the
sample complexity of learning in the next section.

On the other hand, identity testing is a composite hypothesis
testing problem, and a lower bound on the testing problem can
be obtained using Le Cam’s two-point method. Specifically,
for an ε-perturbed family P around u, consider a binary
hypothesis testing between the following two distributions over
[k]n: un and the uniform mixture 1

|P|
∑

p∈P pn of the n-
fold product of elements of the perturbed family. Since each
element of P is at a total variation distance ε from u, it can
be seen easily that any test for identity testing will yield a
test for this binary hypothesis testing problem as well, with
the same probability of error. In particular, a lower bound
on the value of n required to solve this problem gives a
lower bound on identity testing. Thus, our goal is to capture
the difficulty of this binary hypothesis testing problem. This
difficulty is captured by the total variation distance between
these two distributions on [k]n, for which a simple upper
bound is

√
n ·
√

χ2(P). However, this bound turns out to be
suboptimal.

Instead, an alternative bound derived using a recipe of
Ingster [36] (the form here is from [42]) was shown to be
tight in [41]. To understand this bound, we let the perturbed
family P be parameterized by a discrete set Z , i.e., for each
z ∈ Z , there is a pz ∈ P . We will specify the choice of
Z shortly. Denoting by δz ∈ Rk the normalized perturbation
with entries given by

δz(x) :=
pz(x) − q(x)

q(x)
, x ∈ [k] , (5)
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let ‖δz‖2
2 := EX∼q

[
δz(X)2

]
= dχ2(pz ,q) be the second

moment of the random variable δz(X) (for X drawn from
q). For Z uniform over P , note that we can re-express χ2(P)
as

χ2(P) = EZ

[
dχ2(pZ ,q)

]
= EZ

[
‖δZ‖2

2

]
.

Following [36], [42], we can bound the total variation dis-
tance mentioned above by a quantity we term the decoupled
chi-square fluctuation of P , instead of the weaker bound√

n · χ2(P). This quantity appears by using the decoupling
expression δ2

Z = δZδZ′ , as will be seen below, and is defined
next.

Definition 7 (Decoupled Chi-square Fluctuation): Given a
k-ary distribution p and a perturbed family P =
{ pz : z ∈ Z } around q, the n-fold decoupled chi-square
fluctuation of P is given by

χ(2)(Pn) := log EZZ′ [exp (n · 〈δZ , δZ′〉)],

where
〈δz, δz′〉 := EX∼q[δz(X)δz′(X)]

denotes the correlation inner product with respect to q, and
the outer expectation is over Z and Z ′, which are independent
and uniformly distributed uniformly over Z .

While the quantities n · χ2(P) and χ(2)(Pn) are implicit
in prior work, the abstraction here allows us to have a clear
geometric view and lends itself to the more general local
information-constrained setting. For completeness, we review
the proofs of existing lower bounds using our chi-square
fluctuation terminology.

A Specific Perturbed Family Used in Our Lower Bounds:
In the sections below, we will present the proofs of lower
bounds for sample complexity of learning and testing using a
specific perturbed family P and bring out the role of χ2(P)
and χ(2)(Pn) in these bounds. In particular, both bounds
will be derived using the ε-perturbed family around u due
to [41], consisting of distributions parameterized by z ∈ Z =
{−1, +1}k/2 and comprising distributions pz ∈ ∆k given by

pz =
1
k
(1 + 2εz1, 1 − 2εz1, . . . , 1 + 2εz k

2
, 1 − 2εz k

2
), (6)

for z ∈ {−1, +1} k
2 . The normalized perturbations for this

perturbed family are given by

δz(x) =

{
2εzi, x = 2i − 1,

−2εzi, x = 2i,
i ∈ [k/2]. (7)

Note that for any x ∈ [k], |δz(x)| = 2ε, and the chi-square
fluctuation is given by

χ2(P) = 4ε2. (8)

A. Chi-Square Fluctuation and the Centralized Learning
Lower Bound

As a starting application, we recover the following well-
known result for the sample complexity of distribution learn-
ing, using the notion of chi-squared fluctuation.

Theorem 1: For (k, ε)-distribution learning, if there exists
an (n, ε)-estimator, then n = Ω(k/ε2).

To establish this bound, we consider the multiple hypothe-
ses testing problem where the hypotheses are pz , z ∈
{−1, +1}k/2, given in Eq. (6). Specifically, denote by Z the
random variable distributed uniformly on Z = {−1, +1}k/2

and by Xn the random variable with distribution pn
Z given

Z . We can relate the accuracy of a probability estimate to the
probability of error for the multiple hypothesis testing problem
with hypotheses given by pz using the standard Fano’s method
(cf. [57]). In particular, we can use a probability estimate p̂
to solve the hypothesis testing problem by returning as Ẑ a
z ∈ {−1, 1}k/2 that minimizes dTV(pẑ , p̂). The difficulty
here is that the total variation distance dTV(pz,pz′) may not
be Ω(ε), and therefore, an (n, ε)-estimator may not return the
correct hypothesis.

One way of circumventing this difficulty is to restrict to a
perturbed family where pairwise-distances are Ω(ε). Note that
for the perturbed family in Eq. (6)

dTV(pz,pz′) = dist(z, z′) · 2ε

k
, (9)

where dist(z, z′) is the Hamming distance. This simple obser-
vation allows us to convert the problem of constructing a
“packing” in total variation distance to that of constructing
a packing in Hamming space. Indeed, a standard Gilbert–
Varshamov construction of packing in Hamming space yields
a subset Z0 ⊂ {−1, +1}k/2 with |Z0| ≥ 2ck such that
dist(z, z′) = Ω(k) for every z, z′ in Z0. Using Fano’s inequal-
ity to bound the probability of error for this new perturbed
family, we can relate the sample complexity of learning to
I(Z ∧ Xn). However, when later extending our bounds to
the information-constrained setting, this construction would
create difficulties in bounding I(Z ∧ Xn) for public-coin
protocols. We avoid this complication by relying instead
on a slightly modified form of the classic Fano’s argument
from [22]; this form of Fano’s argument was used in [34] as
well to obtain a lower bound for the sample complexity of
learning under communication constraints.

Specifically, in view of Eq. (9), it is easy to see that for an
estimate p̂ such that pn(dTV(p, p̂) > ε/3) ≤ 1/12 for all p,
we must have

Pr
[

dist
(
Z, Ẑ

)
>

k

6

]
≤ 1

12
.

On the other hand, the proof of Fano’s inequality in [16] can
be extended easily to obtain (see, also, [22])

Pr
[

dist
(
Z, Ẑ

)
>

k

6

]
≥ 1 − I(Z ∧ Y n) + 1

log2 |Z|− log2 Bk/6
, (10)

where Bt denotes the cardinality of Hamming ball of radius
t. Noting that

log2 Bk/6 ≤ k

2
· h
(

1
3

)
, (11)

and combining the bounds above, if an (n, ε)-estimator exists,
then we must have

I(Z ∧ Xn) + 1 ≥ 11k

12 · 2 · (1 − h(1/3))
≥ k

30
. (12)
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Therefore, to obtain a lower bound for sample complexity it
suffices to bound I(Z ∧Xn) from above. It is in this part that
we bring in the role of chi-square fluctuations. Note that for
a given value of Z , Xn ∼ pn

Z . Therefore, we have

I(Z ∧ Xn) = EZ [D(pn
Z‖EZ [pn

Z ])]
= EZ [D(pn

Z‖un)] − D(EZ [pn
Z ]‖un)

≤ EZ [D(pn
Z‖un)]

= n EZ [D(pZ‖u)]
≤ n EZ

[
dχ2 (pZ ,u)

]

= n · χ2(P) , (13)

where the last inequality uses D(p‖q) ≤ dχ2(p,q). Combin-
ing Eq. (12) and Eq. (13), we obtain that n = Ω

(
k/χ2(P)

)
,

which along with Eq. (8) proves Theorem 1.
In fact, the argument above is valid for any perturbation

(i.e., around any nominal distribution q) with the desired pair-
wise minimum total variation distance, namely any perturbed
family satisfying an appropriate replacement for Eq. (11). In
particular, it suffices to impose the following condition:

max
z∈Z

∣∣∣∣
{
z′ ∈ Z : dTV(pz ,pz′) ≤ ε

3

} ∣∣∣∣ ≤ Cε . (14)

Proceeding as in the proof of Theorem 1 above, noting that
|Z| = |P| and replacing Bk/6 with the right-side of Eq. (14),
we obtain the following.

Lemma 1: For 0 < ε < 1 and a k-ary distribution q, let P
be an ε-perturbed family around q satisfying Eq. (14). Then,
the sample complexity of (k, ε/3)-distribution learning must
be at least

Ω
(

log |P|− log Cε

χ2(P)

)
.

As a sanity check, when P is set to be Paninski’s perturbed
family given in Eq. (6), we have |P| = 2k/2, Cε =
2(1−h(1/3))k/2, and χ2(P) = 4ε2 from Eq. (8), recovering the
Ω(k/ε2) lower bound for sample complexity of distribution
learning derived above.

B. Decoupled Chi-Square Fluctuation and the Centralized
Testing Lower Bound

In this section, we provide an alternative proof for the
following result on uniformity testing, using the notion of
decoupled chi-square fluctuation.

Theorem 2 ( [41]): If there exists an (n, ε)-test for (k, ε)-
uniformity testing, then n = Ω(

√
k/ε2).

Unlike for distribution learning, the binary hypothesis testing
problems obtained from the pairs of distributions in the
perturbed family P do not yield the desired dependence of
sample complexity on k. As pointed earlier, the bottleneck in
this case emerges by looking at a binary hypothesis testing
problem between un and a uniform mixture of distributions
from an ε-perturbed family. Specifically, by Le Cam’s method,
any test for uniformity also constitutes a test for un ver-
sus E[pn

Z ] = 1
2k/2

∑
z∈{−1,+1}k/2 pn

z , the uniform mixture
of n-fold product distributions over the perturbed family
from Eq. (6). Thus, another aspect of the geometry around
un that enters our consideration is the distance between un

and E[pn
Z ]. In particular, the key would be to prove a lower

bound on the value of n to ensure that dTV(un, E[pn
Z ]) is at

least 1/12.
As a straightforward attempt towards bounding this quantity,

by Pinsker’s inequality and convexity of KL divergence, we get

dTV(E[pn
Z ] ,un) ≤

√
1
2
D(E[pn

Z ] ‖un)

≤
√

1
2

E[D(pn
Z‖un)]

=
√

n

2
E[D(pZ‖u)]

≤
√

n

2
· χ2(P)

=
√

2nε2, (15)

where the last identity is by Eq. (8). Thus, this upper bound on
the distance between un and E[pn

Z ] in terms of the chi-square
fluctuation only yields a sample complexity lower bound of
Ω(1/ε2), much lower than the Ω(

√
k/ε2) bound that we strive

for.
Interestingly, we obtain the desired improvement in the

lower bound by taking recourse to the decoupled chi-square
fluctuation χ(2)(Pn). Specifically, we have the following
result.

Lemma 2: For 0 < ε < 1 and a k-ary distribution q, let
P be an ε-perturbed family around q. Then, the sample com-
plexity n = n(k, ε) for (k, ε)-identity testing with reference
distribution q must satisfy

χ(2)(Pn) ≥ 1
12

.

The proof is this result relies on the so-called Ingster’s
method to bound the chi-square distance between a mixture of
product distributions and a product distribution. The complete
proof is provided in Appendix B, and makes critical use of
the following result from [42], which, too, is proved in the
appendix.

Lemma 3: Consider a random variable θ such that for each
θ = ϑ the distribution Qn

ϑ is defined as Q1,ϑ × · · · × Qn,ϑ.
Further, let Pn = P1×· · ·×Pn be a fixed product distribution.
Then,

χ2(Eθ[Qn
θ ], Pn) = Eθθ′




n∏

j=1

(1 + Hj(θ, θ′))



 − 1,

where θ′ is an independent copy of θ, and with δϑ
j (Xj) =

(Qj,ϑ(Xj) − Pj(Xj))/Pj(Xj),

Hj(ϑ, ϑ′) :=
〈
δϑ
j , δϑ′

j

〉
= E

[
δϑ
j (Xj)δϑ′

j (Xj)
]
,

where the expectation is over Xj distributed according to Pj .
Proof of Theorem 2: We use Lemma 2 to complete

the proof. Specifically, we apply the lemma to Paninski’s
perturbed family given in Eq. (6). By Eq. (7),

〈δZ , δZ′〉 =
8ε2

k

k
2∑

i=1

ZiZ
′
i =

8ε2

k

k
2∑

i=1

Vi ,
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Fig. 2. The figure depicts the distances in the probability simplex on the left
and the n-fold distributions on the right. The mixture distribution E pn

Z is
marked in red.

where Vi := ZiZ ′
i. Since Z, Z ′ are independently and uni-

formly distributed over {−1, +1}k/2, V1, . . . , Vk/2 are inde-
pendent and distributed uniformly over {−1, +1}. Therefore,
we can bound the decoupled chi-square fluctuation using
Hoeffding’s Lemma (cf. [13]) as

χ(2)(Pn) = log E
[
e

8nε2
k

k
2
i=1 Vi

]
≤ 16n2ε4

k
. (16)

Thus, Lemma 2 implies that Ω(
√

k/ε2) samples are needed
for testing (in particular, for uniformity testing).

In closing, we summarize the geometry captured by the
bounds derived in this section in Fig. 2. This geometry is
a local view in the neighborhood of the uniform distribution
obtained using the perturbed family P in Eq. (6). Each pz is
at a total variation distance ε from u. The mixture distribution
we use is obtained by uniformly choosing the perturbation δz

over z ∈ {−1, +1}k/2.
The chi-square fluctuation of P is O(nε2) whereby the

average total variation distance to un is O(
√

nε). On the other
hand, the decoupled chi-square fluctuation of P is O(n2ε4/k)
and thus the total variation distance of the mixture of pn

z to
un is O(nε2/

√
k). Note that for n / k/ε2, the total variation

distance between the mixture E[pn
Z ] and un is much smaller

than the average total variation distance.

IV. RESULTS: THE CHI-SQUARE CONTRACTION BOUNDS

WITH INFORMATION CONSTRAINTS

We now extend our notions of chi-square fluctuation
and decoupled chi-square fluctuation to the information-
constrained setting. We follow the same notation as the previ-
ous section. Recall that in the information-constrained setting
each player sends information about its sample by choosing
a channel from a family W to communicate to the central
referee R. The perturbed family will now induce a distribution
on the outputs of the chosen channels W1, . . . , Wn. By data-
processing inequalities these induced distributions will be
closer to each other than the distributions of the perturbed
family itself, and in particular the induced chi-squared fluctu-
ations of the induced distributions will be smaller than that of
the input distributions. We term this reduction in fluctuations
chi-squared contraction. We will relate the difficulty of the
learning and testing problems to the chi-squared fluctuations
on the induced perturbed family. Combining these two steps
we obtain lower bounds on the sample complexity of the
learning and testing problems with respect to the centralized
setting in terms of the chi-squared contractions. In other

words, the difficulty of inference gets amplified by information
constraints since the induced distributions are closer than the
original ones and the chi-square fluctuation decreases.

We extend the general results from previous section to
general information constraints W under both private-coin and
public-coin protocols. In particular, we will extend Lemma 1
and Lemma 2 to the information-constrained setting. We then
specialize them for discrete distribution learning and testing by
bounding the chi-squared fluctuations of the induced perturbed
family corresponding to Paninski’s perturbed family of Eq. (6),
for a given W ; and use them to obtain tight lower bounds for
testing and learning under communication and privacy con-
straints for both private- and public-coin protocols. Underlying
these bounds is a precise characterization of the contraction in
chi-square fluctuation owing to information constraints. One
can view this as a bound for the minmax chi-square fluctuation
for an induced perturbed family, where the minimum is taken
over perturbed families and the maximum over all channels in
W . We will see that for public-coin protocols, the bottleneck
is indeed captured by this minmax chi-square fluctuation.

On the other hand, for private-coin protocols the bottle-
neck can be tightened further by designing a perturbation
specifically for each choice of channels from W . In other
words, in this case we can use a bound for maxmin chi-square
fluctuation. Another main result of this section, perhaps our
most striking one, is a tight bound for this maxmin chi-square
fluctuation for the aforementioned induced perturbed family.
This bound turns out to be more stringent than the minmax
chi-square fluctuation bound, and leads to the separation for
private- and public-coin protocols for the cases W = W! and
W = Wρ considered in the next section.

We begin by defining induced chi-squared fluctuations.
Throughout we assume that the family of channels W consists
of channels W : X → Y where the input alphabet is X and
the output alphabet Y is finite. Recall from Eq. (1) that for an
input distribution p over X , the output distribution of channel
W is p(y) :=

∑
x p(x)Wj(y | x) = Ep[W (y | X)].

Let P be a perturbed family of distributions over X
parameterized as { pz : z ∈ Z }. As outlined above, our
extension involves the notions of an induced perturbed family
and its chi-square fluctuations, which is simply the family of
distributions induced at the output for input distributions pz;
formal definition follows.

Definition 8: For a perturbed family P and channels Wn =
(W1, . . . , Wn) ∈ Wn, the induced perturbed family PW n

comprises distributions Wnpn
z over Yn given by

Wnpn
z (yn) =

n∏

i=1

Wipz(yi).

We now are able to define the notion of chi-square fluc-
tuation from that of induced perturbed families. We first
extend the corresponding notion of normalized perturbation
with respect to the nominal distribution q, defined in Eq. (5)
as δ(x) := (p(x) − q(x))/q(x). The induced normalized
perturbation of p and q with respect to a channel W is

δW (y) :=
Wq(y) − Wp(y)

Wq(y)
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=
∑

x∈X

(p(x) − q(x))W (y | x)
Wq(y)

=
∑

x q(x)W (y | x)δ(x)∑
x′ q(x′)W (y | x′)

.

Thus, the normalized perturbation for the induced perturbed
family P = { pz : z ∈ Z } is given by

δW
Z (y) =

1
Wq(y)

· Eq[δZ(X)W (y | X)] , y ∈ Y ,

where recall that δz(X) = (pz(x) − q(x))/q(x). As before,
for a channel W ∈ W , let ‖δW

z ‖2
2 := EY ∼Wq

[
δW
z (Y )2

]
=

dχ2(Wpz , Wq).
Remark 2: An important observation that will be used in

our proofs later is that the random variable δW
Z can be obtained

as a (W -dependent) linear transform of δZ .
We now extend in the natural way the notions of chi-square

fluctuations from the centralized setting from Definitions 6
and 7 to the induced chi-squared fluctuations of PW n

.
Definition 9: Consider a perturbed family P = {pz : z ∈

Z} around q and a family of channels W . The induced chi-
square fluctuation of P for W ∈ W is given by

χ2 (W | P) := EZ

[
dχ2(Wpz, Wq)

]
= EZ

[
‖δW

Z ‖2

2

]
,

where Z is distributed uniformly over Z . The n-fold induced
decoupled chi-square fluctuation of P for Wn ∈ Wn is given
by

χ(2) (Wn | P) := log EZZ′

[
exp

(
n∑

i=1

〈
δWi
Z , δWi

Z′

〉)]
,

where
〈
δW
z , δW

z′

〉
= EY ∼Wq

[
δW
z (Y )δW

z′ (Y )
]
.

We now make two relaxations to these notions. The first,
to the definition of chi-squared fluctuations, to allow for more
general Z; and the other to that of perturbed family, to weaken
the requirement on distance from the nominal distribution.
These relaxations will be helpful in investigating the role
of shared randomness as is discussed later, in the paragraph
before Definition 11.

Our definitions until now have computed fluctuations by
using a uniform distribution on the perturbed family P =
{pz : z ∈ Z}. As can be seen from the results of the previous
section, this is not required and all the results above extend to
any distribution over Z . We can consider a distribution ζ for
Z , which need not even be independent across the coordinates
Zis (when Z is over {−1, +1}k/2). For brevity, we will
denote chi-square fluctuations for P when the expectation is
computed using ζ by χ2 (W | Pζ) and χ(2) (Wn | Pζ); when
ζ is uniform, we omit the subscript ζ in P .

In our definition of ε-perturbed family, we required
dTV(pz,q) to be bounded below by ε for each z ∈ Z .
This requirement is imposed in view of Eq. (29) where it
leads to the upper bound on probability of error. However,
a nearly identical result can be obtained even if we relax this
requirement to hold only with large probability. This motivates
the next definition.

Definition 10 (Almost ε-Perturbation): Fix 0 < ε < 1,
a family of distributions P = {pz, z ∈ Z}, and a distribution

ζ on Z . The pair Pζ = (P , ζ) is an almost ε-perturbation
(around q) if for some α ≥ 1/10

Pr[dTV(pZ ,q) ≥ ε] ≥ α,

where the probability is over Z ∼ ζ. We denote the set of all
almost ε-perturbations by Υε (We omit q from the notation
as it will be clear from context).

The choice of 1/10 in the definition above is used to
match the probability of error requirement of 1/12 in our PAC
formulations given in Section I; see Eq. (31) and Footnote 12
for justification for these choices.

The flexibility offered by approximate perturbations is
required to obtain our results for private-coin protocol; in
particular, it will be used to show the separation between the
performance of private- and public-coin protocols for testing.
Recall that in Lemma 2 we showed that the existence of
an identity test in the centralized setting implies that the
chi-squared fluctuation must be bounded away from zero.
We will establish an analogous result in the distributed set-
ting, by defining two quantities which are the minmax and
maxmin evaluations of the decoupled chi-squared fluctuation
from Definition 9. The two notions will be used to derive the
lower bounds for information-constrained testing using public-
and private-coin protocols, respectively.

Definition 11 (Minmax and Maxmin Chi-Square Fluctua-
tions): For a family of channels W , the (n, ε)-minmax decou-
pled chi-square fluctuation for W is given by

χ(2)(Wn, ε) := inf
Pζ∈Υε

sup
W n∈Wn

χ(2) (Wn | Pζ) ,

and the (n, ε)-maxmin decoupled chi-square fluctuation for W
is given by

χ(2)(Wn, ε) := sup
W n∈Wn

inf
Pζ∈Υε

χ(2) (Wn | Pζ) ,

where the infimum is over all almost ε-perturbations Pζ .
In Section IV-A, we extend the proofs of Lemma 1

and Lemma 2 to provide general results on learning and
testing distributions under information constraints. Note that
the desired extension to product distributions for Lemma 5
requires Lemma 3 in its full generality (non-identical mar-
ginals for both Pn and the Qn

θ s), in contrast to the earlier
usage in the proof of Lemma 2.

Further, we observe that when obtaining bounds for public-
coin protocols we can restrict ourselves to a smaller family of
channels than W . The following notions are needed to state
our results in full strength.

Definition 12: For a family of channels W , denote by
W its convex hull, namely the set of channels W =
{ θW1 + (1 − θ)W2 : θ ∈ [0, 1], W1, W2 ∈ W }. A genera-
tor family for W , denoted W0, is a minimal subset of W
whose convex hull is W .

Note that the channels in W can be generated from and
can generate, respectively, channels in W0 and W using
randomness.

A. General Chi-Square Fluctuation Bounds

The bounds presented in this section are obtained by relating
the notions of chi-square fluctuation for W developed above
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to average distances in a neighborhood of the probability
simplex. We present our bounds for learning and testing
problems, but the recipe extends to many other inference
problems. In the next section, we provide specific evaluations
of these bounds for the Paninski perturbed family from Eq. (6),
and some of its variants, which are tailored for the discrete
distribution inference problems of learning and testing.

We begin with our bound for learning, which is a gener-
alization of Lemma 1 to the information-constrained setting;
the proof is provided in Appendix C.

Lemma 4 (Chi-Square Fluctuation Bound for Learning):
For 0 < ε < 1 and a k-ary distribution q, let P be an
ε-perturbed family around q satisfying Eq. (14). Then, the
sample complexity of (k, ε)-distribution learning using W for
public-coin protocols is at least

Ω
(

log |P|− log Cε

maxW∈W0 χ2(W | P)

)
.

Note that the numerator is the same as in Lemma 1 which
is the logarithm of a packing of distributions in total variation
distance. The denominator, however, is now replaced with the
induced chi-squared fluctuation.

The bounds above are for learning using public-coin proto-
cols, and thus imply the same lower bound for learning with
private-coin protocols. Interestingly, for testing, we obtain two
different results. In Lemmas 5 and 6 we show two different
conditions on the sample complexity of testing under public-
and public-coin protocols in terms of the minmax and maxmin
decoupled chi-squared fluctuations. We provide some insights
into these bounds, whose proofs can be found in Appendix C.
In the case of the maxmin decoupled chi-squared fluctuation,
for any Wn we maximize over all possible perturbations:
this is the setting of private-coin protocols where after the
channels are decided, we can design the perturbations to fool
the channels. In contrast, for public-coin protocols, we must
commit on a given perturbed family first, and then choose the
best channels Wn. This is because the shared randomness can
be leveraged to choose the set of channels to be dependent on
each other.

Lemma 5 (Minmax Decoupled Chi-Square Fluctuation
Bound for Testing): For 0 < ε < 1 and a k-ary reference
distribution p, the sample complexity n = n(k, ε) of (k, ε)-
identity testing using W for public-coin protocols must satisfy

χ(2)(Wn
0 , ε) ≥ c , (17)

for some constant c > 0 depending only on the probability of
error.

Remark 3: Using calculations similar to Eq. (15), we can
obtain the following counterpart of Eq. (17): For every ε-
perturbed family P , it must hold that χ2(Wn

0 | P) = Ω(1).
Interestingly, even this bound, although seemingly as weak as
Eq. (15), leads to useful bounds in the information-constrained
setting. In particular, it will be seen in Section V to yield tight
lower bounds for communication-constrained testing for ! = 1.

Lemma 6 (Maxmin Decoupled Chi-Square Fluctuation
Bound for Testing): For 0 < ε < 1 and a k-ary reference
distribution p, the sample complexity n = n(k, ε) of (k, ε)-

identity testing using W for private-coin protocols must satisfy

χ(2)(Wn
, ε) ≥ c ,

for some constant c > 0 depending only on the probability of
error.

B. Chi-Square Contraction Bounds for Learning and Testing
Discrete Distributions

All our main tools are in place. We now derive bounds
for chi-square fluctuations for Paninski’s perturbed family
of Eq. (6) and a related almost ε-perturbation, for arbitrary
channel families W . These bounds in turn will be used to
obtain bounds for maxmin and minmax chi-square fluctuation.
Combined with the chi-square fluctuation lower bounds of the
previous section, these bounds yield concrete lower bounds
on the sample complexity of learning and testing using W .
In essence, our bounds precisely characterize the contraction
in chi-square fluctuation in the information-constrained setting
over the standard setting; we term these bounds the chi-square
contraction bounds.

As noted in Remark 2, the normalized perturbation δW
Z is

linear in δZ . Furthermore, for Paninski’s perturbed family,
it follows from Eq. (5) that δZ itself is linear in Z . This
observation allows us to capture chi-square fluctuations in
terms of the channel-dependent (k/2)×(k/2) matrix10 H(W )
defined in Definition 4, whose expression we recall below:

H(W )i1,i2 :=
∑

y∈Y

(W (y | 2i1 − 1) − W (y | 2i1))∑
x∈[k] W (y | x)

×

(W (y | 2i2 − 1) − W (y | 2i2)),

for all i1, i2 ∈ [k/2]. An important property of H(W ) that will
be used throughout is that it is positive semi-definite. Indeed,
we can express H(W ) as

∑
y bybT

y where the bys are (k/2)-
length vectors with entries given by

by(i) =
W (y | 2i − 1) − W (y | 2i)√∑

x∈[k] W (y | x)
, i ∈ [k/2].

We are now in a position to state our main results. We start
with a bound for chi-square fluctuation, which leads to a lower
bound for sample complexity of learning.

Theorem 3: For the ε-perturbed family P in Eq. (6) and
any channel W , we have

χ2
(
W | P

)
=

4ε2

k
· ‖H(W )‖∗ .

Remark 4: A comparison of the bound above with Eq. (8)
shows that the chi-square fluctuation contracts by a factor of at
least (4 maxW∈W ‖H(W )‖∗)/k due to the local information
constraints corresponding to W .

Before we prove this theorem, we show how to use it to
obtain a lower bound for learning. Recalling Eq. (11), note
that the perturbed family P given in Eq. (6) satisfies

log
|P|
Cε

≥ (1 − h(1/3))k
2

.

10Specifically, note that H(W ) is defined such that, for this perturbed
family, δW

z , δW
z′ = 4ε2

k zT H(W )z′ for all z, z′.
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Thus, upon combining the chi-square fluctuation bound in The-
orem 3 with Lemma 4, we obtain the following bound for the
sample complexity of distribution learning.

Corollary 1 (Chi-Square Contraction Bound for Learning):
For 0 < ε < 1, the sample complexity of (k, ε)-distribution
learning using W for public-coin protocols is at least

Ω
(

k

ε2
· k

supW∈W0
‖H(W ))‖∗

)
.

Proof of Theorem 3: Using the expression of the normal-
ized perturbation for P in Eq. (6), we get

δW
z (y) = 2ε ·

∑
i∈[k/2] zi[W (y | 2i − 1) − W (y | 2i)]

∑
x∈[k] W (y | x)

,

whereby

χ2
(
W | P

)

= EZ

[
‖δW

Z ‖2

2

]

=
4ε2

k

∑

y

1∑
x∈[k] W (y | x)

×

EZ




( ∑

i∈[k/2]

Zi[W (y | 2i − 1) − W (y | 2i)]
)2




=
4ε2

k

∑

i1,i2∈[k/2]

E[Zi1Zi2 ] H(W )i1,i2

=
4ε2

k
TrH(W ),

where we have used the definition of H(W ) and the fact
that E[Zi1Zi2 ] = 1{i1=i2}. The claim follows upon noting
that TrH(W ) = ‖H(W )‖∗ since H(W ) is a positive semi-
definite matrix.

Next, we derive an upper bound for minmax chi-square
fluctuation. As in the previous part, we obtain this bound by
considering the perturbed family in Eq. (6).

Theorem 4: Given n ∈ N and ε ∈ (0, 1), for a channel
family W the minmax chi-square fluctuation is bounded as

χ(2)(Wn, ε) = O

(
n2ε4

k
· maxW∈W ‖H(W )‖2

F

k

)
,

whenever

n ≤ k

16ε2 maxW∈W ‖H(W )‖F

. (18)

Remark 5: Comparing the bound above with Eq. (16)
shows that the decoupled chi-square fluctuation contracts by
a factor of (maxW∈W ‖H(W )‖2

F )/k due to the local infor-
mation constraints corresponding to W with respect to the
centralized setting (where it was roughly (n2ε4/k)).

Before we prove the previous theorem, we note that com-
bining the minmax decoupled chi-square fluctuation bound for
testing of Lemma 5 with Theorem 4 yields the following lower
bound for the sample complexity of uniformity testing using
public-coin protocols.

Corollary 2 (Chi-Square Contraction Bound for Testing
Using Public-Coin Protocols): For 0 < ε < 1, the sample

complexity of (k, ε)-uniformity testing using W for public-
coin protocols is at least

Ω

(√
k

ε2
·

√
k

maxW∈W0‖H(W )‖F

)
.

Proof of Theorem 4: We consider the ε-perturbed family
P defined in Eq. (6) and evaluate the fluctuation χ(2)(Pn) =
log EZZ′ [exp (n · 〈δZ , δZ′〉)] for this perturbed family.11

We apply Lemma 3 with ϑ = z, Qj,ϑ = Wjpz , Pj = Wju,
1 ≤ j ≤ n and Z in the role of θ. For brevity, denote by ρu

j,y

and ρz
j,y , respectively, the probability that the output of player

j using channel Wj is y when the input distributions are u
and pz . We have

ρu
j,y =

n∑

i=1

u(i)Wj(y | i)

=
2
k

k/2∑

i=1

(
Wj(y | 2i − 1) + Wj(y | 2i)

2

)
,

and that for every z ∈ {−1, 1}k/2,

ρz
j,y = ρu

j,y +
2ε

k

k/2∑

i=1

zi (Wj(y | 2i − 1) − Wj(y | 2i)) .

Therefore, the quantity δZ
j used in Lemma 3 is given by

δz
j (y) =

ρz
j,y − ρu

j,y

ρu
j,y

=
2ε
∑k/2

i=1 zi(Wj(y | 2i) − Wj(y | 2i − 1))
∑k/2

i=1(Wj(y | 2i) + Wj(y | 2i − 1))
,

whereby for 1 ≤ j ≤ n we get

Hj(z, z′) = E
[
δz
j δz′

j

]
=
∑

y∈Y
ρu

j,yδz
j (y)δz′

j (y),

which upon substituting the expressions for ρj,y and δz
j (y)

from above yields

Hj(z, z′) =
4ε2

k
· zT H(Wj)z′,

where the matrix H(Wj) was introduced earlier in Eq. (2).
Therefore,

χ(2) (Wn | P) = log EZZ′



exp




n∑

j=1

〈
δ

Wj

Z , δ
Wj

Z′

〉








= log EZZ′



exp




n∑

j=1

4ε2

k
· ZT H(Wj)Z ′









= log EZZ′

[
exp

(
4nε2

k
· ZT H̄Z ′

)]
, (19)

where we denote

H̄ :=
1
n

n∑

j=1

H(Wj). (20)

11We need not invoke the more general notion of almost ε-perturbation for
this proof; it suffices to use uniform distribution over an ε-perturbed family.
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To prove the theorem, we need to bound the expression above
in terms of the Frobenius norms of the matrices H(Wj).
To that end, we use the following result on Rademacher chaos,
whose proof is deferred to Appendix A.

Claim 1: Let θ, θ′ be two independent random vectors, each
distributed uniformly over {−1, 1}k/2. Then, for any positive
semi-definite matrix H ,

log Eθθ′

[
eλθT Hθ′

]
≤ λ2

2
·

‖H‖2
F

1 − 4λ2ρ(H)2
,

for 0 ≤ λ < 1
2ρ(H) , where ‖·‖F denotes the Frobenius norm

and ρ(·) the spectral radius.
With this result at our disposal, we are ready to complete our
proof. Setting λ := 4nε2

k , under assumption Eq. (18) we have

1 ≥
16nε2 · maxW∈W‖H(W )‖F

k
≥

16nε2 · ‖H̄‖F

k

≥ 16nε2 · ρ(H̄)
k

= 4λρ(H̄),

where the second inequality uses convexity of norm. Rearrang-
ing the terms we obtain that λ2/(1 − 4λ2ρ(H̄)2) ≤ 4λ2/3,
which when applied along with Claim 1 to Eq. (19) further
yields

χ(2) (Wn | P) ≤ 8n2ε4

k2

‖H̄‖2
F

1 − 4λ2ρ(H̄)2

≤ 8n2ε4

k2
· 4
3
· ‖H̄‖2

F

≤ 32n2ε4

3k2
· 1
n

n∑

j=1

‖H(Wj)‖2
F

≤ 32n2ε4

3k2
· max

W∈W
‖H(W )‖2

F ,

where the penultimate inequality uses the convexity of x2 in
x; the proof is complete.

Finally, we provide a bound for the maxmin chi-square
fluctuation for a channel family W .

Theorem 5: Given n ∈ N and ε ∈ (0, 1), for a channel
family W the (n, ε)-maxmin chi-square fluctuation is bounded
as

χ(2)(Wn, ε) = O

(
n2ε4

k3
· max

W∈W
‖H(W )‖2

∗

)
,

whenever

n ≤ C · k3/2

ε2 maxW∈W ‖H(W )‖∗
, (21)

where C > 0 is a universal constant.
Remark 6: Comparing the bound above with Eq. (16)

shows that the decoupled chi-square fluctuation contracts by a
factor of (1/k2)maxW∈W ‖H(W )‖2

∗ due to local information
constraints, when restricting to private-coin protocols, which
is worse than the contraction for public-coin protocols in view
of Eq. (4).

Note that combining the maxmin decoupled chi-square
fluctuation bound for testing in Lemma 6 with Theorem 5
yields the following lower bound for the sample complexity
of uniformity testing using private-coin protocols.

Corollary 3 (Chi-Square Contraction Bound for Testing
Using Private-Coin Protocols): For 0 < ε < 1, the sample
complexity of (k, ε)-uniformity testing using W for private-
coin protocols is at least

Ω

(√
k

ε2
· k

maxW∈W‖H(W )‖∗

)
.

Before we provide a formal proof for Theorem 5, we sum-
marize the high-level heuristics. In the proof of Theorem 4,
we showed a bound for decoupled chi-square fluctuation of
P for the induced perturbed family corresponding to the best
choice of Wn ∈ Wn. When only private-coin protocols are
allowed, we can in fact design a perturbed family with the
least decoupled chi-square fluctuation for the specific choice
of Wn used. Furthermore, we identify this least favorable
direction of perturbation for Wn by exploiting the spectrum of
the positive semi-definite matrix H̄ given in Eq. (20); details
follow. Proof of Theorem 5: To obtain the desired bound
for maxmin chi-square fluctuation, we derive a bound for
decoupled chi-square fluctuation for an appropriately chosen
almost ε-perturbation Pζ . Specifically, consider a random
variable Z = (Z1, . . . , Zk/2) taking values in [−1, 1]k/2 and
with distribution ζ such that for some constants α ≥ 1/10 and
c > 0,

Pr
[
‖Z‖1 ≥ k

c

]
≥ α. (22)

For ε ∈ (0, c−1), consider the perturbed family around u
consisting of elements pz , z ∈ [−1, 1]k/2, given by

pz =
1
k

(1 + cεz1, 1 − cεz1, . . . , 1 + cεzk/2, 1 − cεzk/2).

By the condition in Eq. (22) on Z , pZ satisfies the following
property with probability greater than α:

dTV(pZ ,u) =
c

2

k/2∑

i=1

2ε|Zi|
k

=
cε

k
‖Z‖1 ≥ ε.

Note that if we set Zi = Yi for Y1, . . . , Yk/2 indepen-
dent Rademacher random variables and the constant c =
2, we recover the standard Paninski construction. However,
we can do much more with this general construction. In par-
ticular, we can set Zis to be dependent, which will be used
crucially in our proof. For a fixed channel family W , we
bound its (n, ε)-maxmin decoupled chi-square fluctuation by
fixing an arbitrary Wn ∈ Wn and exhibit a perturbed family
Pε(W) = PζW by designing a specific distribution ζW to
“fool” it.

We proceed by bounding χ(2) (Wn | Pζ) for a distribution ζ
satisfying Eq. (22). Following the proof of Theorem 4, we get

χ(2) (Wn | Pζ)

= log EZZ′



exp



c2ε2

k
· ZT




n∑

j=1

H(Wj)



Z ′







,

where Z, Z ′ are independent random variables with common
distribution ζ and H(Wj) is defined as in Eq. (2). Note that

χ(2) (Wn | Pζ) = log EZZ′

[
exp

(
c2nε2

k
· ZT H̄Z ′

)]
,
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where the matrix H̄ is from Eq. (20). Informally, the matrix
H̄ captures the directions of the input space where the n-fold
channel Wn is the most informative; and thus, our goal is to
design a distribution ζ which avoids these directions as much
as possible.

To make this precise, let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk/2

be the eigenvalues of H̄ , and v1, . . . ,vk/2 be corresponding
(orthonormal) eigenvectors; in particular,

H̄ =
k/2∑

i=1

λivi(vi)T .

Denote by V the (k/2)× (k/4) matrix with columns given by
vi for i ≤ k/4, i.e., the columns are the vectors corresponding
to the k/4 smallest eigenvalues of H̄ . Let Y1 . . . Yk/4 be i.i.d.
Rademacher random variables, and set ζ as the distribution of
the random variable Z := V Y .

The first claim below shows that ζ satisfies Eq. (22).12

Claim 2: For Z = V Y described above, we have

Pr
[
‖Z‖1 ≥ k

12
√

2

]
≥ 1

9
.

Proof: For m ∈ [k/2], we have Zm =
∑k/4

i=1 Vm,iYi

where Vm,i equals vi
m. Therefore, by Khintchine’s inequality

(cf. [48]),

E[‖Z‖1] =
k/2∑

m=1

E[|Zm|] ≥ 1√
2

k/2∑

m=1

‖vm‖2,

where v1, . . . ,vk/2 denote the row vectors of the matrix V .
Next, we note that ‖vm‖2 ≤ 1 for every m ∈ [k/2]. Indeed,

denoting by V ′ the (k/2)× (k/2) matrix obtained by adding
extra columns to V to obtain a complete orthonormal basis
for Rk/2, we have V ′T V ′ = I , whereby V ′V ′T = I . Thus,
each row v′

m of V ′ has ‖v′
m‖2 = 1, which gives

‖vm‖2
2 ≤ ‖v′

m‖2
2 = 1.

Upon combining the bounds above, we obtain

E[‖Z‖1] ≥
1√
2

k/2∑

m=1

‖vm‖2 ≥ 1√
2

k/2∑

m=1

‖vm‖2
2

=
1√
2

k/2∑

m=1

k/4∑

i=1

V 2
m,i =

1√
2

k/4∑

i=1

‖vi‖2
2 =

k

4
√

2
,

where in the second inequality we used ‖vm‖2
2 ≤ 1.

Moreover, note that

E
[
‖Z‖2

2

]
=

k/2∑

m=1

k/4∑

i=1

V 2
m,i =

k

4
,

which further gives

E
[
‖Z‖2

1

]
≤ k

2
E
[
‖Z‖2

2

]
=

k2

8
.

12The probability guarantees obtained in Claim 2 determined our choice
1/12 for the probability of error in our formulations in Section I.

Therefore, by the Paley–Zygmund inequality, for any θ ∈
(0, 1)

Pr
[
‖Z‖1 ≥ θ

4
√

2
k

]
≥ (1 − θ)2

E[‖Z‖1]
2

E
[
‖Z‖2

1

] ≥ (1 − θ)2

4
.

The proof is completed by setting θ = 1/3.
We will also require the following property, which is

ensured by our construction of the matrix V .
Claim 3: For V ∈ R(k/2)×(k/4) defined as above, we have

‖V T H̄V ‖2
F ≤ 4

k
‖H̄‖2

∗ .

Proof: Note that since for i1, i2 ∈ [k/4], we have

(V T H̄V )i1,i2 = (vi1 )T




k/2∑

i=1

λivi(vi)T



vi2

=
k/2∑

i=1

λi(vi1 )T vi(vi)T vi2

=
k/2∑

i=1

λi

〈
vi1 ,vi

〉 〈
vi2 ,vi

〉
,

Thus, by the orthonormality of vis, the matrix V T H̄V is
diagonal, with diagonal entries λ1, . . . , λk/4. It follows that

‖V T H̄V ‖2
F =

k/4∑

i=1

λ2
i ≤ k

4
· λ2

k/4 .

On the other hand, we also have

λk/4 ≤ 4
k

k/2∑

i=k/4+1

λi ≤
4
k

Tr H̄,

and therefore,

‖V T H̄V ‖2
F ≤ 4

k
(Tr H̄)2

which is what we sought.
We proceed to bound χ(2) (Wn | Pζ). First, note that

max
W∈W

‖H(W )‖∗ ≥ 1
n

n∑

j=1

‖H(Wj)‖∗ =
1
n

n∑

j=1

TrH(Wj)

= Tr H̄ = ‖H̄‖∗,

where the first identity holds since H(W ) is positive semi-
definite for every W ∈ W . Using Claim 3 and the above
bound, with the view of using Claim 1 and setting λ :=
(c2nε2)/k, under assumption Eq. (21) (where C = 1/(8c2))
we have

1 ≥ 8c2nε2 · maxW∈W‖H(W )‖∗
k3/2

≥ 8c2nε2‖H̄‖∗
k3/2

≥ 4λ‖V T H̄V ‖F ≥ 4λρ(V T H̄V ) .

Rearranging the terms to obtain λ2/(1− 4λ2ρ(H̄)2) ≤ 4λ2/3
and applying Claim 1 to i.i.d. Rademacher random variables
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Y and the symmetric matrix V T H̄V ∈ Rk/4×k/4 gives

EZZ′

[
exp
(

c2nε2

k
ZT H̄Z ′

)]

= EY Y ′ [e
c2nε2

k Y T V T H̄V Y ′
] − 1

≤ e
2c4n2ε4

3k2 ‖V T H̄V ‖2
F − 1 . (23)

It remains to bound the Frobenius norm on the right-side
above. To do so, we invoke once more Claim 3 which, along
with Eq. (23), gives

EZZ′

[
exp

(
c2nε2

k
· ZT H̄Z ′

)]

≤ exp
(

8c4n2ε4

3k3
(Tr H̄)2

)
− 1 ,

which completes the proof.
On comparing Corollary 2 and Corollary 3, we note that

the effective contraction in decoupled chi-square fluctuation
due to private-coin protocols is roughly k

maxW∈W‖H(W )‖∗
,

which exceeds
√

k
maxW∈W‖H(W )‖F

for public-coin protocol
since H(W ) has rank O(k) and so by Eq. (4), ‖H(W )‖∗ ≤√

k · ‖H(W )‖F .
Remark 7: Both channel families we consider in this paper,

namely W! for the communication-limited setting and Wρ for
the LDP setting, are convex and satisfy W = W . Moreover,
when evaluating bounds in Corollary 1 and Corollary 2 for
these families, weaker bounds derived using W in place of
W0 turn out to be optimal. Thus, our evaluations for these
cases in the next section are based on W and do not require
us to consider W0 or W . However, the more general form
reported in this section may be useful elsewhere; in particular,
in cases where one can identify a W0 that is more amenable
to these bounds than W itself.

V. EXAMPLES AND APPLICATIONS

We now instantiate our general bounds for distribution
learning and uniformity testing derived in the previous section
to our two running examples of local information con-
straints, namely the communication-limited and LDP settings.
We obtain tight lower bounds for sample complexity of
learning and testing in these settings simply by bounding
the Frobenius and trace norms of the associated matrices
H(W ); see Table I for a summary of the results obtained.
As mentioned earlier, we only focus on lower bounds here
and delegate matching upper bounds to subsequent papers in
this series.

A. Communication-Constrained Inference

Recall that in the communication-limited setting, each
player can transmit at most ! bits, which can be captured
by using W = W!, the family of channels from [k] to
Y = {0, 1}!. To derive lower bounds for sample complexity
of learning and testing for this case, Corollaries 2 and 3
require us to obtain upper bounds for maxW∈W0‖H(W )‖∗,
maxW∈W0‖H(W )‖∗ and maxW∈W‖H(W )‖∗. We begin by
observing that W is convex, whereby W = W which allows

us to focus on ‖H(W )‖∗ and ‖H(W )‖F for W ∈ W . Indeed,
the convex combination of two !-bit output channels is an !-bit
channel as well.

The next result provides bounds for the trace and Frobenius
norms of the matrices H(W ) under communication con-
straints.

Lemma 7: For a channel W : [k] → {0, 1}! and H(W ) as
in Eq. (2), we have

‖H(W )‖∗ ≤ 2! and ‖H(W )‖2
F ≤ 2!+1.

Proof: Since matrix H(W ) is a positive semi-definite
matrix, by the definition of nuclear norm in Section II, we have

‖H(W )‖∗ = TrH(W )

=
k/2∑

i=1

∑

y∈Y

(W (y | 2i − 1) − W (y | 2i))2∑
i′∈[k] W (y | i′)

≤
k/2∑

i=1

∑

y∈Y

W (y | 2i − 1) + W (y | 2i)∑
i′∈[k] W (y | i′)

=
∑

y∈Y

∑k/2
i=1 W (y | 2i − 1) + W (y | 2i)∑

i′∈[k] W (y | i′)

= 2! .

Moreover, for y ∈ Y , denote by ωy ∈ [0, 1][k/2] the vector with
the ith coordinate given by ωy,i := W (y | 2i−1)+W (y | 2i).
Then,

‖H(W )‖2
F

=
∑

i1,i2∈[k/2]

(∑

y∈Y

(W (y|2i1−1)−W (y|2i1))

i∈[k] W (y|i) ×

(W (y | 2i2 − 1) − W (y | 2i2))
)2

≤
∑

i1,i2∈[k/2]

(∑

y∈Y

ωy,i1ωy,i2∑
i∈[k/2] ωy,i

)2

=
∑

i1,i2∈[k/2]

∑

y1,y2∈Y

ωy1,i1ωy1,i2ωy2,i1ωy2,i2∑
i∈[k/2] ωy1,i ·

∑
i∈[k/2] ωy2,i

=
∑

y1,y2∈Y

∑
i1∈[k/2] ωy1,i1ωy2,i1 ·

∑
i2∈[k/2] ωy1,i2ωy2,i2∑

i∈[k/2] ·ωy1,i
∑

i∈[k/2] ωy2,i

=
∑

y1,y2∈Y

〈ωy1 , ωy2〉
2

〈ωy1 ,1〉 〈ωy2 ,1〉

≤
∑

y1,y2∈Y

〈ωy1 , ωy2〉
〈ωy1 ,1〉

= 2
∑

y1∈Y

〈ωy1 ,1〉
〈ωy1 ,1〉

= 2!+1,

where in the penultimate identity we used the observation that∑
y∈Y ωy,i = 2, for every i ∈ [k/2].
Plugging these bounds into Corollaries 1 to 3 and recalling

that W = W yield the following corollaries.
Theorem 6 (Communication-Limited Learning Using Pub-

lic Coins): The sample complexity of (k, ε)-distribution
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learning using W! for public-coin protocols is at least
Ω
(
k2/(2!ε2)

)
.

Theorem 7 (Communication-Limited Testing Using Public
Coins): The sample complexity of (k, ε)-uniformity testing
using W! for public-coin protocols is at least Ω

(
k/(2!/2ε2)

)
.

Theorem 8 (Communication-Limited Testing Using Private
Coins): The sample complexity of (k, ε)-uniformity testing
using W! for private-coin protocols is at least Ω

(
k3/2/(2!ε2)

)
.

Thus, the blow-up in sample complexity for
communication-limited learning with public-coin protocols
is a factor of k/2!, which is the same for testing with
private-coin protocols. This blow-up is reduced to a factor
of
√

k/2! for testing with public-coin protocols. In fact,
these bounds are tight and match the upper bounds in [3],
[34] for learning, with a private-coin protocol achieving
the public-coin lower bound, and [3] for both testing using
private- and public-coin protocols.

B. Local Differential Privacy Constraints

Moving now to inference under LDP setting, recall that the
information constraints here are captured by the family Wρ of
ρ-LDP channels W : [k] → Y satisfying

sup
y∈Y

sup
i1,i2∈[k]

W (y | i1)
W (y | i2)

≤ eρ . (24)

As before, we seek bounds for ‖H(W )‖∗ and ‖H(W )‖F .
Observe that Wρ is convex: indeed, for W1, W2 ∈ Wρ, and
for any θ ∈ [0, 1], ∈ W , and i 0= j,

θW1(y | i) + (1 − θ)W2(y | i)
≤ (θW1(y | j) + (1 − θ)W2(y | j)) · eρ.

Thus, Wρ = Wρ, and in the result below we may restrict to
bounds for trace and Frobenius norms of H(W ) for W ∈ Wρ.

Lemma 8: For ρ ∈ (0, 1], a ρ-LDP channel W ∈ Wρ and
H(W ) as in Eq. (2), we have

‖H(W )‖∗ = O(ρ2) and ‖H(W )‖2
F = O(ρ4) .

Proof: For the symmetric matrix H(W ) with W ∈ Wρ,
we have

‖H(W )‖∗ = Tr H(W )

=
k/2∑

i=1

∑

y∈Y

(W (y | 2i − 1) − W (y | 2i))2∑
i′∈[k] W (y | i′)

≤ (eρ − 1)2
k/2∑

i=1

∑

y∈Y

(
1
k

∑
i′∈[k] W (y | i′)

)2

∑
i′∈[k] W (y | i′)

=
(eρ − 1)2

2k

∑

y∈Y

∑

i′∈[k]

W (y | i′)

=
1
2
(eρ − 1)2 ,

where the first inequality as Eq. (24) implies that, for every
W ∈ Wρ, y ∈ Y , and i1, i2, i3 ∈ [k],

W (y | i1) − W (y | i2) ≤ (eρ − 1)W (y | i3). (25)

To see why, observe that when W (y | i3) ≥ W (y | i2),
by Eq. (24) we have

W (y | i1) − W (y | i2) ≤ (eρ − 1)W (y | i2)
≤ (eρ − 1)W (y | i3) ,

and when W (y | i3) < W (y | i2) we have

W (y | i1) − W (y | i2) ≤ eρW (y | i3) − W (y | i2)
< (eρ − 1)W (y | i3) ,

thereby establishing Eq. (25). Note that 1
2 (eρ − 1)2 = O(ρ2)

for ρ ∈ (0, 1], which completes the proof of the bound for
‖H(W )‖∗. Moreover, from Eq. (4), we have ‖H(W )‖2

F ≤
‖H(W )‖2

∗ = O(ρ4), concluding the proof of the lemma.
Combining this with Corollaries 1 to 3, respectively,

we obtain the following lower bounds on learning and testing
under LDP constraints.

Theorem 9 (LDP Learning Using Public Coins): For ρ ∈
(0, 1], the sample complexity (k, ε)-distribution learning using
Wρ for public-coin protocols is at least Ω

(
k2/(ρ2ε2)

)
.

Theorem 10 (LDP Testing Using Public Coins): For ρ ∈
(0, 1], the sample complexity of (k, ε)-uniformity testing using
Wρ for public-coin protocols is at least Ω

(
k/(ρ2ε2)

)
.

Theorem 11 (LDP Testing Using Private Coins): For ρ ∈
(0, 1], the sample complexity of (k, ε)-uniformity testing using
Wρ for private-coin protocols is at least Ω

(
k3/2/(ρ2ε2)

)
.

Similarly to the communication-limited setting, we see a
separation between lower bounds for private- and public-
coin protocols for testing under LDP constraints. In fact,
the public-coin protocols for learning under LDP constraints
from [4], [21], [37], [52], [56] match our lower bounds. Fur-
thermore, [1], [2] provide private- and public-coin protocols
for testing under LDP constraints that match our lower bounds
here. Thus, indeed shared randomness strictly reduces sample
complexity of testing when operating under LDP constraints.

VI. FUTURE DIRECTIONS AND UPCOMING RESULTS

We have restricted our focus to lower bounds in this paper.
Distributed inference schemes requiring number of players
matching the lower bounds derived here will appear in two
upcoming papers in this series. While these schemes will
elaborate on the geometric view developed in this paper,
the algorithms are new and tools needed for analysis are
varied. We chose to organize these closely related papers into
three separate parts for ease of presentation and to disentangle
the distinct ideas involved.

In [3], the second paper in this series, we focus on the
communication-constrained setting and provide public- and
private-coin protocols for distributed inference whose perfor-
mance matches the lower bounds presented here. A general
strategy of “simulate-and-infer,” which is a private-coin pro-
tocol (and, in fact, a deterministic protocol), is used to achieve
our bound learning as well as the bound for testing for private-
coin protocols. On the other hand, a different scheme based
on a random partition of inputs is used to attain bounds for
testing with public-coin protocols. The efficacy of this latter
scheme is closely tied to the geometric view developed here.
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In [1], the third paper in this series, we provide schemes
for testing under the LDP setting. For private-coin protocols,
we simply use existing mechanisms such as RAPPOR and
design sample-optimal tests for the R. On the other hand,
our bounds in this paper show that none of the existing LDP
mechanisms, which are all private-coin protocols, can attain
the public-coin lower bound. We present a new public-coin
protocol that achieves our lower bounds here. Interestingly,
our optimal public-coin protocol is similar to the one used in
the communication-limited setting and draws on the geometric
view developed here.

Finally, we point out that our framework readily extends
to the high-dimensional and continuous settings, and can,
for instance, be used to analyze the lower bounds for the
problems of Gaussian mean testing and testing of product
distributions under information constraints. We defer these
interesting research directions to future work.

APPENDIX A
PROOF OF CLAIM 1

In this appendix, we prove Claim 1 which is recalled below
for easy reference.

Claim 4 (Claim 1, restated): Let θ, θ′ be two independent
random vectors, each distributed uniformly over {−1, 1}k/2.
Then, for any positive semi-definite matrix H ,

log Eθθ′

[
eλθT Hθ′

]
≤ λ2

2
· ‖H‖2

F

1 − 4λ2ρ(H)2
,

for 0 ≤ λ < 1
2ρ(H) , where ‖·‖F denotes the Frobenius norm

and ρ(·) the spectral radius.
Proof: The proof follows closely that of [27, Propo-

sition 8.13], which derives tail bounds on a homogeneous
Rademacher chaos of order 2 by bounding the moment-
generating function. For θ, θ′, and H as above and λ ∈ R,

Eθθ′

[
eλθT Hθ′

]
= Eθ

[
Eθ′

[
eλ k/2

i1=1 θ′
i1

k/2
i2=1 θi2Hi1i2

]]

≤ Eθe
λ2
2

k/2
i1=1

k/2
i2=1 θi2Hi1i2

2

, (26)

where to bound the inner expectation conditionally
on θ we used the fact that Rademacher variables
are sub-Gaussian and the sum of independent sub-
Gaussian variables is sub-Gaussian. Since H is
symmetric, we can rewrite

∑k/2
i1=1

(∑k/2
i2=1 θi2Hi1i2

)2
=

∑
i2,i3

θi2θi3

∑
i1

Hi1 i2Hi1 i3 = θT H2θ. Thus, for M := H2

and µ ∈ R, we can consider

Eθ

[
eµθT Mθ

]
= Eθ

[
eµ k/2

i=1 Mii+µ i1 ,=i2
Mi1i2θi1θi2

]

= eµ Tr MEθ

[
eµ i1 ,=i2 Mi1i2θi1θi2

]

≤ eµ Tr MEθθ′

[
e4µ i1,i2∈[k/2] Mi1i2θi1θ′

i2

]

≤ eµ Tr MEθ

[
e
8µ2 k/2

i1=1
k/2
i2=1 θi2Mi1 i2

2]
,

where the first inequality is by the decoupling inequality
E
[
eθT Mθ

]
≤ E

[
eθT Mθ′

]
(used in [27] as well) and the second

uses sub-Gaussianity once again. Since M = HT H is positive
semi-definite, we can rewrite

k/2∑

i1=1




k/2∑

i2=1

θi2Mi1 i2




2

= θT M2θ ≤ ‖M‖2 · θ
T Mθ ,

where ‖M‖2 := sup‖x‖2≤1 〈Mx,x〉 is the operator norm of
M . For 8µ‖M‖2 ≤ 1, applying Jensen’s inequality to the
concave function t 1→ t8µ‖M‖2 we get

Eθ

[
eµθT Mθ

]
≤ eµ Tr MEθ

[
e8µ2‖M‖2θT Mθ

]

≤ eµ Tr MEθ

[
eµeθT Mθ

]8µ‖M‖2

,

which yields

Eθ

[
eµθT Mθ

]
≤ e

µ Tr M
1−8µ‖M‖2 . (27)

Recalling that TrM = Tr(H2) = ‖H‖2
F and ‖M‖2 =

‖H2‖2 = ρ(H)2, and choosing µ = λ2/2 (which satisfies
8µ‖M‖2 ≤ 1), we get from Eqs. (26) and (27) that

Eθθ′

[
eλθT Hθ′

]
≤ Eθ

[
e

λ2
2 θT H2θ

]
≤ e

λ2
2

‖H‖2
F

1−4λ2ρ(H)2 ,

which completes the proof.

APPENDIX B
PROOFS OF CHI-SQUARE FLUCTUATION BOUNDS

Proof of Lemma 2: The proof uses Le Cam’s two-point
method. We note first that

dTV(E[pn
Z ] ,pn)2 ≤ dχ2(E[pn

Z ] ,pn) ,

and bound the right-side further using Lemma 3 with θ
replaced by z, Qn

ϑ = pn
z , and Pi = p to get

dTV(E[pn
Z ] ,pn)2 ≤ EZZ′ [(1 + H1(Z, Z ′))n] − 1

≤ EZZ′

[
enH1(Z,Z′)

]
− 1

= exp
(
χ(2)(Pn)

)
− 1, (28)

since H1(Z, Z ′) = 〈δZ , δZ′〉. Now, to complete
the proof, consider an (n, ε)-test T . By definition,
we have PrXn∼pn [ T (Xn) = 1 ] > 11/12 and
PrXn∼pn

z
[ T (Xn) = 1 ] > 11/12 for every z, whereby

1
2

Pr
Xn∼pn

[ T (Xn) 0= 1 ] +
1
2

Pr
Xn∼E[pn

Z]
[ T (Xn) 0= 0 ] ≤ 1

12
.

(29)

The left-hand-side above coincides with the Bayes error for
test T for the simple binary hypothesis testing problem of
E[pn

Z ] versus pn, which must be at least

1
2

(1 − dTV(E[pn
Z ] ,pn)) .

Thus, we obtain dTV(E[pn
Z ] ,pn) ≥ 5/6, which together with

Eq. (28) completes the proof.
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Proof of Lemma 3: Using the definition of chi-square
distance, we have

χ2(Eθ [Qn
θ ], Pn) = EP n

[(
Eθ

[
Qn

θ (Xn)
Pn(Xn)

])2
]
− 1

= EP n




(

Eθ

[
n∏

i=1

(1 + ∆θ
i )

])2


− 1 ,

where the outer expectation is for Xn using the distribution
Pn. For brevity, denote by ∆ϑ

i the random variable δϑ
i (Xi).

The product in the expression above can be expanded as
n∏

i=1

(1 + ∆θ
i ) = 1 +

∑

i∈[n]

∆θ
i +

∑

i1>i2

∆θ
i1∆

θ
i2 + . . . ,

whereby we get

χ2(Eθ[Qn
θ ], Pn) = EP n

[(
1 +

∑

i

Eθ

[
∆θ

i

]
+

∑

i1>i2

Eθ

[
∆θ

i1∆
θ
i2

]
+ . . .

)2]
− 1

= EP n

[∑

i

Eθ

[
∆θ

i

]
+
∑

j

Eθ′

[
∆θ′

j

]

+
∑

i,j

Eθ,θ′

[
∆θ

i ∆
θ′

j

]
+ . . .

]
.

Observe now that EP n

[
∆ϑ

i

]
= 0 for every ϑ. Furthermore, θ′

is an independent copy of θ and ∆θ
i and ∆θ′

j are independent
for i 0= j. Therefore, the expectation on the right-side above
equals

E
[
∑

i

Hi(θ, θ′) +
∑

i1>i2

Hi1(θ, θ
′)Hi2(θ, θ

′) + . . .

]

= E
[

n∏

i=1

(1 + Hi(θ, θ′))

]
− 1 ,

which completes the proof.

APPENDIX C
PROOFS OF INDUCED CHI-SQUARE FLUCTUATION BOUNDS

Proof of Lemma 4: The proof is nearly identical to that
of Lemma 1, with few additional observations. Using Fano’s
inequality Eq. (10) and following the proof of Lemma 1, it
suffices to derive the counterpart of Eq. (13). Note that by
definition of W0, any public-coin protocol can be realized by
using a shared randomness U , together with W1, . . . , Wn from
W0. Thus, considering observations (Y n, U) and proceeding
as in Eq. (13),

I(Z ∧ Y nU) = I(Z ∧ Y n | U)
≤ max

W n∈Wn
0

E[D(Wnpn
Z‖Wnpn)]

≤ max
W n∈Wn

0

n∑

i=1

E[D(WipZ‖Wip)]

≤ max
W n∈Wn

0

n∑

i=1

E
[
dχ2 (WipZ , Wip)

]

≤ n · max
W∈W0

χ2(W | P),

which completes the proof together with Eq. (10).

Proof of Lemma 5: Consider an almost ε-perturbation
Pζ . The proof of this extension is very similar to the proof
of Lemma 2, except that E[pn

Z ] and pn get replaced with
E[Wnpn

Z ] and Wnpn, respectively. The first part of the
argument goes through verbatim, leading to

dTV(E[Wnpn
Z ] , Wnpn)2 ≤ exp

(
χ(2) (Wn | P)

)
− 1,

(30)

for every choice of channels Wn = (W1, . . . , Wn). In the sec-
ond step, we need to get a lower bound on the left-side above,
while restricting to Wis in W0. Towards that, consider an
(n, ε)-test T using a public-coin protocol. Denoting by U the
public randomness and by Y1, . . . , Yn the messages from each
player and by Z0 the set of z such that dTV(pz,p) ≥ ε. Since
Pζ is an almost ε-perturbation, Pr[Z ∈ Z0] ≥ α ≥ 1/10.
Also, for the test T we have PrXn∼pn [ T (U, Y n) = 1 ] ≥
11/12 and PrXn∼pn

z
[ T (U, Y n) = 1 ] ≥ 11/12 for every z ∈

Z0. Thus, in the manner of Eq. (29) we obtain

1
2

Pr
Xn∼pn

[T (U, Y n) = 1 ] +
1
2

Pr
Xn∼E[pn

Z]
[ T (U, Y n) = 0 ]

≥ 11(1 + α)
24

≥ 121
240

,

where in the last inequality we used α ≥ 1/10. Then, we can
find a fixed realization U = u such that

1
2

Pr
Xn∼pn

[ T (U, Y n) 0= 1 | U = u ]

+
1
2

Pr
Xn∼E[pn

Z]
[T (U, Y n) 0= 0 | U = u ] ≤ 119

240
. (31)

An important remark here is that u may depend on Pζ .
Observe that by definition of W0, we can emulate the public-
coin protocols by each player selecting its channel Wi ∈ W0

as a function of the shared randomness U . Denote by Wn
u ∈

Wn
0 the channels chosen by the players when U = u. Then,

conditioned on U = u, Y n has distribution Wn
u pn and Wn

u pn
z ,

respectively, when Xn has distribution pn and pn
z . Thus, as in

the proof of Lemma 2, we can find Wn
u ∈ Wn

0 such that

dTV(E[Wn
u pn

Z ] , Wn
u pn) ≥ 1

120
,

which along with Eq. (30) yields

χ(2) (Wn
u | Pζ) ≥ c, (32)

where c = log(14401/14400). The result follows upon taking
the maximum over Wn

u ∈ Wn
0 and minimum over all almost

ε-perturbations Pζ .
Proof of Lemma 6: The argument follows the same

template as the proof of Lemma 5, but with an important
difference. Instead of derandomizing as in Eq. (31), which
leads to a choice of channels Wn

u that may depend on
perturbation Pζ family, now in Eq. (32) we would like to take
the minimum over Pζ ∈ Υε first. Observe that for private-
coin protocols, the effective channel used by each player is
a convex combination of channels from W , namely it is a
channel from W . Thus, when Xn has distribution either pn

and pn
z , respectively, Y n has distribution Wnpn and Wnpn

z

with Wn ∈ Wn
. Therefore, following the steps in the proof
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of Lemma 5, we get χ(2) (Wn | Pζ) ≥ c, where Wn ∈ Wn

and the almost ε-perturbation Pζ is arbitrary. The claim then
follows by taking the minimum over Pε and maximum over
Wn ∈ Wn

.
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