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Phase tracking for sub-shot-noise-limited receivers
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Nonconventional receivers for phase-coherent states based on non-Gaussian measurements such as photon
counting surpass the sensitivity limits of shot-noise-limited coherent receivers, the quantum noise limit (QNL).
These non-Gaussian receivers can have a significant impact in future coherent communication technologies.
However, random phase changes in realistic communication channels, such as optical fibers, present serious
challenges for extracting the information encoded in coherent states. While there are methods for correcting
random phase noise with conventional heterodyne detection, phase tracking for non-Gaussian receivers sur-
passing the QNL is still an open problem. Here we demonstrate phase tracking for non-Gaussian receivers to
correct for time-varying phase noise while allowing for decoding beyond the QNL. The phase-tracking method
performs real-time parameter estimation and correction of phase drifts using the data from the non-Gaussian
discrimination measurement, without relying on phase reference pilot fields. This method enables non-Gaussian
receivers to achieve higher sensitivities and rates of information transfer than ideal coherent receivers in realistic
channels with time-varying phase noise. This demonstration makes sub-QNL receivers a more robust, feasible,
and practical quantum technology for classical and quantum communications.

DOI: 10.1103/PhysRevResearch.2.023384

I. INTRODUCTION

Optical communication with coherent states can achieve
the highest rate of information transfer through lossy and
noisy channels [1–3]. Coherent optical communications en-
code information in the coherent properties of the electromag-
netic field, allowing for using high-spectral efficiency modu-
lation and high-sensitivity coherent detection [4,5]. Efficient
coherent modulation and detection can dramatically increase
the rate of information transfer beyond the reaches of intensity
encodings [5–7]. Moreover, the intrinsic nonorthogonality of
coherent states can enable quantum communications [8–10]
including quantum key distribution [11–16] for secure com-
munications over optical networks [17,18]. However, coherent
encodings are highly susceptible to phase noise and random
phase variations in real-world devices and communication
channels [5,6]. To ensure the expected advantage of coherent
communications over intensity modulation and direct detec-
tion, communication protocols require efficient methods for
phase estimation and phase tracking to correct for random
phase changes induced by the channel [5–7], while being
compatible with existing communication technologies. More-
over, practical scenarios in low-power and quantum commu-
nications require phase tracking based only on the transmitted
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signal state, without relying on transmissions of strong pilot
phase reference pulses [19–25].

Conventional coherent receivers that realize Gaussian mea-
surements, such as heterodyne receivers, can perform phase
tracking based on signal postprocessing in the digital domain
with diverse and efficient methods for channel and phase
estimation [26–30]. These methods renewed interest in co-
herent communications for increasing information transfer,
and have made coherent communications more practical for
future realizations of high-capacity communication networks
[5,31,32].

Further developments in optical communication will seek
to approach the ultimate limits of information transfer in
realistic communication channels. Quantum information sci-
ence (QIS) provides the basis for approaching the fun-
damental limits in receiver sensitivities [33] and infor-
mation transfer in communications [1–3]. Receivers based
on Gaussian measurements, Gaussian operations, and local
operations and classical communication have been inves-
tigated for information processing, phase estimation, and
state discrimination [34]. The optimal Gaussian receiver
for the discrimination of two nonorthogonal coherent states
is the simple homodyne receiver [35]. Furthermore, mea-
surements based on adaptive homodyne detection can pro-
vide advantages for single-shot phase estimation of coher-
ent states [36–38]. However, the ultimate limits of receivers
based on Gaussian operations for state discrimination are
still under investigation [34,39]. Among technologies en-
abled by QIS, nonconventional receivers, termed quantum
receivers, use optimized non-Gaussian measurements based
on photon counting [35,40–58] to provide sensitivities sur-
passing quantum noise limit (QNL) of coherent receivers
[5], and approach the true quantum-mechanical limit, the
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FIG. 1. Phase tracking for non- Gaussian receivers surpassing the QNL. (a) A sender (Alice) prepares a coherent state |αk〉 with a phase
θk ∈ {0, π/2, π, 3π/2} by phase modulation of lasers. The pulses propagate though a channel inducing random phase drifts φoff. The receiver
(Bob) uses a local oscillator (LO) to perform optimized discrimination non-Gaussian measurements [53]. The mismatch between Alice’s and
Bob’s phase reference frames caused by the channel increases the discrimination error for decoding information. (b) Probability of error for the
adaptive non-Gaussian state discrimination measurement from Ref. [53] as a function of phase offset φoff between the signal and LO, for signal
mean photon number |α|2 = 2.0, 5.0, and 10.0, together with the ideal heterodyne limit (Het.) for each mean photon number. (c) Flowchart of
the algorithm followed for phase tracking. The discrimination measurement provides samples for phase estimation containing detection results
dj for the relative phase between input state and the LO δ j ∈ {0, π/2, π, 3π/2}. After 500 channel transmissions, the pairs {dj, δ j} are used
generate two estimates: φ̂c and φ̂s. A weighted average φ̂i combines these estimates to increase accuracy. The final estimate φ̂est is the average
over Navg phase estimates {φ̂i} multiplied by a gain function g(〈φ̂i〉). The phase-tracking method feeds forward the estimate φ̂est to the LO at
a rate of fPT = fexpt/(500Navg) Hz for real-time phase tracking, with experimental repetition rate fexpt ≈ 12 kHz. (d) Expected phase estimate
as a function of applied phase for |α|2 = 5.0 for the Sin-Cos estimator φ̂est without (red line) and with (green line) optimized gain function
g(〈φ̂i〉), and for a Bayesian estimator (blue line) and the corrected Bayesian estimator (black line). The solid lines represent the mean of 100
Monte Carlo samples and shaded regions correspond to one standard deviation.

Helstrom bound [33]. Moreover, non-Gaussian receivers
performing joint measurements over coherent-state code-
words hold promise to bridge the gap between the Shannon
and the Holevo limits in capacity [1,59]. However, making
non-Gaussian receivers practical for coherent communica-
tions in realistic channels will require novel approaches for
performing efficient phase tracking. These approaches will
be fundamentally different from those based on conventional
heterodyne detection using digital signal processing post mea-
surement [26–30], and will require realizing active phase
estimation [54,60] and correction in real time, while ensuring
performance beyond the QNL.

Here we demonstrate a phase-tracking method for non-
Gaussian receivers for quadrature phase-shift-keyed (QPSK)
coherent states [53] based on coherent displacement, adap-
tive measurements, and photon counting. The phase-tracking
method performs phase estimation and correction in real time
using the data collected from the non-Gaussian discrimination
measurement [53] without relying on strong phase-reference
pilot pulses. This method enables the non-Gaussian receiver
to overcome random phase variations encountered in realis-
tic communication channels, while allowing the receiver to
perform decoding measurements with sensitivities beyond the
QNL, the shot-noise limit of conventional coherent receivers.
This demonstration makes non-Gaussian receivers a more
robust, feasible, and practical quantum technology for optical
communications, and represents a significant advance for re-

alizing low-power communications approaching the quantum
limits in realistic communication channels.

II. PHASE TRACKING FOR NON-GAUSSIAN RECEIVERS

Figure 1(a) shows the concept of phase tracking for a non-
Gaussian measurement surpassing the QNL over a channel
inducing random phase variations. The sender (Alice) uses
laser pules to encode information in four coherent states with
phases θk ∈ {0, π/2, π, 3π/2}. The pulses propagate through
the channel, which induces random phase shifts. The receiver
(Bob) uses a laser as a local oscillator (LO) phase reference
and performs a non-Gaussian discrimination measurement
that surpasses the QNL for decoding the information [53].
The finite linewidths of the lasers in the transmitter and the
receiver and the random channel phase variations cause mis-
match between the phase space reference frames of Alice and
Bob. These random phase drifts severely affect the expected
performance of the state discrimination measurement. Fig-
ure 1(b) shows the probability of error for the adaptive non-
Gaussian measurement for discriminating four nonorthogonal
states |αk〉 ∈ {|α〉, |iα〉, |−α〉, |−iα〉} below the heterodyne
limit [53], the QNL (see Appendix A), as a function of phase
offset φoff between the input state |αk〉 and the receiver’s
LO, for mean photon numbers |α|2 = 2.0, 5.0, and 10.0.
While the discrimination strategy demonstrated in [53] can
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tolerate small phase errors φoff without significant degrada-
tion, moderate values of φoff severely limit its performance,
preventing discrimination below the QNL. To keep the ex-
pected performance benefit of the non-Gaussian measurement
over the QNL, the receiver needs to perform phase tracking to
correct for phase drifts induced by the channel. While phase
tracking based on heterodyne measurements can be realized
with digital signal processing post measurement [22,23,30],
non-Gaussian receivers require active phase tracking and
correction in real time to maintain performances below the
QNL [49,53,55]. Here we demonstrate a method for actively
tracking and correcting for time-varying random phases for
non-Gaussian receivers to enable sensitivities beyond the ideal
heterodyne limit in channels inducing random phase varia-
tions.

The phase-tracking method for non-Gaussian receivers
builds on a discrimination strategy to discriminate a state
|αk〉 ∈ {|α〉, |iα〉, |− α〉, |− iα〉} implementing N adaptive
measurements with photon-number resolution [53]. During
each adaptive measurement j = 1, 2, . . . , N , the receiver’s
LO performs hypothesis testing of the input state |αk〉 by
adjusting its phase θ j ∈ {0, π/2, π, 3π/2} according to a
Bayesian discrimination strategy [53]. After N adaptive mea-
surements, the receiver provides an answer to the state dis-
crimination problem θdisc about the phase of the input state
|αk〉 (see Appendix B). Assuming that this answer θdisc is
correct, the data collected during the N adaptive measure-
ments can now be used as samples for estimation of the
phase φoff induced by the channel. For a discrimination mea-
surement, these data consist of N photon-counting detections
{d1, d2, . . . , dN }, together with the LO’s phases during each
adaptive measurement {θ1, θ2, . . . , θN }. Since the answer to
the discrimination problem θdisc is a very good estimate of
the phase of the input state, it can be used to estimate the
relative phases δ j between the input state and the LO in each
adaptive measurement as δ j = θ j − θdisc. The data for estimat-
ing φoff then consist of the pairs {d j, δ j}. Accumulating data
during a moderate number of channel transmissions allows
for estimating φoff in real time and performing phase tracking
simultaneously with the state discrimination measurement
[53]. This method enables the receiver to utilize the data from
the discrimination measurement to estimate and correct for
random phase excursions.

To obtain an estimate of φoff, the phase tracking method
uses the collected data {d j, δ j} from discrimination mea-
surements over 500 channel transmissions. These data con-
sist of photon-counting samples of the interference be-
tween the input state and the LO for relative phases δ =
{0, π/2, π, 3π/2}. In principle, there are different estimators
that can produce an estimate from the pairs {dj, δ j} (see Ap-
pendix C for two possible estimators). However, phase track-
ing for non-Gaussian receivers requires a simple estimator that
can be efficiently calculated in real time, while being robust to
the unavoidable errors from the discrimination measurement.
A simple estimator can be obtained by using {d j, δ j} to gener-
ate four photon-number (Poisson) distributions P0(nk|δ = 0),
Pπ/2(nk|δ = π/2), Pπ (nk|δ = π ), and P3π/2(nk|δ = 3π/2) for
δ = {0, π/2, π, 3π/2} [see Fig 1(c)]. Here, nk is the photon
number of detected photons for different distributions. By

calculating the differences between means 〈n〉δ of these dis-
tributions we can form estimates of φoff as

〈n〉π − 〈n〉0 = C(|α|2)cos(φ̂c), (1)

〈n〉3π/2 − 〈n〉π/2 = C(|α|2)sin(φ̂s) (2)

with

C(|α|2) = f (|α|2) × 4|α|2ηξ/N, (3)

where η is the detection efficiency, ξ is the interference
visibility, and φ̂c,s are the phase estimates. f (|α|2) is a factor
that is used to reduce a bias in the phase estimates arising from
the nonzero probability of error for the state discrimination
strategy (see Appendix C). Errors in the state discrimination
measurement (PE �= 0) cause errors in populating the distribu-
tions Pδ and thus in their mean values 〈n〉δ . These errors cause
φ̂c to be biased away from zero by making 〈n〉π − 〈n〉0 <

4|α|2ηξ/N . The function f (|α|2) allows for correcting these
biases by making 〈n〉π − 〈n〉0 ≈ f (|α|2) × 4|α|2ηξ/N , thus
reducing the effects of discrimination errors in the phase
estimation procedure. These errors also produce biases in φ̂s

by causing 〈n〉3π/2 − 〈n〉π/2 to be reduced. Appendix C 1
describes the procedure to obtain the optimal values of f (|α|2)
for reducing the effects of discrimination errors. As a second
step, the phase tracking method uses a weighted average
of estimates φ̂c and φ̂s with relative weight r to obtain an
estimate φ̂i of φoff within 500 transmissions [see Fig. 1(b)].
The weight r, determined from Monte Carlo simulations,
allows for reducing the difference between φ̂i and φoff at the
end points of the capture range for phase tracking (±0.6 rad
in our experimental demonstration). The final estimate φ̂est

in the phase-tracking method is obtained by averaging over
Navg estimates φ̂i and multiplying by a gain factor g(〈φ̂i〉) that
depends on the Navg estimates {φ̂i} (see Appendix D). This
gain factor reduces the difference between the applied phase
φoff and the estimated phases {φ̂i}. Figure 1(d) shows the result
of Monte Carlo simulations of the final phase estimate φ̂est

with g(〈φ̂i〉) = 1 (red line) and g(〈φ̂i〉) optimized to approach
the true phase φoff (green line). This final estimate φ̂est is
used to feed forward to the receiver’s LO every 500 × Navg

channel transmissions at a rate fPT for phase drift correction.
This method enables real-time phase tracking for correcting
time-varying phases while enabling the non-Gaussian receiver
to surpass the QNL.

III. EXPERIMENTAL CONFIGURATION

Figure 2 shows the experimental configuration for
the demonstration of phase tracking of adaptive non-
Gaussian state discrimination measurements for QPSK states
{|α〉, |iα〉, |− α〉, |− iα〉}. The measurement strategy consists
of N = 7 adaptive measurements via feedback in the phase
of the LO [53]. A helium-neon (HeNe) laser at 633 nm and
an acousto-optic modulator (AOM) prepare 35-μs coherent
state pulses at a rate of fexpt ≈ 12 kHz. The light pulses
enter an unbalanced Mach-Zender interferometer through a
50/50 beam splitter. We prepare the phases of the input signal
state and the LO with two 4:1 multiplexers (MUX) and two
phase modulators (PM). The input states and LO interfere
in a 99/1 beam splitter, which implements the displacement
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FIG. 2. Experimental configuration. Experimental setup for the
demonstration of phase tracking for non-Gaussian state discrim-
ination measurements for QPSK states surpassing the QNL. See
main text for details. AOM, acousto-optic modulator; Att., variable
attenuator; PM, phase modulator; MUX, multiplexer; FPGA, field-
programmable gate array; SPD, single-photon detector; Fun. Gen,
function generator; M, Mirror.

operation of the input state [61]. A field-programmable gate
array (FPGA), FPGA1 in Fig. 2, implements the discrimina-
tion strategy based on adaptive measurements and photon-
number-resolving (PNR) detection described in Ref. [53].
This FPGA1 controls the timing of the experiment, processes
photon detections, and updates the phase of the LO for each
adaptive measurement. The overall detection efficiency of
the experiment is η = 72%, with interference visibility ξ =
99.8%.

We use a second FPGA (FPGA2) to perform active phase
tracking using the data pairs {d j, δ j} sent from FPGA1 gener-
ated from the state discrimination measurement, as described
above. FPGA2 performs real-time phase estimation to obtain
an estimate of φoff, and feeds forward this information to the
receiver to adjust the LO phase to perform phase tracking
and correction. Controllable phase offsets and phase noise in
the input state are prepared with an arbitrary waveform func-
tion generator (FG) [58] for investigating the phase-tracking
method in channels inducing random phase variations. We use
an 8-bit digital to analog converter (DAC) to feed forward the
estimated phase offset to the LO. We chose a finite capture
range R of phases for feed forward to the phase of the LO
equal to R = [−0.6,+0.6] rad. This choice results in a phase
resolution of about 1.2 rad/28 = 5 mrad for phase tracking,
while having a large enough capture range.

The absolute power of the input state is calibrated using
a photodiode-based light-trapping (TRAP) detector with a
0.05% uncertainty tied to an absolute spectral response scale
[62]. This TRAP detector was used to calibrate a series of
attenuators to lower the power of a power-stabilized 633-nm
laser to the single-photon level with a combined 1σ uncer-
tainty of 1.8%, and the transmission of the optical elements
from where the state is prepared to where it is detected with
transmittance T = 92.5(2)%. This results in a total uncer-
tainty for the calibration of the absolute average photon num-
ber per pulse of σ ≈ 2%. The FPGAs used for implementing
the state discrimination strategy and phase tracking were both
Altera Cyclone II FPGAs, model EP2C5T144C8 with 4608
logical elements, base clock of 48 MHz, and 158 digital I/O
pins.

FIG. 3. Phase tracking under constant phase offsets. (a) Proba-
bility of error PE as a function of time (t) shown for every 0.5 s time
bin. From t = 0 to 2 s no phase offset is applied, φapp = 0. At t = 2 s,
the input state experiences a constant phase offset φapp producing an
increase in PE. At t = 4 s, the phase tracking turns on and corrects for
φapp. (b) Phase-tracking estimates φ̂est as a function of time estimated
every TPT ≈ 0.85 s. Dashed lines show expected error probabilities
PE in (a) and applied phase offsets φapp in (b).

IV. RESULTS

We investigate the performance of the phase-tracking
method under different scenarios. In the first scenario, the
input state experiences a sudden constant phase offset and the
phase-tracking method needs to estimate and correct for large
phase offsets. The second scenario aims to simulate a realistic
channel inducing time-varying phase noise, where the input
state experiences Gaussian random walks in phase at different
diffusion rates. This scenario allows us to investigate phase
tracking of random phase drifts in the channel and the impact
of tracking bandwidth on the performance of non-Gaussian
receivers.

A. Phase tracking under constant phase offsets

Figure 3 shows the performance of the phase-tracking
method under sudden constant phase offsets of φapp =
{±0.1,±0.2,±0.3,±0.4,±0.5} rad of the input state with
mean photon number |α|2 = 5.0. Figure 3(a) shows the prob-
ability of error PE calculated for time bins of about 0.5 s.
Figure 3(b) shows the phase estimates φ̂est generated by the
phase-tracking method as a function of time. Thick lines
represent the average over five independent experimental
runs, each time bin corresponds to about 5 × 103 (≈ fexpt ×
0.5 s) independent experiments, and shaded regions repre-
sent one standard deviation. Green (blue) lines correspond to
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FIG. 4. Phase tracking (PT) of Gaussian random walks in phase. (a)–(c) Probability of error PE for |α|2 = 5.0 as a function of time
for 50 realizations of Gaussian random walks in phase applied to the input signal for (a) σ1 = 1 mrad (= 0.2 × R/2

√
L), (b) σ1 = 5 mrad

(= 1 × R/2
√

L), and (c) σ1 = 5 mrad (= 25 × R/2
√

L), with total variances σ 2
L = Lσ 2

1 for each case. Here, L = 6500 corresponds to the total
steps in the random walks, and R = [−0.6, 0.6] rad is the capture range of phase tracking in our experiment. Bold lines show the average and
shade regions the spread for these walks with (blue) and without (green) phase tracking. (d)–(f) Applied phases φapp during Gaussian random
walks and the phase estimates φ̂

f f
est = φ̂est generated by the phase-tracking method for cases (a)–(c), respectively. The phase estimates φ̂

f f
est used

to feed forward to the LO for phase correction are bounded by the experimental capture range R, as can be seen in (e) and (f).

positive (negative) applied phase offsets φapp. The phase-
tracking method here uses Navg = 20, so that each estimate
φ̂est was obtained at a phase-tracking rate fPT = 1/TPT ≈
1/0.85 s [see Fig. 1(c)]. For this investigation, the relative
phase of the signal and LO was locked between each experi-
mental trial, similar to Ref. [53], and the phase offset φapp was
applied during each state discrimination measurement.

From t = 0 to 2 s, we verify that the performance of
the receiver is 3.4 dB below the heterodyne limit (red line)
without the applied phase offset φapp = 0. At t = 2 s, we
apply a constant phase offset φapp to the input state, producing
sudden jumps in the probability of error PE depending on the
value of φapp. At t = 4 s, the phase-tracking method is turned
on. After an estimation cycle TPT ≈ 0.85 s, the phase tracking
produces an estimate φ̂est and corrects for φapp, allowing
the receiver to perform below the heterodyne limit for all
phase offsets. Figure 3(b) shows the phase estimates φ̂est

as a function of time, demonstrating that the phase-tracking
method accurately identifies and corrects for large phase
offsets. We observe that this method enables the non-Gaussian
receiver to keep its expected advantage of 3.4 dB over an ideal
heterodyne measurement.

B. Phase tracking of random walks in phase

1. Phase tracking with different noise strengths

In coherent optical communications, the receiver is usually
required to decode information encoded in coherent state
signals in the presence of time-dependent random variations
in phase, which severely limits the receiver’s ability to recover
the information. We investigate the phase-tracking method for
situations where the input state experiences Gaussian phase

noise [28], which could include effects of phase noise in the
LO and the transmitter laser or random fluctuations arising
from different processes [27,28,63–66]. Gaussian random
walks in phase have been broadly used as an acceptable
model for phase noise in optical communications and phase
drift between the sender and receiver in classical [5,27,67,68]
and quantum communications [22,30,30]. We note that the
algorithm used for phase tracking is independent of the choice
of phase noise model, as it makes no assumptions about the
dynamics of the noise and the noise model is not used to
obtain the phase estimate (see Sec. II).

For this study, we do not stabilize the relative phase be-
tween the input signal state and the LO. Under these condi-
tions, the receiver experiences the drift of the experimental
setup and induced random walks in phase. This situation is
analogous to having a LO whose phase is constantly drifting
and a channel that induces phase noise. This experimental
configuration aims to mimic more realistic situations where
the signal and LO are generated from different lasers [28]. In
this investigation, the phase noise in the signal is implemented
by preparing discrete Gaussian random walks in phase with
L = 6500 steps, each distributed according to a zero-mean
Gaussian distribution with standard deviation σ1 [28].

Figures 4(a)–4(c) show the probability of error PE for
|α|2 = 5.0 as a function of time for 50 realizations of discrete
Gaussian random walks in phase at a rate of fRW = 100 Hz
for walks with (a) σ1 = 0.1 mrad, (b) σ1 = 5 mrad, and (c)
σ1 = 25 mrad. Thick lines show the average over 50 walks
and shaded regions represent the spread for these walks with
(blue) and without (green) phase tracking (PT) with Navg =
20, so that fPT ≈ 1.2 Hz. After L steps the total variance of
the Gaussian random walks are σ 2

L = Lσ 2
1 , so that situations
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in Figs. 4(a)–4(c) correspond to different regimes: (a) small
(2σL < R), (b) moderate (2σL ≈ R), and (c) severe (2σL � R)
phase noise. Here, R = [−0.6, 0.6] rad is the capture range
for phase tracking in our experiment, which is experimentally
chosen. Figures 4(d)–4(f) show the applied phase φapp during
the Gaussian random walks for cases in Figs. 4(a)–4(c),
respectively, and the phase estimate φ̂

f f
est that is the actual

phase sent to the LO for phase tracking via feed forward.
Note that the forwarded phase φ̂

f f
est is restricted to be within

the experimental capture range R so that φ̂
f f
est = φ̂est under the

condition |φ̂ f f
est | < |R|.

We observe that, in general, Gaussian random walks in
phase severely degrade the performance of the non-Gaussian
receiver precluding any advantage over the heterodyne limit.
However, in situations with small (2σL < R) and moderate
(2σL ≈ R) levels of noise in Figs. 4(a) and 4(b), respectively,
the phase-tracking method accurately estimates and corrects
for phase noise, enabling the receiver to maintain its perfor-
mance 3.4 dB below the heterodyne limit. For small phase
noise in Fig. 4(d) with 2σL < R, the applied phase φapp is
smaller than the phase drifts in the experiment. The estimated
phase φ̂

f f
est captures the contributions of φapp and of these

drifts showing a larger variance than φapp. For situations with
moderate phase noise with 2σL ≈ R, the applied walks in
phase φapp contain walks that exceed the capture range R at
some point in time, as shown in Fig. 4(e). After this point,
the estimated phases φ̂est for these walks are clamped at |R|
to generate φ̂

f f
est to feed forward to the LO. This procedure

produces a slight increase in PE after 50 s, as shown in
Fig. 4(b).

For situations with large phase noise in Fig. 4(c) for
which 2σL � R, the receiver’s performance degrades above
the heterodyne limit within a short time. The phase-tracking
method can reduce the effects of phase noise. However, since
the applied phases φapp rapidly exceed the capture range R,
the estimated phases φ̂

f f
est that are fed forward to the LO are

clamped at R for many cases, as can be seen in Fig. 4(f). This
procedure limits the performance for phase tracking in our
current implementation. However, increasing the resolution
of the electronic controller and the DAC to 10 bits used
to feed forward to the LO phase can allow for increasing
the capture range to R = ±π rad, while maintaining good
phase resolution of ≈6 mrad for phase tracking. In this case,
whenever φapp reaches this range, the estimate φ̂

f f
est would

wrap around from ±π to ∓π . This procedure would allow
for tracking phase walks exceeding R and maintaining the
receiver’s performance below the heterodyne limit under any
level of phase noise.

2. Phase tracking with different input powers

The performance of the phase-tracking method for non-
Gaussian receivers critically depends on the performance of
the state discrimination measurement. The information used
for phase estimation and tracking {d j, δ j} assumes the answer
to the discrimination problem φdisc to be correct, which is
true only with probability PC = 1 − PE. Since PE depends
strongly on the mean photon number |α|2 of the input state
[53], the receiver’s ability to perform phase tracking will also

FIG. 5. Phase tracking with different mean photon numbers.
Probability of error as a function of time under Gaussian phase noise
with (blue) and without (green) phase tracking for (a) |α|2 = 10.0
and (b) |α|2 = 2.0. Thick lines show the averages and shaded regions
show the spread in PE over 50 Gaussian random walks. Parameters
for phase tracking fPT and for the Gaussian random walks fRW

and σi are chosen to satisfy 2σL ≈ R, analogous to the situation in
Fig. 4(b) for |α|2 = 5.0. Black lines show the expected performance
of the receiver in the absence of Gaussian phase noise: 6 and 0.45 dB
below the heterodyne limit for |α|2 = 10.0 and 2.0, respectively [53].
Note that the phase-tracking method enables the receiver to perform
below the heterodyne limit under Gaussian phase noise in the high-
and low-input power regimes.

depend on |α|2. Larger input powers |α|2 result in lower error
probabilities PE, and can allow the phase-tracking method
to perform phase estimation with higher accuracy, achieve
higher tracking rates fPT, and correct for phase noise with
higher bandwidths fRW. On the other hand, for low powers
|α|2 the performance of the phase-tracking method is affected
due to higher PE. However, achieving phase tracking in these
two power regimes is required for both low-power classical
[6,27,28,63] and quantum [13,22,23] communications.

Figure 5 shows the performance of the phase-tracking
method for |α|2 = 10.0 (a) and (b) |α|2 = 2.0. Phase tracking
in these high- and low-input power regimes can be imple-
mented at different rates fPT to correct for noise with different
strengths and bandwidths. In the two plots in Fig. 5, the phase-
tracking parameters and Gaussian phase noise are chosen to
satisfy the condition 2σL = 2

√
Lσ1 = 2 fRWT σ1 ≈ R, so that

these situations are analogous to the one shown in Fig. 4(b) for
|α|2 = 5.0. Here, σ1 = 5 mrad, and T is the displayed period:
T = 13 s for |α|2 = 10.0; and T = 120 s for |α|2 = 2.0. For
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|α|2 = 10.0, phase tracking achieves higher estimation accu-
racy, and can be reliably implemented with Navg = 4, enabling
phase-tracking rates of fPT ≈ 5.8 Hz, five times faster than for
|α|2 = 5.0. As a result, the receiver can track and correct for
random Gaussian phase noise with a rate of fRW = 500 Hz,
while performing below the heterodyne limit [see Fig. 5(a)].
Phase tracking for |α|2 = 2.0 requires more samples to obtain
accurate phase estimates, and can be implemented reliably
with Navg = 40 with a tracking rate fPT ≈ 0.5 Hz. In this case,
the receiver can track and correct for phase noise at a rate of
fRW = 50 Hz, while performing below the heterodyne limit
[see Fig. 5(b)].

3. Phase tracking of noise with different bandwidths

The phase-tracking method has a strong dependence on
the noise bandwidth present in the communication channel
and how it compares to the rate at which phase tracking
can be implemented [28]. We have studied the performance
of the phase-tracking method for non-Gaussian receivers for
tracking random phase noise with different noise bandwidths.
This study is described in Appendix E. In our findings we
observe that for a fixed fPT, the phase-tracking method can
correct for noise with different bandwidths fRW. We note,
however, that fPT has to be high enough to keep the re-
ceiver’s performance below the heterodyne limit for extended
periods of time. As one example, we observe that for a
non-Gaussian receiver with |α|2 = 5.0 and fPT = 1.2 Hz,
reliable phase tracking of random noise can be performed
for noise bandwidths fRW = 100 Hz, and sub-QNL sensitivity
can be kept for fRW = 500 Hz for ≈10 s. Tracking noise
with higher bandwidths can be achieved with higher exper-
imental rates fexpt > 11 kHz to increase fPT or with larger
mean photon numbers |α|2 to generate more accurate phase
estimates φ̂est.

V. DISCUSSION

Receivers with sensitivities surpassing the QNL of ideal
conventional receivers have a large potential for enabling
efficient and reliable low-power communications at the single-
and few-photon levels. The phase-tracking method demon-
strated here for non-Gaussian receivers allows for tracking
random phase variations and noise with different strengths
and bandwidths. This method provides the much needed
robustness to enable non-Gaussian receivers to perform below
the QNL in channels with phase noise for a wide range
of powers. We note that the phase-tracking bandwidth in
our proof-of-principle demonstration was implemented at low
rates because of experimental constraints, and used a single
laser shared between transmitter and receiver. However, using
an estimator with higher estimation accuracy, such as the
Bayesian estimator, combined with high-bandwidth electron-
ics and efficient single-photon detectors [69], would allow
the receiver’s measurement and phase tracking to be realized
at much higher bandwidths. This in turn would enable non-
Gaussian receivers to overcome realistic noise in communi-
cation channels with independent lasers at the receiver and
transmitter [6], while outperforming ideal shot-noise-limited
coherent receivers [5].

We note that transmissions of high-power pulses inter-
leaved with the input states could be used with a hetero-
dyne detection for phase tracking [20,23], without relying on
knowledge of the power of the input coherent states to be
discriminated and the visibility of the interference with the
LO. The phase-tracking method presented here uses only the
data directly collected from the non-Gaussian measurement
that assumes a known intensity and visibility. However, the
data from the state discrimination strategy could in principle
be used to estimate the input intensity and visibility in addition
to the phase offset, and allow for tracking of multiple time-
varying parameters without the need for dedicated light pulses
for estimation and tracking. We also note that it may be possi-
ble to split the power of the input state to use a fraction of light
to perform phase estimation with a heterodyne measurement.
However, the estimation precision of these split-and-estimate
methods for phase tracking will depend on the fraction of
power used for phase estimation, and there will be an increase
in the probability of error in the state discrimination due to the
reduced power entering the sub-shot-noise receiver.

In the future, enabling coherent communication technolo-
gies that can approach the quantum limits in sensitivity and
information transfer in realistic channels at low powers will
require the ability to track other impairments in the channel
including polarization rotation, background noise, and power
variations. While we demonstrated a method for tracking to
correct phase drifts induced by a channel, we believe that
the data from the state discrimination measurement that are
used for phase tracking can be leveraged for estimation and
tracking of other sources of noise in the channel, such as
amplitude noise (see Appendix E). Moreover, we anticipate
that this technique for phase tracking can be applied to
optimized non-Gaussian measurements surpassing the QNL
in the single-photon regime [55]. This possibility can enable
phase tracking in quantum key distribution for secure commu-
nications at very low powers without requiring strong phase
reference pilot pulses [22].

VI. CONCLUSIONS

We demonstrate a phase-tracking method for non-Gaussian
receivers [53] for phase-encoded coherent states surpassing
the sensitivity limits of shot-noise-limited coherent receivers:
the quantum noise limit (QNL) [5]. The phase-tracking
method performs phase estimation and correction in real
time using the data from the non-Gaussian discrimination
measurement [53], without continuously relying on phase
reference pilot fields from the transmitter. Our experimental
demonstration shows that the phase-tracking method pro-
vides non-Gaussian receivers with the required robustness
to overcome random phase noise encountered in realistic
communication channels, and enables the receiver to perform
measurements beyond the QNL under diverse conditions with
different noise strengths and bandwidths. Moreover, since the
phase-tracking method uses the data from a measurement
surpassing the QNL at very low power levels, this method
is well suited for assisting quantum communication proto-
cols based on weak coherent states for efficient [10,70] and
secure [8,9,11–16] communications. Our demonstration of
phase tracking for non-Gaussian receivers makes sub-shot-

023384-7



M. T. DIMARIO AND F. E. BECERRA PHYSICAL REVIEW RESEARCH 2, 023384 (2020)

noise-limited receivers a more robust, feasible, and practical
quantum technology for low-power communications based on
coherent states for approaching the quantum limits in realistic
communication channels.
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APPENDIX A: QUANTUM NOISE LIMIT

The quantum noise limit (QNL) for the discrimination
of coherent states in a given encoding scheme is obtained
through the probability of error in discrimination:

PE = 1 − PC = 1 −
M∑

k=1

P(αk )P(αk|αk ), (A1)

where M is the number of states in the alphabet, and P(αk )
is the prior probability of state |αk〉 which is equal to 1

M for
equiprobable states. P(αk|αk ) is the probability of guessing
state |αk〉 given that state |αk〉 was sent, i.e., the probability of
correct discrimination.

For the discrimination of two coherent states in the bi-
nary phase shift keying (BPSK) format |αk〉 ∈ {| ± α〉}, the
homodyne measurement along the x quadrature is the optimal
Gaussian measurement [71]. The probability of error for the
homodyne measurement corresponds to the QNL for the
BPSK alphabet. P(αk|αk ) for a homodyne measurement is
[72]

P(αk|αk ) = 1√
π

∫
R

e−(x−√
2αk )2

dx = 1

2
[1 + erf (

√
2α)], (A2)

where R is the region where |αk〉 is the most likely state, and
erf (.) is the error function.

Using Eq. (A1), the total probability of error is

PE = 1 − 1
2 [1 + erf (

√
2α)] = QNLBPSK. (A3)

For QPSK states |αk〉 ∈ {|αeik π
2 〉}, where k ∈ {0, 1, 2, 3},

the QNL corresponds to the probability of error of an ideal
heterodyne measurement [34], which performs a projection
onto coherent states and measures both quadratures of the
input state simultaneously. The probability of correct discrim-
ination of state |αk〉 is given by [72]

P(αk|αk ) = 1

4

[
1 + erf

(
α√
2

)]2

. (A4)

Then, the QNL for QPSK states is [5,34]

PE = 1 − 1

4

[
1 + erf

(
α√
2

)]2

= QNLQPSK. (A5)

While the homodyne measurement is known to be the
optimal Gaussian measurement for the discrimination of two
coherent states, the ultimate Gaussian limit for coherent mul-
tistate discrimination is not known. Therefore, there may be
strategies based on Gaussian operations and measurements
[34] that provide advantages over the heterodyne measure-
ment [37].

In a general M-PSK encoding |αk〉 ∈ {|αeik π
2 〉}, where k ∈

{0, 1, . . . , M − 1}, the probability of correct discrimination
can be found through [72]

P(αk|αk ) = 1

π

∫∫
R

e−|reiθ −αk |2 r dr dθ. (A6)

The QNLMPSK is then obtained by using Eq. (A1).

APPENDIX B: STATE DISCRIMINATION STRATEGY

The phase-tracking method builds on the adaptive mea-
surement strategy for QPSK states with PNR detection de-
scribed in detail in Ref. [53]. In this strategy, the receiver
performs N = 7 adaptive measurements on the input state
|αk〉 ∈ {|α〉, |iα〉, |− α〉, |− iα〉}. In each adaptive measure-
ment j ( j = 1, 2, . . . , N ), the LO is prepared in a state hy-
pothesis |β j〉, and displaces the input state |αk〉 to D̂(−β j )|αk〉.
Note that for a correct hypothesis β j = αk , the input state
|αk〉 is displaced to the vacuum state |0〉. The displaced
state D̂(−β j )|αk〉 is then detected with a PNR detector with
number resolution m, ideally described by operators �̂n =
|n〉〈n| for n = 1, 2, . . . , m − 1 and �̂m = Î − ∑m−1

i=0 �̂i. The
strategy uses a maximum a posteriori probability (MAP)
criterion and a recursive Bayesian updating [53]. Given a
photon-number detection d j and the hypothesis β j in adaptive
measurement j, the strategy estimates the posterior Bayesian
probabilities for input states and the most likely state. In
subsequent adaptive measurements, the LO tests this most
likely state, and prior probabilities are updated according to
Bayes’ theorem. Recursive application of this method during
all adaptive measurements results in a final estimate θdisc of
the possible input state, which corresponds to the most likely
state at the end of the last adaptive measurement N , βN+1. This
most likely state corresponds to the answer to the state dis-
crimination problem, and the discrimination strategy allows
for surpassing the QNL. After a discrimination measurement,
the data collected during N adaptive measurements consists
of N photon-counting detections {d1, d2, . . . , dN }, together
with the phases of the most likely states β j in each adaptive
measurement {θ1, θ2, . . . , θN }. Assuming that the answer to
the state discrimination problem is correct, the phase θdisc =
arg{βN+1} then corresponds to the phase of the input state, so
that δ j = θ j − θdisc are the relative phases of the input state
and the LO during each adaptive measurement. The pairs
{d j, δ j} correspond to samples of phase space that can be
used to estimate the phase offset caused by the channel for
performing phase tracking.

APPENDIX C: PHASE ESTIMATOR AND PERFORMANCE

The method for phase tracking for non-Gaussian receivers
uses the data collected from the state discrimination mea-
surement, consisting of the pairs {d j, δ j}, to estimate and
correct for the relative phase between the input state and
the local oscillator (LO) in real time. This method works
in conjunction with the state discrimination strategy and
requires no extra resources such as strong phase reference
pilot pulses or performing additional measurements for phase
estimation. For the adaptive non-Gaussian discrimination
measurement in Ref. [53] with photon-number resolution
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(PNR) of 3, PNR(3), the receiver samples four photon-number
distributions P0(nk|δ = 0), Pπ/2(nk|δ = π/2), Pπ (nk|δ = π ),
and P3π/2(nk|δ = 3π/2) for δ = (0, π/2, π, 3π/2). These
photon-number distributions can be used to obtain different
estimators for the phase offset φoff (or the applied phase
φapp in the experimental investigation described in the main
paper). We note that the photon-number distributions P0(nk|δ)
can represent the rows of a 4 × 4 matrix. In general, these
distributions can be arranged as rows of a (PNR + 1) × M
detection matrix for M-ary shift keyed states and PNR of
the measurement. Below, we describe two estimators: one
based on the differences of the mean photon numbers 〈n〉δ
of these distributions referred to as “sine-cosine estimator”
that is implemented in our demonstration, and one that is a
Bayesian estimator.

1. Sine-cosine estimator

The sine-cosine estimator, as implemented in the exper-
imental demonstration described in the main text, uses the
differences of the average of detected photon numbers 〈n〉δ
to obtain a final estimate φ̂est of the phase offset φoff (or the
applied phase φapp in the actual experiments) based on the
collected data from Navg × 500 channel transmissions.

As a first step, the estimator obtains two initial estimates:
φ̂c and φ̂s. These estimates are obtained from the photon-
number distributions Pδ (nk|δ) of the observed data from the
state discrimination measurement for the relative phases be-
tween the input state and LO δ = {0, π/2, π, 3π/2} (see
Sec. II of the paper). Under a situation where there is a phase
offset φoff, interference visibility ξ , dark count rate ν, and
N = 7, the mean photon numbers of the distributions Pδ (nk|δ)
are

〈n〉0 = 2η
|α|2
N

[1 − ξ cos(φoff )] + ν,

〈n〉π/2 = 2η
|α|2
N

[1 − ξ sin(φoff )] + ν,

〈n〉π = 2η
|α|2
N

[1 + ξ cos(φoff )] + ν,

〈n〉3π/2 = 2η
|α|2
N

[1 + ξ sin(φoff )] + ν. (C1)

Combining the equations for 〈n〉0 and 〈n〉π in Eq. (C1) we
can obtain samples for the quantity cos(φoff) in terms of 〈n〉,
η, |α|2, ξ , ν, and N . In a similar way, samples for sin(φoff) can
be obtained from the equations for 〈n〉π/2 and 〈n〉3π/2. These
samples can be used to obtain an estimate of the expected
values from the average over 500 channel transmissions. For
a large number of data samples, we expect that the average
of cos(φc) over these channel transmissions approach the
cosine of the average φ̄off of the actual phase offset φoff over
these channel transmissions cos(φ̄off ). We define this average
φ̄off from the cosine function as the estimate φ̂c. Similarly,
the estimate φ̂s is obtained from the samples of sin(φoff ).
These estimates φ̂c and φ̂s can be expressed in terms of the
estimates of the mean photon numbers 〈n〉δ for 500 channel

transmissions:

〈n〉π − 〈n〉0 = C(|α|2)cos(φ̂c),

φ̂c = arccos

[ 〈n〉π − 〈n〉0

C(|α|2)

]
(C2)

and

〈n〉3π/2 − 〈n〉π/2 = C(|α|2)sin(φ̂s),

φ̂s = arcsin

[ 〈n〉3π/2 − 〈n〉π/2

C(|α|2)

]
(C3)

with

C(|α|2) = f (|α|2) × 4|α|2ηξ/N, (C4)

where f (|α|2) is a factor arising from nonzero probability of
error of the discrimination strategy. Here, N = 7 is the number
of adaptive measurements, η is the detection efficiency, and ξ

is visibility of the displacement operation by interference. As
a second step, the two initial estimates (φ̂c, φ̂s) are combined
in a weighted average to form a phase estimate φ̂i every 500
pulses:

φ̂i = sign(φ̂s)
|φ̂i| + r(|α|2)|φ̂s|

1 + r(|α|2)
. (C5)

The weight factor r(|α|2) is used to increase the linearity
of the final estimate φ̂est as a function of φoff, while reducing
its variance near the edges of the capture range R in our
experiment R = ±0.6 rad. As a final step, the final estimate
φ̂est is obtained from the average of Navg estimates φ̂i with a
gain factor g(φ̂i ):

φ̂est = g(〈φ̂〉)
1

Navg

∑
φ̂i = g(〈φ̂〉)〈φ̂i〉. (C6)

The gain factor g(〈φ̂〉) depends on the average of the Navg esti-
mates {φ̂} = {φ̂1, φ̂2, . . . , φ̂Navg} and is used to further increase
the linearity with respect to the actual phase offset φoff, as
described below.

To obtain the final phase estimate φ̂est of φoff, the estimator
aims to find the optimal values for the factors r(|α|2), f (|α|2),
and g(〈φ̂i〉), which depend on the input mean photon number
|α|2, the estimates φ̂i, and the experimental detection effi-
ciency η, visibility ξ , and dark counts. We find the optimal
values of r(|α|2), f (|α|2), and g(〈φ̂i〉) using numerical ap-
proaches based on Monte Carlo simulations of the experiment
with the following steps:

(1) Find the optimal value of r(|α|2) [ropt(|α|2)] that min-
imizes the difference |φ̂i − φoff| at the extreme points of the
capture range R = ±0.6 rad.

(2) Given ropt(|α|2), find the optimal value of f (|α|2)
[ fopt(|α|2)] by minimizing the χ2 between the estimated phase
φ̂i and the actual phase offset φ̂off.

(3) Given ropt(|α|2) and fopt(|α|2), find the gain parameter
g(〈φ̂〉) that makes the final estimate φ̂est as linear as possible
with respect to the applied phase offset φoff.

This procedure yields the final estimate φ̂est, and the opti-
mal parameters ropt(|α|2), fopt(|α|2), and g(〈φ̂〉) from Monte
Carlo simulations that we use for the experimental demonstra-
tion of phase tracking for non-Gaussian receivers.
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FIG. 6. Phase estimation and estimator performance. (a)–(c) Phase estimates φ̂ as a function of applied phase φoff for |α|2 = 2.0, 5.0, and
10.0, respectively, for the sine-cosine (Sin-Cos) estimator φ̂est implemented in our demonstration, and for a Bayesian estimator φ̂B (blue). The
green line shows the corrected φ̂est with the optimal gain function g({φ̂i}) �= 1. The orange line shows the uncorrected φ̂est with g({φ̂i}) = 1.
For the Bayesian estimator, the blue line shows the uncorrected φ̂B, and the black line shows the corrected φ̂B. The solid lines represent the
average of 100 Monte Carlo samples and shaded regions correspond to one standard deviation for each value of the applied phase offset φoff.

Figure 6 shows the final estimate φ̂est for mean photon
numbers |α|2 = 2.0, |α|2 = 5.0, and |α|2 = 10.0 with opti-
mized gain parameter g(〈φ̂〉) �= 1 (green) and with g(〈φ̂〉) = 1
(blue). Note that the estimate φ̂est with g(〈φ̂〉) �= 1 shows a
closer linear relation with φoff compared to the case with
g(〈φ̂〉) = 1. Below, we describe the procedure to obtain
ropt(|α|2), fopt(|α|2), and g(〈φ̂〉).

This procedure reduces the bias of the final estimate φ̂est

with respect to the true value of the phase offset φoff. The
estimates φ̂c and φ̂s are initially biased. φ̂s is biased toward
zero phase as the magnitude of φoff increases. φ̂c cannot
provide information about the sign of the phase offset φoff,
and biases the estimates toward positive values. These biases
result in a bias of the combined estimator φi, and r(|α|2) aims
to reduce this bias. The final estimate φ̂est is also biased for
large values of the phase offsets, as can be seen in Fig. 6, but
unbiased for phase offsets near zero. The optimization of the
gain function g(〈φ̂〉) allows for minimizing the overall bias of
φ̂est, which can be mostly suppressed for |α|2 � 5.

Step 1. Optimal value of r(|α|2). The parameter r(|α|2) is
a weight factor for the contributions of the initial estimates
φ̂c and φ̂s to the estimate φ̂i, and its optimal value is chosen
to reduce the variance of the final estimate φ̂est near the end
points of the experimental capture range range R = ±0.6 rad.
The collected data {d j, δ j} during the discrimination mea-
surement provide samples for phase estimation which are
mostly δ j = 0. This is because the discrimination strategy is
based on hypothesis testing by displacements to the vacuum
state [53], and the displaced state spends most of the time in
the vacuum state. This means the distribution P0(nk|δ = 0)
is populated at a higher rate than Pπ/2, Pπ , and P3π/2, and
provides more data for the initial estimate φ̂c compared to
φ̂s [see Eqs. (C2) and (C3)]. As a result, φ̂c gives a much
better estimate with smaller variance. However, φ̂c does not
give any sign information about the applied phase φoff, and
is less sensitive to small phase offsets around φoff = 0. On
the contrary, φ̂s is more sensitive to small phase offsets and
contains the sign information of φoff, but is a worse estimate
with a much larger variance. The optimal value of r(|α|2)
seeks to balance the contribution of these two initial estimates
to minimize |φ̂i − φoff| at R = ±0.6 rad. This optimization has

the overall effect of reducing the variance of the final estimate
φ̂est at these points, where this estimator shows the greatest
variance.

To find the optimal value of r(|α|2) [ropt(|α|2)] we fix the
mean photon number |α|2 and Navg. We use Monte Carlo
simulations to obtain the weighted average φ̂i with f (|α|) = 1
as a function of φoff for different values of r(|α|2). We then
obtain a final average for the phase estimate 〈φ̂i〉 = ∑

φ̂i/Navg

after Navg realizations for applied phases φoff within the range
R = ±0.6 rad. We observe that 〈φ̂i〉 is in general a nonlinear
function of φoff. The optimal ropt(|α|2) is obtained by finding
the value of r(|α|2) that minimizes the average of |〈φ̂i〉 − φoff|
at φoff = ±0.6 rad. This condition increases the linearity of
the final phase estimate φ̂est with respect to the applied phase
φoff and reduces its variance.

We note that φ̂est is obtained by multiplying 〈φ̂i〉 by a gain
function g(〈φ̂i〉). As described in step 3, g(〈φ̂i〉) is obtained by
inverting the relation of 〈φ̂i〉 as a function of φoff. Minimizing
|〈φ̂i〉 − φoff| at φoff = ±0.6 rad prevents a large value of the
gain g(〈φ̂i〉) at these points, which would result in a great
increase in the variance of the final estimate φ̂est. Therefore,
determining ropt(|α|2) that minimizes |φ̂i − φoff| at (±0.6) rad
results in a gain g(〈φ̂i〉) ≈ 1, reducing the variance of the final
estimate φ̂est.

Step 2. Optimal value of f (|α|2). The parameter f (|α|2) in
Eq. (C4) aims to reduce the effect of the nonzero probability
of error PE in the state discrimination measurement. Any
state discrimination error causes errors when populating the
photon-number distributions Pδ (nk|δ), δ = {0, π/2, π, 3π/2}.
In a situation with no errors, PE = 0, f (|α|2) = 1 and on
average C(|α|2) = 4|α|2ηξ/N . However, when PE �= 0 the
distributions Pδ (nk|δ) are sometimes populated incorrectly,
which produces changes in their mean photon numbers 〈n〉δ
in Eqs. (C2) and (C3). This makes C(|α|2) �= 4|α|2ηξ/N , and
f (|α|2) �= 1.

We note that the distribution Pπ (nk|δ = π ) can only be
incorrectly populated with samples from the other three
distributions P0, Pπ/2, and P3π/2, which have smaller mean
photon numbers. As a result, any discrimination error causes
the estimated 〈n〉π to be smaller than the true value on
average. Similarly, the distribution P0(nk|δ = 0) can only be
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TABLE I. Optimal values fopt(|α|2) and ropt(|α|2) for |α|2 = 2.0,
5.0, and 10.0 with Navg = 40, 20, and 4, respectively.

α2 Navg fopt(|α|2) ropt(|α|2)

2.0 40 1.210 0.250
5.0 20 0.895 0.333
10.0 4 0.650 0.250

incorrectly populated with samples from distributions Pπ/2,
Pπ , and P3π/2 with larger mean photon numbers. Then, PE �= 0
causes the estimated 〈n〉0 to increase on average. The overall
effect of having PE �= 0 is to reduce the difference 〈n〉π − 〈n〉0,
such that 〈n〉π − 〈n〉0 < 4|α|2ηξ/N . As a result, the estimate
φ̂c in Eq. (C2) with f (|α|2) = 1 will have a nonzero value
when φoff = 0 that depends on the probability of error PE.

The effect of having PE �= 0 can be reduced by finding the
value of the parameter f (|α|2) that makes the estimates φ̂c and
〈φ̂i〉 close to zero when φoff = 0. The procedure to find the
optimal value fopt(|α|2) consists of using Monte Carlo simu-
lations for different values of f (|α|2) with ropt(|α|2) found in
step 1. The optimal value fopt(|α|2) is the one that minimizes
the χ2 between 〈φ̂i〉 and φoff, where a linear dependence is
expected. To verify this optimal value we use ≈106 Monte
Carlo runs with φoff = 0 to obtain the expected difference
E[〈n〉π − 〈n〉0|φoff = 0]. The value fopt(|α|2) should then be
approximately

fopt(|α|2) ≈ E[〈n〉π − 〈n〉0|φoff = 0]

4|α|2ηξ/N
. (C7)

Table I shows examples of the optimal values of r(|α|2) and
f (|α|2) for different mean photon numbers of the input state
|α|2 and Navg.

Step 3. Gain function g(〈φ̂i〉). The final estimate φ̂est is
obtained from the product of the average of Navg estimates
φ̂i and a gain factor g(〈φ̂i〉), as shown in Eq. (C6). The gain
function g(〈φ̂i〉) is solely a function of the average phase
estimate 〈φ̂i〉, and ideally maps 〈φ̂i〉 onto the phase offset
φoff with a linear dependence with unit slope. We obtain
the gain function g(〈φ̂i〉) by using Monte Carlo simulations
with the optimal values of ropt(|α|2) and fopt(|α|2) to obtain
the dependence of the quantity (φoff/〈φ̂i〉) as a function of
〈φ̂i〉. The quantity (φoff/〈φ̂i〉) shows in general a nonlinear
dependence with 〈φ̂i〉, and this dependence corresponds to
g(〈φ̂i〉). We fit the quantity (φoff/〈φ̂i〉) using a smoothing
spline, and this spline is defined as the gain function g(〈φ̂i〉).

The gain function g(〈φ̂i〉) obtained in this way allows to
linearize the phase estimator with respect to known applied
phase offsets φoff. Figure 6 shows φ̂est for input mean photon
numbers |α|2 = 2.0, 5.0, and 10.0 with optimal values of
g(〈φ̂i〉) ( �= 1) in green; and with g(〈φ̂i〉) = 1 in orange. In our
experimental demonstration, the method for phase tracking
is set to generate estimates every 500 × Navg transmissions
through the channel, and subsequently applies a phase cor-
rection to the local oscillator every 500 × Navg shots of the
experiment, allowing to perform phase tracking and phase
correction at a rate of fPT ≈ 23/Navg Hz.

2. Bayesian estimator

A second possible estimator of φoff based on the collected
data (d j, δ j ) from the state discrimination measurement is the
Bayesian estimator. For a Bayes estimator, the photon-number
distributions Pδ{nk|δ} = P(n) are converted into distributions
over the phase P(φ|n) through Bayes’ theorem

P(φ|n)P(n) = L(n|φ)P(φ), (C8)

where L(n|φ) are likelihood functions and P(φ) a prior
phase distribution. Given the collected data from the state
discrimination measurement {data} = {dj, δ j} and assuming
some prior distribution P(φ), a phase estimate can be obtained
by forming the posterior probability distribution over phase
given by:

P(φ|{data}) = NP(φ)
3∏

n=0

3∏
m=0

L(n|φ − δm)Nn,m , (C9)

where N is a normalization factor and Nn,m is the number
of times that n photons were detected given that δm = θm −
θdisc = mπ/2. Here, θdisc is the answer to the state discrim-
ination problem about the input state. The values of Nn,m

correspond to elements of the matrix of the photon detections
for given {δm}.

The likelihood function L(n|φ − δm) is given by

L(n|φ − δm) = 〈n〉n

n!
e−〈n〉

with

〈n〉 = 2η|α|2[1 − ξcos(φ − δm)] + ν, (C10)

where η, ξ , and ν are the detection efficiency, interference
visibility, and dark counts, respectively. The phase estimate
φ̂B for the Bayesian estimator is then given by

φ̂B = arg

( ∫ π

−π

eiφP(φ|{data})dφ

)
. (C11)

The Bayesian estimate φ̂B provides a more precise esti-
mate of the phase offset φoff with smaller variance than the
sine-cosine estimate φ̂est, as shown in Fig. 6. However, this
estimator is far more computationally difficult to implement
experimentally in real time. While in our current experimental
setup such a complex estimator cannot be implemented, the
sine-cosine estimator described above produces similar results
for estimating φoff while remaining computationally inexpen-
sive, and allows for real-time estimation and implementation
of the phase-tracking method.

APPENDIX D: ESTIMATOR PERFORMANCE AS
A FUNCTION OF Navg

The performance of the phase-tracking method critically
depends on the variance of the estimates φ̂est. In general,
increasing the number of samples Navg to obtain an estimate
of the applied phase φapp

1 improves (reduces) the variance of

1We denote φapp phases that are actually applied in the experimental
studies, and we denote φoff phases that are used to find theoretical
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FIG. 7. Estimator variance of the phase-tracking method. Experimentally obtained variance of the estimates φ̂est without (σ 2
0 ) and with

(Var[φ̂est − φRW]) added Gaussian phase noise for |α|2 = 5.0 for different Navg in the algorithm for phase tracking. (a)–(c) Phase-tracking
estimates φ̂est with zero applied phase (φapp = 0) for (a) Navg = 2, (b) Navg = 15, and (c) Navg = 40 as a function of time from t = 0 to 60 s.
(d) Variance σ 2

0 over 60 s with φapp = 0 (blue points) as a function of Navg. Error bars represent one standard deviation over five different
experimental runs. The black solid line shows the expected accumulated variance of random walks σ 2

RW in phase with σ1 = 5 mrad, similar
to Fig. 4(e) in the main paper, for different estimators with different Navg. Inset (i) shows σ 2

0 on a log-log scale with a linear fit indicating
a 1/Navg scaling, as expected for statistical uncertainties. (e) Estimated phase for a single applied random walk (φapp = φRW) (black line)
for three estimators with Navg = 2, 15, and 40, in gray, orange, and blue, respectively. (f) Difference between estimated and applied phases
� = φ̂est − φRW in (e). (g) Variance of the total estimates σ 2

� for the difference � in (f) as a function of Navg. Error bars represent one standard
deviation from five different experimental runs. The red solid line shows the expected total variance σ 2

Etot = σ 2
0 + σ 2

RW which is composed of σ 2
0

and σ 2
RW from (d), showing good agreement with the observed σ 2

� in the experiment. Note that there is an optimal operation point at Navg ≈ 10,
where the total variance σ 2

� is minimum.

the estimates φ̂est. However, increasing Navg also increases the
time required to obtain such estimate, thus reducing the phase-
tracking bandwidth fPT. In situations with random Gaussian
phase noise with bandwidth fRW > fPT, this reduction in
fPT can significantly increase probability of error PE in the
state discrimination measurement, and produce estimates that
are far less accurate. As a result, there is a tradeoff in the
performance of the estimator as a function of Navg. While
larger values of Navg provide better estimates for constant
phases, in situations where the phase is not constant these
estimates may not be accurate, limiting the performance of
the phase-tracking method. To investigate this tradeoff, we
experimentally study the estimator variance as a function of
Navg in situations with Gaussian-distributed random phase
noise.

Figures 7(a)–7(c) show the estimates from the experi-
ment using the phase-tracking method as a function of time
from t = 0 to 60 s with zero applied phase (φapp = 0) for
|α|2 = 5.0, for cases with (a) Navg = 2, (b) Navg = 15, and
(c) Navg = 40, and the corresponding histograms of estimates.
We observe that while smaller Navg increases phase-tracking
bandwidth fPT, the variance of the estimates for φapp = 0,
denoted as σ 2

0 , also increases. On the other hand, larger

values for the optical parameters ropt(|α|2), fopt(|α|2), and g(〈φ〉) for
phase tracking.

Navg reduces fPT, but also reduces σ 2
0 . Figure 7(d) shows the

variance σ 2
0 for estimators with different Navg (blue points) for

five experimental runs with φapp = 0. The inset (i) shows the
variance σ 2

0 on a log-log scale with a best-fit line showing
good agreement with a 1/Navg scaling, which is consistent
with the statistical uncertainty for a process with random
noise.

For situations with random Gaussian phase noise φRW

with variance σ 2
RW, the total variance of the estimates will

contain contributions from σ0 and σRW. The solid black line
in Fig. 7(d) shows the expected accumulated variance σ 2

RW for
Gaussian random walks between the times to obtain phase es-
timates, which is proportional to Navg. Then, the total expected
variance σ 2

Etot for situations with Gaussian phase noise will
be approximately the sum in quadrature of σ0 (related to the
variance of the estimator with different Navg) and σRW.2

Figure 7(e) shows the performance of the estimator for a
given applied Gaussian random walk in phase (black line)
for Navg = 2, 15, and 40, with σ1 = 5 mrad (σ1 as defined

2We note that the estimator φ̂est uses the data from the state
discrimination measurement of four coherent states to efficiently
estimate a phase offset φoff. This task is different from the problem
of estimating an unknown phase of a known coherent state probe, for
which the fundamental lower bound on the variance is known [2],
and the variance of φ̂est is higher than the fundamental lower bound
for that problem [2].
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in the main text) from t = 0 to 60 s. Figure 7(f) shows
the difference between estimated φ̂est and the applied phase
φRW, � = φ̂est − φRW from Fig. 7(e). The variance of � will
now contain two contributions: one from the estimator with
different Navg, ideally given by σ 2

0 , and one due to the random
walks in phase with variance σ 2

RW. For Navg = 2 we expect a
large variance of the estimates φ̂est, as shown in Fig. 7(a), and
due to the relatively high tracking bandwidth fPT, the effect
of the random walks is relatively small. On the other hand,
for Navg = 40, the variance of estimates φ̂est is expected to be
small, as seen in Fig. 7(c), but due to the low fPT relative to
fRW ( fRW = 100 Hz), the accumulated variance from random
walks becomes dominant, resulting in larger deviations �.

Figure 7(g) shows the total variance σ 2
� of � = φest −

φRW as a function of Navg. Error bars represent one standard
deviation over five different random walks. The red solid line
shows the expected total variance σ 2

Etot = σ 2
0 + σ 2

RW, which
contains the contributions from the estimator σ 2

0 and the
applied random walks σ 2

RW. The good agreement between σ 2
�

and σ 2
Etot indicates that drifts in the experiment are not signif-

icant. We observe that there is an optimal value for Navg ≈ 10
that minimizes the total variance σ 2

�. This optimal value of
Navg provides a good phase estimate φ̂est by increasing the
number of samples for parameter estimation, while reducing
the effects of errors in state discrimination caused by drifts in
phase due to the random walks. We note that optimal values
for Navg are larger for smaller values of fRW, and vice versa.

APPENDIX E: PHASE TRACKING WITH DIFFERENT
NOISE BANDWIDTHS

Methods for phase tracking should be able to track phase
noise with different bandwidths. In general, the performance
of any phase-tracking method to track fast noise depends on
how fast reliable phase estimates can be generated and how
fast correction can be applied [28], which defines the phase-
tracking bandwidth fPT. We investigate the performance of
the phase-tracking method for the sub-QNL non-Gaussian
receiver to track time-varying random phase noise with dif-
ferent bandwidths fRW for |α|2 = 5.0, while keeping the same
phase-tracking bandwidth fPT = fexpt/(500Navg) ≈ 1.2 Hz,
with fexpt ≈ 12 kHz and Navg = 20.

Figure 8(a) shows the probability of error PE as a function
of time from t = 0 to 14 s when applying random walks
in phase with noise bandwidths fRW = 100 Hz (blue) and
fRW = 500 Hz (green) for two different realizations of 50
random walks. Thick lines show the averages and shaded
regions show the spread in PE over the 50 random walks. In
this study, the random walks in phase and the phase tracking
are enabled at t = 2 s in both cases [see Fig. 8(b) for the ap-
plied phase φapp and phase estimates φ̂est for fRW = 500 Hz].
We observe that in the presence of phase noise with fRW =
100 Hz, phase tracking allows the receiver to maintain a
3.4-dB advantage over the ideal heterodyne limit (Het.), which
corresponds to the expected performance without phase noise
[53] at |α|2 = 5.0. On the other hand, for phase noise with
bandwidth fRW = 500 Hz, the average probability of error
increases from this ideal case, showing a much larger spread
in PE compared to the case with fRW = 100 Hz. Performing
phase tracking for non-Gaussian receivers under phase noise

FIG. 8. Phase tracking for different noise bandwidths. (a) Prob-
ability of error PE as a function of time for |α|2 = 5.0 for noise
bandwidths fRW = 100 Hz (blue) and fRW = 500 Hz (green) with
different random walks. Thick lines show the averages and shaded
regions show the spread in PE over 50 Gaussian random walks. For
fRW = 100 Hz, the phase-tracking method allows the non-Gaussian
receiver to perform 3.4 dB below the heterodyne limit (Het.), which
is the expected performance in the absence of phase noise (black
line). Noise with fRW = 500 Hz causes PE to increase compared to
fRW = 100 Hz. However, phase tracking allows receiver to perform
below Het. for 14 s. (b) Applied random walks in phase for fRW =
500 Hz (lower) and the phase-tracking estimates (upper). Applied
phase φapp = φRW and estimates φ̂est for fRW = 100 Hz are shown in
Fig. 4(e) in the main paper over 60 s.

with higher bandwidths fRW requires achieving higher fPT to
generate accurate phase estimates φ̂est at a sufficiently high
rate compared to fRW. This can be achieved by increasing
fexpt resulting in higher sampling rates for phase estimation.
Alternatively, increasing |α|2 would reduce errors in state
discrimination and increase the accuracy of φ̂est, effectively
reducing the effects of low phase-tracking bandwidths fPT. A
combination of higher rates fPT and low discrimination errors
would make phase tracking reliable for enabling the receiver
to maintain discrimination below the heterodyne limit under
phase noise with high noise bandwidths.

APPENDIX F: AMPLITUDE NOISE

In addition to phase noise, random amplitude fluctuations
may occur in communication channels. Amplitude fluctua-
tions will affect the discrimination strategy and will result
in increased discrimination errors if the noise is relatively
large. Table II shows the effects of amplitude fluctuations
characterized by the standard deviation of the relative am-
plitude noise σamp for |α|2 = 5 as a case study, which is
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TABLE II. Effect of amplitude noise in error discrimination
and phase offset estimation for |α|2 = 5 and Navg = 1, including
experimental imperfections.

σamp PE × 10−2 σ 2
Sin-Cos × 10−2 σ 2

Bayes × 10−2

0.00 1.128 1.523 0.072
0.05 1.171 1.748 0.087
0.10 1.315 2.313 0.160
0.20 1.973 4.720 0.606
0.25 2.460 5.713 0.944

assumed to be Gaussian such that |α|2 → N (1, σamp) × |α|2.
This increase in the probability of error for state discrim-
ination causes higher errors in populating the probability
distributions Pδ (nk|δ), from which the phase estimator φ̂est is
formed, and affects the phase-tracking performance, which
can be characterized by the estimator variances. Table II

shows the variances for the Sin-Cos and Bayesian estimators
for different levels of amplitude noise. We observe that the
presence of amplitude noise with levels from σamp = 5%–25%
has very moderate effects on the error of state discrimina-
tion and on the variances of the estimators. This highlights
the robustness of the phase-tracking method to amplitude
noise.

For situations with slow amplitude noise, it may be pos-
sible to perform amplitude estimation and tracking based
on the collected data from state discrimination measure-
ment. Specifically, the information contained in the photon-
number distributions Pδ (nk|δ) may be sufficient to estimate
both phase and amplitude, which can eventually be used for
phase and amplitude tracking. The receiver could use the
Bayesian estimator for a two-dimensional estimation yielding
a simultaneous estimate of phase offset and amplitude of the
input state. Alternatively, the receiver could perform phase
estimation with the method described here, and sequentially
realize amplitude estimation based on Eq. (B1), or vice versa.
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