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ABSTRACT. We show that every 4-uniform hypergraph with n vertices and minimum pair
degree at least (5/9 + o(1))n?/2 contains a tight Hamiltonian cycle. This degree condition

is asymptotically optimal.

§1. INTRODUCTION

We study hypergraph generalisations of Dirac’s theorem for graphs. For hypergraphs
several extensions were considered and Endre Szemerédi has been an integral part and
driving force for these developments. All but the last author already had the pleasure to

collaborate with and learn from Endre, while working on related (and unrelated) problems.

1.1. Background and main result. G.A. Dirac [2] showed that every (finite) graph
G = (V, E) on at least 3 vertices with minimum degree 6(G) = |V|/2 contains a Hamiltonian
cycle. This result is clearly best possible, as exemplified by slightly off-balanced complete
bipartite graphs. Several hypergraph extensions were suggested and considered in the
literature. Here we focus on tight Hamiltonian cycles in uniform hypergraphs and we briefly
review the relevant notation.

For an integer k > 2, a k-uniform hypergraph is a pair (V, E), where the vertex set V is
a finite set and the edge set E < V) = {U < V: |U| = k} is some collection of k-element
subsets of V. A tight Hamiltonian cycle in a k-uniform hypergraph H = (V, E) is given by
a cyclic ordering of V' such that every k consecutive vertices (in the cyclic ordering) span a
hyperedge from E. As usual for k& = 2, we recover the notion of finite, simple graphs and

Hamiltonian cycles.
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For k > 2, large part of the research concerns sufficient minimum degree conditions
in hypergraphs that guarantee the existence of tight Hamiltonian cycles (see, e.g., the
surveys [11,16] and the references therein for a more thorough discussion). For a set of

vertices S € V', the degree in H is defined by
dy(S) =|{e€e E: S c e}
and for an integer j with 1 < j < k the minimum j-degree is defined by
6;(H) = min{dy(S): SeVY}.

The minimum 1-degree 0;(H) is often called minimum vertez degree and sometimes (in
particular, in the context of graphs) we may omit the subscript. Moreover, for j = 2 we
often refer to do(H) as the minimum pair degree.

Lower bounds on the minimum j-degree bear more information and restrictions for larger
values of j and, in fact, sufficient minimum (k — 1)-degree conditions for tight Hamiltonian
cycles were considered first in the literature. This line of research was initiated by Katona
and Kierstead [7]. In joint work with the two senior authors, Endre [13] established the
following asymptotically optimal result for k-uniform hypergraphs (see also [12] for an

earlier result for 3-uniform hypergraphs and [14] for a sharp version of that result).

Theorem 1.1 (R?Sz, 2008). For every integer k

> 3 and o > 0, there exists an integer ng
such that every k-uniform hypergraph H on n = n

o vertices with 6p_1(H) = (% + a)n

contains a tight Hamiltonian cycle. U

Theorem 1.1 can be viewed as an approximate generalisation of Dirac’s theorem from
graphs to hypergraphs and, in fact, the lower bound constructions, that show the optimality
of this result, exhibit a similar bipartite structure.

Given the ‘monotonicity’ of the degree conditions, as a next step it seems natural to
consider an extension of Theorem 1.1 with a minimum (k — 2)-degree condition. For such
an extension we have to restrict ourselves to k-uniform hypergraphs for £ > 3. Improving
a series of partial results by several authors, for 3-uniform hypergraphs the following
asymptotically optimal result was recently obtained by Endre in collaboration with the
middle four authors [10].

Theorem 1.2 (R3SSz, 2019). For every a > 0, there exists an integer ng such that every

n?

2
Hamiltonian cycle. 0

3-uniform hypergraph H on n = ng vertices with 61(H) > (g + a) contains a tight

Again there are lower bound constructions, showing that the number 5/9 in Theorem 1.2 is

best possible. In fact, three structurally different examples can be found in [10, Example 1.2].
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Here we extend Theorem 1.2 to 4-uniform hypergraphs with a minimum pair degree

condition and establish the following result.

Theorem 1.3. For every a > 0 there exists an integer ng such that every 4-uniform

n?

5 contains a tight Hamiltonian

hypergraph H on n = ng vertices with 6o(H) = (g + a)

cycle.

Theorem 1.3 is also asymptotically best possible as the following examples of Han and
Zhao [5] show:
(a) For simplicity let n = |V| be divisible by three and consider a partition X v Y =V
with | X| = 2n/3. Let H be the 4-uniform hypergraph H = (V, E) with e € V®
being an edge of H if, and only if,

len X| #2. (1.1)

2

It is easy to check that H satisfies d2(H) > (2 — o(1))%-.
Suppose for the sake of contradiction that H contains a tight Hamiltonian cycle C.
Since every vertex of C' is contained in precisely four edges of C', we have
S A X = 4]X].
feE(C)
Hence, the average intersection of an edge of C' with X is 8/3. In particular, there
exist two edges f and f’ in C' such that

foX|<2=13] and ffnX|=3= %

and the definition of H implies that f shares at most one vertex with X.

On the other hand, the sizes of the intersections in X of two consecutive edges
in C' (in the induced cyclic order) can differ by at most one. Consequently, the lack
of edges in E intersecting X in exactly two vertices makes the occurrence of the
edges f and f’ in C impossible.

(b) The same construction with (1.1) replaced by |e n X| # 3 yields another hypergraph

exemplifying a matching lower bound for Theorem 1.3 by a similar argument.

The type of construction used in (a) and (b) above generalises to arbitrary uniformi-
ties k = 3. In fact, if 3 | k£ then this gives rise to three structurally different lower bound
constructions and if 3 } k£ then two hypergraphs arise (see [5, Corollary 1.6] for details).
Those examples show that the optimal minimum (k — 2)-degree for tight Hamiltonian
cycles in k-uniform hypergraphs on n vertices is at least (g —o(1)) %2

The results discussed so far address special cases of the following more general problem:

Given integers k > r > 1, determine the infimal real number o*) € [0, 1] with the property
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that every k-uniform hypergraph H = (V, E) satisfying the minimum r-degree condition
5,(H) = (al¥) + 0(1))|V[¥="/(k — r)! contains a Hamiltonian cycle. Thus Dirac’s theorem
and Theorem 1.1 assert 041(21 = 1/2 for k > 2, while the Theorems 1.2 and 1.3 entail
0453) = agl) = 5/9. These results might indicate that a*) might be determined by the
difference d = k — r, which leads to the following question.

Question 1.4. Given a positive integer d, does there exist a constant [, such that oz,(f_) a = B
holds for every k > d + 17

We are not aware of any counterexample and for d = 1 Theorem 1.1 states that 5, = 1/2.
Moreover, very recently Theorems 1.2 and 1.3 were extended for arbitrary k£ > 5 in [9] and
By = 5/9 was established. The lower bounds on a®) obtained by Han and Zhao [5] might
be optimal for all £ > r > 1. In this case, all numbers 3; would exist and the next problem
would be to decide whether 3 = 5/8.

1.2. Overview and organisation. The proof of Theorem 1.3 is based on the absorption
method. This method has been introduced more than a decade ago in [12] (see also the
survey [15] of Endre Szemerédi) and since then it has turned out to be a versatile tool for
solving a variety of problems concerning the existence of spanning structures in graphs
and hypergraphs. Proofs based on the absorption method usually decompose the problem
at hand into several more manageable subproblems. In results on Hamiltonian cycles in
hypergraphs such as Theorem 1.3 most of the effort is usually directed towards showing a
connecting lemma, an absorbing lemma, and a covering lemma.

The complexity of the first two ingredients has evolved over time. For instance, in the
proof of Theorem 1.1 for k = 3 in [12], the connecting lemma just said that every pair of
vertices can be connected to any other pair of vertices by means of a relatively short tight
path. An analogous result is not available when proving Theorem 1.2 (see [10]). Instead,
one defines a sufficiently broad class of so-called connectable pairs of vertices and, roughly
speaking, the connecting lemma of [10] asserts that any such connectable pair can be
reached from any other connectable pair by means of a short tight path. This idea will be
reused below, so we shall define a notion of connectable triples in 4-uniform hypergraphs
of large pair degree and our connecting lemma (Proposition 3.3 below) claims that any
two such triples can be connected by means of a short tight path.

As for the absorbing lemma (see Proposition 5.1), one needs to establish the existence of
a so-called absorbing path P4 capable of absorbing any “small” set of left-over vertices Z.
More precisely, no matter which small set Z of vertices needs attention in the end of
the argument there always is a path with vertex set V(P4) u Z which starts and ends

with the same vertices as P, itself. Such a path P, is usually constructed by taking
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several small building blocks called absorbers and connecting them by appealing to the
connecting lemma. Proving the existence of suitable absorbers has often been among the
main difficulties in applying the absorption method. Recently, the first two authors, while
studying a related problem, observed that in many cases this problem can be reduced to
a degenerate Turan-type problem [8]. In fact, ignoring for a moment the issue that the
absorbers need to be connectable into a tight path, their existence is a direct consequence
of a classical extremal result of Erdés [3], for the small price that the size of Z needs to
satisfy an additional divisibility assumption (see §5.1 for more details).

Finally, the covering lemma (see Proposition 6.1) asserts, in particular, that the minimum
pair degree condition considered in Theorem 1.3 ensures the existence of an almost perfect
path cover. Then the connecting lemma allows us to connect the paths from the cover
together with P4. In fact, there even exists a cycle C' containing paths from the cover
and the absorbing path P4 for which the (small) set Z = V(H) \ V(C) of remaining
vertices satisfies the aforementioned divisibility condition. Now, to complete the proof of
Theorem 1.3 one just needs to absorb the vertices outside C' into the absorbing path.

As mentioned above, the proof of Theorem 1.3 presented here reuses some ideas and
results from [10] and we collect the relevant material in the next section. Sections 3—6
establish the connecting lemma, absorbing lemma, covering lemma, and the so-called
reservoir lemma, which ensures that the short tight paths used for the connections are
always vertex disjoint from the rest. In Section 7 we then present the somewhat standard

proof of Theorem 1.3 based on these lemmata.

§2. PRELIMINARIES

2.1. Notation. Besides graphs, we mainly consider 3-uniform and 4-uniform hypergraphs,
and here we briefly recall some relevant definitions. For simplicity, if there is no danger of
confusion we sometimes omit parentheses, braces, and commas and denote edges {z,y},
{z,y,z}, or {z,y, z,w} in graphs and 3- and 4-uniform hypergraphs by zy, zyz, or zyzw,

respectively.

Walks, paths, and cycles. We shall only consider tight walks, paths, and cycles and for
simplicity we omit the word tight from now on. The length of a walk, a path, or a cycle is
measured by its number of edges.

For 3-uniform hypergraphs a walk W of length ¢ > 0 is given by a sequence (1, ..., Zs2)
of vertices such that e € E(W) if and only if e = z;x;,12;,2 for some 7 € [¢]. The ordered
pairs (1, x9) and (241, Tey2) are the end-pairs of W and we say W is a (z1, X2)-(py1, Toyo)-
walk. This definition of end-pairs is not symmetric and implicitly fixes a direction of W

and sometimes we may refer to (x1,22) and (xpy1, Tpyo) as starting pair and ending pair,
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respectively. The vertices xs, ..., xy are the inner vertices of W and in the context of walks
we count the inner vertices with their multiplicities, i.e., for £ > 2 a walk of length ¢ has £—2
inner vertices. We often identify a walk with the sequence of its vertices xxs ... xp. 9 and
refer to it as a x1x9-xy412,9-walk.

A walk W is a path if all the vertices xy,...,z,.9 are distinct and it is a cycle if the
vertices x1, ..., x, are distinct and zy,1 = x1 and xy,9 = 9.

These definitions extend to 4-uniform hypergraphs in a straightforward way. In this
context a walk of length ¢ is given by a sequence of ¢ + 3 vertices and the end-triples are

the subsequences of the first and the last three vertices.

Links of vertices and pairs. We recall that the link graph of a vertex v of a 3-uniform

hypergraph H is defined to be the graph H, with the same vertex set as H and with
E(H,) = {zy: vay e E(H)}.

Similarly, for a 4-uniform hypergraph H the link H,, of a vertex v is a 3-uniform hypergraph
on the same vertex set with E(H,) = {zyz: vryz € E(H)}. Moreover, for an unordered
pair of distinct vertices u and v the link of the pair wv is the graph H,, with vertex
set V(Hy,) = V(H) and edge set

E(Hy) ={zy: wwrye E(H)}.

2.2. Robust subgraphs. Both in the 3-uniform predecessor [10] of this work and here
the connecting lemma is deduced from certain connectivity properties of 2-uniform link
graphs. In the present subsection we discuss the graph theoretic result we shall require for

this purpose. We begin with the key notion in this regard (cf. [10, Definition 2.2]).

Definition 2.1. Given § > 0 and ¢ € N a graph R is said to be (3, {)-robust if for any two
distinct vertices x and y of R the number of x-y-paths of length ¢ is at least 3|V (R)|*L.

The main point is that graphs whose density is larger than 5/9 possess sufficiently dense
robust subgraphs containing more than two thirds of the vertices. The following result
along those lines is a slight strengthening of [10, Proposition 2.3] and below we shall only

indicate how the arguments in [10] can be modified so as to yield the present version.

Proposition 2.2. Given o, p > 0, there exist f > 0 and an odd integer { = 3 such that
for sufficiently large n, every n-vertex graph G = (V, E) with |E| > (g + a) ”72 contains a

(B, €)-robust induced subgraph R < G satisfying
(1) [V(R)| = (3 + §)n.
(it) eq(V(R),V N V(R)) < un?,
2

a\ n2 _ (n—|V(R)))? 2
(iii) and e(R) = (g+§)7_w> (3+2a) 22,



MINIMUM PAIR DEGREE FOR HAMILTONIAN CYCLES IN 4-UNIFORM HYPERGRAPHS 7

Proof. We may assume «a < 4/9, for otherwise there are no n-vertex graphs (V, E) satisfying
E| = (2 +a) %2 and there is nothing to show. The proof of [10, Lemma 3.2] shows for
every fixed p/ < «/72 that every graph G = (V,E) on n » 1/u’ vertices such that

|E| = (g + a) ”72 has an induced subgraph R satisfying (7),
ec(V(R),V N V(R)) < 4p'n?, (2.1)

and the first estimate in (#77) which, moreover, has a property called j/-inseparability
(see [10, Definition 3.1]). For the purposes of [10] it was enough to apply this fact to
' = /72 itself, but here it will be more convenient to set p/ = min{u/4, a/72}, which
causes (2.1) to imply (47). The second estimate in (7ii) is an immediate consequence of (%)
and of o < 4/9 < 2/3.

It remains to show that R is indeed (3, ¢)-robust for some constants § and ¢ that only
depend on « and g but not on n. As the proof of [10, Proposition 2.3] shows, this follows
from the p'-inseparability of R combined with the fact that (7) and (7) allow us to bound
the density of R from below. In fact, it is enough to let ¢ be the least odd integer such that

1\ 2 o 60
£>8(#/> +1 and to set B=72(2> . O

The next result will assist us (indirectly via Lemma 2.10) in Section 5 when we wish to
ensure that the end-triples of our absorbers are connectable. Notice that the assumptions

on R are like clause (7) and the special case u = /4 of clause (i7) of Proposition 2.2.

Lemma 2.3. Given o > 0, let G = (V, E) and G' = (V, E') be two graphs on the same
n-element vertex set, each with at least (5/9 + a)n?/2 edges. Let R be a subgraph of G
induced by a set U = V(R) € V with |U| = 2n/3 that satisfies eq(U,V \ U) < an?/4.
Then

{(w,0) € U wo € B~ E' and dg(v) > n/3}| > ianQ, (2.2)

Proof. Let Z = {z€ U: dg(z) > n/3}. We shall show
{zye EnE: z,yeU and {x,y}mZ#@}‘)ianQ. (2.3)

Since every (unordered) edge zy counted here corresponds to one or two ordered pairs (u, 2)
counted on the left side of (2.2) (depending on whether only one or both of z, y are in Z),
this will imply the desired estimate (2.2). For the proof of (2.3) we let n € [2/3,1] and
7 € [0,1] be defined by

U =nn  and |Z| = .

We consider two cases depending on the value of 7.
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First Case. We have T = 2/3.
Owing to

{(z,y) e V?:aye EnE'Y| =2 2|E| +2|E'| —n® = (} + 2a)n”
and |V \ Z|* = (1 — 7)?n? < n?/9 we have
{(z,y) e V?:aye En E" and {z,y} n Z # @} = 2an>.

Recall that Z < U. So if {z,y} n Z # &, but {x,y} € U, then one of the vertices z, y is

in U while the other one is in V' ~ U, whence

{(z,y) eV aye E {z,y} nZ # @, and {z,y} £ U}| < 2eq(U,V \U) < %nZ-

Consequently, the number of (unordered) edges xy considered on the left-hand side of (2.3)
is at least £ (2an® — an?/2) = 3an?/4, as desired.

Second Case. We have T < 2/3.
Notice that

2¢(R) > 2(e(G) — ea(U.V ~U) — ea(V 1)) > (g va- 2 @)

Together with (1 —7)(2/3 —n) < 0 this yields
oD« 2 2 a n
2 ><f ARG R (f— ))2=<f a 7>2_ 2.4
e(R) > (g+5 -~ A=n)"+1-nlg-n))n"=(g+5+3)n (2.4)
On the other hand, the definition of Z leads to

R)=>'dp(2) + Y. dr(z) <) dr(2) —7) 2. (2.5)

2€Z zeUNZ 2€Z

Comparing (2.4) and (2.5) we deduce

N MN—T\ - 2 a T\ o
T
ZR +2+3 5 )n St tg)n

2€7

By the assumption of the case we have
h? > 72 . Z|
—n?>—n?>
3 2 2

Y= 5+ 5)*+ (3)

z€Z

and this shows that

which in turn implies

, |Z] «
{zye E:z,yeU and {z,y} n Z # o}| > ;dzz ( )2(9_%2)”2‘

Finally, the sieve formula yields
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2

4 2
{zye EnE':z,yeUand {z,y}nZ # o} > (9—1—04)2—1—(3—1—04)2—(2) > an?,

which is more than what we need for establishing (2.3). O

2.3. Connectable pairs and bridges in 3-uniform hypergraphs. In this subsection
we discuss the 3-uniform connecting lemma from [10] together with some related results.
Roughly speaking, this lemma asserts that in any sufficiently large 3-uniform hyper-
graph H = (V, E) with 6;(H) = (5/9 + «)|V|?/2 any two pairs of vertices possessing a
special property called connectability can be connected by many short paths. The definition
of our connectability notion presupposes that for every vertex v € V(H), one has fixed
a robust subgraph of its link graph as obtained by Proposition 2.2. We collect these

assumptions in the following setup.

Setup 2.4. Suppose that « € (0,1/3), that pu, B > 0, that { > 3 is an odd integer, that
H = (V,E) is a sufficiently large 3-uniform hypergraph with 6,(H) > (5/9 + )|V ]?/2,
and that for every vertex v € V, Proposition 2.2 located a (3, {)-robust induced subgraph
R, € H, of its link graph satisfying

(i) V(R,)| = (3 + 5)IVI,
(”) €H, (V<Rv>7 Vs V<Rv)) < IU’|V|27

@ V|2 V|—|V (R 2 V|2
(i) and e(R) > (§ +3) 157 — WA 5 (4 1 2a) I

We remark that for most part of this section condition (7i) with g = a/4 of this setup
suffices. In fact, the results in [10] were obtained for this restricted version of the setup
and below we (mostly) recapitulate and apply them in this form. A stronger form, with a
smaller value of p, of Proposition 2.2 (i) will be useful in Lemma 2.10 below and for the
construction of the absorbing path in Section 5. The following notion of connectable pairs
is taken from [10, Definition 2.5].

Definition 2.5. Given Setup 2.4 and ¢ > 0, an unordered pair xy of distinct vertices of H

is said to be (-connectable if the set
Uy ={veV:zye E(R,)}

satisfies |U,,| = C|V|. An ordered pair (x,y) is (-connectable if its underlying unordered
pair xy Is.

We are now ready to state the 3-uniform connecting lemma from [10, Proposition 2.6].

Proposition 2.6 (Connecting lemma for 3-uniform hypergraphs). Given Setup 2.4 (with
= a/4) and { >0, there exists ¥ = ¥(«, 5,¢,() > 0 such that the following holds.
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If (a,b), (z,y) are two disjoint (-connectable pairs of vertices of H, then the number of
ab-zy-paths in H with 3¢ + 1 inner vertices is at least 9|V |31 O

For later use we also state the following simple fact (see [10, Fact 4.1]).

Lemma 2.7. Given Setup 2./ (with p = a/4) and ¢ > 0, there are at most C|V|* triples
(z,y,2) € V3 such that vy € E(R,), but zy is not (-connectable in H. O

To extend these notions and results to 4-uniform hypergraphs we need a new 3-uniform

concept.

Definition 2.8. Given Setup 2.4 and ¢ > 0, a triple (z,y,2) € V3 is called a (-bridge
in H if xyz € F and vy and yz are both (-connectable in H. We say a path x1xo ... 2;17;

starts (resp. ends) with a (-bridge, if x120x5 (resp. xj_ox;j_12;) is a (-bridge.
It will be useful to estimate the number of bridges in a dense 3-uniform hypergraph.
Lemma 2.9. Given Setup 2.4 (with u = «/4) and ¢ > 0, the number of triples (x,vy,z) € V3

with xyz € E that fail to be a -bridge in H is at most (2/9 + a/2 + 2¢)|V]3. In particular,
if ( < a/4, then there are more than |V|*/3 (-bridges in H.

Proof. Starting with A = {(x,y,2) € V3: zyz € E} we note that the minimum degree

assumption yields |A] = (5/9 + «)|V]3. We consider four exceptional subsets of A, namely
P ={(x,y,z) e A: xzy ¢ E(R,)}, Q1= {(x,y,2) e A~ P;: xy is not (-connectable},
Py={(z,y,z) e A: yz¢ E(R,)}, Q2= {(z,y,2) € AN Py: yz is not (-connectable} .

Notice that every triple in AN (Pyu @ u Py U Qy) is a (-bridge in H. Lemma 2.7 yields the
upper bounds |@Q1], |Q2] < ¢|V]3. Moreover, the first two clauses of Setup 2.4 and o < 1/3
lead to

P < Y (26 (V(R),V N V(R.)) + (n = [V(R.))?)

zeV
a 1 a2
< | = - — = VI3
(2+(3 2))H
1 « 3
<<§+Z>|V|.

The same upper bound applies to |P|. These upper bounds on |@Q1|, |Q2| and |P|, | P
yield the desired upper bound on |P; U Q1 U P> U Q5] for the first part of the lemma.
The second part is a direct consequence, since A\ (P; U Q1 U P> U Q2) is a subset of all
(-bridges in H and
VI?

AN (Ao o Q) > (G+a) V= (5+ 5 +2)IV1> -
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as long as ¢ < a/4. O

The next lemma implies that every two 3-uniform hypergraphs H and H’' on the same
vertex set V' with minimum vertex degree (5/9 4+ 0(1))|V|?>/2 have the property that H’
contains many bridges of H as edges. (For technical reasons it will be convenient to allow
that the vertex sets of H and H’ differ slightly.) Note that the lower bound on the number
of bridges in Lemma 2.9 falls short of implying such an assertion. In fact, the proof of the

following lemma will rely on the structural properties of hypergraphs and bridges.

Lemma 2.10. Given Setup 2.4 with p = Cl“—; for a 3-uniform hypergraph H = (V| E)
with |V| = n, let ¢ € (0,0%/9), and let H = (V',E') be a 3-uniform hypergraph with
61(H") = (5/9 + a)n?/2 and |VAV'| < an/18. Then the number of (-bridges (x,y,z) € V3
in H such that vyz € E' is at least an3/2.

Proof. Let H = (V,E) and H' = (V'  E’) satisfy the assumptions of the lemma. In
particular, for every vertex v € V we fixed a robust subgraph R, < H,. We consider the

following set of triples
T = {(x,y,z) eV aye B(H,)n E(H)), z,ye V(R.), and dg.(z) > (3 — i)n} :

We shall appeal to Lemma 2.3 for a lower bound on |T'|. For that we have to restrict to

the subhypergraphs and subgraphs induced on W =V n V’. We consider

TIW] = {(z,y,2) € W*: wy € E(H[W]) n BE(H[W]),
z,y € V(R,) n W, and dp w)(z) > |W|/3}.

Note that the bound on the symmetric difference VAV’ guarantees a minimum vertex
degree of at least (5/9 + 8a/9)n?/2 for H[W] and H'[W]. Moreover, for every z € W we
have
2
V(R.) W] = <§ + g>n SIS —|W|
and
,_ 2
en, (V(R.) nW,W N V(R.)) <en, (V(R.),V NV(R.)) < un En < |W|
Consequently, for every z € W we can apply Lemma 2.3 to G = H,[W], G' = H ; [W], and
R = R.[W] < H,[W] and (2.2) tells us that
3 8 3 8 a3 )

W 22 ca(1- ) 0t = Jan®,

TV = 3 - oW = ¢ gal(l - 15 8"
The definitions of 7" and T[W] imply T [W] < T and, hence, we arrive at

IT| = ~an®. (2.6)

OO\OT
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We shall bound the sizes of the following ‘bad’ subsets of T'

S1 ={(x,y,2) € T: xy is not a (-connectable pair in H}

and Sy = {(z,y,2) € T: yz is not a (-connectable pair in H} .

By definition of T', every triple (z,y,2) € T corresponds to an edge in £ n E’ and by
definition of S; and Ss, every triple in 7'\ (S; U S3) is a (-bridge in H. Hence in view
of (2.6), the conclusion of Lemma 2.10 will follow from the estimates
3 2
1S1] <¢n® and  |Sy] < (C - % - %>n3 (2.7)
combined with o < 1/3 (cf. Setup 2.4) and ¢ < a?/9.

The desired upper bound on the size of S} is a direct consequence of Lemma 2.7. In
fact by definition of T, for every (z,y,2) € T' we have 2y € E(H,) and z, y € V(R,). Since
R, € H, is an induced subgraph, it follows that zy € F(R,) and Lemma 2.7 applies.

In order to prove the second inequality of (2.7) we note that zy € E(H,) is equivalent

to yz € F(H,) and thus we can apply the same argument as above to the subset
Sy ={(z,y,2) € Sy: ye V(R,) and z € V(R,)}

and Lemma 2.7 tells us S5 < ¢|V[>. Next we bound the size of Sy \. S5 by splitting it into
the sets

Sy ={(x,y,2)€Sy: y¢ V(R,) and z € V(R,)} and Sy = {(z,y,2) € Sa: 2 ¢ V(R,)}.

Summarising the discussion above, we note that the proof of (2.7) reduces to showing that
3

18

For the bound on |S5| we appeal for every « € V' to part (ii) of Setup 2.4 for R, < H,. For

2
51| < and  |S§| < T’ (2.8)

every vertex x € V there are at most un* = o*n?/18 pairs (y,2) € (V N\ V(R,)) x V(R,)
with yz € E(H,). Since the definition of T' 2 S¥ ensures xy € E(H,) and, hence, by
symmetry also yz € E(H,), the desired bound on |S}| stated in (2.8) follows.

For the bound on |SY'| we consider the set of pairs
P={(z,2) eV’ dp(z)> (3 —&)nand z ¢ V(R,)}
and we observe that the definitions of 7" and 5%’ yield
S| < |P|-n.
For the bound on P we consider an arbitrary vertex z € V. Since

dr.(r) < dp.(z) = du(z, 2) = du,(2)
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— &

we are interested in the number of vertices z ¢ V(R,) with dy, (2) > (5 — &

part (7) of Setup 2.4 for R, < H, there are at least

)n. Owing to

d,(2) — |V N V(R,)| > (; - 514>om = gian
edges of Ey, (V(R,),V ~\ V(R,)) incident to such a vertex z. Therefore, part (ii) of
Setup 2.4 implies that for every fixed x there are at most
en. (V(Rg),V N V(R, a’n?/18 a?
ut (262171/54 R 26om//54 sz
choices of z. Consequently, |P| < a?n?/8 and the bound on |SY| from (2.8) follows. This
concludes the proof of Lemma 2.10. O

An interesting feature of Proposition 2.6 caused by the proof strategy pursued in [10] is
that the number of inner vertices in the connections it provides is necessarily congruent
to 1 modulo 3. In §2.4 below it will be convenient to employ connections whose numbers
of inner vertices are in other residue classes modulo 3. As the following result shows, such

connections can be accomplished by going “via bridges”.

Corollary 2.11. Given Setup 2.4 (with p = «a/4) and ¢ > 0, there exist three integers
Uy, 0o, 03 < 120 with ¢; =i (mod 3) for all i € [3] and ¥ = I(a, B,¢,() > 0 such that the
following holds.

If (a,b), (z,y) are two disjoint (-connectable pairs of vertices of H, then for every i € 3],
£;

the number of ab-xy-paths in H with ¢; inner vertices is at least 9|V

Proof. We set

193
(=30+1, by =60+5, l3=90+9, and 0= 2—%

where 1, is provided by Proposition 2.6. Since ¢ > 3, we have {1 < ly < 3 < 12¢. We
already know that ¢; has the desired property by Proposition 2.6 and we shall verify the
corollary for /5 and /5.

Starting with the argument for (5, we let any two disjoint (-connectable pairs (a, b)
and (x,y) be given. Notice that if (u,v,w) is a (-bridge, abPuv is an ab-uv-path with ¢;
inner vertices, and vwQxy is a vw-ry-path with ¢, inner vertices, then abPuvwQxy is an
ab-xy-walk with ¢ + 3 + 1 = /5 inner vertices.

By Lemma 2.9 for sufficiently large |V| there are |V|?/4 possibilities to choose the bridge
(u,v,w) in such a way that {a,b,z,y} N {u,v,w} = @ and for every such choice of the
bridge in the middle, Proposition 2.6 delivers 9;|V|* possibilities for P as well as ¢, |V [%
possibilities for ). So altogether the number of ab-zy-walks with ¢5 inner vertices is at

least 92|V [2/4. Since at most O(]V|27!) of them fail to be paths due to containing the
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same vertex multiple times, this proves that £, has the desired property for ¥ < 9%/5 and
sufficiently large |V].

For /3 we can repeat the same argument once more and get the same conclusion for the
choice of ¥ = 93 /25 above. O

2.4. Path covers in 3-uniform hypergraphs. Preparing the proof of the 4-uniform

covering lemma in Section 6 we shall now prove the following 3-uniform covering principle.

Proposition 2.12. For all o, £ € (0,1/3) there is an infinite arithmetic progression
P < 3N such that the following holds.

Given Setup 2.4 (with u = a/4), a collection B < V3 of E-bridges in H with |B) = £|V|?,
and M € P, we can cover all but at most |V | + M wvertices of H by vertex-disjoint paths
of length M each of which starts and ends with a bridge from 2.

Let us remark that while the vertex set V' in this statement is assumed to be much larger
Land £71, the quantification in Proposition 2.12 allows to consider M to be a
function of |V|. In the application we have in mind, M will be about ©(+/|V]). Before we

come to the proof of Proposition 2.12 itself, we would like to give a brief overview. First of

than o~

all, in [10] we proved (somewhat implicitly) a similar result, where M is a constant and |V/|
is very large. Moreover, there everything related to 4 is omitted, but instead of this one
can demand that the end-pairs of the constructed paths should be (,.-connectable for a
sufficiently small constant (.. < a, & (see Lemma 2.14 below). The idea here for obtaining
longer paths (say of length \/m ) is that in the beginning of the proof we put a small
reservoir set aside, so that in the end we can connect many short paths into a smaller
number of longer ones. To this end we require a somewhat standard reservoir lemma (see
Lemma 2.13 and Figure 2.1). The length of the longer paths we obtain in this manner
depends linearly on the number of short paths we connect, and hence the possible such
lengths form an arithmetic progression P. Now we still need to ensure that the paths
we construct start and end with bridges from . This is achieved by putting sufficiently
many such bridges aside that are vertex-disjoint among themselves and to the reservoir.
At the end of the proof we will then be able to connect the selected bridges to our paths

by making further uses of the reservoir.

Lemma 2.13. For all a € (0,1/3) and 9., (o > 0 there exists ¥, > 0 with the following
property.

Given Setup 2.4 (with p = «/4) and the integers ly, 05,03 < 120 provided by Corol-
lary 2.11, there is a reservoir set R =V with $9%|V| < |R| < U2V such that for every
R' < R with |R'| < 94| R|, every i € [3], and any two disjoint (..-connectable pairs (x,y)

and (z,w), there is a xy-zw-path with ¢; inner vertices all of which belong to R ~R’.
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FicUurge 2.1. Collections of small paths, reservoir R, and some bridges
from 4 form the set X.

Proof. Without loss of generality we may assume (,, < 1/4. We fix an auxiliary constant 7
and choose 9., appropriately to obey the hierarchy ., < n « 9, (4, @. Consider a random
subset R < V including every vertex v € V' independently with probability %793. It follows
from Corollary 2.11 along the lines of the proof of [10, Proposition 2.7] that such a set a.a.s.
has the desired size %ﬁf\w < |R| < 9?|V| and possesses the property that for all disjoint
Cex-connectable pairs (z,y) and (z,w) and all i € [3], the number of xy-zw-paths with ¢;

i Fix a reservoir set R € V with this

inner vertices all of which belong to R is at least n|R
property. Now, if in addition to the pairs (z,y), (z,w), and to i € [3], also a set R' € R
with |R| < .| R| is given, we know that at most £;|R/||R|%~! < 1200,,|R|% < n|R|% of

these paths can contain an inner vertex from R’, meaning that the desired path with inner

vertices only from R ~\ R’ exists. U

Lemma 2.14. For all a € (0,1/3) and 9, with 0 < ¥, < « there is a (. € (0,9,) such
that for every sufficiently large M € IN with M = 2 (mod 3) the following holds.

Given Setup 2.4 (with u = a/4), a reservoir set R < V as provided by Lemma 2.183,
and a set X < V R with | X| < 9,|V], one can cover all but at most 20%|V| vertices

of H— (R v X) by disjoint M -vertex paths whose end-pairs are (..-connectable.

Proof. This is implicit in [10, Section 7], where an almost spanning path in H is constructed

that avoids the absorbing path. More precisely, [10, Lemma 7.1] asserts that for a certain
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set X called V(Py4) there, there is a path Q € H — X satisfying
[V(H)N (Ru X uV(Q)] < 9|V (2.9)

and two further statements that are immaterial for our present concerns. The only property
of X used in the proof of [10, Lemma 7.1] is that it consists of no more than ¥,|V| vertices
and thus we can repeat the entire proof with an arbitrary such set. In the beginning of
the proof we fixed a sufficiently large M € 3IN + 2 and below we will assume, in particular,
that M > 9,2

Next we recall that () is constructed so as to contain many subpaths belonging to the set
P = {P € H— (X UR): Pisan M-vertex path whose end-pairs are C**—connectable} .

In fact, there is a set € < & of mutually vertex-disjoint paths such that () starts and
ends with a path from & and between any two “consecutive” members of € appearing
in @ there is either at most one vertex or there are only vertices from R (cf. clauses (b)
and (c) in the definition of candidates in the proof of Lemma 7.1 in [10]). This property

of () guarantees
Vv
V@~ (U, VP uR)| < |M| <2V,

which combined with (2.9) yields
‘V(H) N (R oxul,., V(P))) < [V(H)~ (RUX 0V(Q))

+ ‘V(Q) “(Upe viR) o R)‘ < 202|V].
In other words, % is the desired collection of paths. 0

Proof of Proposition 2.12. Given a, & € (0,1/3) we apply Lemma 2.14 with « and 9, « £, «
and obtain (., € (0,7,). With this value of (,, we appeal to Lemma 2.13, thus getting
some ¥,, > 0. Next we pick some M » ;1 9} with M = 2 (mod 3) which is so large
that the conclusion of Lemma 2.14 holds. Finally we take ng » M, £, 9,1, 9;} so large that

we can apply the Lemmata 2.13 and 2.14 when |V| = n,.

We shall prove that the infinite arithmetic progression
P={MeN: M >ngand M'=90+15 (mod M + 1+ 3()}

has the desired property. Since 9¢+ 15 and M + 1+ 3¢ are divisible by 3, so are all members
of P. Now let Setup 2.4, a collection 8 = V3 of &-bridges with | 2] = £|V|? as well as
a natural number M’ € P be given. We are to cover all but at most £|V| + M’ vertices
of H by vertex-disjoint paths consisting of M’ vertices which start and end with a &-bridge
from A. If |V| < M’' we can just take the empty collection of paths, so we may assume

V| > M’ > ng from now on. Let R € V' be a reservoir set as obtained from Lemma 2.13.
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Consider a maximal sequence by, ..., b, of &-bridges from Z such that R and these bridges
are mutually vertex-disjoint. Since the reservoir and the selected bridges together involve
IR| + 3r vertices, we have 3(|R| + 3r)|V|* = |2| = £|V|?, whence

_ _ 392
o AVIZSIR] €=3mVL_y y

In particular, we can choose x = |9,|V|/3] bridges in # that are vertex-disjoint both from
each other and from the reservoir. Define X < V' to be the set of the 3x vertices occurring
in such a list of &-bridges.

By Lemma 2.14 there is a collection & of disjoint M-vertex paths in H — (X U R)
covering all but at most 202|V| vertices of V(H) \ (X u R) which start and end with
(we-connectable pairs. Due to M’ > ng » M, ¢ the natural number k defined by

M' = (M+1+30)k+ (9 + 15)
satisfies & > |/ng. Take an arbitrary partition
C=%19...96\ UG

such that |61 = ... = |6)\| = k > |6\+1|. For every j € [A], we want to connect the k
paths in €} by means of £ — 1 connections through the reservoir to a path P;. For each of

these connections, we want to use 3¢ + 1 vertices from R, so we will have
v(Pj) =kM + (k—1)(3¢+ 1) = M' — (12¢ + 16)

for every j € [A\]. Altogether, these connections require at most

VI _ Vu
— <
7 S 5 IR

30+ 1)|%| < (30 +1)

vertices from the reservoir, so there is no problem in choosing them one by one.

Our strategy to continue is that for every j € [A\] we want to connect the ends of the
path P; to two of the {-bridges that have been put aside into the set X. These connections
are to be made through the reservoir and for one of them we want to use 3¢ + 1 inner
vertices, while the other one is supposed to use 3 = 9¢ + 9 inner vertices. Thereby each
path P; gets extended to a path @); with

v(Qj) =v(P;)+ (9 +9)+(30+1)+6=M.

There are indeed sufficiently many bridges contributing to X for this plan, because

21V 2lV| .V
2\ < < < <
kS e o 4
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In fact, we even have
(12¢ + 10)|V| \4 V| R|
< - < )
k JIng 2

which shows that the reservoir stays sufficiently intact while we are constructing the paths

(120 + 10)A <

Q1,...,Q). Finally, the number of vertices that these paths fail to cover is at most

< (32 +9,)|V|+ M <&V + M. O

§3. CONNECTING LEMMA

In this section we establish appropriate extensions of Proposition 2.6 and Corollary 2.11
for 4-uniform hypergraphs (see Proposition 3.3 and Corollary 3.5 below). In particular,

from now on H is a 4-uniform hypergraph.

3.1. Connectable triples in 4-uniform hypergraphs. Given a 4-uniform hypergraph
H = (V,E) with minimum pair degree dy(H) = (5/9 + «)|V|?/2 we observe that the
link H,, of a pair of vertices u, v € V is a graph with edge density at least 5/9 + a.
Consequently, Proposition 2.2 provides the existence of a robust subgraph in every joint

link and we collect this information in the following setup.

Setup 3.1. Suppose that a € (0,1/3), > 0, that ¢ > 3 is an odd integer, that H = (V, E)
is a sufficiently large 4-uniform hypergraph with |V| = n and §y(H) = (5/9 + a)n?/2, and
that for every {u,v} € V® we have fixed a (83, f)-robust subgraph R, < H,, of its link
graph given by Proposition 2.2 applied with u = a3/18.

Let us remark that in this situation the vertices v and v are isolated in H,,, for which
reason they cannot belong to the robust subgraph R,,. Similarly, the vertex v is isolated
in the (3-uniform) link hypergraph H,. So to make the results of §2.3 applicable it turns

out to be more convenient to work with the 3-uniform hypergraph
H,=H,—v

obtained from H, by removing the vertex v. Clearly this hypergraph has n — 1 vertices and
it satisfies the minimum degree condition d§;(H,) = (5/9 + a)n?/2 = (5/9 + )|V (H,)[*/2.
Moreover, H, together with the family of graphs

{Ruv: u€ V(Fv)}

exemplifies Setup 2.4. Thus, whenever Setup 3.1, a constant ( > 0, and a vertex v e V
are given, we can speak of (-connectable pairs in H, and the notion of a (-bridge in H, is

defined as well.
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We continue with the definition of connectable triples in 4-uniform hypergraphs, which
pivots on bridges in the 3-uniform links of vertices.
Definition 3.2. Given Setup 3.1 and ¢ > 0, a triple (z,y, z) € V? is said to be (-connectable
in H if the set
Upyr = {veV: (z,y,2) is a (-bridge in H,}
satisfies |Uy,.| = C|V].
In general, changing the ordering of z, y, and z can affect whether a triple (z,y, z) is

(-connectable. It is easy to see, however, that reversing the ordering cannot have such an

effect, i.e., (z,y,x) is (-connectable if and only if (z,y, 2) is

Proposition 3.3 (Connecting lemma). Given Setup 3.1 and ¢ > 0, there is ¥ > 0 such

that if (a,b,c) and (z,y,z) are disjoint, (-connectable triples in H, then the number of

abc-zyz-paths in H with 8¢ + 10 inner vertices is at least Yn3+10,

Proof of Proposition 3.3. By monotonicity we may suppose that ¢ < ﬁ. Let ¥3 denote the
constant obtained by applying Proposition 2.6 to «, 3, ¢, and (*. We shall prove that

19 _ ;C3f+6ﬁ§£+4 (31)

has the desired property. To this end we fix two disjoint {-connectable triples (a,b, c)

and (x,y, z). Consider the set T of all sequences
(u, P, q,7,w) e Vs
with
p=1spses1)s G =1(q1,92:93,q1), and T = (rae1,...,71)
such that the following six conditions hold:

(1) u# w and u € Uppe, w € Uyys,
2
3

(2)
(3)
(4)
(9)
(

q spans a walk of length 3 in the robust subgraph R, of the link graph H,,,,
q1¢> is (3-connectable in H,,

¢3¢ is C3-connectable in H,,,

5) (b,c,D,q1,q2) spans a 3-uniform path of length 3¢ + 1 in the link H,,

6) (g3,q, 7, x,y) spans a 3-uniform path of length 3¢ + 1 in the link H,,.

We establish the following lower bound on the size of set T' defined above.
Claim 3.4. We have |T| = (392n5+8,

Proof. Our first step is to show that the set

S ={(u,g,w) € V®: u # w,u € Uppe, w € Uy, and ¢ spans a walk of length 3 in R}
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of all sextuples satisfying (1) and (2) satisfies
1,26
S| = 13¢°n”. (3.2)

In fact, in view of Definition 3.2 the {-connectability of (a, b, c) and (z,y, z) ensures that
there are (n - ({n — 1) possibilities to choose the pair (u,w). Thus for the proof of (3.2) it
suffices to show that for every pair (u, w) € Ugp. x Usy. the number of 3-edge walks in R,
is at least cn? for some ¢ > 1/12. A result of Blakley and Roy [1] (asserting the validity
of Sidorenko’s conjecture for paths) combined with Proposition 2.2 (7i7) entails that the

number of these walks is indeed at least

(2e(Ru)* _ (4n?/9) _4* , '
v(Ry)? ~ n? 93 12°

Thereby (3.2) is proved and we proceed by estimating the set

S* = {(u, G,w) € S: q1qs is ¢*-connectable in H, and gsq4 is (*-connectable in H,,}

of all sextuples satisfying (1)—(4). By two successive applications of Lemma 2.7 we shall
show

1S~ S*| < 2¢3nS. (3.3)
Indeed, for every fixed triple (u,q3,q4) € V3, Lemma 2.7 applied to H, and (3 (in place
of H and () tells us that there are at most (*n? triples (g1, g2, w) with ¢1q2 € F(Ry,,) for
which ¢,¢5 fails to be (3-connectable in H,,. Similarly, for every fixed triple (qi, ga, w) € V3,
Lemma 2.7 applied to H,, and ¢ tells us that there are at most (3n? triples (u, g3, q4)
with ¢3qu € E(Ryw) for which gzq4 fails to be ¢3-connectable in H,,. So altogether we have
1S\ S*| < 2n3 - (3n?, which proves (3.3).

As a direct consequence of (3.2), (3.3), and ¢ < ;5 we obtain
1
|S*| > ECQTLG_QQ-S”G > QCSTLG. (34)

Now by Proposition 2.6 and the definition of S*, for every sextuple (u, ¢, w) there are at
least ¥3(n — 1)1 sequences p as demanded by (5) and there is at least the same number

of sequences 7 as required by (6). Consequently, we have
(3.4)
| = |S7] (193(n _ 1)3e+1)2 > C319§n6€+8
for sufficiently large n and this concludes the proof of Claim 3.4. O

Now consider an auxiliary 3-partite 3-uniform hypergraph A with vertex classes M, U,
and W, where M = V%6 while U and W are two copies of V. We represent the vertices

in M as sequences

m = (pl)- -y P30+1,41,92,93,94, 3041, - - - 7T1) = (ﬁaquf) .
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FIGURE 3.1. Connecting (a,b,c) and (x,y, 2).

The edges of A are defined to be the triples {u,m,w} with m € M, uwe U, w e W, and
(u,m,w) € T. Thus Claim 3.4 implies

e(A) = |T| = C3n®*® = CO3IM||U[[W]. (3.5)
For every vertex m € M we consider its (ordered) bipartite link graph
Ap = {(u,w) e U x W: muw € E(A)}.

A standard convexity argument yields

“+2
Z |Am\£+2 > | M| (6<A>> (‘;5) Cse+6ﬁ§e+4nse+1o (3.1) 2 Bl+10 (3.6)
meM ‘M‘

As we will check below, if m € M and (uy,wy), ..., (upr2, Weio) € Am, then

abcuypipapsus . . < Up1P30+191G2Up+2We12G344T 3041 We173¢T3¢—-1T3¢0—2Wy - . . W1 TYZ

is an abc-xyz-walk in H with 8¢+ 10 inner vertices (see Figure 3.1). By (3.6) this argument

86410 guch walks and, as at most O(n®*9) of them can fail to be

produces at least 29n
paths, this will conclude the proof of Proposition 3.3.

It remains to verify that any four consecutive vertices in the above sequence form an
edge of H. Recall that (u;, m,w;) € T for every i € [¢ +2]. So (1) implies abcu; € E and
wiryz € F, respectively. Since beps ... p3rr1¢iqe is a 3-uniform path in each of the link

hypergraphs H,,,..., H by (5), we have

) ug+2

bcuipr, cuipipa, wiP1P2ps, P1P2P3U2, - - -, P3+1q1G2Ue2 €
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and a similar argument utilising (6) establishes

We4+2G3GaT3041, G3GaT3041We41, .., TIUWITY € B

It remains to note, that by (2) we have

Q1Q2Up+2We42, GoUps2Wei2q3, UppoWet2G3qs € F,

which completes the proof of Proposition 3.3. O

3.2. Other residue classes. The almost spanning cycle to be constructed in Section 7
will be obtained from an almost spanning path cover with the help of the connecting lemma.
The number of inner vertices appearing in the last connection will determine in which
residue class modulo four the number of left-over vertices will lie. As the nature of our
absorbing mechanism requires that the number of left-over vertices should be divisible by

four, it will be useful to strengthen the connecting lemma as follows.

Corollary 3.5. Given Setup 3.1 and ( > 0, there exist natural numbers £y, s, 3,04 < 50L
with ¢; =i (mod 4) for all i € [4] and ¥ = ¥, B,€,() > 0 such that the following holds.

If (a,b,¢), (x,y, 2) are disjoint (-connectable triples of vertices of H, then for everyi € [4]
£;

the number of abc-xyz-paths in H with ¢; inner vertices is at least 9|V

The proof will be established in almost the same way as Corollary 2.11, the main
difference being that, instead of bridges, we utilise connectable triples to build connecting
paths whose number of inner vertices is incongruent to 2 modulo 4 (cf. Proposition 3.3).
For the proof we first observe that there are many connectable triples in the 4-uniform

hypergraph H = (V, E') under consideration.

Lemma 3.6. Given Setup 3.1 and ¢ € (0,a/4), the number of (-connectable triples in H
is at least (1/3 — 20)|V|?.

Proof. Let N be the number of (-connectable triples in H = (V, E'). We will estimate the

number

IT = |{(v,e): e is a (-bridge in H,}|.
in two different ways. First, Lemma 2.9 tells us that for every vertex v € V there are at
least (n — 1)3/3 different (-bridges in H,, which yields IT = n(n — 1)3/3 > (1/3 — {)n* for

sufficiently large n. Second, we have
O<N-n+nd-(n,

since every (-connectable triple e participates in at most n pairs (v, e) € II, while every

triple e that fails to be (-connectable can be a (-bridge in at most (n link hypergraphs.
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By comparing our estimates on Il we obtain
N = (1/3 = Qn® — Cn® = (1/3 - 20)n?,
as promised. O

Proof of Corollary 3.5. By monotonicity we may suppose that ( < a/4 < 1/12 and let
Y1 > 0 be given by Proposition 3.3. We set

94

0, =320+49, 0, =80+10, (3=160+23, (¢, =240+36, and o= 7—;
It follows from ¢ > 3 that ¢, < {3 < ¢4 < {1 < 50¢ and Proposition 3.3 directly asserts the
conclusion of Corollary 3.5 for ¢ = 2.

For ¢ = 3 we use the following argument. Given disjoint (-connectable triples (a, b, ¢)
and (z,y, z) Lemma 3.6 delivers for sufficiently large n at least n3/6 different (-connectable
triples (u,v,w) in H with {a,b,c,z,y,z} n {u,v,w} = & . For each of them, Proposi-
tion 3.3 provides 911’ abc-uvw-paths of the form abcPuvw, where P consists of 5 vertices.
Similarly, there are 9¥,n‘ uvw-zyz-paths of the form uvwQwzyz, where @ consists of £y
vertices as well. Altogether, this yields 9¥2n% /6 abc-ryz-walks of the form abcPuvwQryz
Since at most O(n**~1) of them fail to be a path due to some overlap between P and @,
the corollary follows for ¢ = 3.

For i« = 0 and ¢ = 1 we argue similarly, exploiting 4 = {5 + {3 + 3 and {1 = {3 + {3 + 3,
respectively. U

3.3. Bridges in 4-uniform hypergraphs. We conclude this section with some results

that will be helpful in Section 5. The following is a 4-uniform analogue of Lemma 2.7.

Lemma 3.7. Given Setup 3.1 and ¢ > 0, there are at most |V |* quadruples (a,b,c,d) € V*
such that (a,b,c) is a (-bridge in Hy, but (a,b,c) is not ¢-connectable in H.

Proof. Tt follows from Definition 3.2 that for every triple (a,b,c) € V3 that fails to be
(-connectable in H, there are at most (|V/| choices of d such that (a,b,c) is a (-bridge
in Hy. Consequently, there are at most ¢|V|* quadruples with the properties under

consideration. O

Similarly to the notion of bridges in 3-uniform hypergraphs, which was defined by
containing connectable pairs (cf. Definition 2.8), we define 4-uniform bridges in terms of

connectable triples.

Definition 3.8. Given Setup 3.1 and ¢ > 0, a quadruple (a, b, c,d) € V* is called a (-bridge
in H if abed € E and (a,b,c) and (b, c,d) are both {-connectable triples in H.
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It will later become important for us that there are plenty of bridges in H. The argument

in the proof of the following lemma is very similar to that in the proof of Lemma 2.9.
Lemma 3.9. Given Setup 3.1 and ¢ > 0 there are at least (1/9 — 7¢)|V|* (-bridges in H.

Proof. Let A = {(a,b,c,d) € V*: abed € E} be the set of all orderings of the edges of H.

Obviously, the minimum pair degree condition imposed on H implies
5 3 5 4
|A| = §+oz VPV —-1) = §+a—( V.

We consider two exceptional subsets of A, namely

Py = {(a,b,c,d) € A: (a,b,c) is not a -bridge in H 4}
and Q1 = {(a,b,c,d) e AN P;: (a,b,c) is not (-connectable in H} .

It follows directly from Lemma 3.7, that

@ < VI

Moreover, by Lemma 2.9 every d € V contributes at most (2/9 + «/2 + 2¢)(|[V| — 1)3
quadruples to P, which yields the upper bound

2 o
Pl< (5 +5 +20) VI

By symmetry we obtain the same bounds for the sets

Py = {(a,b,c,d) € A: (b,c,d) is not a -bridge in H,}
and @y = {(a,b,c,d) € AN Py: (b,c,d) is not (-connectable in H} .

Since every quadruple in AN (P u @1 U Py uQ9) is a (-bridge in H, the lemma follows. [

§4. RESERVOIR LEMMA

The connecting lemma for 4-uniform hypergraphs from Section 3 allows us to connect
paths that start and end with a connectable triple. However, in the process of building
longer paths, we must not interfere with the paths already constructed. For that we put
aside a randomly selected small reservoir of vertices R. Moreover, due to the divisibility
restriction of the absorbing path lemma (see Proposition 5.1), we need to guarantee short
connections by paths of lengths in all residue classes modulo four. The existence of such a

reservoir set is given by the following proposition.
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Proposition 4.1 (Reservoir lemma). Given Setup 3.1 and constants (., G > 0, let
integers 01,0y, 03,0y < 500 and ¥, = J(«, 5,0,() and Ve = V(a, 8,4, () be provided by
Corollary 3.5. Then there exists a subset R <V such that
(1) %VI/2 <R[ < RV
(i) and for all disjoint, (s.-connectable triples (a,b,c), (x,y,z) in H and every i € [4],
there are ¥,.|R|% /2 abc-xyz-paths with {; inner vertices, which all belong to R.

We often refer to the set R given by Proposition 4.1 as the reservoir set.

Proof. The existence of such a reservoir set R is established by a standard probabilistic
argument. For that we set

4 L
p= iﬁf and C = (5) o

and we consider a random subset R < V with elements included independently with
probability p. Observe that |R| is binomially distributed with expectation p|V| and
Chebyshev’s inequality implies that a.a.s.

g|V| <|R| < Cp|V]. (4.1)

In particular, our choice of C' shows that a.a.s. the set R satisfies part (i) of Proposition 4.1.
For part (ii) we recall that for every pair of disjoint, (,.-connectable triples (a,b, c),

i abc-zyz-paths

(z,9,2) € V3, Corollary 3.5 guarantees for every i € [4] at least 0,.|V
with ¢; inner vertices. Let X = X (i, (a,b,¢), (x,y, 2)) be the random variable counting the

number of such abc-xryz-paths with all ¢; inner vertices in R. Clearly,

EX > ph - 0,.|V|%. (4.2)

Since including or not including a particular vertex into R affects the random variable X

=1 the Azuma-Hoeffding inequality (see, e.g., [6, Corollary 2.27])

by no more than ¢;|V

asserts

)4) < P(X < 2EX)

< exp (_18 ‘ Wy@()zi\)v &1)2) —exp(—Q(V])). (43

In view of (4.1) and ¢; < 50¢ our choice of C' implies that a.a.s.

2 1 |
SV PV ) = 7R &, (4.4)

Since there are at most 4|V|% choices for the triples (a,b,c), (z,y, ), and for i, the union
bound combined with (4.3) and (4.4) shows that a.a.s. the set R satisfies part (ii) of

Proposition 4.1. Consequently, a reservoir set R with all required properties exists. 0
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In the proof of Theorem 1.3 in Section 7 we will repeatedly connect connectable triples
through the reservoir R provided by Proposition 4.1. Whenever such a connection is made
some of the vertices of the reservoir are used and the part of the reservoir that may still be
used for further connections shrinks. Although Q(|V]) such connections will be needed,
we shall be able to keep an appropriate version of property (ii) of the reservoir intact

throughout this process. We prepare for this situation by the following corollary.

Corollary 4.2. Given Setup 3.1 and (., G > 0, let integers 01,45, 03,0, < 500 and
Ve = e, B,0,(,), Ve = O, 5,4, (us) be provided by Corollary 3.5. Moreover, let R <V
be a reservoir set provided by Proposition J.1. Then for every subset R' € R of size at
ﬁf&é}* V| the following holds.

For all disjoint, (u-connectable triples (a,b,c), (x,y,z) in H and every i € [4], there is

most

some abc-xyz-path with {; inner vertices, which all belong to R ~ R’.

Proof. Tt follows from the lower bound in Proposition 4.1 (7) and the bound on |R’| that

19**
200¢

Moreover, every vertex in R’ is an inner vertex in at most ¢;|R|%! different abc-zyz-

IR < IR|.

paths in H with all ¢; inner vertices belonging to R. Consequently, it follows from
Proposition 4.1 (4i) and ¢; < 50¢ that there are at least

Vs , - Vs ,
RIS — R GRS > PR
2 4
such paths with all inner vertices from R ~ R’. O

§5. ABSORBING PATH LEMMA

5.1. Outline and main ideas. In this section we establish the existence of an absorbing
path P4, which at the end of the proof of Theorem 1.3 will allow us to ‘absorb’ an arbitrary

(but not too large) set Z of left-over vertices with a size divisible by four.

Proposition 5.1 (Absorbing path lemma). Given Setup 3.1, there is some (o = (p(a) > 0
such that for every (. € (0,¢o) and for ¥, = 9, 5,¢,(,) provided by Proposition 3.3 the
following holds. For every set R €'V of size at most V2|V, there exists a path P4 € H—TR
satisfying
(@) [V(Pa)] < 9.V,
(i) the end-triples of Ps are (,-connectable,
(ii1) and for every subset Z <V N\ V(Py4) with |Z| < 29%n and |Z] =0 (mod 4), there
exists a path Q < H with the same end-triples as Py and V(Q) = V(P4) U Z.
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The absorbing path P4 will be built by connecting many so-called absorbers (see
Definition 5.5). Similarly as in [10], the absorbers used here consist of two parts. Roughly
speaking, the first part allows us to “swap” any given vertex a with a different vertex z,
which then can be absorbed by the second part of the absorber. In other words, we can
move from an arbitrary vertex a, which we may need to absorb, to another vertex = that
enjoys better properties. For the first part this can be easily achieved if a and = share a
3-uniform path with six vertices in their joint link H, n H, (see Figure 5.1). Note that
our degree assumption on H implies that the 3-uniform link of every vertex has density at
least 5/9 > 1/2 and, hence, the joint link of any two vertices has positive density and the

existence of the 6-vertex paths follows from [3].

a

C @ D ) D)

FI1GURE 5.1. Both a and x form a 4-uniform path together with the 3-uniform
path in H, n H,.

Having replaced x with a we need to ensure that x itself can be absorbed. For that,
in the context of 4-uniform hypergraphs, one usually showed that many vertices x have
the property that their links contain a 3-uniform path on six vertices with the additional
property that its vertices span a 4-uniform path in H. In particular, these six vertices form
a path on its own and can absorb z in the middle, building a 7-vertex path with the same
end-triples (see e.g. [10], where this strategy was implemented for 3-uniform hypergraphs).

While working on a related problem, the first two authors [8] suggested a different
approach for the second part of the absorber. For that we note that every complete
4-partite 4-uniform hypergraph K gf‘s)’s’s contains a path on 4s vertices. However, any four
consecutive vertices in that path are crossing in the K ggf‘s)vsvs and removing them gives
rise to a copy of K 5(4—)1,5—1,5—1,5—17 which again contains a spanning path on the remaining
4(s — 1) vertices. Moreover, if s > 3 then these paths have the same end-triples. Actually
it suffices already to start with a K ég,&g and we will follow that route. Again the existence
of Kég,&z’s in 4-uniform hypergraphs of positive density follows from [3]. However, due

to the 4-partiteness, with this absorption mechanism we can only absorb four tuples of
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a1 a2 as Gy
[ ] ]
b11 b12 b13 J b14 b15 b1g b21 ba2 bas l bag bas bog b31 b2 b3s l b34 b3s b3g ba1 ba2 bas J baq bys bas
o 0o 0@ ¢ 0 o e 0o 060 ¢ o o e o 060 ¢ o o e 0o 060 ¢ o o
T ) | |I3 Ty
° ° ° ° ° ° °
Ui U9 us Uy w1 W9 W3
b11b12b13  b1abisbis b21 baz bag  b24 bas bag b31 b3z b3z b3ab3s bss ba1 baz bas  baa bas bas
e o 060 0 o o e 0o 060 0 o o e 0o 060 0 o o o 0o 060 ¢ o o
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Ty P2 T3y
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[ ] [ ]
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FIGURE 5.2. Absorber for (ay,...,a4) before and after absorption.

vertices (1, ..., x4), which in turn implies that we have to start with four vertices ay, ..., a4
at the beginning. This is the reason for the divisibility condition on |Z| in part (4) of
Proposition 5.1.

As a result for any given (ai,...,a4) € V* our absorbers will consist of 35 vertices,
which split into five 7-vertex paths (see Figure 5.2). Four of the paths are of the form
bi1biobizx;biabisbig for i € [4], where bjbiobizbiabisbis is a 3-uniform path in the joint link
H, n H,, (cf. first part of the absorber outlined above). The fifth path w; ... ugwjwows is
given by the vertices of a Kéf%j’m, which together with xy, ..., 24 span a K. §fl§,3,2- In order to
connect these paths into one absorbing path P4, we shall also require that the end-triples

of these paths are connectable (see Lemmata 5.3 and 5.4 below).

5.2. Proof of the absorbing path lemma. Roughly speaking, the following lemma
shows that the joint 3-uniform link H, n H, of (almost) all pairs of vertices a, x € V
contains (|V|?) connectable triples. Consequently, a result of Erdds [3] implies that the
joint link contains Q(|V|®) 3-uniform paths on six vertices with connectable end-triples (in
fact all triples will be connectable), which shows the abundant existence of the first part of

our absorbers for every vertex a € V' (see Lemma 5.3 below).
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Lemma 5.2. Given Setup 3.1 and > 0, there is a set X =V of size | X| < +/C(n such that
for alla € V and every x € V \. X there are at least (/3 — /C)|V|?® triples (b,b',V") € V3
with bb'Y" € E(H,) n E(H,) and (b,0',b") being (-connectable in H.

Proof. The lemma is trivially true for ( > a?/9 and, hence, we may assume ( < a?/9.

First, we define the set X. For a vertex v € V' let
B(v) = {(b,V,b") e V3: (b1, V") is a (-bridge in H,, but it is not (-connectable in H}
and we note that Lemma 3.7 asserts

Y 1B()] < ¢nt.

veV
We define
X ={veV:|BW)|=+/(n*}.
and |X| < +/Cn follows.

It is left to show that V' ~. X has the desired property. For that let a € V and z € V \ X.
An application of Lemma 2.10 with H = H, and H' = H, yields for sufficiently large n at
least
3

%m 13 > %n

triples (b,b',b") € V3 such that
b't" € E(H,) n E(H,) and (b,b,b") is a -bridge in H,. (5.1)

Since z ¢ X, we have |[B(z)| < 4/(n® and, therefore, all but at most 4/(n3 of the triples
(b, b, ") satisfying (5.1) are (-connectable. O

Lemma 5.2 combined with a result of Erdés from [3] implies the following.

Lemma 5.3. Given Setup 3.1 and ¢ € (0,a?/36), there is some & = &(a) > 0 and a
set X €V of size at most \/Cn such that the following holds.
ForallaeV and x € V \ X, there are at least £'n® sextuples (by, ..., bs) € VO such that
(7) biby...bg is a 3-uniform path in H, N H,
(7)) and (b1, by, bs3), (b, bs,bg) are (-connectable in H.

Proof. Let X be given by Lemma 5.2 and fix two vertices a € V and x € V ~~ X. We
consider the auxiliary 3-partite 3-uniform hypergraph B = (U v U’ v U”, Eg) whose
vertex classes are three disjoint copies of V' and edges bb't” € Eg with be U, b’ € U’, and
b" € U” correspond to (-connectable triples (b,V/,b") of H with bv'd" € E(H,) n E(H,).
Lemma 5.2 and ( < «?/36 tell us that |Ep| > an®/6 and it follows from [3] that B

contains any complete 3-partite 3-uniform hypergraph of fixed size. In particular, there
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is a copy of K§?2),2 in B and by the so-called supersaturation phenomenon (see, e.g., [4])
there are at least 26'n® such copies for some constant &' = &'(«). Each such copy of KSQ)’Q
contains a walk biby ... bg in H, n H, satisfying (i7) and, consequently, there are at least

2¢'n% — O(n®) = ¢'nS paths satisfying (i) and (7). O
Next we focus on the second part of the absorbers.

Lemma 5.4. There is some & > 0 such that for every ¢ € (0,1/126) the following holds.

Given Setup 3.1, there are £"n' 11-tuples (uy, ..., ug, 1, ..., Tq, w1, wo, ws) € VI so that

(1) up...ugxy ... Towiwows and uy . .. ugw wows are d-uniform paths in H

(i) and (uq,us,us3), (wy,ws,ws) are (-connectable triples in H.

The proof of Lemma 5.4 is very similar to the proof of Lemma 5.3. However, instead of
an auxiliary 3-uniform hypergraph of connectable triples in the shared link of two vertices,

we shall consider a 4-uniform hypergraph of bridges.

Proof. We consider the 4-partite 4-uniform hypergraph B = (V; w V5 w V3 vV, Eg) whose
vertex classes are four disjoint copies of V' and whose edges vivov3v4 € Eg with v; € V; for
i € [4] correspond to (-bridges (v, vs,v3,v4) of H. By Lemma 3.9 and our choice of ¢,

there are at least
4

1 n

(5-7)n" > 5
(-bridges in H and, hence, |Eg| = n'/18 edges. Similar as in the proof of Lemma 5.3,
this implies that there are at least 26”n!' copies of the complete 4-partite 4-uniform
hypergraph Kg(,g,&z in B for some universal constant £” > 0. Passing through the vertices
of each such copy of Kégsg (by starting in a vertex in V; and then passing cyclically
through the other vertex classes) leads to a 4-uniform path w; ... u4z; ... x4wwews in B.
In particular, x; ...z, is an edge in B, and owing to the completeness of Kég’w we see
that after removing the vertices 1, ..., x4, the remaining vertices still form a 4-uniform
path u; ... ugwwows in B.

By definition of B every such path wuy ... usx ... z4wiwows corresponds to a walk in H.
Consequently, H contains at least 26"n''—0(n!%) > &’n'' 11-tuples u; . .. usz; . . . T4W WW3
that satisfy part () of Lemma 5.4. Moreover, recalling that edges of B correspond to
(-bridges in H it follows that (uq,usg,us), (wy, ws,ws) are (-connectable in H for every

such 11-tuple, i.e., part (i) holds as well. O

Next we define the absorbers, which will be the building blocks of the absorbing path P4

in Proposition 5.1.
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Definition 5.5. Given Setup 3.1, ( > 0, and @ = (a4, ...,a4) € V*, we say that a tuple

(by,..., by, 0, %, W) e V3 with
Biz(bil,...,bw) forie[4], u = (u1,...,uq), T = (x1,...,24), and w = (wy,wy, w3),

is an a-absorber in H, if

(a) all its 35 vertices are distinct and different from those in a,
(b) b; satisfies properties (i) and (ii) of Lemma 5.3 for a; and x; for every i € [4],
(¢) and (u,z,w) satisfies properties (i) and (ii) of Lemma 5.4.

Formally, an a-absorber is defined to be a septuple. However, since it consists of 35
vertices we may refer to it sometimes as a 35-tuple from V3. Similarly, in part (¢) we
refer to (u, z,w) as an 11-tuple.

We note that if @ = (ay,...,a4) consists of four distinct vertices, then an G-absorber
can be used to absorb the set {a,..., a4} as follows (see Figure 5.2). The 35 vertices of an

a-absorber (51, o by UL T w) can be partitioned into five 4-uniform paths
bﬂbigbmxibmbmbiﬁ forie [4] and Uy ... U4LW1W2W3

in H, each of which starts and ends with a (-connectable triple. If all five of these paths
are segments (not necessarily consecutive) of the absorbing path P, while all ay, as, as, a4

are not on P4, then one can replace these five paths by
bilbinigaibizlbig,biG for i e [4] and Uy ... ULTY . . . T4pW1WWS

i.e., replace x; with a; in the four “b-paths” and include z,...,z4 in the middle of the
fifth path.

Below we easily deduce from Lemmata 5.3 and 5.4 that there are Q(n*) absorbers for
every fixed 4-tuple @ € V*. This fact will play a key role in the proof of the absorbing path

lemma.

Lemma 5.6. Given Setup 3.1, there are constants ¢\, = ({(a) and & = {(«) > 0 such that

for every ¢ € (0,¢}) and for every a € V* the number of a-absorbers in H is at least En>®.

Proof. For a fixed a € (0,1/3) let &'(a) > 0 and " > 0 be provided by Lemmata 5.3

and 5.4. We set
2

Gomn{(5) ) e - g

and let ¢ € (0,¢)) and @ = (ai,...,a4) € V* be given. Moreover, let X = V be the

exceptional set of vertices of size at most /Cn given by Lemma 5.3.
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Lemma 5.4 yields £"n'! distinct (4, Z,w) € VI with @ = (uy,...,u), T = (21,...,74),

and W = (wy, we, ws3) satisfying properties (7) and (i) of the lemma. Obviously, at most
11(|X| + 4)n'® < 114/¢n*t + 44n'°

of these 11-tuples share a vertex with X U {ay,...,as}. Consequently, our choice of ¢} > ¢
guarantees that for sufficiently large n at least £’n'!/2 of these 11-tuples are disjoint from X
and from a.

Next, for such a fixed 11-tuple (u,Z,w) we apply Lemma 5.3 for every i € [4] to «;
and z;. Each application yields &'n® sextuples (b1, . . ., bis) satisfying properties (i) and (ii)
of that lemma. Taking into account that we insist that all the vertices b;; for ¢ € [4] and
J € [6] need to be distinct and different from the already fixed vertices of a, z, 4, and w

this gives rise to at least
1

4
5 (f/TLG)
such choices of by, ..., by for every fixed (u,z,w). Summing over all possible choices
of (u,z,w) leads to at least
1 T 6\4 35
if”n X 5(5’71 )" =¢n
a-absorbers in H. 0

After these preparations we conclude this section with the somewhat standard proof of
the absorbing path lemma. In the proof we first find a suitable selection of Q(n) disjoint
35-tuples that contain many a-absorbers for every a. In the second and final step we
then utilise the (-connectable end-triples to connect these 35-tuples, each consisting of five

disjoint paths of length four, into one absorbing path avoiding the given set R.

Proof of Proposition 5.1. For a € (0,1/3) let £ = 3 be given by Setup 3.1 and let ¢}, = ¢/ («)
and £ = £(a) be given by Lemma 5.6. Set
(o = min {C(/n 12540022},

and for ¢, € (0,(p) let 9, along with a sufficiently large 4-uniform hypergraph H = (V| E)
and R € V of size at most 9¥2n be given. Without loss of generality we can assume that
Ve < (.

Applying Lemma 5.6 with ¢, yields for every @ € V* at least {n3® G-absorbers in H.
However, since the absorbing path is required to be disjoint from R, only absorbers disjoint

from R are useful here. Let A(a) be the set of all a-absorbers disjoint from R and note

@) > n® — 35[RIn* > S (5.2)
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Let A = JA(d) < (V ~\R)* be the set of all absorbers outside R, where the union runs
over all four tuples @ € V4.

We set
o 4<0,L9*

- §n34

and consider a random collection A, < A, where every absorber from A is included

p

independently with probability p. Standard applications of Markov’s inequality and of
Chernoft’s inequality show that with positive probability the random set A, satisfies the

following three properties

| A, < 3-pn®, (5.3)
{(A,A') € A2: A and A’ share a vertex}| < 3-35%p°n®, (5.4)
1
and for every d € V* we have |4, n A(d)| = 5 - plA(a)]. (5.5)

Consequently, there exists a collection By < A satisfying (5.3)—(5.5) with By replacing A,,.
We further pass to a maximal subcollection B < B, of mutually disjoint absorbers. The
choices of p and (y combined with (5.2) and 9, < (& < (p allow us to transfer (5.3) and (5.5)
to the set B as follows

12¢o0, U,
= ¢ S Taoe”

1B| < 3-pn® (5.6)

and for every @ € V* we have

(5.4)

- 1 - 2,2, 69 216Cgl92 1 2
B Ad)| = 5-]?‘.4(&)’—3-35]971 > (odun —3-35 Tr@iﬁ*n. (5.7)

It remains to connect the absorbers from B into a path. Recall that every 35-tuple in B
consists of five 7-vertex paths with (,-connectable end-triples and that all those 5|B| paths
are mutually vertex disjoint. Let P be the collection of all these 7-vertex paths.

Finally we construct the absorbing path by connecting all paths from P. For that we
consider a maximal family of paths P* < P for which there exists a path P; € H — R,
containing all the paths from P*, whose end-triples are (,-connectable and such that
R
200"

Clearly, P* # @ and thus, P; # &. Assume for the sake of contradiction that there
is some P € P~ P* and let (z,y, z) be the starting triple of P. Moreover, let (a,b,c)

> (5.6)
V(P = 7P|+ (|P*] = 1) - (8¢ +10) £ 70¢|B| <

(5.8)

be the ending triple of P}. Since both triples (a,b,c) and (z,y,z) are (-connectable,

Proposition 3.3 tells us that there are at least 9,n8*10

vertices in H. Since (5.8) combined with |R| < ¥?n yields

abc-xyz-paths with 8/ + 10 inner

J,n® 0 — (8¢ 4+ 10) (|V(P})

LIRS0 > 0,
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there is at least one connecting path disjoint to V' (P}) UR giving rise to a path P3* € H—R
containing P* u {P}. This contradicts the maximality of P* and consequently the desired
path P, containing all paths from P does really exist.

In fact, Property (i) of Proposition 5.1 is a consequence of (5.8) and part (i) is also
clear from the definition. For part (7ii) of Proposition 5.1, let Z be a set outside P, of size
at most 29?n with |Z| = 0 (mod 4). Tt follows from (5.7), that one can successively absorb
quadruples of distinct vertices of Z into the path, at least ¥2n/2 times, always having at

least one unused absorber at hand. O

§6. PATH COVER LEMMA

The goal of this section is to establish the following 4-uniform variant of Lemma 2.14.

Proposition 6.1 (Path cover lemma for 4-uniform hypergraphs). For every o € (0,1/4)
there is a constant Vo(a) > 0 such that for every positive 9, < Jo(«) there are a constant
Cex = Gux(@,04) > 0 and arbitrarily large natural numbers M with M = 3 (mod 4) such
that the following holds.

Given Setup 3.1 and a set X <V with |X| < 20,n we can cover all but at most ¥?n
vertices of H — X by disjoint M -vertex paths that start and end with a (,.-connectable
triple.

We would like to remark that the constants in this statement can be thought of as

forming a hierarchy a » 9, » (.o » Mt » n7!

. In our intended application, the set X
will be the union of the reservoir and the vertex set of the absorbing path. Moreover, it
will be important that we have the liberty to take M to be substantially larger than the

reciprocal of a further constant 1., obtained by applying the connecting lemma to (...

Proof. Recall that Setup 3.1 involves a constant § > 0 as well as a natural number
¢ > 3. We will assume throughout that o, 3,¢=! » 9, » (., without calculating these
dependencies explicitly. Let P < 3IN be the infinite arithmetic progression which the
3-uniform Proposition 2.12 delivers for «/4 and (., here in place of « and £ there. Now let
M » (! be a sufficiently large natural number with M = 3 (mod 4) and 3(M + 1) € P.
The number M will play two different réles and hoping to enhance the visibility of this
fact we set m = M.

Now let a 4-uniform hypergraph H = (V, E) on n » M vertices satisfying the minimum

n?

2
subgraphs of its link graphs exemplifying Setup 3.1 be given. Set

pair degree condition 6,(H) = (2 + o) as well as a family {Ry,: uv € V®} of robust

P = {P c H— X: Pis an M-vertex path whose end-triples are C**—connectable}
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and consider a maximum collection ¥ < & of vertex-disjoint paths. We are to establish
that the set

U=V~ (X U, V(C))

of uncovered vertices satisfies
U] < 92n, (6.1)

so for the rest of the proof we can assume that (6.1) is false. Our strategy for obtaining a
contradiction is that we find up to m appropriate paths in ¢ and show that the union of
their vertex sets with U spans at least m + 1 vertex-disjoint paths from &2. For a vertex
u € U to have some chances to participate in this rerouting its link hypergraph should be
somewhat “typical” and our next step is to identify a set Up,q S U of bad vertices which
we will not use for incrementing %'

Recall that, as discussed between Setup 3.1 and Definition 3.2, for every u € U the link
hypergraph H, and the family {Rw,: veV N {u}} of (B, ¢)-robust graphs realise Setup 2.4.
Due to ¥, « 7', 3, and our assumption |X| < 2d,n it follows that the hypergraph
H, — X and the family

\IJ:{RUU—X:UEV\(XU{U})}

of (B/2,¢)-robust graphs exemplify Setup 2.4 with (a/2, 3/2, a*/9) here in place of (a, 3, 1)
there. In particular, we can speak of (,,-connectable pairs and (,,-bridges with respect to
the constellation (H, — X, ¥) and in the sequel we shall call them ((,., X )-connectable pairs
in H, — X and (Cu, X)-bridges in H, — X, respectively. To clarify the relation between
these concepts, we remark that every (2(.., X )-connectable pair of distinct vertices from
H, — X is, in particular (,,-connectable in H,. Consequently, every (2(., X)-bridge in
H, — X is a (,,-bridge in H,. Now the vertices that we will not touch while refuting the

maximality of € are those in the set

Upad = {u € U: the number of (2(,,, X)-bridges in H, — X which are

Cu-connectable in H is at most n°/8} .
Claim 6.2. We have |Upaq| < 8C.n.

Proof. Consider the set

IT = {(u,€) € Upaq x V?: the triple e is a (2(.., X)-bridge in H, — X,

but not (,.-connectable in H } .
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Since for u € Upaq every (2., X )-bridge in H, — X is a (.. bridge in H,, Lemma 3.7 tells
us that
1] < G
On the other hand, for every u € Up,q the number of (2(,,, X)-bridges in H, — X is at
least (n — | X|)?/3 by Lemma 2.9 and by the definition of Up.q all but at most n3/8 of them

fail to be (,,-connectable in H, whence

(n—1|X)? n? |Upaa|n®
=z | ——————— | = .
Comparing our estimates on |II| we obtain indeed that |Upaq| < 8Cun. O

Useful societies. Denote the vertex sets of the paths in our maximum collection %
by By, ..., Bjg and fix an arbitrary partition
U=DBgv...0oB,uB
with
[Bigis1| = ... = |B,| = M > |B|.
The sets belonging to the family
% = {Bl,...,By}
will be referred to as blocks. The size of their union
B=BivByv...uB,
is bounded from below by
|IBl=n—|X|—|B'|=>(1-20)n—M=>=(1-30,)n. (6.2)

By a society we mean a set consisting of m blocks and we shall write & for the collection
of all () societies.
Definition 6.3. A society S € & with S =S is useful for a vertex ue U \ S if

(i) & (H.[S]) > (5 + ) 57,

(ii) the family of graphs {R,,[S]: x € S} exemplifies Setup 2.4 for H,[S] with

(a/4, 5/2,/16) here in place of (a, B, p) there,

(7ii) and there are at least (,.m>M? triples in S® that are (,,-connectable in H and

Cuw-bridges in H,[S] with respect to the robust graphs in {R,,[S]: z € S}.

We shall argue that if a society S is useful for many vertices in U, then U u | JS spans
m + 1 disjoint paths from &2, contrary to the maximality of |¢’|. The following claim

provides a first step in this direction.
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U
7 A Y
s
[ ]
By By Big Big|11 B, B, B’
- v > 4
B

FIGURE 6.1. Block partition of V' ~ X for given €.

Claim 6.4. If a society S € & is useful for a vertex we U and S = JS, then there exist
m + 1 vertea-disjoint 3-uniform paths in H,[S] each of which has 3(M + 1) vertices and

starts and ends with a triple which is (w.-connectable in H.

Proof. We can apply Proposition 2.12 with («/4, (s) here in place of («, &) there to the
hypergraph H,[S], the family {Rw [S]: xS } of robust graphs, the set

E={ee S eis a (.-bridge in H,[S] and (..-connectable in H }

of bridges and to 3(M + 1) here in place of M there. This yields a collection # of
vertex-disjoint 3-uniform (M + 1)-vertex paths in H,[S] with

‘S ~Uno, V(W)\ < GuMm + M

such that every path in % starts and ends with a triple from =. In particular, the paths
in # start and end with triples which are (,,-connectable in H. It remains to show

7’| = m + 1, which follows from the fact that due to M = m > 15 we have

(1-C)Mm—M _ =Mm—M 9 5
> —Zm—2>m. 0
5(M +1) M " Ty ™

| =

To conclude the proof of Proposition 6.1 we need another result on useful societies whose

proof we postpone.
Claim 6.5. For every u € U \ Upyq there are at least % |&| useful societies.

Since we assume that (6.1) is false, Claim 6.2 yields

192
U N Upaa| = (92 — 8Cu)n = ?”
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By Claim 6.5 and double counting there exists a society S which is useful for at least
2|U N Ubaa| = 93n/3 vertices from U. Next, Claim 6.4 allows us to choose for every such
vertex u a collection %, of m+ 1 paths in H,[S] each of which consists of %(M + 1) vertices
and starts and ends with a triple that is (,.-connectable in H. As there are no more than
(Mm)! possibilities for #,,, there exist a collection # of 3-uniform paths on S and a set
U’ < U such that #;, = # for every u € U’ and

2
¥in

! > *x7
vl = 3(Mm)!

> LM = B)(m+ 1)

where the second inequality uses n » M = m. Now we augment every path in #
by inserting (M — 3)/4 vertices from U’ in every fourth position (see Figure 6.2), thus
obtaining m + 1 mutually disjoint 4-uniform M-vertex paths. As the m + 1 paths obtained
in this way start and end with (,,-connectable triples, the new paths are in &. Thus, if
we remove from % the paths whose vertex sets belong to the useful society S and add
the newly constructed paths, we obtain a collection of paths contradicting the maximality
of €. This contradiction proves the validity of (6.1) and, hence, concludes the proof of
Proposition 6.1 based on Claim 6.5.

FIGURE 6.2. Augmenting a 2(M + 1)-vertex 3-uniform path to an M-vertex

4-uniform path.

Proof of Claim 6.5. Fix a vertex u € U \ Up,q. We shall prove that the probability that
a society S € & chosen uniformly at random fails to be useful for u is exp(—(m)), where
the implicit constant only depends on «, 3, ¢, ¥, and (... So a sufficiently large choice
of M = m allows us to push this probability below 1/3, as desired.

We will apply Corollary A.3 several times to the partition

V=B uv...uB,u(B uvX)
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or to a partition derived from it by relocating up to three of the blocks By,..., B, to
the exceptional set. By (6.2) we can take n = 44, in all these applications. It will be
convenient to write B, for the block containing a vertex z € B.

We begin by estimating the probability of the unfortunate event &; that the minimum
vertex-degree condition in Definition 6.3 (7) fails for our random society, i.e.,

¢ — {SE &: 6,(H,[S]) < (g ; Z) MZW} |

Since u is isolated in H,, this event occurs whenever u € S and we have

P(€) <P(ueS)
5  a\ M?*(m—1)?
P P B ~t |
+xe];{u} (xeS) (eHw(s\ I)<<9+2) 5

e s) . (6.3)

where the reason for excluding the set B, is that conditioned on x € S the random
variable ey, (S \ B,) is more pleasant to work with than ey, (S). For a fixed vertex
x € B~ {u} we want to derive an upper bound on the probability summed in (6.3) by
applying Corollary A.3 (b) with k = 2 to the graph H,,. Our assumption on H yields

5 2
e(Hy) = <9 + a> %

and given the event = € S, or equivalently B, € S, the variable ey, (S \ B,) is determined
by a random selection of m — 1 blocks from % ~\ {B,}. So by Corollary A.3 (b) with m — 1
in place of m and £ = a/2 we obtain

5 a\ M?*(m— 1)

€ S) < exp(—Q(m)) .

Together with (6.3) this yields
P(¢;) < my ( Z P(x e S)) exp(—Q(m)) < % + Mmexp(—Q(m))

14
zeB~\{u}

and for sufficiently large n » M = m this shows that
P(€) < exp(—Q(m)) . (6.4)

Proceeding with the second item in Definition 6.3 we let €5 be the bad event that, for
our fixed vertex u € U \ Up,q, the family of graphs {Rw [S]: € S } fails to exemplify
Setup 2.4 for H,[S] with (a/4, 5/2,a/16) here in place of (a, 3, ) there. We analyse &,
by considering for every fixed x € B \ {u} the event &,(z) that R,.[S] fails to be (8/2,¢)-
robust and the event &}(z) that one of the estimates required by Setup 2.4 fails. Observe

that in the present context these estimates read as follows:

o V(Ru) 0S| = (2+2)Mm,
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o e, (V(Ruz) 0 S, S N V(Ry)) < =aM?m?, and

2
() > (34 8) Mt ISV o (34 1)

Consider a fixed vertex x € B \ {u}. For any two distinct vertices y,z € V(R,,) we
let P,,. € V%! be a set of (£ — 1)-tuples encoding the inner vertices of the f-edge paths
in R,, from y to z and we let 3,,. be the event that |P,,. n S| < %5\V(Rw) n S|
By the law of total probability we have

P(&(x)|zeS)< Y PyzeS)P(Puy|z,y,2€5). (6.5)

Y26V (Ryy) ()
Let us look at a fixed pair yz € V(R,;)®. Since Ry, is (3, )-robust, we know that
|Ppy-| = BIV(R,.)|“" and, therefore, the set

Pl =Py.0 (V~(B,UB,uB.)) "

TYz

corresponding to those paths in P, that avoid B, u B, u B, satisfies

5 _
‘P;yz’ = 66(@”% 17

where ¢ = |V (Ry,)|/n > 2/3. For d = |{B,, By, B.}| € [3] we deduce from Corollary A.3 (a)
(by moving B,, B,, and B, into the exceptional set) that

(| :tyz SZ 1’ % (QMm£1|Iy,ZES)
P(|P,,, n ST < 3B(oM(m — d) ‘xy,zeS) exp(—Q(m)). (6.6)

Similarly, Corollary A.3 (a) applied with & = 1 to the set A = V(R,,) \ (B, v B, u B,)
AN S| 1

yields
IP(]\M—/% my,zeS) exp(—Q(m)) .

In particular, the random variable og = |V (Ry.) n S|/(Mm) satisfies

1

P -0l =5

(Igs o> g

Now if both of the likely events | P, n S*'| > 25(oMm)*~! and |o — 0s| < 1/(8¢) hold,
then ps > 1/2 and

Pl ASSY 2,2 1\ 2, 1\ _ 1,
Somyrr 730 vl\emg) 2l (log) Batt 69

Adding (6.6) and (6.7) we deduce from (6.8) that

x,Y, 2 € S) exp(—Q(m)) . (6.7)

P(|P,,. n S < $B8(osMm) ™ | z,y,2 € S) < exp(—Q(m)),
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whence
IP(%xyz) < exp(—Q(m)) :
As this holds for every pair yz € V(R,;)® we conclude from (6.5) that
, Mm
P(eya) ecs)< (Y Plyzes))ep(-0m) < (7)) exp(-2m).
y2€V (Ryg)

Summarising the argument so far, we have proved
P(&)(z) |z € S) < exp(—Q(m))

for every € B \ {u}. Similar but easier considerations based on Corollary A.3 show that
P(&)(z) |z e S) < exp(—Q(m))

holds as well and we leave the details of this derivation to the reader. Returning now to
the event &, that the family {Rw [S]: x e S } fails to exemplify Setup 2.4 for H,[S] with
(a/4, B/2,a/16) here in place of (o, 3, ) there we obtain

P(&) <PueS)+ > P(E)ueEr)|zes)<— + Mmexp(—Q(m)),
reB~{u}

i.e.,
P(&,;) < exp(—Q(m)) . (6.9)
It remains to analyse the adverse event €3 that the third clause of Definition 6.3 fails.
Consider any pair of vertices yz € (B \ {u})? which is (2(,., X )-connectable in H, — X.
Recall that this means that a certain set U,, < V ~\ X of witnesses definable from the
family of robust graphs {Ry, — X: ve V ~\ (X U {u})} satisfies |Uy.| = 2¢u|V \ X] and,
hence, Uy, \ (B, U B,)| = (3/2)C|V ~ X|. Corollary A.3 (a) applied to V'~ X, the block

partition with exceptional set B’ U B, u B,, and with the constants n = (2, £ = (../4
shows that

P(|(Uy. 0 S) N (By U B.)| < GuMm | y,z € 5) < exp(—Q(m)).
As this holds for every (2(,., X)-connectable pair yz, it follows in the usual way that
P(—€&, and some (2(,,, X )-connectable pair belonging to S
is not C..-connectable in H,[S]) < exp(—Q(m)),

where the reason for adding the conjunct —€&, is that it makes the notion of connectable

pairs in H,[S] meaningful. Due to the definition of bridges in terms of connectable pairs it
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follows that
P(—¢, and some (2(,., X)-bridge belonging to S*
is not a (.,-bridge in H,[S]) < exp(—Q(m)). (6.10)
Since u ¢ Upaq the set
®, = {ee V?: eis a (..-connectable (2(,., X)-bridge}

has size |®,] = n?/8 and a final application of Corollary A.3 (a) with k& = 3 shows that
this set scales appropriately to S in the sense that

P (|, N S*| < MPm?/16) < exp(—Q(m)) .
Together with (6.10) this proves
P(—€; & &) < exp(—Q(m))
and by adding (6.4) as well as (6.9) we finally obtain
IP(S is not useful for u) < exp(—Q(m)).

This concludes the proof of Claim 6.5 and, hence, the proof of Proposition 6.1. U

§7. THE PROOF OF THE MAIN RESULT

In this section we give the routine derivation of Theorem 1.3 from the results in
Sections 3—6.

Proof of Theorem 1.3. We can assume that o > 0 is sufficiently small. Now we choose an

appropriate hierarchy of constants
a» Bl >G>0 G > da > My ngt.

We recall that Corollary 3.5 yields four natural numbers ¢4, {5, {3, (4 < 50¢.

Let H = (V, E) be a 4-uniform hypergraph on |V| = n > ng vertices satisfying the
minimum pair degree condition & (H) > (3 + a) %2 . We need to construct a Hamiltonian
cycle in H. Appealing to Proposition 2.2 with z = o®/18 we choose for every pair uv € V?
a (f3,¢)-robust subgraph R,, < H,, of its link graph. Notice that H and the family of
robust graphs

{Ryp: uv e V)

realise Setup 3.1. Proposition 4.1 allows us to choose a reservoir set R with |R| < 9¥2n which
by Corollary 4.2 has the property that if a subset R’ € R with |R'| < ¥%,n has “already

been used”, then for every i € [4] we can still connect any two disjoint (,.-connectable
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triples by a path through R ~ R’ having ¢; inner vertices. Next we apply Proposition 5.1
to obtain an (absorbing) path P4 € H — R such that

(1) [V(Pa)] < Vun,
(77) the end-triples of P4 are (,-connectable,
(77) and for every subset Z = V N\ V(P4) with |Z]| < 29%n and |Z| =0 (mod 4), there
is a path @ < H with the same end-triples as P4 and V(Q) = V(P4) U Z.

As the set X = R U V(P,) satisfies | X| < (9, + 9%)n < 29,n, Proposition 6.1 yields a
collection € of M-vertex paths starting and ending with (,,-connectable triples such that
the set

J=V~ (V(PA) oRu | V(P))

Pe?
of uncovered vertices satisfies |J| < 92n.

Now we want to form an almost spanning cycle in H by connecting the paths in ¢
and P4 through the reservoir. For each of the first |%’| of these connections we want use ¢;

vertices from the reservoir, which altogether requires

500n
4L1?] < S in

vertices from the reservoir. In other words, there arises no problem if we choose these
connections one by one, thus creating a path T possessing |€|(¢1 + M) + |V (P4)| vertices.
Moreover, the set V(T') n R of used vertices is so small that we can still make a last
connection to close the desired cycle. For this last connection we use ¢; inner vertices,
where ¢ € [4] is determined in such a way that i = n — |V/(T)| (mod 4). In this manner,
we obtain a cycle C' containing the absorbing path P4 such that the set Z =V ~ V(C) of

left-over vertices satisfies
Zl=n—|V(CO)|=n—|V(T)|—t;i=i—¥{;=0 (mod 4)
as well as
Z| = |Z~R|+|Z " R| < |J| +|R| < 29n.

So by property (i) of the absorbing path we can absorb Z into P4, thus arriving at the
desired Hamiltonian cycle. Thereby Theorem 1.3 is proved. U

§APPENDIX A. WEIGHTED JANSON INEQUALITY

In the proof of Claim 6.5 we use a probabilistic concentration result that follows from

the following weighted variant of Janson’s inequality.
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Lemma A.1 (Weighted Janson Inequality). For a nonempty set V and p € [0,1] let V,
be the binomial subset of V including every element of V independently and uniformly at

random with probability p. Let w: P(V) — Rsqo be a weight function and let

X = Z w(A>]1Ang
Aep(V)
be the random variable giving the total weight of £(V,). Setting

A= Y wA)wB)PAUBCY,)

A,Bef(V)
AnB+#9

we have
t?
P(X <EX —t) < —
( ) <o (~55)
for every t € [0, EX].
It is straightforward to check that Janson’s original proof (see e.g. [6]) extends to this

weighted setting but for the sake of completeness we give the details.

Proof. Let ¥: Ry, —> Rso be the function s — E[e™*X]. Clearly, ¥ is differentiable

with the derivative

~U'(s) = E[Xe ] = Y w(A)P(Ac V,)E[e ¥ | Ac V,]. (A1)

For every A € V we split X = Y, + Z4, where

YAZ Z w(B)]lBg/p and ZAZ 2 w(B)]lBng-

AnB#2 AnB=g

Now the FKG inequality yields
Ele X | Ac V| = Ele™ | Ac Vol ‘Ele™%4 | Ac Vil

where in view of the independence of A < V,, and Z4 the second factor is at least W(s).

Applying the trivial estimate e™ > 1 — x to the first factor we obtain
Ele ™ |ACV,]| > E[l-sYs| A V,] - ¥(s)

for every A < V and by plugging this into (A.1) we arrive at

v(s)
T Z Azcjvw(A) P(ACV,)E[l—sYs| AcC V]
= Y wA)PAcV,)~s > wA)wB)P(AuBcV,)

=EX — sA.
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Integrating over s and taking W(0) = 1 into account we conclude

log (¥ (u)) = Lu \\II/[’((;) ds < JOU (sA —EX)ds = UZA —uEX

for every u € Ry(. Finally, Markov’s inequality implies
P(X <EX —t) =P(e ¥ = "B Cexp(w(EX —t)) E[e ¥]
<exp(u(EX —t) + v’A/2 — uEX) = exp(u’A/2 — tu)

for every u € R>( and the optimal choice u = i discloses
t2
P(X <EX —1) < — . O
( ) <o (-5 )

For bounded weight functions we deduce the following version.

Corollary A.2. Suppose that |V| = m > k > 1, where V is a finite set and k is an
integer. Forp = m/|V| let V,, €V be the binomial subset of V including every element
independently and uniformly at random with probability p. If w: V) — [0,1] denotes a

bounded weight function, then the random variable X = 3, o) w(A)Lacy, satisfies

2
k &m
P(|X — EX| > &m") < 3exp <_12k2>

for every & € (0,1).

Proof. In order to make Lemma A.1 applicable we set w(A) = 0 for every A e P(V) V&),

Now for t = é&m* we obtain

€2m2k
P(X < BX - mf) < exp <_ oA ) ) (A.2)
where
A= Z w(A)w(B)P(Au B <V,) < Z pHAvBl
A,Bev®) =
AnB#9 AnB#2
Since for every i € [£] there are at most [V[**~* pairs (4, B) € V¥ x V") with the property

|A U B| =2k — i, we are thus lead to the upper bound
k
A< Z V|2t < 2Rt
i=1
Therefore (A.2) implies

P(X <EX —&m") <exp (—52> (A.3)
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and to conclude the argument it suffices to prove

P(X = EX +&m") <2exp (— f;;r;) : (A4)

To this end we apply (A.3) to the weight function @W(A) =1 — w(A) and to £/2 instead

of &, thus learning that the random variable

Y= ) (1-w(A)lacy, = (':”') - X

AeV (k)
satisfies
2
P(Y <EY — lemh) < _Emy
( sEm ) exp ( <k
Rewriting this in terms of X and taking into account that the expected value of (“}2")
is pk’(“;‘) we obtain

P (X >EX + ("g') —pk<|‘k/|> + gmk> <exp <—€82Z) . (A.5)

As we shall prove below, the number

m+=m<1—|—2£k)

<”};) < pk<|z|) + gmk. (A.6)

Assuming this estimate for a moment, we conclude from (A.5) that

satisfies

P(X = EX +&m" and |V,| <m™)
m

- VI | ¢ £2m
<P(X>EX —p" 2mF <mt) < S
( +<k) p(k>+2m and |V}| m) exp( Sk

Together with Chernoft’s inequality this yields

IP(X >EX +§mk) < P(|V,] > m") +]P(X > EX + &mF and V| < m*)

£*m
< Zexp <_12k2 ’

which concludes the proof of (A.4) and, hence, of Corollary A.2.

Now it remains to deal with (A.6). Since p = m/|V| < 1 we have p(|V| —j) = m — j for

every j € [0,k — 1] and multiplying these estimates we infer pk(“gl) > (T]:) Thus it suffices

(”}?) = (7;) < gmk. (A7)

to prove
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Applying the mean value theorem to the increasing function z —— (i) we obtain
m*\  (m _ (m* —m)(m™)F1!
k k)~ (k—1)! ’
so (A.7) is a consequence of
£\
14+ = < Kl
(+30)

which is clear for £ = 1 and which for k£ > 2 follows from

k—1
(1+2§€> <P U2k <o < 2. O

The following consequence of this result is utilised multiple times in Section 6.

Corollary A.3. Let m = k and M be positive integers, and let n € (0, 2*119) Suppose that V

is a finite set and that
V=Buv..vB uwuZ
is a partition with |By| = ... = |B,| = M < n|V|, |Z] < n|V|, and v = m. Let

S € {By,...,B,} be an m-element subset chosen uniformly at random and set S = JS.

(a) If Q < V* has size |Q| = d|V|¥, then

2
P(|lQ n Sk — d(Mm)k‘ > E(Mm)*) < 12¢/mexp (_43;‘;‘12)

holds for every real & with max(8k®n, 16k%/m) < € < 1.
(b) Similarly, if G denotes a k-uniform hypergraph with vertexr set V and d|V|*/k!
edges, then

P(Jec(S) ~ d(Mm)" k] > ()" k) < 12yimesp

holds for every & with max(8k?n, 16k?/m) < £ < 1.

Proof. Notice that (a) implies (b). Indeed given a k-uniform hypergraph G we apply (a)
to the ordered version of its set of edges defined by

Q= {(xl,...,:ck)er: {xl,‘..,xk}eE(G)}

and we obtain (b) immediately.

So it remains to verify (a). Intending to invoke Corollary A.2 we move from the
hypergeometric distribution involved in choosing the set S to a binomial distribution,
where we include every block B; independently from the other ones with probability

p = m/v. For this transition we introduce the following notation.
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Write B = {By, ..., B,} for the set of blocks and consider the event

X = {S C A: the set S = US satisfies ||Q N S*| — d(Mm)*| = f(Mm)k} :

Let S, € % be an m-element set chosen uniformly at random and let S, = % be a
binomial subset containing every block independently and uniformly at random with
probability p = m/v. Pittel’s inequality (see, e.g., [6, eq. (1.6)]) informs us that — without

any assumptions on the event X < £(%) — we have
P(S,eX)<3ymP(S,€X),
so it suffices to show

_48k32k+2

We will exploit that most k-tuples in () are crossing in the sense that their entries belong

P(S,eX) < 4exp< Em ) . (A.8)

to k distinct blocks. More precisely, if (), < ) denotes the set of theses crossing k-tuples,

we contend that

<d _ i) (M) < |Qu < <d ; i) (Mp)" . (A.9)

[*~1 members of ) can have

To justify the lower bound we remark that at most k|Z||V
an entry in Z and at most k2M |V [*~! members of @) can have two entries from the same

block, whence

Q.1 = 101 = RZIVI ~ MV > = k= kv = (- 5) 0n
For the upper bound we exploit
(Mv)' =V~ ZIF = @ =-n)"VIF = Q- Enp)|V]",
which yields
Qo] < 1Q| = d|VI* < (d + i) (1—kn)|V|* < (d + i) (Mv)*.

Thereby (A.9) is proved. Now we decompose
Qo] = )y W (i(1),...,i(k)),
(1) () Je[] )

where for every k-element set {i(1),...,i(k)} € [#]®® the number of k-tuples in Q, with
one entry from each of the blocks B;,. .., Bis) is denoted by W(i(l), o ,Z(k?)) These

numbers are bounded by

0< W(i(1),...,i(k)) < kIM".
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Bearing in mind that Corollary A.2 requires normalised weights, we set

w(i(l),...i(k)) = W(i(llz;m’i(’f))

for every k-set {i(1),...,i(k)} € [v]*®). As a consequence of (A.9), the expectation of the

random variable

1S* A Q.|
X= > wM)lacp, = 57—
AE[V](k) kM
where S, = JS,, is
. k + 4 k
oy oyt @z gamt

k! MF k!
Therefore, Corollary A.2 applied to £/(2k!) here in place of £ there yields

2
P (|[Sy N Qo| — d(Mm)*| = (3/4)¢(Mm)*) < 3exp (_48£/<;2TZ+2> .

So to conclude the proof of (A.8) is certainly suffices to show

P (|S; n (@~ Q.)

> (1/96(Mm)") < exp (— 125 ) -

Now Chernoft’s inequality yields

P(IS,| > (1+ 1/k)m) < exp (—4;722)

and for this reason it suffices to prove the deterministic statement that for every &/ < %
with |&7| < m(1 + 1/k) the set A = ] .o satisfies

[A* 0 (Q N Qo) < (1/4)(Mm)*.

Since the k-tuples counted on the left side contain two entries from the same block, we

have indeed

A" A (Q N Qo) < KMIAIT < (1+ 1/k) K2 M (Mm)*~!
< (4k2 /m)(Mm)* < (£/4)(Mm)*,

where the last inequality uses our assumed lower bound on &. 0
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