
6724 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

“Good Robot!”: Efficient Reinforcement Learning for
Multi-Step Visual Tasks with Sim to Real Transfer

Andrew Hundt , Benjamin Killeen , Nicholas Greene, Hongtao Wu , Heeyeon Kwon,
Chris Paxton , and Gregory D. Hager

Abstract—Current Reinforcement Learning (RL) algorithms
struggle with long-horizon tasks where time can be wasted explor-
ing dead ends and task progress may be easily reversed. We develop
the SPOT framework, which explores within action safety zones,
learns about unsafe regions without exploring them, and prioritizes
experiences that reverse earlier progress to learn with remarkable
efficiency. The SPOT framework successfully completes simulated
trials of a variety of tasks, improving a baseline trial success rate
from 13% to 100% when stacking 4 cubes, from 13% to 99% when
creating rows of 4 cubes, and from 84% to 95% when clearing toys
arranged in adversarial patterns. Efficiency with respect to actions
per trial typically improves by 30% or more, while training takes
just 1-20 k actions, depending on the task. Furthermore, we demon-
strate direct sim to real transfer. We are able to create real stacks
in 100% of trials with 61% efficiency and real rows in 100% of
trials with 59% efficiency by directly loading the simulation-trained
model on the real robot with no additional real-world fine-tuning.
To our knowledge, this is the first instance of reinforcement learning
with successful sim to real transfer applied to long term multi-step
tasks such as block-stacking and row-making with consideration
of progress reversal. Code is available at https://github.com/jhu-
lcsr/good_robot.

Index Terms—Computer vision for other robotic applications,
deep learning in grasping and manipulation, reinforcement
learning.

I. INTRODUCTION

MULTI-STEP robotic tasks in real-world settings are no-
toriously challenging to learn. They intertwine learning

the immediate physical consequences of actions with the need
to understand how these consequences affect progress towards
the overall goal. Furthermore, in contrast to traditional motion
planning, which assumes perfect information and known action
models, learning only has access to the spatially and temporally
limited information from sensing the environment.

Manuscript received February 24, 2020; accepted July 20, 2020. Date of
publication August 11, 2020; date of current version August 27, 2020. This letter
was recommended for publication by Associate Editor J. Kober and Editor T.
Asfour upon evaluation of the reviewers’. comments. This work was supported
by the NSF NRI Awards nos. 1637949 and 1763705, and in part by Office
of Naval Research Award N00014-17-1-2124. (Corresponding author: Andrew
Hundt.)

Andrew Hundt, Benjamin Killeen, Nicholas Greene, Hongtao Wu, Heeyeon
Kwon, and Gregory D. Hager are with The Johns Hopkins University,
Baltimore, MD 21218 USA (e-mail: ahundt@jhu.edu; killeen@jhu.edu;
ngreen29@jhu.edu; hwu67@jhu.edu; hkwon28@jhu.edu; hager@cs.jhu.edu).

Chris Paxton is with NVIDIA, Seattle, WA, 98105 USA (e-mail:
cpaxton@nvidia.com).

This article has supplementary downloadable material available at https://
ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/LRA.2020.3015448

Fig. 1. Robot-created stacks and rows of cubes with sim to real transfer. Our
Schedule for Positive Task (SPOT) framework allows us to efficiently
find policies which can complete multi-step tasks. Video overview:
https://youtu.be/MbCuEZadkIw

Our key observation is that reinforcement learning wastes sig-
nificant time exploring actions which are unproductive at best.
For example, in a block stacking task (Fig. 1), the knowledge
that grasping at empty air will never snag an object is “common
sense” for humans, but may take some time for a vanilla algo-
rithm to discover. To address this, we propose the Schedule for
Positive Task (SPOT) framework, which incorporates common
sense constraints in a way that significantly accelerates both
learning and final task efficiency.

While these types of constraints are intuitive, incorporating
them into Deep RL (DRL) in a manner that leads to reliable and
efficient learning is nontrivial [1], [2]. Our methods (Section III)
take inspiration from a humane and effective approach to training
pets sometimes called “Positive Conditioning.” Consider the
goal of training a dog “Spot” to ignore an object or event she
finds particularly interesting on command. Spot is rewarded with
treats whenever partial compliance with the desired end behavior
is shown, and simply removed from regressive situations with
zero treats (reward). One way to achieve this is to start with
multiple treats in hand, place one treat in view of Spot, and, if
she eagerly jumps at the treat (a negative action), the human
snatches and hides the treat immediately for zero reward on
that action. With repetition, Spot will eventually hesitate, and so
she is immediately praised with “Good Spot!” and gets a treat

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 24,2021 at 15:57:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2023-1810
https://orcid.org/0000-0003-2511-7929
https://orcid.org/0000-0002-6442-8159
https://orcid.org/0000-0003-1009-5982
https://orcid.org/0000-0002-6662-9763
https://github.com/jhu-lcsr/good_robot
mailto:ahundt@jhu.edu
mailto:killeen@jhu.edu
mailto:ngreen29@jhu.edu
mailto:hwu67@jhu.edu
mailto:hkwon28@jhu.edu
mailto:hager@cs.jhu.edu
mailto:cpaxton@nvidia.com
https://ieeexplore.ieee.org
https://youtu.be/MbCuEZadkIw

HUNDT et al.: “GOOD ROBOT!”: EFFICIENT REINFORCEMENT LEARNING FOR MULTI-STEP VISUAL TASKS WITH SIM TO REAL TRANSFER 6725

Fig. 2. Our model architecture. Images are pre-rotated to 16 orientations θ before being passed to the network. Every coordinate a = (φ, x, y, θ) in the output
pixel-wise Q-Values corresponds to a final gripper position, orientation, and open loop action type, respectively. Purple circles highlight the highest likelihood
action arg maxa(Q(s,M(a))) (8) with an arrow to the corresponding height map coordinate, showing how these values are transformed to a gripper pose. The
rotated overhead views overlay the Q value at each pixel from dark blue values near 0 to red for high probabilities. If you take a moment to compare the Q values
of a single object across all actions (green arrows identify the same object across two oriented views) you will see each object is scored in a way which leads to
a successful stack in accordance with its surrounding context. For example, the grasp model learns to give a high score to the lone unstacked red block for grasp
actions and a low score to the yellow top of the stack, while the place model does the reverse. Here the model chooses to grasp the red block and place on the
yellow, blue, and green stack. Experiment details are in Sections IV and V.

separate from the one she should ignore. This approach can
be expanded to new situations and behaviors, and it encourages
exploration and rapid improvement once an initial partial success
is achieved. As we describe in Section III, our reward functions
and SPOT-Q Learning are likewise designed to provide neither
reward nor punishment for actions that reverse progress.

Instances of progress reversal are associated with varying
complexity. On the one hand, failing to stack the first block on
top of another leaves the robot in a similar situation, so recovery
takes Ω(1) actions. However, once a stack of n blocks exists,
even a successful grasp might knock the whole stack down,
reversing the entire history of actions for a given trial (Fig. 3), so
recovery is Ω(n). The latter, more dramatic instance of progress
reversal is a challenging problem for reinforcement learning of
multi-step tasks in robotics; our work provides a method for
efficiently solving such cases.

In summary, our contributions in this article are:
1) The overall SPOT framework for reinforcement learning

of multi-step tasks, which improves on state of the art in
simulation and can train efficiently on real-world situa-
tions.

2) SPOT-Q Learning, a method for safe and efficient train-
ing in which a mask focuses exploration at runtime and
generates extra on-the-fly training examples from past
experience during replay.

3) State of the art zero-shot domain transfer from simulated
stacking and row building tasks to their real world coun-
terparts, as well as robustness with respect to a change in
hardware and scene positions.

Fig. 3. Red arrows show how individual successful actions can fail on the
larger stacking task, forcing eventual progress reversal where a partial stack
topples or the top must be removed. Ideally algorithms should efficiently learn
to prevent this situation and succeed as indicated by the green arrows. Thus,
temporal and workspace dependencies must be considered. Events at a current
time ti ∈ T, i ∈ [1...n] can influence the likelihood of successful outcomes for
past actions th|h < i and future actions tj |j > i. A successful choice of action
at any given ti will ensure both past and future actions are productive contributors
to the larger task at hand. In our experiments a partial stack or row is itself a
scene obstacle. The gray wall pictured here is for illustrative purposes only.

4) An ablation study showing that Situation Removal dramat-
ically decreases progress reversal; that a progress metric
increases efficiency; and that trial rewards improve on
discounting, but involve a trade-off between efficiency and
support for sparse rewards.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 24,2021 at 15:57:55 UTC from IEEE Xplore. Restrictions apply.

6726 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

II. RELATED WORK

Deep Neural Networks (DNNs) have enabled the use of raw
sensor data in robotic manipulation [1]–[5]. In some approaches,
a DNN’s output directly corresponds to motor commands,
e.g., [3], [4]. Higher-level methods, on the other hand, assume
a simple model for robotic control and focus on bounding box
or pose detection for downstream grasp planning [1], [6]–[11].
RGB-D sensors can be beneficial [1], [11], [12], as they capture
physical information about the workspace. Object-centric skill
learning can be effective and generalize well, e.g., [13]–[16]
focus on block stacking by classifying simulated stacks as stable
or likely to fall. Similarly, [17], [18] develop physical intuition by
predicting push action outcomes. Our work differs by developing
visual understanding and physical intuition in concert with the
progress of multi-step tasks.

Grasping is a particularly active area of research. DexNet [19],
[20] learns from a large number of depth images of top-down
grasps, and gets extremely good performance on grasping novel
objects but does not look at long-horizon tasks. 6-DOF Grasp-
Net [21] uses simulated grasp data to generalize to new objects
and has been extended to handle reliable grasping of novel
objects in clutter [12].

DRL has proven effective at increasingly complex tasks in
robotic manipulation [1], [5], [22], [23]. QT-Opt [5] learns
manipulation skills from hundreds of thousands of real-world
grasp attempts on real robots. Domain Adaptation, such as
applying random textures in simulation, can also enhance sim
to real transfer [24], [25]. Other methods focus on transferring
visuomotor skills from simulated to real robots [22], [26]. Our
work directs a low-level controller to perform actions rather than
regressing torque vectors directly, following prior work [1], [23]
by learning a pixel-wise success likelihood map.

Multi-step tasks with sparse rewards present a particular
challenge in reinforcement learning because solutions are less
likely to be discovered through random exploration. When
available, demonstration can be an effective method for guiding
exploration [27]–[29]. Multi-step tasks can be split into modular
sub-tasks comprising a sketch [30], while [31] has robot-specific
and task-specific learning modules.

Safety is crucial for reinforcement learning in many real-
world settings [32]–[34]. The preliminary experiments in Sec-
tion IV-D show that SPOT-Q provides a way to incorporate safety
into general Q-Learning based algorithms [35].

We compare the SPOT framework to VPG [1], a method
for RL-based table clearing tasks which can be trained from
images within hours on a single robot, in Sections IV and V.
VPG is frequently able to complete adversarial scenarios like
first pushing a tightly packed group of blocks apart and then
grasping the now-separated objects.

Some of the most closely related recent work involves tasks
with multiple actions: [36] includes placing one block on an-
other, [37] places one towel on a bar, and [38] clears a bin, but
the first two are not long-horizon tasks and the possibility of
progress reversal (Fig. 3) is never considered.

III. APPROACH

We investigate multi-step tasks for which there is a sparse and
approximate notion of task progress. It is possible to improve
the efficiency of learning by taking these four measures: struc-
turing such problems to capture invariant properties of the data,
deploying traditional algorithms where they are most effective,

ensuring rewards do not propagate through failed actions, and
introducing an algorithm which removes unnecessary explo-
ration. We will later demonstrate our approach in the context of
the general problem of assembly through vision-based robotic
manipulation.

We frame the problem as a Markov Decision Process
(S,A, P,R), with state space S, action space A, transition
probability function P : S × S ×A → R, and reward function
R : S ×A → R. This includes a simplifying assumption equat-
ing sensor observations and state. At time step t, the agent
observes state st and chooses an action at according to its
policy π : S → A. The action results in a new state st+1 with
probability P (st+1|st, at). As in VPG [1], we use Q-learning
to produce a deterministic policy for choosing actions. The
function Q : S ×A → R estimates the expected reward R of
an action from a given state, i.e. the “quality” of an action. Our
policy π selects an action at as follows:

π(st) = arg maxa∈AQ(st, a) (1)

Thus, the goal of training is to learn a Q that maximizes
R over time. This is accomplished by iteratively minimizing
|Q(st, at)− yt|, where the target value yt is:

yt = R(st+1, at) + γQ(st+1,π(st+1)) (2)

Q-learning is a fundamental algorithm in RL, but there are key
limitations in its most general form for applications like robotics
where the space and cost of actions and new trials is extremely
large, and efficient exploration can be essential or even safety
critical. It is also highly dependent on R, whose definition can
cause learning efficiency to vary by orders of magnitude, as we
show in Section IV-C, and so we begin with our approach to
reward shaping.

A. Reward Shaping

Reward shaping is an effective technique for optimizing a
reward R, to train policies [39] and their neural networks ef-
ficiently. Here, we present several reward functions for later
comparison (Section IV-C), which build towards a general for-
mulation for reward shaping conducive to efficient learning on
a broad range of novel tasks, thus reducing the ad hoc nature of
successful reward schedules.

Suppose each action a is associated with a sub-taskφ ∈ Φ and
that we have an indicator function 1a[st+1, at] which equals 1 if
an action at succeeds at φ and 0 otherwise.1 As in VPG [1], our
baseline rewards follow this principle and include a sub-task
weighting function W : Φ → R, according to their subjective
difficulty and importance:2

Rbase(st+1, at) = W (φt)1a[st+1, at]. (3)

Next, we define a sparse and approximate task progress function
P : S → R ∈ [0, 1], indicating proportional progress towards an
overall goal, where P(st) = 1 means the task is complete.3 As
in our story of Spot the dog (Section I), a progress reversal
leads us to perform Situation Removal (SR) on the agent and

1Examples of action indicator sources include the grasp detector in our
Robotiq 2F85 gripper, human supervision, or another detection algorithm.

2In our experiments we assign simple values for each successful action type:
Wφt ∈ {Wpush=0.1,Wgrasp=1,Wplace=1}.

3In our block tasks P is the height of the stack or length of the row vs the
goal size, in table clearing either the number of objects or occupied pixels vs the
total, and in navigation the remaining vs initial distance.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 24,2021 at 15:57:55 UTC from IEEE Xplore. Restrictions apply.

HUNDT et al.: “GOOD ROBOT!”: EFFICIENT REINFORCEMENT LEARNING FOR MULTI-STEP VISUAL TASKS WITH SIM TO REAL TRANSFER 6727

Fig. 4. Example of SPOT Trial RewardRtrial (6), and the SPOT Progress Re-
ward RP (5) with images of key action steps. Actions 1–3: a1 is an initial grasp,
followed by a successful place where a slightly off balance stack of height 2 is
formed. Actions 4-5: Progress reversal occurs when a grasp then place knocks
the stack over, so the reward values go to zero. Action 7: While not pictured,
the scene is similar to a3 but with a better balanced top block. Intuitively, since
a9 doesn’t topple like a5 a better reward at a7 would be appropriate, which
is one advantage of Rtrial over RP , because RP (s4, a3) = RP (s8, a7) and
Rtrial(s4, a3) <Rtrial(s8, a7) because a7 leads directly to a successful stack.
Actions 11–14: Grasp and place actions lead to a full stack of 4 completing the
trial. The final Rtrial at a14 is 2×RP . Here Wφt ∈ {Wpush= .5,Wgrasp=
1,Wplace=1.25} for chart visibility.

physically reset the environment during training (Fig. 3). We
define an associated indicator 1SR[st, st+1], which equals 1 if
P(st+1) ≥ P(st) and 0 otherwise. These lead to new reward
functions:

RSR(st+1, at) = 1SR[st, st+1]Rbase(st+1, at) (4)

RP(st+1, at) = P(st+1)RSR(st+1, at) (5)

One advantage of Rbase, RSR, and RP is that each is available
“instantaneously” in the midst of a trial after two state transitions.
However, they do not consider the possibility that an early
mistake might lead to failure many steps down the line (Fig. 3,
4), and so we will develop a reward which propagates across
whole trials.

B. Situation Removal: SPOT Trial Reward

Is it possible for a reward function to account for actions
which lead to failures at a later time step while still training
more efficiently than a standard discounted reward RD where
RD(st+1, at)=γRD(st+2, at+1)? Our approach is to block
reward propagation through failed actions via the Situation
Removal concept:

Rtrial(st+1, at) =






0, if R∗(st+1, at) = 0
2R∗(st+1, at), if t = N
R∗(st+1, at) + γRtrial(st+2, at+1),

otherwise
(6)

Algorithm 1: SPOT-Q with Prioritized Experience Replay.
1: Input Replay Memory

HT =(ST , AT , RT ,PredictedT)
2: while AGENT_IS_ACTING() do
3: t = PRIORITIZED_EXPERIENCE_SAMPLE(T,HT)
4: yt = R(st+1, at) + γQ(st+1,π(st+1))
5: δt = HUBER_LOSS(Q(st, at); yt)
6: aπ,t = π(st)
7: if M(st, aπ,t) = 0 then ! The action would

fail.
8: y′t = γQ(st+1, aπ,t) ! New 0 reward

sample.
9: δt = δt+ HUBER_LOSS(Q(st, at); y′t)

10: end if
11: BACKPROP(

∑
δt); step optimizer; update weights.

12: end while

where R∗ can be an arbitrary instant reward function such as
RSR or RP from Section III-A, N marks the end of the trial, and
γ is the usual discount factor which is set to γ = 0.65.

The effect of using Rtrial is that future rewards only propagate
across time steps where subtasks are completed successfully. As
illustrated in Fig. 4 and described in the caption, the zero reward
from situation removal cuts the propagation of future rewards
back through time steps containing failed actions. This focuses
learning on short and successful sequences that complete a task.

C. SPOT-Q Learning and Dynamic Action Spaces

In this section, we go a step further and leverage a priori
knowledge about the environment to make simple but powerful
assumptions which both reduce unproductive attempts and ac-
celerate training. Specifically, there are many occasions when
certain action failures are easily predicted from the same sensor
signal used for Q learning. To this end, we assume the existence
of an oracle, M(st, a) → {0, 1}, which takes the current state
st and an action a and returns 0 if an action is certain to fail, and
1 otherwise. This is subtly different from the success indicator
1a[st+1, at], which requires the outcome st+1 of an action at to
determine success or failure.4 Using M , we define the dynamic
action space Mt(A):

Mt(A) = {a ∈ A|M(st, a) = 1}. (7)

In short, Mt(A) does not tell us whether a ∈ A is an action
worth taking, but rather whether it is worth exploring.

Given a state st, the question becomes how to most effectively
utilize Mt in training. If π(st) (∈ Mt(A), then π(st) can be
treated as a failure for the purposes of learning and we can
explore the next best action not guaranteed to fail. To formalize
this, we introduce SPOT-Q Learning which is a new target
value function replacing (2):

yM,t =






yt, if π(st+1) ∈ Mt(A)
yt + γQ(st+1,πM (st+1)) otherwise

+R(st+1, at),
(8)

4For example, grasping an object can only succeed if there is depth data in
the neighborhood of a predicted action, so attempts to grasp in free space can
be easily predicted to fail, as we demonstrate in Section IV

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 24,2021 at 15:57:55 UTC from IEEE Xplore. Restrictions apply.

6728 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

TABLE I
SIMULATED ROBOT TASK RESULTS (SECTION IV) WITH THE

SPOT FRAMEWORK

Multi-Step Task Test Success Rates Measured Out of 100% for Simulated Tasks
Involving Push, Grasp and Place Actions Trained for 20 K Actions (Section IV-C).
Bold Entries Highlight Our Key Algorithm Improvements Over the Baseline. “Trials”
Indicates the Overall Rate at Which Stacks or Rows Are Successfully Completed.
the Algorithm Components Are Described in Section III, Except for “Mask But No
SPOT-Q” Which Is a Special Case Described in the SPOT-Q Section of Our Ablation
Study (Section IV-C). Values Are the Min and Max of Two Runs.

where πM (st) = arg maxa∈Mt(A)Q(st, a). Crucially, we per-
form backpropagation on both the masked action, which has
0 reward, and the unmasked action πM (st), which the robot
actually performs.

Algorithm 1 describes how we continuously train from past
examples with SPOT-Q and Prioritized Experienced Replay
(PER) [40] as the current policy is rolled out. In Section IV, we
discuss how SPOT-Q allows us to surpass prior work, wherein
similar heuristics [1], [41] neither match SPOT-Q nor account
for the safety considerations we discuss later.

IV. SIMULATION EXPERIMENTS

Our method improves performance and action efficiency over
the state of the art on the table clearing task from VPG [1], as well
as on two challenging multi-step tasks of our design: creating a
stack of four blocks and creating a horizontal row of four blocks.
Our best results can achieve 100% trial success on the simulated
stacking and row tasks, models which successfully transfer to
the real world as we show in Section V.

We detail a series of simulation experiments to understand
the contribution of each element of our approach to this overall
performance. To do so, we evaluate each reward function, the
effect of SPOT-Q on heuristic exploration, other possible SPOT-
Q implementations, the reward weighting term W , and then we
describe our best results with SPOT-Q + RP and SPOT-Q +
Rtrial. In brief, we find that Situation Removal RSR is the largest
contributor to our improved performance,RP improves accuracy
and efficiency, and Rtrial trains more efficiently than discounted
rewards while accounting for a time delay between actions and
consequences. SPOT-Q improves results over no masking, and
over basic masking on its own. Finally, we test a grid world navi-
gation task [42] to show how the SPOT framework applies to safe
reinforcement learning. Tables I and III summarize these results.

TABLE II
REAL ROBOT TASK RESULTS (SECTION V) WITH THE SPOT FRAMEWORK

Bold Entries Highlight Sim to Real Transfer With SPOT-Q. In This Table No SPOT-Q
Also Means No Masking.

TABLE III
SAFETY GRID WORLD (FIG. 5) COMPARISON OF ALGORITHM CHANGES ON

TOP OF RAINBOW [35]

Cases without RP Use the Built-In Reward. “Trials Complete” Is the Per-
centage of 1000 Test Trials Successfully Completed By Reaching the Green
Square in Fewer Than 100 Actions Without Entering Lava. “Efficiency” Is
the Best Test Ideal/Actual Actions Per Trial After 500 K Training
Actions. the Ideal Action Count for Each Trial Is Found Via a Wavefront
Planner. “Actions” Reports How Many Training Steps Were Taken Until
the First Case Where 100% of 30 Validation Trials Succeed. Values Are the
Min and Max of Two Runs.

A. Robot Implementation Details

We consider a robot capable of being commanded to a spec-
ified arm pose and gripper state in its workspace. Our action
space consists of three components: action types Φ, locations
X × Y , and angles Θ. The agent observes the environment via
a fixed RGB-D camera, which we project so that z is aligned
with the direction of gravity, as shown in Fig. 2. We discretize
the spatial action space into a square height map with 0.448m
on a side and 224× 224 bins with coordinates (x, y), so each
pixel represents roughly 4mm2 as per VPG [1]. The angle space
Θ = { 2πi

k |i ∈ [0, k − 1]} is similarly discretized into k = 16
bins. The set of action types consists of three high-level mo-
tion primitives Φ = {grasp, push, place}. In our experiments
action success is determined by our gripper’s sensor for grasp,
object perturbations for push, and an increase in stack height or
row length for place.

A traditional trajectory planner executes each action a =
(φ, x, y, θ) ∈ A on the robot. For grasping and placing, each
action moves to (x, y) with gripper angle θ ∈ Θ and closes or
opens the gripper, respectively. A push starts with the gripper
closed at (x, y) and moves horizontally a fixed distance along
angle θ. Fig. 2 visualizes our overall algorithm, including the
action space and corresponding Q-values.

B. Evaluation Metrics

We evaluate our algorithms in randomized test cases in accor-
dance with the metrics found in VPG [1]. Ideal Action Efficiency
is 100% and calculated as Ideal/Actual action count; defined

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 24,2021 at 15:57:55 UTC from IEEE Xplore. Restrictions apply.

HUNDT et al.: “GOOD ROBOT!”: EFFICIENT REINFORCEMENT LEARNING FOR MULTI-STEP VISUAL TASKS WITH SIM TO REAL TRANSFER 6729

as 1 action per object for grasping tasks; and 2 actions per object
for tasks which involve placement. This means 6 total actions
for a stack of height 4 since only 3 objects must move, and
4 total actions for rows by placing two blocks between two
endpoints. We validate simulated results twice with 100 trials
of novel random object positions.

C. Algorithm Ablation

We compare the contribution from each component of the
underlying algorithm and against baseline approaches in Table I,
except for clearing tasks which are provided in the text. Unless
otherwise stated we summarize rows and stacks together as a
combined average below.

Clear 20 Toys: We establish a baseline via the primary simu-
lated experiment found in VPG [1], where 20 toys with varied
shapes must be grasped to clear the robot workspace. The SPOT
framework matches VPG [1] with 100% task completion and
improves both the rate of grasp successes from 68% to 84% and
action efficiency from 64% to 74%.

Clear Toys Adversarial: The second baseline scenario is the
11 cases of challenging adversarial arrangements from VPG [1],
where toys are placed in tightly packed configurations. Each case
is run 10 times and the SPOT framework completely clears 7/11
cases compared to 5/11 in VPG [1]; the clearance rate across
all 110 runs improves to 95% from 84%. Efficiency in this case
drops from 60% to 38%, which is accounted for by the increase
in the number of difficult cases solved, as separating the blocks
can take several attempts.

Reward Functions: Rbase, RSR, RP , and Rtrial incrementally
extend one another (Section III-A, III-B). All masking is dis-
abled for this study unless otherwise indicated.
RD s.t. RD(st+1, at) = γRD(st+2, at+1) is discounting, the

most conventional approach to trial rewards. When evaluated
with RP at the final time step and γ = 0.9, grasp and place
actions succeed at a rate of 5% and 45%, respectively. Stacks of
height 2-3 are created and performance improves with masking
(32%, 48%). However, this approach is incredibly inefficient
with no stacks of 4 within 20 k actions. That said, we would
expect convergence if orders of magnitude more training were
feasible [43].
Rbase is effective for pushing and grasping [1], but it is not

sufficient for multi-step tasks, only completing 13% of rows
and stacks with about 200+ actions per trial in the best case.
In another case, it repeatedly reverses progress by often looping
grasping then placing of the same object at one spot, leading to
99% successful grasps but 0 successful trials overall, even after
manual scene resets. We do not expectRbase to converge on these
tasks as there is no progress signal to indicate, for example, that
grasping from the top of an existing stack is a poor choice.
RSR resolves the progress reversal problem immediately since

such actions get 0 reward; and thus we see an astounding increase
in trial successes from 13% to 94%, and an order of magnitude
efficiency increase to 23% across both tasks, or about 22 actions
per trial.
RP leads to a rise in combined trial successes to 97%, and

efficiency to 45%, or about 20 actions per trial. This improves
upon pure situation removal by incorporating the quantitative
amount of progress.
Rtrial utilizesRP as the instant reward function in this test, and

has an average trial success rate of 96% for stacks and efficiency
of 31%, or about 19 actions per trial. However, performance

degrades significantly for rows, declining to an 80% trial success
rate and just 16% action efficiency, or about 25 actions per
trial. These values indicate Rtrial strikes a trade-off between
the inefficiency of RD and the need for a more instantaneous
progress metric in RP , as the most recent value can be utilized
to fill actions with no progress feedback. We also note that once
SPOT-Q is added this reward is the best for stacking and second
best overall, as we show below.

SPOT-Q: VPG [1] evaluated heuristics that specify exact
locations to explore, and they found it led to worse performance.
A similar approach in QT-Opt [41] is phased out as training
proceeds, indicating that their methods do not contribute to im-
proving outcomes throughout the training process. By contrast,
SPOT-Q is enabled at all times and excises regions with zero
likelihood of success, while other regions of interest remain
open for exploration. So does this difference in heuristic design
matter?

The “Mask but no SPOT-Q” test disables the if statement
in Alg. 1 to simulate a typical heuristic in which exploration
is directed to particular regions without zero reward guidance.
“Mask but no SPOT-Q” completes 95% of trials, compared to
88% without masking and 99% with SPOT-Q; action efficiency
results are even more pronounced at 37%, 23%, and 50% respec-
tively. Both these results and Section IV-D show SPOT-Q simply
works throughout training and testing with little to no tuning, and
so we conclude that SPOT-Q improves the efficiency of learning
from heuristic data.

SPOT-Q Alternatives: We evaluated two alternatives to SPOT-
Q (eq. 8, Alg. 1), where 0 reward backpropagation is performed
on all masked pixels with loss applied to the (1) sum, and (2)
average of the masked scores in addition to the actually executed
action. In both cases, the gradients exploded and the algorithm
did not converge. Only SPOT-Q is able to efficiently enhance
convergence.

Reward Weighting: SPOT-Q + RP where Wpush=0.1 suc-
ceeds in 99% of trials, but just 27% when Wpush=1.0. The
weighting in Fig. 4 on Rtrial without masking or SPOT-Q
achieves 97% stack success and 38% action efficiency, but we
leave all weighting constant for consistency in Table I. This
shows W (3) is important for efficient training.

SPOT-Q + RP : This configuration has the best overall sim-
ulation performance with a 99% trial success rate and 50%
efficiency, or about 10 actions per trial. It is also the best
simulated row model with 98% trial success in one test and
100% in the second, with a high 62–68% action efficiency.

SPOT-Q + Rtrial: This has the best stacking model with 100%
completion in both test cases, and 45–51% efficiency. Overall
performance is the second best with 97% trial success, and 37%
efficiency, or about 14 actions per trial.

D. Safety and Domain Generalization

To demonstrate the broad scope of the SPOT framework, we
evaluate it on the simple but challenging Safety Grid World [42]
(Fig. 5), an environment type widely used to evaluate RL al-
gorithms [32], [39]. Here the red robot must move forward
or turn as it navigates towards the green square without ever
entering the lava. If we had just one real robot to learn within
this world, standard DRL would be extremely unsafe, but the
SPOT framework allows the robot to safely explore the space.

As Table III shows, all improvements are consistent with our
more realistic tasks. We start with Rainbow [35], a Q learning

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 24,2021 at 15:57:55 UTC from IEEE Xplore. Restrictions apply.

6730 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Fig. 5. Safety Grid World where the goal is to avoid lava and get to the green
square.

based DRL method, which only completes at most 12% of trials
within 500 k actions with a 12% efficiency. We then perform
a small ablation study, successively adding Masking, SPOT-Q,
and RP to Rainbow; 96.9%, 95.5%, and 99.9% of 1000 test
trials are completed, respectively; average efficiency is 75%,
73%, and 62%, respectively; and the average number of actions
to complete 100% of 30 validation trials is 123 k, 113 k, and
70 k, respectively.5 All failures with a mask did not enter the
lava, they hit a 100 action limit.

These results are consistent with our more realistic experi-
ments, demonstrate how the SPOT framework generalizes across
completely different scenarios, and illustrate the application of
the SPOT framework to safe exploration. Next, we demonstrate
how the SPOT framework leverages knowledge acquired in
simulation directly on a real robot task.

V. REAL WORLD EXPERIMENTS

Finally, we examine the performance of SPOT-Q on real robot
tasks, both via training from scratch and sim to real transfer. In
both cases, performance was roughly equivalent to that achieved
in simulation, which shows the strength of our approach for
efficient and effective reinforcement learning. We use the setup
described in [29], [44], including a Universal Robot UR5, a
Robotiq 2-finger gripper, and a Primesense Carmine RGB-D
camera; all but the arm differ from those in our simulation. Other
implementation details are as described in Section IV-A, and
results are in Table II.

Real Pushing and Grasping: We train the baseline pushing
and grasping task from scratch in the real world, test with 20
objects and see 100% test clearance, 75% grasp success rate,
and 75% efficiency in 1 k actions; these results are comparable
to the performance charted by VPG [1] over 2.5 k actions. Sim
to real does not succeed in this task.

Sim to Real vs Real Stacking: After training in simulation
we directly load the model for execution on the real robot.
Remarkably, all tested sim to real stacking models complete
100% of trials, outperforming a model trained on the real robot
which is successful in 82% of trials (Fig. 6, Table II). RP and
Rtrial have an equal action efficiency at 61%, and the version of
RP without SPOT-Q or a mask exhibits slightly lower efficiency
at 51%. This is particularly impressive considering that our
scene is exposed to variable sunlight. Intuitively, these results
are in part due to the depth heightmap input in stacking and
row-making.

Sim to Real Rows: Our RP + SPOT-Q sim to real rows model
is also able to create rows in a remarkable 100% of attempts
with 59% efficiency. Rtrial + SPOT-Q and RP with no mask

5In the grid world we only evaluate RP and the built-in reward (where all
reward is delivered at the end) because there is little distinction between a failed
action and failed trial.

Fig. 6. Real training of the SPOT framework to Stack 4 Cubes with Rtrial and
SPOT-Q. Failures include missed grasps, off-stack placements, and actions in
which the stack topples. Toppling can occur during successful grasp and push
actions.

perform slightly worse, both with 90% of trials complete, and
an efficiency of 83% and 58%, respectively. The high efficiency
of RP with no mask is because we end real trials immediately
when the task becomes unrecoverable, such as when a block
tumbles out of the workspace. We exclusively evaluate sim to
real transfer in this case because training progress is significantly
slower than with stacks.

We expect that block based tasks are able to transfer because
the network relies primarily on the depth images, which are
more consistent between simulated and real data. This might
reasonably explain why pushing and grasping does not transfer,
a problem which could be mitigated in future work with methods
like Domain Adaptation [24], [25].

VI. CONCLUSION

We have demonstrated that the SPOT framework is effective
for training long-horizon tasks. To our knowledge, this is the
first instance of reinforcement learning with successful sim
to real transfer applied to long term multi-step tasks such as
block-stacking and creating rows with consideration of progress
reversal. The SPOT framework quantifies an agent’s progress
within multi-step tasks while also providing zero-reward guid-
ance, a masked action space, and situation removal. It is able
to quickly learn policies that generalize from simulation to the
real world. We find these methods are necessary to achieve a
100% completion rate on both the real block stacking task and
the row-making task.

SPOT’s main limitation is that while intermediate rewards
can be sparse, they are still necessary. Future research should
look at ways of learning task structures that incorporate situation
removal from data. In addition, the action space mask M is
currently manually designed; this and the lower-level open loop
actions might be learned as well. Another topic for investigation
is the difference underlying successful sim to real transfer of
stacking and row tasks when compared to pushing and grasping.
Finally, in the future, we would like to apply our method to more
challenging tasks.

ACKNOWLEDGMENT

We extend our thanks to Adit Murali for Safety Grid World in-
tegration; to Molly O’Brien for valuable discussions, feedback,

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 24,2021 at 15:57:55 UTC from IEEE Xplore. Restrictions apply.

HUNDT et al.: “GOOD ROBOT!”: EFFICIENT REINFORCEMENT LEARNING FOR MULTI-STEP VISUAL TASKS WITH SIM TO REAL TRANSFER 6731

and editing; to Corinne Hundt for the “Good Robot!” title copy-
writing; to Michelle Hundt, Thomas Hundt, and Ian Harkins for
editing; to all those who gave their time for reading, reviewing,
and feedback; and to the VPG [1] authors for releasing their
code.

REFERENCES

[1] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in Proc. Int. Conf. Intell. Robot. Syst. 2018,
pp. 4238–4245.

[2] O. Kroemer, S. Niekum, and G. D. Konidaris, “A review of robot learn-
ing for manipulation: Challenges, representations, and algorithms,”2019,
arXiv:1907.03146.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The J. Mach. Learn. Res., vol. 17, no. 1,
pp. 1334–1373, 2016.

[4] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” Int. J. Robot. Res., vol. 37, no. 4–5, pp. 421–436,
2018.

[5] D. Kalashnikov et al., “QT-OPT: Scalable deep reinforcement learning for
vision-based robotic manipulation,” CoRL, 2018.

[6] J. Redmon and A. Angelova, “Real-time grasp detection using convo-
lutional neural networks,” in Proc. Int. Conf. Robot. Autom.. 2015, pp.
1316–1322.

[7] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally:
Efficient and robust 3D object recognition,” in Proc. Comput. Vis. Patt.
Recognit., vol. 1, no. 2, 2010, p. 5.

[8] S. Kumra and C. Kanan, “Robotic grasp detection using deep convolutional
neural networks,” Int. Conf. Intell. Robot. Syst., Sep. 2017.

[9] E. Jang, S. Vijayanarasimhan, P. Pastor, J. Ibarz, and S. Levine, “End-to-
end learning of semantic grasping,” in CoRL, 2017, pp. 119–132.

[10] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. J. Robot. Res., vol. 34, no. 4-5, pp. 705–724, 2015.

[11] D. Morrison, J. Leitner, and P. Corke, “Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach,” RSS,
2018.

[12] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-DoF
grasping for target-driven object manipulation in clutter,” Int. Conf. Robot.
Autom., 2020.

[13] A. Gupta, C. Eppner, S. Levine, and P. Abbeel, “Learning dexterous
manipulation for a soft robotic hand from human demonstrations,” in Int.
Conf. Intelligent Robots Syst.. IEEE, 2016, pp. 3786–3793.

[14] C. Devin, P. Abbeel, T. Darrell, and S. Levine, “Deep object-centric
representations for generalizable robot learning,” in Int. Conf. Robot.
Autom.. 2018, pp. 7111–7118.

[15] A. Lerer, S. Gross, and R. Fergus, “Learning physical intuition of block
towers by example,” Int. Conf. Mach. Learn., pp. 430–438, 2016.

[16] O. Groth, F. B. Fuchs, I. Posner, and A. Vedaldi, “ShapeStacks: Learning
vision-based physical intuition for generalised object stacking,” in Proc.
Europ. Conf. Comput. Vis., 2018, pp. 702–717.

[17] C. Finn, I. J. Goodfellow, and S. Levine, “Unsupervised learning for phys-
ical interaction through video prediction,” in Proc. Adv. Neural Inform.
Process. Syst., 2016, pp. 64–72.

[18] A. Byravan and D. Fox, “SE3-Nets: Learning rigid body motion using deep
neural networks,” in Proc. Int. Conf. Robot. Autom., 2017, pp. 173–180.

[19] J. Mahler et al. “DEX-Net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics,” in Proc. Robot.: Sci.
Syst. (RSS), 2017.

[20] J. Mahler et al., “Learning ambidextrous robot grasping policies,” Sci.
Robot., vol. 4, no. 26, 2019.

[21] A. Mousavian, C. Eppner, and D. Fox, “6-DoF GraspNet: Variational grasp
generation for object manipulation,” in Proc. IEEE Int. Conf. Comput. Vis.,
2019, pp. 2901–2910.

[22] F. Zhang, J. Leitner, M. Milford, and P. Corke, “Modular deep Q networks
for sim-to-real transfer of visuo-motor policies,” ACRA, 2017. [Online].
Available: http://arxiv.org/abs/1610.06781

[23] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. A. Funkhouser, “Tossing-
Bot: Learning to throw arbitrary objects with residual physics,” in Proc.
Robot.: Sci. Syst. XV, vol. 15, 2019.

[24] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Do-
main randomization for transferring deep neural networks from simulation
to the real world,” in Proc. Int. Conf. Intell. Robot. Syst. 2017, pp. 23–30.

[25] K. Bousmalis et al., “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” in Int. Conf. Robot. Autom.. 2018,
pp. 4243–4250.

[26] Y. Zhu et al., “Reinforcement and imitation learning for diverse visuomotor
skills,” in Proc. Robot.: Sci. Syst. XIV, vol. 14, 2018. [Online]. Available:
http://arxiv.org/abs/1802.09564

[27] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese, “Neural
task programming: Learning to generalize across hierarchical tasks,” in
Proc. Int. Conf. Robot. Autom. 2018, pp. 1–8.

[28] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. de Freitas, “Playing
hard exploration games by watching youtube,” in Proc. Adv. Neural Inform.
Process. Syst., 2018, pp. 2935–2945.

[29] A. Hundt, V. Jain, C.-H. Lin, C. Paxton, and G. D. Hager, “The costar block
stacking dataset: Learning with workspace constraints,” Intell. Robots Syst.
(IROS), 2019 IEEE Int. Conf., 2019. [Online]. Available: https://arxiv.org/
abs/1810.11714

[30] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforcement
learning with policy sketches,” in ICML’17 Proc. 34th Int. Conf. Mach.
Learning - Volume 70, 2017, pp. 166–175.

[31] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning
modular neural network policies for multi-task and multi-robot transfer,”
in Proc. Int. Conf. Robot. Autom. 2017, pp. 2169–2176.

[32] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D.
Man, “Concrete problems in ai safety,” 2016, arXiv:1606.06565.

[33] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq, L.
Orseau, and S. Legg, “Ai safety gridworlds,” arXiv:1711.09883, 2017.

[34] T. Everitt, G. Lea, and M. Hutter, “AGI safety literature review,” in Proc.
27th Int. Joint Conf. Artif. Intell., 2018, pp. 5441–5449.

[35] M. Hessel et al., “RainBow: Combining improvements in deep reinforce-
ment learning,” in Proc. AAAI, 2018, pp. 3215–3222.

[36] Y. Zhu et al., “Reinforcement and imitation learning for diverse visuomotor
skills,” in Proc. Robot.: Sci. Syst. XIV, vol. 14, 2018.

[37] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement learning
for deformable object manipulation,” Conf. Robot Learn., pp. 734–743,
2018.

[38] J. Mahler and K. Goldberg, “Learning deep policies for robot bin
picking by simulating robust grasping sequences,” Conf. Robot Learn.,
pp. 515–524, 2017.

[39] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc. Int.
Conf. Mach. Learn., 1999, pp. 278–287.

[40] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in ICLR 2016 : Int. Conf. Learning Representations 2016, 2016.

[41] D. Kalashnikov et al., “Scalable deep reinforcement learning for vision-
based robotic manipulation,” in Proc. Conf. Robot. Learn., 2018.

[42] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic gridworld
environment for openai gym,” [Online]. Available https://github.com/
maximecb/gym-minigrid, 2018.

[43] M. Andrychowicz et al., “Hindsight experience replay,” in Proc. Adv.
Neural Inform. Process. Syst., 2017, pp. 5048–5058.

[44] C. Paxton, F. Jonathan, A. Hundt, B. Mutlu, and G. D. Hager, “Evaluating
methods for end-user creation of robot task plans,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS). 2018, pp. 6086–6092.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 24,2021 at 15:57:55 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1610.06781
http://arxiv.org/abs/1802.09564
https://arxiv.org/abs/1810.11714
https://github.com/maximecb/gym-minigrid

