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Abstract— A central server needs to perform statistical
inference based on samples that are distributed over multiple
users who can each send a message of limited length to the
center. We study problems of distribution learning and identity
testing in this distributed inference setting and examine the role
of shared randomness as a resource. We propose a general-
purpose simulate-and-infer strategy that uses only private-coin
communication protocols and is sample-optimal for distribution
learning. This general strategy turns out to be sample-optimal
even for distribution testing among private-coin protocols. Inter-
estingly, we propose a public-coin protocol that outperforms
simulate-and-infer for distribution testing and is, in fact, sample-
optimal. Underlying our public-coin protocol is a random hash
that when applied to the samples minimally contracts the chi-
squared distance of their distribution to the uniform distribution.

Index Terms— Statistical analysis, minimax techniques, distrib-
uted algorithms, goodness-of-fit, parameter estimation.

I. INTRODUCTION
AMPLE-OPTIMAL statistical inference has come to the
forefront of modern data analytics, where the sample

size can be comparable to the dimensionality of the data.
In many emerging applications, especially those arising in
sensor networks and the Internet of Things (IoT), we are
not only constrained in the number of samples but, also, are
given access to only limited communication about the samples.
Similar concerns arise in federated learning where we want to
analyze data distributed across various users while requiring a
limited amount of communication from each user. We consider
such a distributed inference setting and seek sample-optimal
algorithms for inference under communication constraints.
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In our setting, there are n players, each of which gets
a sample generated independently from an unknown k-ary
distribution and can send only ¢ bits about their observed
sample to a central referee using a simultaneous message
passing (SMP) protocol for communication. The referee uses
communication from the players to accomplish an inference
task P; see Section III for formal definitions and problem
formulation. We seek to answer the following question:

What is the minimum number of players n required by an
SMP protocol that successfully accomplishes P, as a
function of k, {, and the relevant parameters of P?

Our first contribution is a general simulate-and-infer strategy
for inference under communication constraints where we use
the communication to simulate samples from the unknown
distribution at the referee. To describe this strategy, we intro-
duce a natural notion of distributed simulation: n players each
observing an independent sample from an unknown k-ary
distribution p can send ¢ bits each to a referee. A distrib-
uted simulation protocol consists of an SMP protocol and a
randomized decision map that enables the referee to generate
a sample from p using the communication from the players.
Clearly, when' ¢ > logk such a sample can be obtained by
getting the sample of any one player. But what can be done
in the communication-starved regime of ¢ < log k?

We first show that perfect simulation is impossible using any
finite number of players in the communication-starved regime.
But perfect simulation is not even required for our application.
When we allow a small probability of declaring failure, namely
admit Las Vegas simulation schemes, we obtain a distributed
simulation scheme that requires an optimal O (k/ QZ) players
to simulate k-ary distributions using ¢ bits of communication
per player. Thus, our proposed simulate-and-infer strategy
can accomplish P with a factor O (k/2°) blow-up in sample
complexity.

The specific inference tasks we focus on are those of distrib-
ution learning, where we seek to estimate the unknown k-ary
distribution to an accuracy of ¢ in total variation distance,
and identity testing where we seek to know if the unknown
distribution is a pre-specified reference distribution q or at
total variation distance at least ¢ from it. For distribution
learning, the simulate-and-infer strategy matches the lower

IWe assume throughout that log is in base 2, and for ease of discussion
assume in this introduction that log & is an integer.
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bound from [33] and is therefore sample-optimal. For identity
testing, the plot thickens.

Recently, a lower bound for the sample complexity of
identity testing using only private-coin protocols was estab-
lished [3]. The simulate-and-infer protocol is indeed a private-
coin protocol, and we show that it achieves this lower bound.
When public coins (shared randomness) are available, [3]
derived a different, more relaxed lower bound. The perfor-
mance of simulate-and-infer is far from this lower bound.
Our second contribution is a public-coin protocol for iden-
tity testing that not only outperforms simulate-and-infer but
matches the lower bound in [3] and is sample-optimal.

We provide a concrete description of our results in the next
section, followed by an overview of our proof techniques in the
subsequent section. To put our results in context, we provide
a brief overview of the literature as well.

A. Main Results

We begin by summarizing our distributed simulation
results.’

Theorem 1: For every k,/ > 1, there exists a private-
coin protocol with ¢ bits of communication per player for
distributed simulation over [k] and expected number of players
O ((k/2%) v 1). Moreover, this expected number is optimal,
up to constant factors, even when public-coin and interactive
communication protocols are allowed.

The proposed protocol only provides a relaxed guarantee,
as the number of players it requires is bounded only in
expectation. In fact, we can show that distributed simulation
is impossible, unless we allow for such relaxation.

Theorem 2: For k > 1, £ < [logk], and any N € N,
there exist no SMP protocol with N players and ¢ bits of
communication per player for distributed simulation over [k].
Furthermore, the result continues to hold even for public-coin
and interactive communication protocols.

The proof is given in Section IV-A.

Since the distributed simulation protocol in Theorem 1 is
a private-coin protocol, we can use it to generate the desired
number of samples from the unknown distribution at the center
to obtain the following result.

Theorem 3 (Informal): For any inference task P over k-ary
distributions with sample complexity s in the non-distributed
model, there exists a private-coin protocol for P using ¢ bits of
communication per player and requiring n = O(s- (k/2° V1))
players.

We note that the O(-) notation only hides absolute constants,
and that the dependence on the inference task P is captured in
the centralized sample complexity s. Instantiating this general
statement for distribution learning and identity testing leads to
the following results.

2For simplicity of exposition, in the next result we allow the use of Las
Vegas algorithms, which use variable number of players and produce a sample
from the unknown distribution when it terminates. Equivalently, one may
enforce a strict number of players but allow the protocol to abort with a
special symbol with small constant probability, which is how our results will
be stated in Section IV-B.
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TABLE I

SUMMARY OF THE SAMPLE COMPLEXITY OF DISTRIBUTED LEARNING
AND TESTING, UNDER PRIVATE AND PUBLIC RANDOMNESS,
FOR k > 2¢. ALL RESULTS ARE ORDER-OPTIMAL

Distribution Learning
Public-Coin

ko k
2 2f

Identity Testing

Private-Coin

Public-Coin ‘ Private-Coin
vk . [k ‘ vk |k
=2

2€ 2 ' of

Corollary 1: For every k,¢ > 1, simulate-and-infer can

accomplish distribution learning over [k], with £ bits of com-
2
(@/XW? players.

Corollary 2: For every k,f{ > 1, simulate-and-infer can
accomplish identity testing over [k] using ¢ bits of communi-
cation per player and n = O %) players.

By the lower bound for sample complexity of distribution
learning in [33] (see, also, [3]), we note that simulate-and-infer
is sample-optimal for distribution learning even when public-
coin protocols are allowed. In fact, the sample complexity of
simulate-and-infer for identity testing matches the lower bound
for private-coin protocols in [3], rendering it sample-optimal.

Perhaps the most striking result in this article is the next
one, which shows that public-coin protocols can outperform
the sample complexity of private-coin protocols for identity
testing by a factor of \/k/2¢.

Theorem 4: For every k,¢ > 1, there exists a public-
coin protocol for identity testing over [k] using ¢ bits of

munication per player and n = O

communication per player and n = O (m) players.
Once again, this matches the lower bound for public-coin
protocols of [3], showing our protocol is sample-optimal.
We further note that our protocol is quite simple to describe
and implement: We generate a random partition of [k] into 2¢
equal-sized parts and report which part each sample lies in.
Although, as stated, our protocol seems to require (¢ - k)
bits of shared randomness, inspection of the proof shows
that 4-wise independent shared randomness suffice, drastically
reducing the number of random bits required. See Remark 3
for a discussion.
Our results are summarized in the table below.

B. Proof Techniques

We now provide a high-level description of the proofs of
our main results.

a) Distributed  simulation: ~ The  upper  bound
of Theorem 3 uses a rejection-sampling-based approach;
see Section IV-B for details. The lower bound follows by
relating distributed simulation to communication-constrained
distribution learning and using the lower bound for sample
complexity of the latter from [3], [33].

b) Distributed identity testing: For the ease of exposition,
we hereafter focus on uniformity testing, as it contains most
of the ideas. To test whether an unknown distribution p
is uniform using at most ¢ bits to describe each sample,
a natural idea is to randomly partition the alphabet into
L := 2° parts, and send to the referee independent samples
from the L-ary distribution p’ induced by p on this partition.
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For a random balanced partition (i.e., where every part has
cardinality k/L), clearly the uniform distribution uy, is mapped
to the uniform distribution uz. Thus, one can hope to reduce
the problem of testing uniformity of p (over [k]) to that of
testing uniformity of p’ (over [L]). The latter task would be
easy to perform, as every player can simulate one sample from
p’ and communicate it fully to the referee with log L = ¢
bits of communication. Hence, the key issue is to argue that
this random “flattening” of p would somehow preserve the
distance to uniformity. Namely, that if p is e-far from uy,
then (with a constant probability over the choice of the random
partition) p’ will remain &’-far from u, for some ¢’ depending
on g, L, and k. If true, then it is easy to see that this would
imply a very simple protocol with O(v/L /e’ 2) players, where
all agree on a random partition and send the induced samples
to the referee, who then runs a centralized uniformity test.
Therefore, in order to apply the aforementioned natural recipe,
it suffices to derive a “random flattening” structural result for
e =< \/(L/k)e.

An issue with this approach, unfortunately, is that the total
variation distance (that is, the ¢; distance) does not behave as
desired under these random “flattenings”, and the validity of
our desired result remains unclear. Interestingly, an analogous
statement with respect to the /5 distance turns out to be much
more manageable and suffices for our purposes. Specifically,
we show that a random flattening of p does preserve, with
constant probability, the ¢ distance to uniformity. In our case,
by the Cauchy—Schwarz inequality the original /5 distance will
be at least v = £/+/k, which implies using known /5 testing
results that one can test uniformity of the “randomly flattened”
p’ with O(1/(vV'Ly?)) = O(k/(2¢/2c?)) samples. This yields
the desired guarantees on the protocol.

C. Related Prior Work

The distribution learning problem is a finite-dimensional
parametric learning problem, and the identity testing problem
is a specific goodness-of-fit problem. Both these problems
have a long history in statistics. However, the sample-optimal
setting of interest to us has received a lot of attention in
the past decade, especially in the computer science literature;
see [8], [17], [41] for surveys. Most pertinent to our work is
uniformity testing [21], [29], [40], the prototypical distribution
testing problem for which the sample complexity was estab-
lished to be ©(Vk /%) in [40], [45]; as well as identity testing,
shown to have order-wise similar sample complexity [4], [10],
[23], [28], [45].

Distributed hypothesis testing and estimation problems were
first studied in information theory, although in a different
setting than what we consider [6], [30], [31]. The focus in
that line of work has been to characterize the trade-off between
asymptotic error exponent and communication rate per sample.

Closer to our work is distributed parameter estimation and
functional estimation that has gained significant attention in
recent years (see e.g., [15], [24], [26], [46]). In these works,
much like our setting, independent samples are distributed
across players, which deviates from the information theory
setting described above where each player observes a fixed
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dimension of each independent sample. However, the com-
munication model in these results differs from ours, and
the communication-starved regime we consider has not been
studied in these works.

The problem of distributed density estimation, too, has
gathered recent interest in various statistical settings [5], [9],
[14], [22], [33], [42], [43], [48]-[50]. Among these, our work
is closest to the results in [32], [33] and [22]. In particular, [22]
considers both /7 (total variation) and /5 losses, although in
a different setting than ours. They study an interactive model
where the players do not have any individual communication
constraint, but instead the goal is to bound the total number
of bits communicated over the course of the protocol. This
difference in the model leads to incomparable results and
techniques (for instance, the lower bound for learning k-ary
distributions in our model is higher than the upper bound in
theirs).

Our current work further deviates from this prior literature,
since we consider distribution testing as well and examine the
role of public-coin for SMP protocols. Additionally, a central
theme here is the connection to distribution simulation and its
limitation in enabling distributed testing. In contrast, the prior
work on distribution estimation, in essence, establishes the
optimality of simple protocols that rely on distributed simula-
tion for inference. We note that although recent work of [13]
considers both communication complexity and distribution
testing, their goal and results are very different — indeed, they
explain how to leverage on negative results in the standard
SMP model of communication complexity to obtain sample
complexity lower bounds in collocated distribution testing.

Problems related to joint simulation of probability distri-
butions have been the object of focus in the information
theory and computer science literature. Starting with [25]
and [47] where the problem of generating shared random-
ness from correlated randomness and vice-versa, respectively,
were considered, several important variants have been studied
such as correlated sampling [11], [16], [34], [38] and non-
interactive simulation [20], [27], [36]. Yet, our problem of
exact simulation of a single (unknown) distribution with
communication constraints from multiple parties has not been
studied previously to the best of our knowledge.

D. Relation to Chi-Square Contraction Lower Bounds

This work is the second of a series of papers, the first of
which ( [3]) presented a general technique for establishing
lower bounds for inference under information constraints.
When information constraints are imposed, the statistical dis-
tances shrink due to the data processing inequality. At a high-
level, the lower bound in [3] was based on quantifying the
contraction in chi-square distance in a neighborhood of the
uniform distribution due to information constraints. Note that
in view of the reduction in Appendix D, the neighborhood
of any distribution is roughly isometric to the neighborhood
of the uniform distribution (though the isometry can depend
on the reference distribution). Thus, our lower bound aptly
captures the bottleneck imposed by information constraints for
a broad class of inference problems, and not just uniformity
testing.
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The current article, and our upcoming article [1],> seeks

to find schemes that match the lower bounds established
in [3]. An interesting feature of our lower bounds is that they
quantitatively differentiate the chi-square contraction caused
by private- and public-coin protocols. Our schemes in this
article draw on the principles established by our lower bounds
in [3] and use a minimally contracting hash for inference
under information constraints. Specifically, our private-coin
simulate-and-infer scheme and public-coin scheme are based
on identifying a private-coin and public-coin communication
protocol, respectively, that minimally contract the chi-square
distances in the neighborhood of the uniform distribution.
We term this principle of designing inference schemes under
information constraints the minimally contracting hashing
(MCH) principle. At this point, it is just a heuristic where
we seek mappings that attain the minmax and maxmin chi-
square contractions that appear in our lower bounds in [3],
and propose them as a good candidate for selecting channels
for inference under information constraints in our setting.
We believe, however, that a formal version of the MCH
principle can be established and applied gainfully in this
setting.

The MCH principle seems to remain valid even for local pri-
vacy constraints, as considered in [1]. Moreover, in addition to
the papers in this series, our preliminary calculations suggest
that our treatment and the MCH principle extend to testing
problems concerning high-dimensional distributions as well.
Finally, while in this article we have quantified the reduction in
sample complexity due to availability of public randomness for
a fixed amount of communication per sample, quantifying the
complete sample-randomness tradeoff for distributed identity
testing under communication constraints is work in progress.

E. Organization

We begin by formally introducing our distributed model
in Section III. Next, Section IV introduces the question of
distributed simulation and contains our protocols and impos-
sibility results for this problem. In Section V, we consider
the relation between distributed simulation and private-coin
distribution inference. The subsequent section, Section VI,
focuses on the problem of identity testing and contains the
proof of Theorem 4.

II. NOTATION AND PRELIMINARIES

Throughout this article, we denote by log the logarithm to
the base 2. We use standard asymptotic notation O (-), Q (+),
and © () for complexity orders,* and, for two non-negative
sequences, write a, < b, to indicate that there exists an
absolute constant ¢ > 0 such that a,, < ¢-b,, for all n. Finally,
we will denote by a Ab and a Vb the minimum and maximum

of two numbers a and b, respectively.

3See [2] for a preliminary version.

“Namely, for two non-negative sequences (an)nen and (bn)nen »
we write an = O(bn) (resp., an = Q(by)) if there exist C' > 0 and
N > 0 such that ap, < Cby, (resp., an > Cby) for all n > N. Further,
we write an = O(by,) when both a, = O(by,) and an = Q(by) hold.
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Let [k] be the set of integers {1,2,...,k}. Given a fixed

(and known) discrete domain X of cardinality |X| = &,
we write Ay, for the set of probability distributions over X, i.e.,
Ap={p: [k = [0,1]: [[pll,=1}.

For a discrete set X', we denote by ux the uniform distribution
on X and will omit the subscript when the domain is clear
from context.

The total variation distance between two probability distri-
butions p,q € Ay is defined as

1
dpy(p.a) = sup (p(S) — a() = 5 > [p(x) —a(x)],
Scx reX
namely, d, (p, q) is equal to half of the ¢; distance of p and
q. In addition to total variation distance, we will extensively
use the /5 distance between distributions p,q € A, denoted

Ip — all,-

III. THE SETUP: COMMUNICATION, SIMULATION,
AND INFERENCE PROTOCOLS

A. Communication Protocols

We restrict ourselves to simultaneous message passing
(SMP) protocols of communication, wherein the messages
from all players are transmitted simultaneously to the central
server, and no other communication is allowed. We allow
randomized SMP protocols and distinguish between two forms
of randomness: private-coin protocols, where each player can
only use their own independent private randomness that is
not available to the referee and public-coin protocols, where
the players and the referee have access to shared randomness.
SMP rules out any other interaction between the players except
the agreement on the protocol and coordination using shared
randomness for public-coin SMP protocols. In particular, this
setting precludes interactive communication models. Nonethe-
less, this setting is natural for a variety of use-cases where
players represent users connected to a central server or sensors
connected to a fusion center. It can even be used for the
case where each sample is seen by the same machine, but
at different times, and the machine does not maintain any
memory to store the previous samples. For instance, this
machine can be an analog-to-digital converter that quantizes
each input to ¢ bits. Even in this noninteractive setting, we note
that the use of shared randomness arises naturally in, e.g.,
asymmetric settings where the central server can broadcast
sporadically a common random seed to the users; or when
this random seed is hardcoded in the sensors before they are
deployed.

Definition 1 (Private-coin SMP Protocols): Let Uy, ..., U,
denote independent random variables, which are also inde-
pendent jointly of (X1,...,X,), and represent the private
randomness of the players. An ¢-bit private-coin SMP protocol
7 consists of the following two steps: (a) Player ¢ selects
their channel® W; € W, as a function of U;, (b) and sends

SFollowing the convention in information theory, we define a channel W
from X to ) as a randomized mapping W: X — ). We represent it by
a |Y| x |X| transition probability matrix W whose rows and columns are
indexed by y € Y and « € X, respectively, and its (y,z)th entry W (y |
x) := Wy, is the probability of observing y when the input to the channel
is x.
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R
output
Fig. 1. The communication-constrained distributed model, where each

M, € {0,1}%. In the private-coin setting the channels M7, ..., M, are
independent, while in the public-coin setting they are jointly randomized.

their message M, € {0, 1}¢, which is obtained by passing X;
through W, to the referee. The referee receives the messages
M = (Mi,Ms,...,M,), but does not have access to the
private randomness (Uq, ..., U,) of the players.

We assume that the protocol is decided ahead of time,
namely the distribution of U;s is known to the referee, but
not the realization. Note that in a private-coin SMP com-
munication protocol, the communication M; from player @
is a randomized function of (X;,U;). Moreover, since both
(X1,...,Xp) and (Uy,...,U,) are generated from a product
distribution, so is (M, ..., M,).

Definition 2 (Public-coin SMP Protocols): Let U be a
random variable independent of (X7, ..., X,,), available to all
players and the referee. An ¢-bit private-coin SMP protocol
7 consists of the following two steps: (a) Players select their
channels W1y, ..., W, € W, as a function of U, and (b) send
their messages M, ..., M, € {0, 1}4, by passing X; through
W;, to the referee. The referee receives the messages M =
(Mjy, ..., M,) and is given access to U as well.

In contrast to private-coin protocols, in a public-coin SMP
communication protocol, the communication M; from player
i is a (randomized) function of (X;,U) and therefore the
M;s are not independent. They are, however, independent
conditioned on the shared randomness U.

We denote the communication protocols that are used at
the players to generate the messages by 7. For public-coin
protocols, to make explicit the role of the randomness in the
choice of the channels, we sometimes write 7 (2™, u) to denote
the output of the protocol (messages) when the input of the
players is " = (z1,...,2,) and the public-coin realization
is U = u. Also, we write m; (2™, u) for the message sent by
player 7 using protocol 7. See Fig. 1 for a depiction of the
communication setting.

B. Distributed Simulation Protocols

The distributed simulation problem we propose is rather
natural, yet, to the best of our knowledge, has not been studied
in prior literature. In this section, we will define the simulation
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problem, and in the next section exhibit its use as a natural
tool to solve any communication-limited inference problem.
Recall that our goal is to enable the referee to generate samples
from the unknown distribution using communication from the
players. Note that players only know the alphabet [k] from
which samples are generated, but have no other knowledge of
the distribution. We allow the players to use an SMP protocol,
private-coin or public-coin, to facilitate simulation of samples
by the referee.

We now state the question of simulation formally.
An (-bit simulation protocol S = (w,T) of k-ary distributions
using n players consists of an ¢-bit SMP protocol 7 and
a decision mapping 7. The output of 7 is an element in
M?", where M = {0,1}%. The decision mapping 7': M" —
X U{Ll} is a randomized function that takes as input the
messages from the players and outputs an element in X U{_L},
where L is the “abort” (no outcome) symbol. Upon receiving
messages m" = (mq,...,my) € M", the referee outputs
x € X with probability Pr [T (m™) = x| and the symbol L
with probability T'(L | m™) =1 -3 Pr[T(m")=z].
Interpreting the randomized function 7 as a channel with input
alphabet M"™ and the output alphabet X U { L}, we denote
Pr[T(m"™) = x] by T(x | m™). The protocol is private-coin
if 7 is a private-coin communication protocol, and it is public-
coin if 7 is public-coin. For public-coin protocols, the decision
mapping 7' = Ty can be chosen as a function of U, the public
randomness. We want the distribution of the random output of
the decision mapping to coincide with the unknown underlying
distribution p. This objective is made precise next.

Definition 3 (a-Simulation): A protocol S = (m,T') is an
a-simulation protocol if for every p € Ay, that generates the
input samples X1, ..., X,, for the SMP protocol 7, the output
X = T(n(X1,...,Xn) € XU{L} of the simulation
protocol 7' satisfies

Xﬂfg*p7l[X:x|X7éL}:pm, Vae X,

and the probability of abort satisfies

Pr [X = J_} < q.
Xn~pn
A 0-simulation, namely a simulation with probability of abort
zero, is termed perfect simulation.

C. Distributed Inference Protocols

We give a general, decision-theoretic description of distrib-
uted inference protocols that is applicable beyond the use-
cases considered in this work. For the most part, we will
restrict to learning and identity testing of discrete distributions,
but our results for distributed inference are valid for general
settings.

We start with a description of inference tasks. An inference
problem P is a tuple (C,X,&,1), where C is a collection
of distributions over X, £ is a class of allowed actions or
decisions that can be taken upon observing samples generated
from p € C, and [: C x £ — R% is a loss function used
to evaluate the performance. A (randomized) decision rule
is a map e: A" — &, and for samples X" generated from
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p € C, the loss of the decision rule is measured by the vector
l(p,e(X™)) in RY. Our benchmark for performance will be
the expected loss vector

L(p,e) :=Exnpll(p,e(X™)]. (1)

Note that the expected loss vector, too, is a g-dimensional
vector.

An (-bit distributed inference protocol T = (m,e) for the
inference problem (C, X, &, 1) consists of an ¢-bit SMP pro-
tocol 7 and an estimator e available to the referee who, upon
observing the messages M = (My,...,M,), and follows
a (randomized) decision rule e: M™ — &. For private-coin
inference protocols, m is a private-coin SMP protocol, and
for public-coin inference protocols, both the communication
protocol 7 and the decision rule e are allowed to depend on the
public randomness U, available to everyone. The expectation
in (1) is then taken over both X™ and the randomness (private
or public) of the protocol.

We now state a measure of performance of inference
protocols.

Definition 4 (7-Inference protocol): For 7 € R%, a protocol
(m,e) is a y-inference protocol if, for every p € C,

where L;(p, e) denotes the ith coordinate of L(p,e).

We instantiate the abstract definitions above with two illus-

trative examples that we study in this article.
¢) Distribution Learning: In the (k, €)-distribution learn-

ing problem, we seek to estimate a distribution p in Ay to
within ¢ in total variation distance. Formally, a (randomized)
mapping e: X™ — Ay, constitutes an (n,e,0)-estimator for
Ay, if the estimate p = e(X™) satisfies

sup Pr [dTV (f)ap) > E] < 57

peA, X" ~P
where drvy (p, q) denotes the total variation distance between
p and gq. Namely, p estimates the input distribution p to within
distance ¢ with probability at least 1 — §.

The sample complexity of (k,e,0)-distribution learning is
the minimum n such that there exists an (n, €, §)-estimator for
Ay It is well-known that the sample complexity of distribution
learning is ©(k/e?) and the empirical distribution attains it.

This problem can be cast in our general framework by
setting X = [k], C =& = Ay, ¢ = 1, and I(p, p) is given by

I(p,p) := 1{dTv(p,ﬁ)>g}-
For this setting of distribution learning, we term the
d-inference protocol an ¢-bit (k, e, 0)-learning protocol for n
players.

d) Identity Testing: Let q € Ay be a known reference
distribution. In the (k, e, §)-identity testing problem, we seek
to use samples from unknown p € Ay, to test if p equals q
or if it is e-far from q in total variation distance. Specifically,
an (n, e, 0)-test is given by a (randomized) mapping 7 : X" —
{0,1} such that

Pr [T(X")=1]>1-4,if p=aq,
Xn~pn

XPr [T(X")=0]>1-0,if dpy(p,q) > €.
Apn
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Namely, upon observing independent samples X", the algo-
rithm should ‘“accept” with high constant probability if the
samples come from the reference distribution q and “reject”
with high constant probability if they come from a distribution
significantly far from q.

The sample complexity of (k,e,0)-identity testing is the
minimum n for which an (n,¢,d)-test exists for q. While
this quantity can depend on the reference distribution q, it is
customary to consider sample complexity over the worst-
case q.6 In this worst-case setting, while it has been known for
some time that the most stringent sample requirement arises
for q set to the uniform distribution, a recent result of [28]
provides a formal reduction of arbitrary q to the uniform
distribution case. It is therefore enough to consider q = uy,
the uniform distribution over [k]; identity testing for uy is
termed the (k, €, §)-uniformity testing problem. For constant ,
the sample complexity of (k, e)-uniformity testing was shown
to be ©(vk/e?) in [40], [45], and the exact dependence on
6 was later identified in [21], [35].

Uniformity testing, too, can be obtained as a special case of
our general formulation by setting X = [k], C = {us}U{p €
Ag : dypy(p,ug) > €}, € = {0,1}, and the 2-dimensional
loss function [: C x £& — R? to be

ll(p7 b) =b- ﬂ{p:uk} )
la(p,b) = (1 = b) - Lipru,y

for b € {0,1}. For simplicity, we consider the error para-
meter ¥ = (6,8).” For this case, we term the J-inference
protocol an (¢-bit (k, e, d)-uniformity testing protocol for n
players. We provide (k, e, d)-uniformity testing protocols for
arbitrary 6§, but we establish lower bounds only for § =
1/12. This choice of probability of error is to remain con-
sistent with [3], since we borrow the general lower bounds
from there. For simplicity we will refer to (k,e,1/12)-
uniformity testing protocols simply as (k, €)-uniformity testing
protocols.

Note that distributed variants of several other inference
problems such as that of estimating functionals of distribu-
tions and parametric estimation problems can be included as
instantiations of the distributed inference problem described
above.

IV. DISTRIBUTED SIMULATION

In this section, we consider the distributed simulation prob-
lem described in Section III-B. We start by considering the
more ambitious problem of perfect simulation, where using a
finite number of players n, the referee must simulate a sample
from the unknown p using the /-bit messages from the players.
We then consider the relaxed problem of a-simulation for a
constant o € (0,1) (see Definition 3). We prove the following
results for these problems.

6The sample complexity for a fixed q has been studied under the “instance-
optimal” setting (see [13], [45]): while the question is not fully resolved,
nearly-tight upper and lower bounds are known.

7We observe that by this formulation allows, more generally, to study the
dependence of sample complexity Type-I and Type-II error probabilities 01
and 2 by considering ¥ = (41, d2).
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1) In Section IV-A, we show that for any ¢ < [log k] and
finite n, perfect simulation is impossible using n players.

2) In Section IV-B, for any constant « € (0, 1), we exhibit
an ¢-bit private-coin a-simulation protocol for k-ary
distributions using O((k/2¢)log(1/a)) players.

3) Finally, in Section V-C, drawing on the lower bounds
for distribution learning, we will prove the sample-
optimality of our distributed simulation algorithm above
up to constant factors. In fact, even with public coins
the number of players cannot be reduced by more than
a constant factor.

We have defined the distributed simulation problem as one
where the output distribution conditioned on not outputting
1 is identical to p. One may wonder about another natural
relaxation to perfect simulation, where the goal is to generate
a sample according to a distribution that is a-close to p (say,
in total variation distance). A primary reason for considering
the former is that the ability to generate samples from p will
allow us to compose it with a centralized algorithm for any
inference task, as we show in Section V.

A. Impossibility of Perfect Simulation When £ < log k

We show that any simulation that works for all points in the
interior of the (k — 1)-dimensional probability simplex must
fail for a distribution on the boundary. Our main result of this
section is the following:

Theorem 5: For any n > 1, there exists no ¢-bit perfect
simulation for k-ary distributions using n players unless
¢ > [logk].

Proof: Suppose that for ¢ < [logk] there exists an /(-
bit (public-coin) perfect simulation & = (w,T) for k-ary
distributions using n players. Fix a realization U = wu of
the public randomness. Since ¢ < [log k]|, by the pigeonhole
principle for each player at least two symbols in [k] map to
the same message. Therefore, we can find a message vector
(m1,...,my) and distinct elements x;,z, € [k] for each
i € [n] such that

mi(2i, u) = mi(x), u) = m;, (2)

that is for U = u, the SMP protocol sends the same message
vector m when the observation of players is (z1,...,z,)
or (z4,...,x}). For a perfect simulation, the referee is not
allowed to output L, and it must output a symbol in [k].

Next, consider a message m and a symbol = € [k] such that
Tu(x | m) > 0, namely the referee outputs = with a nonzero
probability when the public randomness is U = u and the
message received is m. The key observation in our proof is
that since z; # «} in view of (2), for each i either z; # x or
x} # . Without loss of generality, we assume that z; # x for
each1 <i¢<n.

Finally, consider a distribution p such that p, = 0 and
Psr > 0 for all ' # x. For perfect simulation, under
this distribution, the referee must never declare x. How-
ever, conditioned on the public-coin realization being U = u,
the probability of observing the message (mq,...,m,)
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above is

PF[M: (ml,...
= Z HW'L',u(m'L | jz)p(iz)

x

y1mn) | U = u]

n
> H Wz,u(mz | xi)pmi > 07

i=1
where W; , denotes the channel used by player ¢ to sent
its message when the public randomness is U = wu. Thus,
the referee has a nonzero probability of outputting = given
U = u, even though p, = 0. This contradicts the assumption
that S is a perfect simulation. O]

Note that the proof above shows that any perfect simulation
of a distribution p in the interior of the (k — 1)-dimensional
probability simplex must fail for at least one distribution on the
boundary of the simplex. In fact, a much stronger impossibility
result holds. For the smallest non-trivial parameter values of
k = 3 and ¢ = 1, no perfect simulation protocol exists that
simulates all distributions in any open neighborhood in the
interior of the probability simplex.

Theorem 6: For any n > 1, there does not exist any ¢-bit
perfect simulation of ternary distributions (kK = 3) unless
¢ > 2, even when the input distribution is known to come from
an open set in the interior of the probability simplex.

We defer the proof of this theorem to Appendix A. Roughly
speaking, the argument proceeds by establishing that we can,
without loss of generality, restrict to deterministic proto-
cols. We then show that any deterministic simulation protocol
must output | with a nonzero probability — contradicting the
assumption of perfect simulation. Together, the two incom-
parable impossibility results of Theorems 5 and 6 (one for
general 1 < ¢ < [log k] but at the boundary of the probability
simplex; the other for £ = 1 and k£ > 3, but in the interior)
rule out perfect simulation in a strong sense in the case of
SMP protocols.

We close this section by extending our impossibility result
to beyond SMP protocols, to the setting where the players
are allowed to communicate interactively.® In a (sequentially)
interactive communication protocol, players 1 to n communi-
cate sequentially in rounds, with player ¢ communicating in
round 7. The communication is in a broadcast mode where,
along with the referee, the players too receive communication
from each other. The communication of player ¢ can depend on
their local observation and the communication received in the
previous ¢ — 1 rounds from the other players. We hereafter omit
the word ““sequentially,” and simply refer to such protocols as
interactive communication protocols.

Our next result shows that perfect simulation is impossible,
even when players use an interactive communication protocol.
The proof uses a standard method for simulating sequential
protocols with SMP protocols, by increasing the number
of players (see, for instance, reduction of round complexity
in [39]).

8Public-coin protocols do allow the players to coordinate using shared
randomness. But they do not interact in any other way.
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Lemma 1: For every n > 1, if there exists an interactive
public-coin /-bit perfect simulation of k-ary distributions with
n players, then there exists a public-coin ¢-bit perfect simu-
lation of k-ary distributions with 2" players that uses only
SMP.

Proof: Consider an interactive communication protocol
w for distributed simulation with n players and ¢ bits of
communication per player. We can view the overall protocol
as a 2%-ary tree of depth n where each node is assigned to a
player. An execution of the protocol is a path from the root to
the leaf of the tree, namely along any such path each player
appears once. This protocol can be simulated non-interactively
using at most (2" —1)/(2° —1) < 2" players, where players
(277141) to 27 send all messages correspond to nodes at depth
7 in the tree. Then, the referee receiving all the messages can
output the index of the leaf node by following the path from
root to the leaf. O

In other words, any interactive protocol with a finite number
of players can be simulated by a non-interactive (i.e., SMP)
protocol with a finite (albeit exponentially larger) number of
players. As our impossibility results hold for non-interactive
protocols with any finite number of players, the above lemma
therefore implies that they still hold for interactive communi-
cation protocols.

Corollary 3: Theorems 5 and 6 hold even when the players
are allowed to use interactive communication protocols for
simulation.

B. An «a-Simulation Protocol Using Rejection Sampling

In this section we present our construction of a simulation
protocol for k-ary distributions using n = O(k/2%) players,
establishing the following theorem:

Theorem 7: For every o € (0, 1] and ¢ > 1, there exists an
£-bit a-simulation of k-ary distributions using

1 k
40 {log oz—‘ . [24 — 1—‘
players. Moreover, the protocol is deterministic for the players,
and only requires private randomness at the referee.

At a high level, our algorithm divides players into batches
and constructs a 3/4-simulation using each batch. The
overall simulation declares the output symbol of the first
batch that does not declare an abort. By using O([log 1])
batches, we can boost the probability of abort from
3/4 to a.

To simplify the presentation, we first present the protocol for
¢ =1 and analyze its performance. Even for this case, we build
our protocol in steps, starting with the basic version given
in Algorithm 1 below, which requires n = 2k players. The
next result characterizes the performance of this simulation
protocol.

Theorem 8: The protocol in Algorithm 1 uses 2k players
and is a 3/4-simulation for p € Ay, such that ||p|| < 1/2.

Proof: From the description of the protocol, it is easy
to verify that the output X of the protocol takes the value ¢
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Algorithm 1 Distributed simulation protocol using ¢ = 1: The
basic version

Require: n = 2k players observing one independent sample

each from an unknown p

1: For 1 < 4 < n, players (2i — 1) and 2i send one bit to
indicate whether their observation is 7.

2: The referee receives these n = 2k bits My, ..., M,.

3: if exactly one of the bits My, Ms, ..., Mo, is equal to
one, say the bit Ms;_1, and the corresponding bit Mo;
is zero, then the referee outputs X =i

4: else the referee outputs L (abort).

5: end if

with probability

Pr|X=i| =pi [[0-py) (1
JFi

k

—Pi):pi'H(l—Pj),
j=1

3)

where the first term in the product corresponds to Ms; 1
being 1, the second term to all the other messages from odd-
numbered players being 0, and the final term for My, to be
0. Note that this probability is proportional to p;, showing
that conditioned on the event {X & [k]}, the output is indeed
distributed according to p.

Next, we bound the probability of abort for this protocol.
By summing (3) over all 4 in [k], we obtain that the probability
pp = Pr[R does not output L] is given by

k
pp =[] (1 - D))
j=1
Observe that while (as discussed above), conditioned on suc-
cess, the output is from p, the probability of abort can depend
on p. In particular, if there is one symbol with large probability
(close to one), the success probability can be arbitrarily close
to zero. This is where we use our assumption |p|_ < 1/2to

establish that .

pp=T10-p) >}
j=1
Indeed, the claimed bound follows from observing that 1 —z >
1/4% for all z € [0, 1/2]. Therefore, the probability of aborting
is bounded above by 3/4, completing the proof. O
To handle the case when ||p||,, may exceed 1/2, we con-
sider the distribution q on [2k] defined by

1
2
This distribution satisfies the condition ||qf|,, < 1/2, and
therefore, the previous protocol yields 3/4-simulation for it
using 4k players observing independent samples from q. The
problem now reduces to obtaining samples from q using
samples from p, and then obtaining back a sample from p
given a sample from q generated by the referee. Towards that,
we note that although the players do not know p, given a
sample from p, it is easy to convert it into a sample from
q as follows. Player j upon receiving X; ~ p, maps it

i =qrti = 5 "Pi, @ E[K].
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to X; or X; + k with equal probability. We can use this
process to convert samples from 4k players to sample from
q and apply Algorithm 1 to simulate a sample X from q
at the referee. Finally, we can convert the sample X from
q to that from p by declaring X = (X — 1 mod k) +

Our enhancement of Algorithm 1 described next does exactly
this, with a slight modification to avoid the use of additional
randomness at the players (but instead using randomness at the
referee only). This protocol achieves our desired performance
for the case ¢ = 1.

Algorithm 2 Distributed simulation protocol using ¢ = 1: The

enhanced version

Require: n = 4k players observing one independent sample

each from an unknown p

1: Players divide themselves in two sets of 2k players each,
and each set executes a copy of Algorithm 1.

2: The referee receives message bits (My,. .., Myy) from
all the players, and independently flips each message
bit that is 1 to 0 with probability 1/2 to obtain
(Mla"'aM4k)' - _

3: if exactly one of the message bits My, Mg, ..., Myr_1

is 1, say the message Mo;_;, and the corresponding

message sequence M, is 0, then

if 7 > k, then the referee updates i «— ¢ — k;

end if

the referee outputs X = 1]

: else the referee outputs L.

: end if

® N>R

Theorem 9: The protocol in Algorithm 2 uses 4k players
and is a 3/4-simulation for p € Aj. Moreover, the communi-
cation protocol used by the players is a deterministic protocol.

Proof: We first establish the following claim.

Claim 1: The distribution of flipped bits obtained
after Section IV-B coincides with that for message bits when
we execute Algorithm 1 using samples from q.

To see this, note that, for i € [k], players ¢ and ¢ + k send
the message 1 with probability p; each. Therefore, the flipped
bits of these players will equal 1 with probabilities q; = p; /2
each. But this is exactly the probability with which these
messages would be 1 if the samples of the players were
generated from q and we were executing Algorithm 1.

Next, note that the operation of the referee from here on
can be described alternatively as obtaining X by executing
Algorithm 1 for 2 - 2k = 4k samples from q and declaring
X = (X —1 mod k)+1if X +# L. Thus, the overall protocol
behaves as if the players and the referee executed Algorithm 1
for samples from q and then the referee declared the output
mod k+ 1, if it was not a L. As we saw above, this protocol
constitutes a 3/4-simulation for p. O

Moving now to the more general setting of arbitrary ¢ €
{1,...,[logk]}, we simply modify Algorithm 2 to use the
extra bits of communication. For simplicity, we assume that
2¢ — 1 divides k and set m := k/(2° — 1). We partition the
domain [k] into m equal contiguous parts St,...,Sy,,, with
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Algorithm 3 Distributed simulation protocol using ¢ > 1:

Basic block

Require: n = 4m players observing one independent sample

each from an unknown p

1: Players 2j — 1,25,2(j +m) — 1,2(j +m), 1 < j < m,
send the following communication depending on their
observed sample x:

2. if « ¢ S;, then send the all zero sequence O of length .

3: else indicate the precise value of x € S; using the
remaining 2 —1 binary sequences of length £. We denote
the sequence sent for i € S; by s; € {0,1}°\ {0}.

4: end if

5: The referee independently changes the message M from

player j that is not 0 to O with probability 1/2, to obtain

the flipped message M ;.

exactly one of the message sequences

My, Ms, ... ,My,_1 is nonzero, say the message

Moj_1, and the corresponding message sequence Mo,

is 0, then

7. if j > m, then the referee updates j < j —m

8: end if

9: if My 1 = s, the referee outputs X =i € Sj;

10: else the referee outputs X =1

11: end if

6: if

|S;| = 2¢ — 1. Our proposed modification to Algorithm 2 to
extend it for £ > 1 is given in Algorithm 3.

The previous protocol can be developed incrementally in
the same manner as the protocol for ¢ = 1. First, we obtain
a protocol under some additional assumption on p using

2 [%w players and then circumvent the requirement for that

assumption by converting samples from p into samples for q
by doubling the number of players. The form above is obtained
in the same manner as that of Algorithm 2, by relegating the
requirement for randomization at the players to the referee.

The performance of this protocol is characterized in the
theorem below.

Theorem 10: For any ¢ > 1, Algorithm 3 uses 4 [2,_7 J
players and is a 3/4-simulation for p € Aj. Moreover,
the communication protocol used by the players is a deter-
ministic protocol.

Proof: The proof is similar to that of Theorem 9, with
appropriate extensions to handle ¢ > 1. Note that the players
inthe set P; :={2j—1,25,2(j+m)—1,2(j+m)}, j € [m],
use the same mapping to determine the message to send.
Let ¢ € S;. Then, for all players in the set P;, the flipped
message equals s; (the sequence representing message ¢) with
probability p; /2. It follows that the flipped message is O for
any of these players with probability (1 —p(S;)/2). Denoting
Ji the j € [m] such that ¢ € S, note that only players
in Pj, can declare s; with positive probability. Therefore,
by combining the previous observations with the fact that the
messages of all players are independent, we get

Pr[f(—z}—z-%-n(1-@)(1—@),

J#Ji
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where the first factor of 2 represents two cases where
Maj;—1 = si or Mag,4my—1 = 8i» [y, (1 = P(S;)/2) is
the probability that each of the flipped messages Mo;—1 is O
for t # j; or t # j; +m, and the final factor (1 — p(S;,/2))
is the probability that My, = 0 fort = j; ort = j; +m. As a

consequence, we get that
R EOANSY
2 — 4

where in the final bound we used once again the fact that
1—x>1/4% for 0 < x < 1/2. This completes the proof. []

Finally, we boost the probability of successful simulation
from 1/4 to 1 — « by using multiple blocks.

Pr[X';éJ_}: H

i€lm

Algorithm 4 Distributed simulation protocol using ¢ > 1:

Complete protocol

Require: n = 40 [log é] . [2/11—‘ players observing one
independent sample each from an unknown p

1: Divide players into 10 [log é] disjoint groups of 4 [2[ J
players each.

2: Execute Algorithm 3 to each block successively, one block
at a time.

3: if all blocks do not declare L as the output, then output
X =i where i € [k] is the output of the first block that
does not output | ;

4: else output X = 1 and terminate.

5: end if

We conclude with the proof establishing that Algorithm 4
attains the performance claimed in Theorem 7.

Proof of Theorem 7: Each group in Algorithm 4 executes
the 3/4-simulation protocol given in Algorithm 3, and the
overall protocol outputs the symbol in [k] that the first group
to succeed outputs, if such a group exists. This is a simple
rejection sampling procedure, and clearly, conditioned on no
abort, the distribution of output is p. Furthermore, the algo-
rithm declares L if all the groups declare 1, which happens
with probability at most (3/4)° [loe 5] < a, O

V. SIMULATE-AND-INFER

We now show how to use distributed simulation results
to design private-coin distributed inference protocols. The
approach is natural: Simulate enough independent samples
at the referee R to solve the centralized problem. We first
describe the implications of the results from Section IV for any
distributed inference task, and then instantiate them to our two
specific applications: distribution learning and identity testing.

A. Private-Coin (-Bit Distributed Inference
via Distributed Simulation

Using the distributed simulation protocols of the previous
section, we can simulate one sample from p at the referee
using about (k/2°) players. Then, to solve an inference task
in the distributed setting, the referee can simulate the number
of samples needed to solve the task in the centralized setting.

7865

Algorithm S5 The simulate-and-infer protocol for P =
(C,x,&,1)

Require: Parameters C', N, n = 4CN [2,_7 11 players observ-
ing one sample each from an unknown p, and a (central-
ized) estimator e for P requiring N samples

1: Partition the players into blocks of size 4 [QZ T

2: Execute instances of the distributed simulation protocol
given in Algorithm 3 on each block.

3: if at least /V instances return (independent) samples X #
1, then take a subset (Xl, . ,XN) of these samples
and output é = e(Xl, e 7)A(N);

4: else output an arbitrary element é € £.

5: end if

The resulting protocol will require a number of players roughly
equal to the sample complexity of the inference problem
when the samples are centralized times (k‘ /2%), the number of
players required to simulate each independent sample at the
referee. We refer to protocols that first simulate samples from
the underlying distribution and then use a centralized inference
algorithm at the referee as simulate-and-infer protocols. For
concreteness, we provide a formal description in Algorithm 5.

For ¥ € R%, let vp(¥) denote the sample complexity for
~-inference protocol to solve P in the centralized setting. That
is, ¥p () denotes the smallest n for which there exists an
estimator e such that for every p € C and n independent
samples from p, we have

where L € R‘i is defined in (1). The next result evaluates the
performance of Algorithm 5.

Theorem 11: Let P = (C, X, &,1) be an inference problem
with bounded loss 1: C x £ — R i.e., ||l|| ,, < 1. For 0 <0,
1 < ¢ < [logk], and ¥ € R%, upon setting N = ¢p(¥) and
C =2+ (1/¢Yp(¥))log(1/), the simulate-and-infer protocol
given in Algorithm 5 requires O ((¢p(7) Vlog $) - 2"—[) play-
ers and constitutes an ¢-bit deterministic (¥ + 01,)-inference
protocol for P.

Proof: We denote the resulting distributed inference pro-
tocol by (7, €’), and proceed to show it is a (¥+01,)-inference
protocol for P. From Theorem 10, each block produces
independently a sample with probability at least 1/4 (and L
otherwise). Thus, by Hoeffding’s inequality, the number of
samples simulated is larger than N = ) (¥) with probability
at least 1—6 as long as (5C'—1)2/(10C) > 1/¢p(7)log(1/9),
which is satisfied for C' > 2 4 (1/1p (7)) log(1/d). Denoting
by £ the event that the referee can simulate at least 1p(7)
samples, the expected loss satisfies

Li(p,¢') < (1 = 0)E[li(p,¢) | £] + 0E[li(p,¢) | €]
<E[li(p,e) [ €] +dllill
< Li(p,e) +6

for every 1 <1 < g, concluding the proof. O
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The theorem above is quite general and only requires that
the loss function be bounded.’ Further, it is worth noting that
the dependence on ¢ is very mild and can even be ignored, for
instance, in settings when 7 = v1, with v < § and ¢¥p(¥) 2
log(1/6) (as the next two examples will illustrate).

B. Application: Private-Coin Protocols from
Distributed Simulation

As corollaries of Theorem 11, we obtain distributed infer-
ence protocols for distribution learning and identity testing.
Using the well-known result'® that © ((k + log(1/4))/<?)
samples are sufficient to learn a distribution over [k] to within
a total variation distance € with probability 1 — J, we obtain
the following.

Corollary 4: For ¢ € {1,...,[logk]}, simulate-and-infer
constitutes an ¢-bit deterministic (k,e, J)-learning protocol
with O (ﬁ(k-l—log(l /6))) players. In particular, for any
constant ¢ € (0,1], O(k?/2%?) players suffice.

For identity testing, it is known that the sample complexity
is O((\/klog(1/8) +log(1/68))/c?) samples (cf. [21], [35]).
Thus, we get the following corollary to Theorem 11.

Corollary 5: For { € {1,...,[logk]}, simulate-and-

infer constitutes an ¢-bit deterministic (k, e, d)-identity test-

ing protocol with O (%(\/k log(1/9) + log(l/é))) players.
In particular, for any constant § € (0, 1], O(k3/2 /2¢c?) players
suffice.

Remark 1: We highlight that for constant §, the two
corollaries above are known to be optimal among all private-
coin protocols. Indeed, up to constant factors they achieve the
sample complexity lower bounds established in [3] for private-
coin learning and uniformity testing protocols, respectively.
In particular, we remark that Corollary 5 shows that simulate-
and-infer attains the sample complexity © (k%/2/(2?)) of
identity testing using private-coin protocols. We leave estab-
lishing the optimality of our results with respect to the
parameter J as an interesting open question.

C. Optimality of Our Distributed Simulation Protocol

Interestingly, a byproduct of our performance bound
for simulate-and-infer protocols (more precisely, that of
Corollary 4) is that the a-simulation protocol from Theo-
rem 10 has optimal number of players, up to constants.

Corollary 6: For £ € {1,...,[logk]} and « € (0, 1), any
£-bit public-coin (possibly interactive) c-simulation protocol
for k-ary distributions must have n = Q(k/2¢) players.

Proof: Let m be any /-bit a-simulation protocol with n
players. Proceeding analogously to proofs of Theorem 11
and Corollary 4, we get that m can be used to get an ¢-bit
(k,&,1/3)-learning protocol for n’ = O (n-k/c?) players.
(Moreover, the resulting protocol is adaptive, private- or
public-coin, respectively, whenever 7 is.) However, as shown

°In particular, it is immediate to extend it to the more general bounded case
1|l oo < oo, instead of ||I|| ., < 1.

10This can be shown, for instance, by considering the empirical distribution
P and using McDiarmid’s inequality to bound the probability of error event

{dpy (P, P) > €}
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in [33] (see, also, [3]), any ¢-bit public-coin (possibly inter-
active) (k, e, 1/3)-learning protocol must have Q (k?/ (2552)2
players. It follows that n must satisfy n 2 k/2°,
as claimed. O

VI. PUBLIC-COIN IDENTITY TESTING

In this section, we propose public-coin protocols for
(k, €)-identity testing and establish the following upper bound
on the number of players required.

Theorem 12: For 1 < ¢ < [logk], there exists an ¢(-bit
public-coin (, ¢)-identity testing protocol for n = O (5= )
players.

In view of Remark 1 and the previous result, public-
coin protocols require a factor /k/2¢ fewer samples than
private-coin protocols for identity testing. To the best of our
knowledge, this is one of the first instances of a natural distrib-
uted inference problem where the availability of public coins
changes the sample complexity. In fact, it follows from [3]
that the sample requirement of O (ﬁ) in Theorem 12
is optimal among all public-coin protocols. Thus, our work
provides sample optimal private- and public-coin protocols for
identity testing (the optimal bounds for sample complexity are
given in Table I).

We now present our public-coin protocol for distributed
identity testing that attains the bounds of Theorem 12. The
basic steps of our scheme are the following:

1) We use the public coins for the players to agree on a
random partition of the domain [k] into L := 2¢ parts
Si,...,Sr where |S;| = k/L for each j.

2) Player ¢ then sends the message Y; to be the index
J € [L] such that X; € S; using ¢ bits.

We now elaborate on the two steps and their implications
below. Consider the set of all partitions of [k] into L parts of
equal cardinalities; we call such partitions balanced partitions.
Each such partition (S1,...,S) corresponds to a mapping
from [k] to [L], where the pre-image of j € [L] corresponds
to the set S, and exactly k/L elements map to each j. Note
that the number of such partitions is given by (, y )
The players use public randomness to agree on one of these
partitions uniformly at random. For a distribution p € A[;; and
a uniformly chosen balanced partition S, ..., S, consider the
distribution induced over [L] as follows:

Zr(p) = p(Sr)v re [L]v 4)

where p(S,.) is the probability assigned to S, by p.

For two distributions p and q over [k] we will show
that with a constant probability under the randomized par-
titions, the distance between the p and q are preserved
(up to a constant factor) by the induced distributions p =
(Z1(p),..-,Zr(p)) and G = (Z1(q), ..., Z(q)). If p = q,
then clearly p = q. We next prove that if p and q are far (in
total variation distance), then the induced distributions, too,
are far (in ¢ distance).

Theorem 13: Fix any k-ary distributions p,q. For the
(random) distributions p = (Z1(p),...,Zr(p)), @ =
(Z1(q),...,Zr(q)) over [L] defined in (4) above, the fol-
lowing holds: (i) if p = q, then p = q with probability one;
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and (i) if dpy (p,q) > &, then

2 e?
Prilp—9q|>=—1| >c,
[LECEEE
for some absolute constant ¢ > 0.
The proof of this result involves proving the anticon-

2
centration of }_, ¢y (Zje[k] (pj — qj)]l{jEST}P . Since the
random variables ]l{ jes,} are dependent, the analysis becomes
technical and requires analyzing the higher moments of
the summation above, before applying the Paley—Zygmund
inequality. The complete proof is deferred to Appendix B.

We now provide a sketch of the referee’s algorithm for
identity testing. By definition, the n messages are independent
and distributed according to p. When p = q, by the above
P = @ When dyy(p,q) > &, however, with a constant
probability (we will amplify the success probability later) we
have that /5(P,q) > £/V/2k. Therefore the problem at the
referee is to test whether the samples are from a reference
distribution G over [L] or at least /v/2k in /5 distance.

Consider first the special case of / = 1, and q = uy, namely
uniformity testing with one bit communication. In this case,
we have L = 2 and q = (1/2,1/2) is a fair coin. It is well-
known that the task of testing whether p is a fair coin or if
it has bias at least £/v/k requires ©(1/(¢/Vk)?) = O(k/e?)
samples. For comparison, note that in the private-coin case
protocols required k3/2 /2 samples, and therefore this simple
algorithm provides an improvement over them by a factor
of Vk.

Turning to ¢ > 1, for the special case of testing unifor-
mity (i.e., when q = uy), the referee observes realizations
from a uniform random variable with values in [L] when
p = uy. However, when dry(p,q) > ¢, we only know
that the observed L-ary random variable has distribution that
is (¢/V/k)-far from the uniform distribution in ¢y distance
(with constant probability), and not dry as above. We can
however leverage [19, Proposition 3.1] or [18, Theorem 2.10],
which proposed a test for testing if an L-ary distribution is
uniform or (7y/+/L)-far from uniform in ¢y using O (\/E/'y2
samples. In our case, we want to test if the distribution
is ¢/Vk = e\/L/k/VL far from uniform in /5 distance.
Setting v := e4/L/k this yields an algorithm that requires
@) \/E/’YQ) = O (k/(2%/%?)) samples (for L = 2°), which
is the number of players promised by Theorem 12.

The arguments above are for the special case where the
reference distribution q is uniform. For a general reference
distribution q, our approach first involves reducing identity
testing for q to uniformity testing. Towards this, we rely on the
following result of [28], which we state here for completeness.

Lemma 2: For any q € Ay, there exists a randomized
mapping Fq : Ay — Ay, satisfying the following properties:
() Fqlq) = usk; (ii) for every p € Ay such that
drv(p,q) > e, it holds that dv (Fg(p), usx) > 16¢/25; and
(iii) there is an efficient algorithm for generating a sample
from Fy(p) given one sample from p.

Remark 2: The mapping Iy and the algorithm mentioned
in property (iii) above require the knowledge of q.

7867

With this result at our disposal, each player can simply sim-
ulate samples from F(p) when they observe samples from p.
Thereafter we can simply apply the distributed uniformity test
we outlined earlier, however for a slightly inflated domain of
cardinality 5k.

Recall that in Theorem 13, when p = q the distribution
of messages is equal to q with probability one, but when
the distributions are far (i.e., £2(P,q) > £/v/2k) with only a
constant probability c. We will now “amplify” these constant
probabilities to our desired probability of 11/12. In fact,
the amplification technique we present, considered folklore in
the computational learning community, allows us to amplify
easily the probabilities to any arbitrary . We summarize this
simple amplification in the next result.

Lemma 3: For 61 > 1—05, consider N independent samples
generated from Bern(p) with either p > 61 or p < 1 — 6.
Then, for N = O (1/(61 + 62 — 1)*log 1/5), we can find a
test that accepts p > ¢, with probability greater than 1 — § in
the first case and rejects it with probability greater than 1 — ¢
in the second case.

The test is simply the empirical average with an appropriate
threshold and the proof follows from a standard Chernoff
bound. We omit the details.

As a corollary of Lemma 3 and Theorem 12, we obtain the
following result.

Corollary 7: For 1 < (¢ < [logk], there exists an
£-bit public-coin (k,e,d)-identity testing protocol for n =
O (/5= log 1) players.

Proof: Recall that by our definition of (k,e)-identity
testing and Theorem 12, we are given a test with probability
of correctness greater than 11/12. Thus, when p = q, the ref-
eree’s output bit takes value 1 with probability exceeding
11/12 and when dpv (p,q) > &, the output bit takes value
0 with probability exceeding 11/12. Therefore, the claimed
test in the statement of the corollary is obtained by applying
the test of Theorem 12 to O (log 1/§) blocks of O (k/2¢/2<?)
players and applying the test in Lemma 3 to the binary outputs
of these tests. O

We summarize our overall distributed identity test in
Algorithm 6 below.

We now show that with appropriate choice of para-
meters, Algorithm 6 attains the performance promised in
Theorem 12.

Proof of Theorem 12. Our proof rests on two technical
results pointed above: Theorem 13 and Lemma 2. Consider
the distributed identity test given in Algorithm 6. First,
by Lemma 2, for any reference distribution q the samples
obtained by the players in Section VI are independent sam-
ples from us; when p = q and from a distribution that
is (16e/25)-far from us, in total variation distance when
dry(p,q) > e :

The samples (X7,...,X,,) are then “quantized” to ¢ bits
in each block. For each block of m = k/N players, we can
consider the samples seen by the referee as m independent
samples from an unknown distribution on [L]. By the previous
observation and Theorem 13, the common distribution of
independent samples at the referee in each block is either uy,
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Algorithm 6 An /¢-bit public-coin protocol for distributed
identity testing for reference distribution q.

Require: Parameters v € (0,1), N, n players observing one
sample each from an unknown p
1: Players use the algorithm in Lemma 2 to convert their
samples from p to independent samples X1,.... X,
from Fq(p) € Asy. > This step uses only private
randomness.

: Partition the players into N blocks of size m := n/N.

: Players in each block use independent public coins to
sample a random partition (S1, . .., Sz.) with equal-sized
parts. We represent this partition by (Y7,...,Y5;) with
Y, € [L] as mentioned above.

4: Upon observing the sample X j = 1 in Section VI, player
7 sends Y; (corresponding to its respective block) rep-
resented by / bits.

5: For each block, the referee obtains n/N independent
samples from (Z1(p), ..., Z5(p)) and tests if the under-
lying distribution is uy, or (y/v/L)-far from uniform in
lo, with failure probability §' := ¢/2(1 —¢). > This
uses the aforementioned test from [18], [19]; ¢ > 0 is
as in Theorem 13.

6: The referee applies the test from Lemma 3 to the N
outputs of the independent tests (one for each block)
and declares the output.

(SIS

with probability 1 when p = q, or (¢/10k)-far'! from uy, in
{5 distance with probability greater than c.

We set v = 6\/5/\/10—16 and apply the test from [19]
or [18]. The test will succeed if the event in Theorem 13
occurs and the centralized uniformity test succeeds.
By [19, Proposition 3.1] or [18, Theorem 2.10], this
happens with probability greater than (1 — 6”)c if the number
of samples m in each block exceeds

VL 10kVL 10k
VLe?

T = 5)
We set the number of players in each block as m :=
[10k/(2/%c2)]. Note that the parameter ¢’ here is the chosen
probability of failure of the centralized test. For our purpose,
we shall see that it suffices to set it to ¢’ := ¢/2(1 + ¢).
Each block now provides a uniformity test which succeeds
with probability exceeding 1 — ¢’ = (1+¢/2)/(1+ ¢). Finally,
we amplify the probability of success by choosing the number
of blocks N to be appropriately large. We do this using the
general amplification given in Lemma 3. Specifically, when
P = q, the test for each of the block outputs 1 with probability
greater than 1 — ¢’ = (1 + ¢/2)/(1 + ¢). On the other hand,
when p is e-far from q, the test for each block outputs 0
with probability greater than (1 — &')c = (¢ + c%/2)/(1 + ¢).
Therefore, the claim follows upon applying Lemma 3 with
01 := (1+¢/2)/(1+¢) and 03 := (c + c*/2)(1 + ¢), which
satisfy 61 > 1 — 0,. O
Note that the protocol in Algorithm 6 is remarkably simple,
and, moreover, is “smooth,” in the sense that no player’s

The extra factor of 5 is from Lemma 2.
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output depends too much on any particular symbol from [£].
(Indeed, each player’s output is the indicator of a set of
k/2¢ elements, which for constant values of ¢ is €(k).) This
“smoothness” can be a desirable feature when applying such
protocols on a distribution whose domain originates from a
quantization of a larger or even continuous domain, where the
output of the test should not be too sensitive to the particular
choice of quantization. Moreover, it is worth noting that the
knowledge of the shared randomness by the referee is not used
in Algorithm 6.

Remark 3 (Amount of shared randomness): It is easy to
see that Algorithm 6 uses no more than O (¢k) bits of shared
randomness. Indeed, N = O(1) independent partitions of
[k] into L := 2° equal-sized parts are chosen and each
such partition can be specified using O(log(L*)) = O(k - £)
bits. As mentioned in the preceding discussion, the proof
of Theorem 12 hinges on Theorem 13, whose proof relies in
turn on an anticoncentration argument only involving moments
of order four or less of suitable random variables. As such,
one could hope that using 4-wise independence (or a related
notion) to sample the random equipartition of [k] may lead to
drastic savings in the number of shared random bits required
to implement the protocol.

This is indeed the case, with a caveat: namely, a straight-
forward way to implement Theorem 13 would be to require
a 4-wise independent family of permutations of [k] (see,
e.g., [71, [37]).'? Unfortunately, no non-trivial ¢-wise inde-
pendent family of permutations is known to exist for ¢ > 3
(although their existence is not ruled out). A way to circumvent
this issue and obtain a time- and randomness-efficient protocol
using O(log k) shared random bits, is instead to observe
that Theorem 13 still holds for a uniformly random partition
(instead of equipartition) of [k] in L pieces. This is because
its proof invokes Theorem 16, which only requires suitable
4-symmetric random variables. An efficient implementation
then can rely on a family of k& 4-wise independent random
bits, for which explicit constructions with a seed length
O(log k) are known. However, this approach hits another
stumbling block, as when p = q the resulting distribution
(Z1(q),...,Zr(q)) on [L] need not be uniform (as the
partition is no longer in equal-sized parts), and thus the sample
complexity from (5) (which holds for uniformity testing in /o
distance) does not follow. We explain in Appendix C how to
circumvent this difficulty and obtain a variant of Theorem 12
using only O(log k) shared random bits.

Remark 4 (Instance-optimal testing): It may be of inde-
pendent interest to consider instance-optimal identity testing
in the sense of [45], namely to examine how the number
of players needed depend on q instead of the worst-case
parameter k. Towards that, we describe an extension of Gol-
dreich’s reduction in Appendix D which makes it amenable to
the instance-optimal setting, and we believe will find further
applications.

12Specifically, given such a family , one can obtain an equipartition of
[k] in L pieces meeting our requirements by first fixing any equipartition IT
of [k] in L pieces, then drawing a permutation o € F uniformly at random,
with log |F| independent uniformly random bits, and applying o to II.
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APPENDIX

A. Impossibility of Perfect Simulation in the Interior
of the Probability Simplex

In this appendix, we establish Theorem 6, restated below:

Theorem 14: For any n > 1, there does not exist any /-
bit perfect simulation of ternary distributions (kK = 3) unless
¢ > 2, even under when the input distribution is known to
comes from an open set in the interior of the probability
simplex.

Before we prove the theorem, we show that there is no loss
of generality in restricting to deterministic protocols, namely
protocols where each player uses a deterministic function of
their observation to communicate. The high-level argument is
relatively simple: By replacing player j by two players ji, jo,
each with a suitable deterministic strategy, the two 1-bit mes-
sages received by the referee will allow it to simulate player
j’s original randomized mapping. A similar derandomization
was implicit in Algorithm 2.

Lemma 4: For X = {0, 1,2}, suppose there exists a 1-bit
perfect simulation S’ = (7', ") with n players. Then, we can
find a 1-bit perfect deterministic simulation S = (7,¢) with
2n players such that, for each j € [2n], the communication
m; sent by player j is a deterministic function of the sample
x; seen by player j, i.e.,

mi(z,u) =7(x), xeX.

Proof: Consider the mapping f: {0,1,2} x {0,1}* —
{0,1}. We will show that we can find mappings
g1: {Oa172} - {071}’ g2: {07]-;2} - {071}’ and
h:{0,1} x {0,1} x {0,1}* — {0, 1} such that for every u

PI‘[f(X,U):1]:Pl"[h(gl(Xl),gg(Xg),U):1], (6)

where random variables X;, Xo take values in {0,1,2}
and are independent and identically distributed, with same
distribution as X . We can then use this construction to get our
claimed simulation S Using 2n players as follows: Replace the
communication 7 (z,u) from player j with communication
maj—1(225—1) and ma;j(x2;), respectively, from two players
2j — 1 and 2j, where m2;_1 and m; correspond to mappings
g1 and g5 above for f = 7r;-. The referee can then emulate the
original protocol using the corresponding mapping / and using
h(moj—1(z2j—1), 25 (x2;), u) in place of communication from
player j in the original protocol. Then, since the probability
distribution of the communication does not change, we retain
the performance of S’, but using only deterministic commu-
nication now.

Therefore, it suffices to establish (6). For convenience,
denote v, = liro,u)=1}> Bu = L{pau)=1}, and v, =
14 f(2,u)=1}- Consider the case when at most one of avy, By, Yu
is 1. In this case, we can assume without loss of generality that
ay < Bu+7. and (Bu'f")/u_au) € {0; 1}- Let gz(x) = ]l{m:z}
for i € {1,2}. Consider the mapping h given by

h(0,0,u) = au, h(1,0,u) = By,
h(Ov ].,U) = Yu h(]-a 17“) = (6u + Yu — au) .
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Then, for every u,

Pr[h(g1(X1), 92(X2),u) = 1]
=y (1 =p1)(1 = p2) + Bu(l — p1)pP2
+7uP1(1 = P2) + (Bu +Yu — @u)P1P2
= au(1 = p1 — p2) + BubP2 + YuP1
=Pr[f(X,u)=1],

which completes the proof for this case. For the other
case, we can simply consider (1 — «),(1 — f,), and
(I — ~,) and proceed as in the case above to conserve
Pr[h(g1(X1), g2(X2),u) = 0]. O
We now prove Theorem 6, but in view of our previous obser-
vation, we only need to consider deterministic communication.
Proof of Theorem 6: Suppose by contradiction that there
exists such a 1-bit deterministic perfect simulation protocol
S = (m,¢) for n players on X = {0, 1,2} such that 7, (x, u) =
mj(z) for all z. Assume that this protocol is correct for all
distributions p in the neighborhood of some p* in the interior
of the simplex. Consider a partition the players into three sets
Sp, S1, and S, with
S;:={jen]: m@)=1}, ie€{0,1,2}.
Note that for deterministic communication the message M is
independent of public randomness U. Then, by the definition
of perfect simulation, it must be the case that

p.=Ey Y  0.(mU)Pr[M=m|U]
me{0,1}n

:EUZ(sz(m, U)Pr[M =m]
= Eul[d,(m,U)]Pr[M =m],

for every x € X, which with our notation of Sy, S1,S2 can
be re-expressed as

2

P = Y, Euld.(mU)]]]
me{0,1}™ i=0
[T mipi + (1 = my)(1 = pi))
JES:
2
= > Eulsm O] [T Q- m;+ @m; — 1)pi),
me{0,1} 1=0jES;

forevery x € X'. But since the right-side above is a polynomial
in (po, p1, P2), it can only be zero in an open set in the interior
if it is identically zero. In particular, the constant term must
be zero:

2

me{0,1}n 1=0j€S;
= Y Eulu(mU) ]t —m).
me{0,1}" j=1
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Noting that every summand is non-negative, this implies that
for all z € X and m € {0,1}",

n
H 1—mj) =

the all-zero message 0", we get
Eu[0-(0",U)] = 0 for all z € X, so that again by non-
negativity we must have 6,(0",u) = 0 for all x € X
and randomness u. But the message 0" will happen with
probability

In particular, for

Pr[M =0"] HH 1—pi)
i=0j€S;
= (1-po)'®(1 = p1)¥(1 - p)I¥! >0,

where the inequality holds since p lies in the interior of the
simplex. Therefore, for the output X of the referee we have

Pr{X#L}:ZZEU[(S;,m

U)]-Pr[M =m]

m xeX
= Z Pr[M =m)] Z Ey[dz(m,U)]
m#0™ zeX
< ) Pr[M=0"]=1-Pr[M=0"]
m#0™
<1,
contradicting the fact that 7w is a perfect simulation

protocol. O

Remark 5: 1t is unclear how to extend the proof of Theo-
rem 6 to arbitrary k, /. In particular, the proof of Lemma 4
does not extend to the general case. A plausible proof-strategy
is a black-box application of the k£ = 3, £ = 1 result to obtain
the general result using a direct-sum-type argument.

B. Proof of Theorem 13

In this appendix, we prove Theorem 13, stating that taking
a random balanced partition of the domain in L > 2 parts
preserves the /5 distance between distributions with constant
probability. Note that the special case of L. = 2 was proven
in the extended abstract [2], in a similar fashion.

We begin by recalling the Paley—Zigmund inequality, a key
tool we shall rely upon.

Theorem 15 (Paley—Zygmund): Suppose U is a non-negative
random variable with finite variance. Then, for every 6 € [0, 1],

E[U]’
E[U?]"

We will prove a more general version of Theorem 13,
showing that the /5 distance to any fixed distribution q €
A is preserved with a constant probability!® with only
mild assumptions on Y7, ..., Y}; recall that we represent the
partition (Sy,...,Sr) using a k-length vector (Y7,...,Y%)
with each Y; € [L] such that ¥; = j € [L] if i € S;. Namely,
we only require that they be 4-symmetric:

Pr[U > 0E[U]] > (1 — 6)?

BFor this application, one should read the theorem statement with

d:=p—q.
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Definition 5: Fix any t € N . The random variables
Yi,...,Y; over Q are said to be t-symmetric if, for every
i1,02,...,%9; € [k], every s € N, and fi,..., fs: Q' — R,
the expectation E{H 1 fi( “,...,YQ)} may only depend
on the multiset {41,42,...,4:} via its multiplicities. That is,
for every permutation 7: [k] — [k],

S
Hfj o Yi) | =E| T £ (Vg -0 Y
j=1

(i)
Before stating the general statement we shall establish,
we observe that random variables Y7, ..., Y} as in Theorem 13
are indeed t-symmetric for any ¢ € [k]. Another prominent
example of ¢-symmetric random variables is that of indepen-
dent, or indeed ¢-wise independent, identically distributed r.v.’s
(and indeed, it is easy to see that t-symmetry for ¢ > 2 require
that the random variables be identically distributed). Moreover,
for intuition, one can note that for Q = {0, 1}, the definition
{[Hf‘l:l Yz} depends

only on the multiplicities of the multiset {i1,42,...,%}.
Theorem 16 (Probability Perturbation Hashing): Suppose
2 < L < k is an integer dividing k, and fix any vector § € R*

amounts to asking that the expectation E

such that 3, ;) 6; = 0. Let random variables Y1, ..., Y} be
4-symmetric .v.’s. Define Z = (Z1,...,Zr) € Rl as
k
Zpi=Y dilgy,—yy, rEIL].
i=1
Then, for every o € (0,1/2),
2
2
4 Pr|lY; #Y5
< min( L P 7~ Vo] } > a
Va a

Proof of Theorem 16: The gist of the proof is to consider
a suitable non-negative random variable (namely, ||Z ||§) and
bound its expectation and second moment in order to apply the
Paley—Zygmund inequality to argue about anticoncentration
around the mean. The difficulty, however, lies in the fact
that bounding the moments of ||Z||, involves handling the
products of correlated L-valued random variables Y;’s, which
is technical even for the case L = 2 considered in [2]. For ease
of presentation, we have divided the argument into smaller
results.

In what follows, let random variables Y7,...,Y: be as in
the statement. Since they are 4-symmetric, expectations of the
form E[f(Ya, Y3, Ye, Ya)g(Ya, Vs, Yo, Yy)] depend only on the
number of times each distinct element appears in the multiset
{a,b,c,d}. For ease of notation, we introduce the quantities

below, for 1,712,735 € [L] (not necessarily distinct):'*

:TQ] B
Y =7“17YQ=7“27Y3=7“3] )

Mypy ry 1=
Moy g, = Pr

m""177’217‘37r4 T

14We assume throughout that k& > 4. This is without loss of generality,
as all results in this article hold trivially for constant k.
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With this notation at our disposal, we are ready to proceed Claim 2: For every r € [L],
with the proof.
Lemma 5 (Each part has the right expectation): For every E[Zﬂ < 12mr||5||§ ,
r € [L],
E[Z,]=0. and therefore
L
Proof: By linearity of expectation, for every r, E[Z,] = 4 4
E|Z | <12[6]5 .
sl Iy ot st : 3-elzd] < 2
Lemma 6 (The (3 distance has the right expectation): For
every r € [L], Proof: We will mimic the proof of Lemma 6. We first
Var Z, = E[22] = (m, — m,.,) |62 rewrite
In particular, the expected squared ¢ norm of 7 is IE[Z;1 ]
L L k 4
B[l21] &> 22| = <1 : Zm) 1912 —E((X6tpen)
r=1 r=1 =1
—Pr[V; £ Ya] - ||6]3. = > 0albb0dB [y, L vy L vy L vy -
1<a,b,c,d<k

Proof: For a fixed » € [L], using the definition of Z,
the fact that Ele Liy,=ry = % and Lemma 5, we get that ~ Using symmetry once again, since every term
i 5 E[]lEya;rf}]l'{Y?zr}]ll{Yczr}]l-{Yd;Tﬂ dt?pen?s bonljzi}op ﬂ.lfi
B 21 ‘ number of distinct elements in the multiset {a, b, ¢, d}, it wil
Var|Z,] = E[ZT] =E <Z 51]1{’/i=’"}> be equal to one of m,., m; ., My, OF My, and it suffices
=t to keep track of the contribution of each of these four types

= Z 6i5jE|:]1{Yi:T}]1{yj:T}:| of terms. From this, letting >, := Z‘{a,b&d}‘:s 040p0.04 for
1<i,j<k s € [4], we get that
= Z 5’L2E []1{1/7=7'}} E[Z;ﬂ - mrzl + mr,rEQ + mr,r,rEZS + mr,r,r,rzél . (7)
+2 Z 50, E[Liyi—r Ly, We will rely on the following technical result.
1<i<j<k ‘ Fact 1: For 1,39, 33, and X4 defined as above, we have
:mr252+mw 2 Y 6, S = [0l
4 4
1sisisk Yo = 3|0l — 7ll6]l4

2

k _ 4 4
375 s (Z@> > £ = 123" — o[
i=1 =1 i=1

Sy = —(Z1 + o + T3) = 31615 — 6|55 -

2
= (mr —myr)[10]l5 . .
Proof of Fact 1: We start by showing the last equality:

The conclusion follows noting that Zle m, = 1, “hiding zero,” we get
SF  me, =Pr[Yi =Ys]. O \
For the lower tail bound, we will derive a bound for k
0= Z(S = Z 0a0p0c.0g = 21+ 2o+ 23+ 24 .
1<a,b,c,d<k

IE[Z4] and invoke as discussed above the Paley—Zygmund
mequahty Note that the lower bound trivially holds whenever
32 Pr(Y: 75 YQ] thus, we hereafter assume 0 < o <
el Pr[Y1 # YQ] . We have:
Lemma 7 (The (2 distance has the required second moment):
There exists an absolute constant C' > 0 such that

E[l1ZI13] < clsl3.-

thus it is enough to establish the stated expressions for
31, Y9, 23. The first equahty is a direct consequence of the
definition ¥, = Zf L0F = H5H4, as for the second, we can
derive it from

o= Y 0a0s0cba =6 0767 +4> (5:67 + 635

Moreover, one can take C = 16.

: 1<a,b,c,d<k 1<J i<J
Proof of Lemma 7: Expanding the square, we have [{a,b,c,d}[=2
k
E[121] = [(ZZQ) |= ZE zi)+2) E[z2z]. =3 (263) 264 465} + 535,
rr! = i<j
We will bound both terms separately. For the first term, =3|6]l5 — 3[10ll3 + 42 (0:65 +076;) = 3116113 = 711615 ,
we have the next bound, analogous to [2, Equation (21)]. i<j
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where the last equality was obtained by ‘“hiding zero” once

more:

k k
0= 6> 8= > &5
i=1 =1 1<i4,j<k

k
=D 5+ (6:87 +676).
=1

1<j

Finally, to handle 3, we expand

>

1<a,b,c,d<k
[{a,b,c,d}|=3

=12 ) (020500 + 0adfle + 040407)

a<b<c

Yy = 0406004

and, once more hiding zero, we leverage the fact that
k 5 k
0= (L) e
i=1 i=1

k
=D 6 +2) 6767 42> (5:67 +6%5))
i=1 1<j i<j
+2 Z (6351)60 + 5a5b266 + 5a6b5§)

a<b<c

Le.,

2 )" (82040 + 8a070c + 0ady0?)

a<b<c

= — (313 + (N3 — o115) — 20912)
= 216][3 — 1]}

This leads to X5 = 12[|6][; — 6[|5][5- O
Combing (7) with the above fact, we get

E[ZY] = (my — Tmey + 12my ey + 6mp ) [0]]3
+ 3(my —
< (My + 5y + 601 p) 0]
+ 30— ) 1613
(M + 3+ 2+ 6y || ]
12m,.[|5]]5 -

2001+ M) |]12

<
<

leveraging the inequalities ||0]|, < /0], and my, ., <
Moy rr < My < my. U
However, we need additional work to handle the second
term comprising roughly L? summands. In particular, to com-
plete the proof we show that each summand in the second
. . 4
term is less than a constant factor times m,. ,||d||5.

Claim 3: We have

S E[2222] < 2Pr[Yi £ Ya] |8l

r<r!
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Proof: Fix any r # r’. As before, we expand

E[Z2Z}%]

k 2, F 2
(;M{m—r}) (;Mlm—w}) ]

== Z 5065505dE[]l{Ya,=T}]l{Yb=T}]l{YC=7"/}]]-{Yd=7"/}} .
1<a,b,c,d<k

=E

We will use 4-symmetry once again to handle the
terms E[]l{Ya:r}]l{Yb:r}]l{Yu:r}]l{Yd,:r}]' The key obser-
vation here is that if {a,b} N {c,d} # 0, then
]l{Ya:v"}]l{Yb:r}]l{Yc=7"/}]l{Yd=r’} = 0. This will be crucial
as it implies that the expected value can only be non-zero if
{a,b,c,d}| > 2, yielding an m,.,» dependence for the leading
term in place of m,..

E[Z2}Z})
= Y RE[ly,—y iy

[{a,b,c,d}|=2

+ Y 200E[ iy, L yimry L gvaery]

[{a,b,c,d}|=3

+ > 0ab0 B Ly, =y L gyy=ry L vo=r]

[{a,b,c,d}|=3

+ D 000 0aE [y, =y Lpv=m Lpvemry Lvamr ] -

[{a,b,c,d}|=4

®)

The first term, which we will show dominates, can be
expressed as

>

H{a,b,c,d}|=2

S20PE [y, — L gyy—ry] = M [|6]]5 -

For the second and the third terms, noting that

> > 0200 — Y 0207 —2) 8

[{a,b,c,d}|=3 1<a,b,c<k a#b a#b

526,00 =

2
with Zlga,b,cgk(sg(sbéc = (Zs:l 53) (Zs:l 5‘1) - O’
Dz 9208 < Picap<k 525§ = H(Sugv and 3, 05 |0y] <
D i<ap<k 0 10| < NS]INIOll5 < [I9]l5, we get

_mT,TIJ./ ||6||; S Z 535(,50E I:]l{Ya:T’}]l{Yb:T’/}]]‘{YU:T"}}
{a,b,c,d}|=3

4
< mr,T’,r’||6||2 .
Finally, similar manipulations yield

— My 00|61l

<Y 0a0b0eaE [y, oy vy L yvaery L vaery ]
{a,b,c,d}|=4

< M|l -
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Gathering all this in (8), we get that there exists some absolute
constant C’ > 0 such that

> E[222})]

r<r’
< ||5||; : Z (mr,r’ + Myt + Mo gt ot + mr,r,r’,r’)
r<r’
4 4
<206l3 -2 me = 2|63 (me, . me)
rr! rr! T

=2||3]ly - (1 = Pr[Y1 = Y2]) = 2Pr [V # Y] - |4]l;,

where we recalled the definition of m,.
Pr[Y; =r, Y2 = '] to re-express the sums.
The lemma follows by combining Claims 2 and 3.
We are now ready to establish Theorem 16.

By Lemmas 6 to 7, we have E[HZH;] =Pr[Yh #Ys] HéH;

and E[HZ Hg} < 16|6 H;l Therefore, by the Payley—Zygmund
inequality (Theorem 15) applied to || Z||3, for every 6 € [0, 1],

ool

Pr (1113 > 0Pr (i # 2] 110]3 ]

2
2
- E[1Z)5]
E[I12)3]
2
> (1_9)2Pr[yl #YQ] )
16
Choosing
gy
Pr(Y; 7 V5]

so that the RHS is 2«, concludes the proof for the lower tail.
For the upper tail, it follows from Chebyshev’s inequality
and Lemma 7 that, for any C' > 0,

16
< ;
C2Pr (V) # Yol

Pr[ 1213 > CPr[Yi # Y2 ] o]13]

which is equal to « for C' := NG . We also have

4

Y1#Y2 ]
Pr {HZH? >aPr[Y; #Ys]-6]5| < a by Markov’s
inequality, and combining the two yields

P (1215 < min( o, ZEED) ] 21

Va a

The overall theorem follows by a union bound over the upper

and lower tail events. O
We conclude this appendix by showing how Theorem 13

readily follows from Theorem 16.

Proof of Theorem 13: Since the first item is immediate,
it suffices to prove the second, which we do now. Recall that
the random variables Y7, ...,Y} from the statement of Theo-
rem 13 are such that each Y; is marginally uniform on [L], and
Zle Tiy—ry = % for every r € [L]. In particular, Y3, ..., Y}
are 4-symmetric random variables, as we see below:

L
PrVi #Ya] =1—=> E[l{y,—rl{v,—ry]

r=1

_1_i ﬂ>1_i>
L2 k-1 L2T

=~ w
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Further, a simple computation yields

E[Ly, =)Ly, =ry]

= E[E[]l{ylzr}]l{YQZ’r} | 1{Y2:r}ﬂ

1
:ZPr[Y1:7"|Y2:r]

k—1

k
an:r} =7 -1

=1

1

=—Pr|Yi=1r

k—L

k-1

where the final identity uses symmetry, along with the obser-
vation that

k-1 k-1 k k
DB L=y [ D L= =7 —1| =7 1.
i=1 j=1

Therefore,

2
1 (%) , with ¢ := p — g, we obtain

L
1
=

applying Theorem 16 for o = 5 <

2

1
— —12 2
pr{Ip -l > 3o - al} | 2o,

which yields the desired statement, since by the Cauchy-—

. . 2
Schwarz inequality we have ||p—q||§ > 4= whenever

drv(p,q) > €. U

C. A Randomness-Efficient Variant of Theorem 12

In this appendix, we describe how the protocol underly-
ing Theorem 12, Algorithm 6, can be modified to reduce the
number of shared bits from the O(k¢) required by Algorithm 6
to only O(log k).

Theorem 17: For 1 < [{[logk], there exists an (-bit
public-coin (k, £)-identity testing protocol for n = O (ﬁ)
players, using O(log k) public coins.

Proof: The corresponding protocol is provided in
Algorithm 7, and it follows the same structure as Algorithm 6.
As discussed in Remark 3, the two main differences are
in Appendices C and C. In the former, we use a random 4-wise
independent partition of [k] in L parts, no longer necessarily
equal-sized. This allows us to bring down the number of public
coins to the stated bound, as guaranteed by the next fact
applied with ¢ = 4:

Fact 2: For any t > 2, k,/ € N , there exists a
t-wise independent probability space © C [2¢]¥ with uniform
marginals, and size || = 2¢(“+[1°8*1) Moreover, one can
efficiently sample from (2 given ¢, k, £.

Proof: The proof relies on a standard construction of
t-wise independent (1/2¢)-biased random bits via polynomials
over an appropriate finite field. Namely, fixing a field F of
size 2¢+1°8 k1 and an equipartition Fi, ..., Fye of F (so that
|Fy| = - - = |Fy| = 2M°8*1) it suffices to sample uniformly
at random a polynomial P € T, ;[X] evaluating it at k
(fixed) points a1, ...,ar € [F yields t-wise independent field
elements, which correspond to elements Yi,..., Yy € [2]
(where Y; = Z?il J1ia;er;y) with the desired marginals. [J

In doing so, a new issue arises when applying the identity
tester (in /o distance) of [19] in Appendix C. Note that we can
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Algorithm 7 A modified, randomness-efficient ¢-bit public-
coin protocol for distributed identity testing for reference
distribution q.

Require: Parameters v € (0,1), N, n players observing one
sample each from an unknown p

1: Players use the algorithm in Lemma 2 to convert their

samples from p to independent samples X1,.... X,
from Fy(p) € Asp. > This step uses only private
randomness.

: Partition the players into N blocks of size m := n/N.

Players in each block use 4([log(5k)] + ¢) independent

public coins to generate (using Fact 2) k 4-wise inde-
pendent uniform r.v.’s Y3,...,Ys, € [L], which they
interpret as a random partition (Sy,...,Sr) of [k] in L
parts.

4: Upon observing the sample X j = % in Section VI, player
7 sends Y; (corresponding to its respective block) rep-
resented by / bits.

: for all block do

6:  The referee obtains n/N independent samples from

(Z1(p),---+ZL(p))

7. Knowing the realization of the public coins, it com-
putes the distribution q € Ay corresponding to
(Z1(a), ..., Zr(q)).

if |lall, < 2/VL then it tests if the underlying
distribution is ¢ or (y/v/L)-far from q in /5, with
failure probability 0’ «— ¢/(2 + ¢) where ¢ is as
in Theorem 13. > This uses the test from [19],
stated in Theorem 18.

9: else it draws a random Bern(1/2) and records it as

“output of the test” for this block.

10:  end if

11: end for

2: The referee applies the test from Lemma 3 to the N

outputs of the independent tests (one for each block)
and declares the output.

@ N

wn

%®

ju—

no longer rely on a centralized uniformity testing algorithm
(in /5 distance), as we did in . This is because the resulting
reference distribution defined by (Z1(q),...,Z5(q)) is no
longer, in general, the uniform distribution urz, but some
distribution @ on [L]. Observe that this distribution q is still
fully known by the referee, who is aware of both q and
the realization of the shared randomness'® (and therefore of
Ylv AR YSk)

To handle this issue, we observe that the testing algorithm in
{5 distance of [19] does provide a guarantee beyond uniformity
testing, for the general question of identity testing in /¢
distance. It is, however, a guarantee which degrades with the
{5 norm of the reference distribution (in our case, q).

Theorem 18 ( [19, Proposition 3.1], with the improvement
of [23, Lemma I1.3]): There exists an algorithm which, given
distance parameter ¢ > 0, & € N , and 0 > 0, satisfies
the following. Given n samples from each of two unknown

5Recall that, in contrast to here, the knowledge of shared randomness by
the referee was not used in Algorithm 6.
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distributions q,q’ € Ay such that § > min(||ql|,, [|d’[|5),
the algorithm distinguishes between the cases that q = ¢’
and ||q — q’'||, > ¢ with probability at least 2/3, as long as
nz B/

We note that the contribution from [23, Lemma II.3] is to
explain how to replace the condition 5 > max(||q]|,, ||d’[)
from [19] by the weaker § > min(||q]|,, ||q’[|,). Further, one
can as before amplify the probability of success from 2/3
to any chosen constant, at the price of a constant factor in
the sample complexity. We would like to apply this lemma
to testing identity to the L-ary distribution q, with distance
parameter v/v/L and parameter 3 := |[|d|,- The desired
sample complexity would follow if we had ||q|l, < 1/VI,
since then we would get

lal, -

_al, VI
(VD2 S

Of course, we cannot argue that |||, < 1/v/L with proba-
bility one over the choice of the random partition. However,
since Fq(q) = usy, it is a simple exercise to check that, over
this choice,

E[al3] = 1/(5k) + (5k — 1)/(5kL) < 2/L.

Therefore, letting ¢ € (0, 1] be the constant from Theorem 13,
we get by Markov’s inequality that ||gl|, < 2/(v/cL) with
probability at least 1 — ¢/2.

Since we ran, in Appendix C, the identity test with proba-
bility of failure §’ := ¢/(2+ ¢), we have the following. When
P = q, each block outputs 1 with probability at least

1 ¢ , c, c c.
91.75-5—#(1—5)(1—5)71 1 (1 2)5
_02—20—1—8

4(c+2)

while, when p is e-far from q, the test for each block outputs 0
with probability greater than

, 2c
92.—(1 5)C—C+2
so that we have indeed #; > 1 — #5. We then conclude the
proof as that of Theorem 12, amplifying the probabilities of
success by invoking Lemma 3 and choosing a suitable N =
©O(1). The total number of public coins used is then at most
N - 4([log(5k)] + £) = O(log k), as claimed. O

D. From Uniformity to Parameterized Identity Testing

In this appendix, we explain how the existence of a distrib-
uted protocol for uniformity testing implies the existence of
one for identity testing with roughly the same parameters, and
further even implies one for identity testing in the massively
parameterized sense'® (“instance-optimal” in the vocabulary
of Valiant and Valiant, who introduced it [45]). These two
results will be seen as a straightforward consequence of [28],

16Massively parameterized setting, a terminology borrowed from property
testing, refers here to the fact that the sample complexity depends not only
on a single parameter k but a k-ary distribution q.
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which establishes the former reduction in the standard non-
distributed setting; and of [13], which implies that massively
parameterized identity testing reduces to “worst-case” identity
testing. Specifically, we show the following:

Proposition 1: Suppose that there exists an ¢-bit (k,,0)-
uniformity testing protocol 7 for n(k,¢,e,0) players. Then
there exists an (-bit (k,e,d)-identity testing protocol n’
against any fixed distribution q (known to all players), for
n(5k, ¢, %z—:, J) players.

Furthermore, this reduction preserves the setting of random-
ness (i.e., private-coin protocols are mapped to private-coin
protocols).

Proof: We rely on the result of [28], which describes a
mapping Fq: A — Ay such that Fy(q) = upsy and
dpy (Fq(p),u[5k]) > %E for any p € Ay e-far from q.”
In more detail, this mapping proceeds in two stages: the first
allows one to assume, at essentially no cost, that the reference
distribution q is “grained,” i.e., such that all probabilities q(i)
are a multiple of 1/m for some m < k. Then, the second
mapping transforms a given m-grained distribution to the uni-
form distribution on an alphabet of slightly larger cardinality.
The resulting I, is the composition of these two mappings.

Moreover, a crucial property of Fy is that, given the knowl-
edge of g, a sample from Fy(p) can be efficiently simulated
from a sample from p; this implies the proposition. O]

Remark 6: The result above crucially assumes that every
player has explicit knowledge of the reference distribution q
to be tested against, as this knowledge is necessary for them
to simulate a sample from Fg(p) given their sample from the
unknown p. If only the referee R is assumed to know q, then
the above reduction does not go through.

The previous reduction enables a distributed test for any
identity testing problem using at most, roughly, as many
players as that required for distributed uniformity testing.
However, we can expect to use fewer players for specific
distributions. Indeed, in the standard, non-distributed setting,
Valiant and Valiant in [45] study a refined analysis termed
the instance-optimal setting and showed that the sample com-
plexity of testing identity to q is captured roughly by the
2/3-quasinorm of a sub-function of g obtained as follows:
Assuming without loss of generality q; > q2 > --- > qi > 0,
let t € [k] be the largest integer that Y°_, 1% > & and
let q- = (q2,...,q:) (i.e., removing the largest element
and the “tail” of q). The main result in [45] shows that the
sample complexity of testing identity to q is upper and lower
bounded (up to constants) by max{|\q5/16||2/3/62, 1/e} and
max{||q€||2/3/62, 1/e}, respectively.

Howeyver, it is not clear if the aforementioned reduction of
Goldreich between identity and uniformity testing preserves
this parameterization of sample complexity for identity testing.
In particular, the 2/3-quasinorm characterization does not

"In [28], Goldreich exhibits a randomized mapping that converts the
problem from testing identity over domain of size k£ with proximity parameter
€ to testing uniformity over a domain of size k' := k/a? with proximity
parameter ¢’ := (1 — a)?e, for every fixed choice of a € (0,1). This
mapping further preserves the success probability of the tester. Since the
resulting uniformity testing problem has sample complexity © (\/F /e’ 2),

the blowup factor 1/(a(1 — a)?) is minimized by o = 1/5.

7875

i
1 S4(2) ke k

Fig. 2. The reference distribution q (in blue; assumed non-increasing without
loss of generality) and the unknown distribution p (in red). By the reduction
above, testing equality of p to q is tantamount to (i) determining Sq (&), which
depends only on q; (ii) testing identity for the conditional distributions of p
and q given Sq(e), and (iii) testing that p assigns at most O(e) probability
to the complement of Sq(¢).

seem to be amenable to the same type of analysis as that
underlying Proposition 1. Interestingly, a different instance-
optimal characterization due to [13] admits such a reduction,
enabling us to obtain the analogue of Proposition 1 for this
massively parameterized setting.

To state the result as parameterized by q (instead of k),
we will need the definition of a new functional, ®(q,~);
see [13, Section 6] for a discussion on basic properties of
® and how it relates to notions such as the sparsity of p and
the functional [|p5, ™|, defined in [45]. For a € {3(N)
and ¢ € (0,00), let

Kq(t) == inf

a’+a'’=a

(lla'lly + tlla”ll,)

and, for g € Ay and any v € (0,1), let
O(q,7y) = 2rg ' (1 —7)%.

It was observed in [13] that if q is supported on at most
k elements, ®(q,v) < 2k for all v € (0,1). Moreover,
the sample complexity of testing identity to q was shown there
to be upper and lower bounded (again up to constants) by
max(®(q,e/9)/e%,1/¢) and ®(q, 2¢) /¢, respectively. We are
now in a position to state our general reduction.

Proposition 2: Suppose that there exists an ¢-bit (k,e,0)-
uniformity testing protocol 7 for n(k,¢,e,6) players. Then
there exists an ¢-bit (k, e, d)-identity testing protocol 7" for
any fixed reference distribution q (known to all players), for
n(5(®(q,e/9)+1),4,¢/3,0) players.

Further, this reduction preserves the setting of random-
ness (i.e., private-coin protocols are mapped to private-coin
protocols).

Proof: This strengthening of Proposition 1 stems from the
algorithm for identity testing given in [13], which at a high-
level reduces testing identity to q of an (unknown) distribution
p to testing identity of p|[g_(-) of q|s, (), Where Sq(¢) is the
(¢/3)-effective support'® of q; along with checking that p also
only puts probability mass roughly /3 outside of Sq(e). The
key result of [13] relates this effective support to the functional
® defined above. They show (see [13, Section 7.2]) that for

18Recall the e-effective support of a distribution q is a minimal set of
elements accounting for at least 1 — ¢ probability mass of q.
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all g € Ag and € € (0,1],

Sa(e) < 2(a5).

See Fig. 2 for an illustration. The protocol 7’ then works as
follows:
1) Given their knowledge of q and ¢, all players (and the
referee) compute S := Sq(e). Consider the following
mapping Gq: Ay — Agugiy. Forany p’ € Ay,

©)

ifx €S,
if x = L.

p'(2),

p'([K]\ [S)),
Note that all players have full knowledge of q :=
Gq(q). Further, each player, given their sample from
the (unknown) p, can straightforwardly obtain a sample
from p := Gq(p).

2) All players (and the referee) compute k' := 5(|S| + 1),
and the mapping Fg: Agyq1y — Ay (as in the proof
of Proposition 1). From properties of Fy described in
the proof of Proposition 1, Fg(q) = u.

3) Each player converts their sample from the (unknown)
distribution p into a sample from the (unknown) dis-
tribution Fg(p). (Recall that this is possible given the
knowledge of q, as stated in the proof of Proposition 1.)

4) The players and the referee execute the purported ¢-bit
uniformity testing protocol 7 on their samples from
Fg(p), with parameters (k’,e/3,9). The output of 7’
is then that of .

If p=q, then p = q and thus Fg(p) = Fg(q) = up,

so that the protocol 7 returns 1 with probability at least 1 — 4.
On the other hand, if d(p,q) > &, then

Gq(p')(x) =

2dpy (P, q)
- Z Ip(z) — a(@)| + |p(S) — a(9)]

zeS
=2dpy(p.q) — Y _ Ip(z) — q(z)| + [p(S) — a(S)]
CEES
> 2dpy(p,q) — (P(S) + a(9)) + |p(S) — a(9)]
= 2dpy(p,q) — 2min(p(S5), q(S))

>2e—-2-— = —¢

3
i.e., dpy (P, Q) > 2¢/3. Recalling the guarantee of Goldreich’s
reduction (as described in the proof of Proposition 1), this in
turns implies that dp (Fg(P), uw) > (16/25) - 2¢/3 > /3,
and therefore the protocol 7 must return 0 with probability at
least 1 — 4.

To conclude, in view of (9), the number of players required
by 7’ is

n(k',¢,e/3,0) = n(5(1Sq(e)] + 1),£,/3,9)

<n(5(®(q,e/9)+1),4,¢/3,6),

as claimed. O

Wl ™
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