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Drought, coupled with rising temperatures, is an emerging threat to many forest types
across the globe. At least to a degree, we expect management actions that reduce
competition (e.g., thinning, prescribed fire, or both) to improve growth of residual trees
during drought. The influences of management actions and drought on individual tree
growth may be measured with high precision using tree-rings. Here, we summarize tree-
ring-based assessments of the effectiveness of thinning and prescribed fire as drought
adaptation tools, with special consideration for how these findings might apply to dry
coniferous forests in the southwestern United States. The existing literature suggests
that thinning treatments generally improve individual tree growth responses to drought,
though the literature specific to southwestern coniferous forests is sparse. Assessments
from studies beyond the southwestern United States indicate treatment effectiveness
varies by thinning intensity, timing of the drought relative to treatments, and individualistic
species responses. Several large-scale studies appear to conflict on specifics of how
site aridity influences sensitivity to drought following thinning. Prescribed fire effects
in the absence of thinning has received much less attention in terms of subsequent
drought response. There are limitations for using tree-ring data to estimate drought
responses (e.g., difficulties scaling up observations to stand- and landscape-levels).
However, tree-rings describe an important dimension of drought effects for individual
trees, and when coupled with additional information, such as stable isotopes, aid our
understanding of key physiological mechanisms that underlie forest drought response.

Keywords: dendrochronology, ecosystems, fire effects, fuel treatments, thinning

INTRODUCTION

Periodic droughts are occurring against a backdrop of increasing temperatures, so that drought
effects are exacerbated by greater evaporative demand. These “hotter droughts” have been linked to
vegetation stress and complete forest diebacks (Allen et al., 2015). In response, forest managers
are developing strategies to adapt to these changing conditions (Millar and Stephenson, 2015).
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The need to develop forest management tools is particularly
urgent in the dry coniferous forests of the southwestern
United States (here defined as dry forest types in Arizona,
California, New Mexico, Nevada, and Utah). In this region,
a history of fire exclusion has resulted in many forest types
experiencing changes in forest structure, increased accumulation
of forest fuels, and increased fire activity with changing climatic
conditions (Hurteau et al., 2014). Simultaneously, this region has
experienced drought-induced forest diebacks (Allen et al., 2015).

Managers have two primary tools for large-scale forest
restoration: mechanical thinning and prescribed fire (with both
treatments sometimes applied sequentially to the same stand).
Mechanical thinning removes competing vegetation to promote
growth of residual trees, and has a long history of use that
includes conservation applications (e.g., Kolb et al, 2007).
Prescribed fire, where fire is intentionally ignited or let burn
under conditions that encourage moderate fire effects, is used
to remove surface fuels and continuity of live fuels (shrubs,
small trees and low branches) (Ryan et al, 2013). It is less
clear if prescribed fire leads to negative or positive growth
responses in residual trees. Fire often injures surviving trees, and
prescribed fire is typically designed to only remove surface and
ladder fuels (i.e., small trees), so that large reductions in stand
basal area are uncommon (Schwilk et al., 2009). Managers have
much greater control over treatment outcomes with thinning
operations relative to prescribed fire, but both types of treatments
can be designed to be more or less “aggressive,” with varying
numbers of surviving trees.

Tree-ring measurements have been used to provide evidence
for the effectiveness of thinning and prescribed fire treatments in
terms of drought adaptation. These observations have intuitive
appeal for these applications, as tree-rings can be used to
measure response to environmental stress and construct indices
of drought response. Here, we briefly review the use of tree-
ring evidence to support or refute the efficacy of thinning and
prescribed fire as a drought adaptation strategy, with a focus
on how these results may apply to drought-sensitive, coniferous
forest types in the southwestern United States.

TREE-RING INDICES OF DROUGHT
RESPONSE

Drought stress and competition lower photosynthetic capacity,
and as a consequence trees may reduce carbon allocation to non-
critical functions such as stem growth (Waring, 1987). Therefore,
tree-ring records of growth may be an early indicator of stress
on individual trees. Drought response as measured by tree-
rings can be decomposed into the following elements (Lloret
etal., 2011): drought resistance, quantified as growth insensitivity
to stress (growth during drought/pre-drought growth); growth
recovery, considered as the growth rate following drought relative
to growth during drought (post-drought growth/growth during
drought); and drought resilience, measured as the magnitude
of return to pre-drought growth (post-drought growth/pre-
drought growth) (Figure 1). These indices have been used to
measure drought response and effects of management in a wide
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FIGURE 1 | Hypothetical growth responses of individual trees to drought
(shaded area) following thinning treatment. The solid line depicts a tree that
responds to treatment with higher growth, relatively little loss in growth during
drought (high resistance), and a relatively rapid return to pre-drought growth
rate (high resilience). The dashed line depicts a tree in an untreated stand that
subsequently experiences greater loss of growth during drought (low
resistance) and requires longer to recover the pre-drought growth rate (low
resilience).

variety of forest types (Sohn et al., 2016). Problematically, indices
of drought resistance, recovery, and resilience appear to be
correlated (Gazol et al., 2017a,b, 2018). These indices are also
sensitive to the measurements of growth that are used (e.g., radial
versus basal area increment), and suffer from potential biases
arising from length and growth conditions of the pre-drought
reference period, lack of standardization in defining drought
severity and duration, variation in post-drought conditions,
and differential species responses (Schwarz et al., 2019). These
shortcomings complicate comparisons of drought and thinning
effects across studies.

WHAT IS THE EVIDENCE?

There are surprisingly few published tree-ring-based studies
of management effects on drought resistance and resilience in
coniferous forests of the southwestern United States, a region
known for its vulnerability to drought-induced tree mortality
(Adams et al., 2009; Williams et al., 2013; Table 1). Field studies
from outside of this region using tree-ring evidence support the
use of thinning treatments to promote resistance and resilience
to drought (Figure 1) for conifers (Kohler et al, 2010; Sohn
et al., 2016), with the magnitude of response positively related to
thinning intensity (Laurent et al., 2003), and negatively related
to stand age (D’Amato et al., 2013). Time-since-thinning is also
expected to influence outcomes, with treatment effectiveness
becoming increasingly muted over time as vegetation regrows
(Sohn et al, 2016). However, it is unclear how site aridity
influences thinning responses to drought, a critical consideration
for forests in the southwestern United States.

Large-scale analyses using tree-ring drought response indices
(Figure 1) provide somewhat conflicting results concerning the
effects of site aridity. Across North America (including the
southwestern United States) and Europe, Gazol et al. (2017a)
found trees in arid sites had less resistance but greater recovery
relative to mesic sites, although they did not consider thinning
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TABLE 1 | Studies using tree-ring evidence to assess thinning and prescribed burning effectiveness in moderating drought response in dry coniferous forests of the

southwestern United States.

Years between last Response

Treatment Number of thinning treatment
Study Species Location type treatments and drought Resistance Recovery Resilience
Bottero et al., 2017 ponderosa pine  Arizona Thinning 5 0 + NA +
Erickson and Waring, 2014 ponderosa pine  Arizona Thinning and burning 1 1 + NA +
Gleason et al., 2017 ponderosa pine  Arizona Thinning 6 0 NA NA NA
Kerhoulas et al., 2013 ponderosa pine  Arizona Thinning and burning 1 1 + NA NA
Kolb et al., 2007 ponderosa pine  Arizona Thinning, Thinning & 1 9 - + NA
burning
McDowell et al., 2006 ponderosa pine  Arizona Thinning 4 4 NA NA NA
Skov et al., 2005 ponderosa pine  Arizona Thinning and burning 1 2 0/+ NA NA
Thomas and Waring, 2015 ponderosa pine  New Mexico  Thinning, Thinning & 1 3 + NA +
burning
Vernon et al., 2018 Douglas-fir California Thinning 1 2 + NA NA
ponderosa pine Thinning 1 2 + NA NA

effects. They speculated that the faster recovery in arid sites
may be attributable to species differences, with arid regions
containing species better able to recover from drought. Gazol
et al. (2017b) and Gazol et al. (2018) found the same drought
response pattern with site aridity in intensive studies of sites
across Spain. In contrast, a meta-analysis of drought effects and
thinning including data from the southwestern United States
found radial growth drought resistance (Figure 1) increased
with site aridity, at least for unthinned and heavily thinned
stands (Sohn et al, 2016). After drought Sohn et al. (2016)
found this relationship with site aridity and drought response
indices reversed, with aridity generally associated with decreased
drought recovery and resilience. The authors hypothesized that
trees adapted to drier environments invest more resources in
non-structural carbohydrates, allowing them to maintain growth
during initial drought stress, but then following drought it may be
difficult to replace these resources and recover growth. Another
large-scale study of growth response to drought and stand
density in North America (using data from similar southwestern
United States sites) found drought and competition reduced
growth across all observed forest types, but that at arid sites
growth was highly sensitive to drought stress and less sensitive
to stand density (Gleason et al., 2017). The authors did not
employ the drought response indices outlined in Figure 1, instead
determining drought response from the relationship between
drought severity and stand-level basal area increment based
on tree-rings. The findings of Gleason et al. (2017) suggest
that thinning can be used as a drought adaptation tool in dry
coniferous forests of the United States Southwest, but that these
treatments might be less effective relative to mesic forest types.
Specific to forests in the southwestern United States, the
few existing reports have generally shown improved growth
responses following thinning and drought (Table 1), but with
differences among specific drought indices (Figure 1). Building
on results from Feeney et al. (1998), Kolb et al. (2007)
showed that thinning with and without prescribed fire resulted
in lower resistance to severe drought for large (> 40 cm
DBH, diameter at breast height, 1.37 m) ponderosa pine
(Pinus ponderosa Douglas ex C. Lawson), although growth

recovery appeared to be enhanced for trees in treated stands.
Skov et al. (2005) found that small (< 39 cm DBH) ponderosa
pine in northern Arizona had greater drought resistance with
increasing thinning intensity across two years of drought,
although larger individuals (< 55 cm DBH) did not show this
response. Erickson and Waring (2014) and Thomas and Waring
(2015) found that thinning increased drought resistance and
resilience following severe drought for ponderosa pine in New
Mexico and Arizona. Bottero et al. (2017) considered stand-
level basal area increment based on tree-rings from ponderosa
pine in northern Arizona (among other sites), finding that
drought resistance and resilience were negatively related to
stand density both in early- and late-stage drought. Kerhoulas
et al. (2013) found that highly aggressive fuel treatments
enhanced radial growth rates in large residual ponderosa
pine in northern Arizona, potentially improving resistance
to short-duration droughts. However, the resulting changes
in tree architecture (i.e., greater leaf-to-sapwood area ratios)
may commit residual trees to high transpirational demands,
perhaps making them more vulnerable to droughts over the
long term (McDowell et al., 2006). In a mixed-conifer forest
in northern California, thinning improved drought resistance,
but tree size, competition and species identity influenced this
response (Vernon et al., 2018). Analyses of prescribed fire
effects without mechanical thinning on drought response are
far less common. Using repeated stem diameter measurements
(not tree-ring data) in a Sierra Nevada mixed conifer forest,
Collins et al. (2014) found that prescribed fire did not
create growth conditions that reduced vulnerability for most
common species.

The large-scale studies outlined above, as well as other studies
(e.g., Zang et al, 2014), indicate that species are expected to
respond individualistically to drought. For example, within the
dry coniferous forests in northern California, Vernon et al.
(2018) found that drought-tolerant ponderosa pine responded
more positively to thinning treatments during drought relative to
less drought-tolerant Douglas-fir [ Pseudotsuga menziesii (Mirbel)
Franco]. Responses of angiosperms to thinning and drought are
less well studied than conifers (Sohn et al., 2016), a pattern that
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also holds in the southwestern United States. Gazol et al. (2017a,
2018) suggest gymnosperms and angiosperms may have different
drought resistance and recovery responses that may be partially
determined by species-specific physiological drought responses
and adaptive capacities. As such, drought-related mortality
risk tends to be associated with lower drought resistance in
angiosperms, while in gymnosperms this risk is often associated
with lower drought recovery (DeSoto et al., 2020). Further tree-
ring-based assessments of hardwood responses to drought and
how management may influence these responses are needed.
Note that the studies using drought resistance, recovery, and
resilience metrics (Figure 1) are subject to important biases
outlined by Schwarz et al. (2019), making it challenging
to generalize across studies. Also note that many of these
studies set in the southwestern United States occurred at
similar sites in northern Arizona and focused on ponderosa
pine (Table 1).

LIMITATIONS OF TREE-RING EVIDENCE

There are several limitations to the use of tree-rings to assess
forest adaptation strategies. Tree-rings integrate a wide variety
of signals; outside of extreme environments (e.g., high altitude,
high latitude, or ecotonal forests) it is difficult to assign causes
of growth variability without additional information (Speer,
2010). Typical sampling strategies can be problematic, with
tree-ring samples often limited to large living or recently
dead trees (i.e., the “fading record” problem) (Swetnam et al,
1999), complicating assessments of long-term growth patterns
(Bowman et al., 2013). Tree-rings represent samples from
individual trees and growth variability is affected by tree species,
age, and size so that samples restricted to large trees cannot be
reliably scaled up to stand- and landscape-level growth patterns
(Clark et al., 2016). In recognition of this problem, some studies
have sampled across a range of tree sizes (Bottero et al., 2017;
Gleason et al., 2017).

Tree growth is only one possible measure of drought response.
Other important metrics include tree mortality, reproduction,
and vulnerability to further disturbances (e.g., wildfires, pests,
and diseases). Several large-scale studies in the southwestern
United States have demonstrated that competition is directly
related to mortality during drought (Bradford and Bell, 2017;
Young et al, 2017), so that thinning treatments may lower
drought-related mortality (Restaino et al., 2019).

BEYOND GROWTH: COMPLEMENTARY
EVIDENCE FOR UNDERSTANDING
FOREST DROUGHT RESPONSE

Tree-ring data can be combined with other data sources to
provide a better understanding of the patterns and mechanisms
underlying forest drought responses. We briefly describe some of
these complementary data sources and how they may enhance
our understanding of drought responses in dry coniferous forests
of the southwestern United States.

Stable Isotopes - Evidence of
Physiological Mechanisms Underlying

Forest Responses

To better understand forest drought responses, tree-ring
stable isotopes can provide insights on possible physiological
mechanisms that may vary in response to management with
annual and even sub-annual resolution. Examples of such
mechanisms include water stress, intrinsic water use efficiency
(iWUE, carbon assimilated per water transpired), and source
water use. Despite this potential, tree-ring stable isotopes seem
relatively underutilized, likely due to the fact that analyses of
stable isotope ratios (e.g., 8'°C and 8130) and discrimination
rates (A'3C) generally require skilled expertise in sample
preparation methods and data interpretation and costs can be
high at commercial isotope laboratories.

Increasing resources for growth (e.g., water, light, and
nutrients) by reducing competition seems an obvious result of
thinning (and perhaps of prescribed fire), but these treatments
can also potentially decrease water availability via increased
evapotranspirational losses. Thus, tree-ring based analyses of
stable isotopes at inter- and intra-annual timescales provide
insights regarding the mechanisms of tree response to stand
manipulations and drought. Across a range of environments
many tree-ring 5'>C analyses suggest that iWUE is a relatively
homeostatic trait largely unresponsive to changes in competition
(e.g., Fernandez-de-Una et al., 2016), while other studies
indicate that the magnitude of change in rates of carbon
assimilation and stomatal conductance of water vapor can
differ in response to reductions in competition via thinning
(McDowell et al., 2003; Giuggiola et al., 2016; Rezaie et al.,
2018). Specific to arid southwestern United States coniferous
forests, McDowell et al. (2006) found that following thinning
treatments, increases in stomatal conductance of water vapor
(largely driven by increased water availability) were higher than
increases in carbon assimilation rates (largely driven by light
and nitrogen availability), such that iWUE can decrease in
response to management actions. Although iWUE responses
to thinning are variable, the majority of tree-ring stable
isotope analyses demonstrate that reductions in competition
can increase tree water availability, stomatal conductance, and
carbon assimilation, potentially decreasing forest vulnerability
to drought, particularly via increased resilience (Figure 1; Sohn
et al,, 2013). In arid southwestern coniferous forests, tree-ring
stable isotopes indicate that heavy thinning treatments can
reduce tree water stress (McDowell et al., 2006; Sohn et al.,
2014); this finding corroborates growth-based findings that
management has the potential to decrease drought vulnerability
in these forest types.

Forest Pests and Inducible Defenses

As noted above, drought response can be measured in terms of
tree mortality. As in other forest types, mortality in southwestern
United States forests may go beyond direct effects of drought
stress (e.g., loss of hydraulic function and carbon starvation)
(Adams et al., 2017), to include secondary attacks by forest pests.
In the southwestern United States, important forest pests include
bark beetles (Dendroctonus spp., Ips spp., and Scolytus spp.).

Frontiers in Forests and Global Change | www.frontiersin.org

April 2020 | Volume 3 | Article 41


https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles

van Mantgem et al.

Tree-Rings, Drought, and Forest Management

Dense stands may be more susceptible to bark beetle attacks and
subsequent tree mortality in association with drought (Negron
et al, 2009; Fettig et al, 2019). While drought stress may
presage bark beetle attack in southwestern forests, severe drought
may lead to bark beetle outbreaks where otherwise vigorous
trees (as measured by stem growth rate) are killed (Stephenson
et al,, 2019). Under these circumstances forest management may
be less effective.

In southwestern United States pines, tree-ring-based
measurements of resin duct size and area can supplement
annual growth data or be used alone to predict successful bark
beetle attack and subsequent mortality (Kane and Kolb, 2010).
In coniferous forests outside of the United States Southwest,
thinning and prescribed fire may stimulate trees to increase resin
flow and develop resin duct defenses against bark beetles (Hood
et al,, 2015, 2016). The increase in resin defenses may be related
to improved growth in residual trees or in response to wounding
(Hood and Sala, 2015). Thus far, the role of forest management
on inducible defenses is not well defined for southwestern
United States forests.

Linking Tree-Ring Data With Remotely

Sensed Information

Linking tree-ring information with remotely sensed imagery
provides a potential method to scale up observations. Gazol
et al. (2018) found that tree-ring drought indices (Figure 1) and
the Normalized Difference Vegetation Index (NDVI) showed
similar responses to drought across several species in Spain.
A similar comparison found trends in both records of declining
forest productivity (NDVI) and growth (tree-rings) in interior
Alaska associated with drought-induced climate changes between
1982 and 2008 (Beck et al., 2011). Expanding such analyses to
directly consider the role of management in drought response in
southwestern United States forests would help generalize findings
based on tree-ring information alone to broader spatial scales.

DISCUSSION

There are surprisingly few tree-ring-based studies of drought
response following management treatments in dry coniferous
forests of the southwestern United States, a heavily managed
region particularly vulnerable to widespread drought-induced
forest mortality. Currently published studies in the southwestern
United States have focused on a forest type at a particular
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