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We propose a new derivation from full loop quantum gravity (LQG) to the loop quantum cosmology
improved ji-scheme effective dynamics, based on the reduced phase-space formulation of LQG and a
proposal of an effective Hamiltonian/action in full LQG. A key step of our program is an improved
regularization of full LQG Hamiltonian on a cubic lattice. The improved Hamiltonian uses a set of “dressed
holonomies” /1, (8) which depend on both the connection A and the length of the curve 8. With the
improved Hamiltonian, we propose a quantum effective action and derive a new set of effective equations
of motion (EOMs) for full LQG. Then, we show that these new EOMs imply the ji-scheme effective
dynamics for both the homogeneous-isotropic and Bianchi-I cosmologies, and predict a bounce and
Planckian critical density. As a byproduct, although the model is defined on a cubic lattice, we find that the
improved effective Hamiltonian of cosmology is invariant under lattice refinement. The cosmological
effective dynamics, predictions for the bounce, and critical density are results in the continuum limit.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a promising candidate
for a nonperturbative and background-independent theory
of quantum gravity (see, e.g., Refs. [1,2] for reviews).
Among many important achievements of LQG, one of the
most profound physical predictions is the resolution of
singularities [3—14]. It is well known that classical Einstein
gravity breaks down at singularities, while the purpose of
quantum gravity is to extend the gravitational theory to
describe the physics of singularities.

A well-developed method of singularity resolution is
loop quantum cosmology (LQC), where the big bang
singularity is replaced by a quantum bounce (see, e.g.,
Refs. [15-17] for reviews). LQC applies the LQG method
to the homogeneous and isotropic sector of gravity. The
homogeneous and isotropic sector is given by a classical
symmetry reduction from the infinitely many degrees of
freedom of gravity to a single degree of freedom (the scale
factor). The quantum dynamics of LQC have been studied
extensively, and it turns out that it can be efficiently
described by an effective equation, which reduces to the
classical Friedmann equation at low energy density and
modifying the Friedmann equation at high energy density
[18]. The solution of the effective equation demonstrates
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that the big bang singularity is resolved and replaced by a
big bounce, where the curvature is finite and Planckian.
The time evolution of cosmology governed by the LQC
effective equation is often called the effective dynamics.

Due to the theme of symmetry reduction before quan-
tization, LQC has suffered from the long-standing issue
regarding the relation with the full theory of LQG.
Symmetry-reduced models of loop quantum black holes
share the same issues. There has been interesting recent
progress concerning this relation [14,19-28]. Although
there is a top-down derivation from the full LQG to
LQC py-scheme effective dynamics [14], the LQG deri-
vation to the improved fi-scheme effective dynamics of
LQC is still largely open [29]. The ji scheme is physically
preferred because it predicts a constant Planckian energy
density at the bounce, while the density at the bounce in the
Uy scheme can vary and possibly be non-Planckian.

Our present work takes one step further toward resolving
the above issue, and proposes a new derivation of the LQC
improved ji-scheme effective dynamics from full LQG. Our
derivation is based on the reduced phase-space formulation
of LQG [30,31]. A key step of our program is an improved
regularization of the full LQG Hamiltonian on a cubic
lattice. The improved Hamiltonian uses a set of “dressed
holonomies” %, (8) which depend on both the connection
A and the length of the curve 8. With the improved
Hamiltonian, we propose a quantum effective action and
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derive a new set of effective equations of motion (EOMs)
for full LQG. Then, we show that these new EOMs imply
the p-scheme effective dynamics for both the homo-
geneous-isotropic and Bianchi-I cosmologies, and pre-
dict a bounce and Planckian critical density. Moreover,
although the model is defined on a cubic lattice, we find
that the improved effective Hamiltonian of cosmology is
invariant under lattice refinement, and has a trivial con-
tinuum limit. The predictions for the bounce and critical
density are also independent of the lattice refinement.

The idea of constructing the improved Hamiltonian H
is to regularize the curvature F(A) of the Ashtekar-Barbero
connection A in a nonconventional manner. In the standard
regularization [32], F(A) is replaced by a loop holonomy,
which is a functional of A only. In our approach, we denote
by S(A) the surface enclosed by the loop holonomy %(A),
and require /(A) to not only be a functional of A but also
depend on the geometry of the surface S(A). Inspired by
LQC, we introduce an area scale A such that the area of
S(A) is fixed to be A. Here A is a free parameter of
dimension (length)? and may be chosen to be the minimal
area gap in LQG. h(A) depends on A, and thus so does the
Hamiltonian H, constructed from /(A). Our regularization
of H, is described in Sec. IIL

Interestingly, H, is a non-graph-changing Hamiltonian
which changes the graph. H, is non-graph-changing
because it is a function on the phase space P, of holo-
nomies and fluxes on a fixed cubic lattice (a graph whose
vertices are all 6-valent) y. The cubic graph is preferred by
the semiclassical analysis of the canonical LQG [14,33],
but it changes the graph y because h(A) contains holon-
omies along curves that do not belong to y. The simple way
to make these two aspects of H, consistent is to define
h(A) as a phase-space function on P,. Indeed, a desired
h(A) can be defined by comparing the continuum approx-
imations of #(A) and the holonomy around a plaquette in y.
The procedure involves a certain gauge fixing. The strategy
of constructing i(A) is discussed in Secs. IV and V.

In Sec. VI, we propose a canonical quantum effective
action S with the improved Hamiltonian H,. Hp and S
explicitly depend on the scale A which is similar to UV
cutoffs in quantum effective actions of quantum field
theories. This suggests that S.; should be viewed as a
quantum effective action which takes quantum effects into
account. We derive a new set of EOMs of full LQG from
the variational principle of S.;. These EOMs are improved
effective equations because they come from the improved
Hamiltonian and relate to the ji-scheme effective dynamics
in LQC.

In Sec. VII, we look for spatially homogeneous solutions
of our improved effective equations of LQG. When
inserting an ansatz that respects the spatially homogeneous
symmetry, we show that the effective equation reduces to
the zi-scheme effective equations of Bianchi-I LQC. If we
further restrict the solution to be isotropic, the effective
equation reduces to the ji-scheme effective equations of

standard LQC. We demonstrate the singularity resolution
and bounce in Sec. VIII, and reproduce a constant critical

density p,. at the bounce, p, = 16ﬂ_zf’zlfA (where A is the

positive cosmological constant). p,. is Planckian and
corresponds to the Planckian curvature when A ~ £3.
Moreover, although the H, of the full theory involves
gauge fixing, the cosmological effective dynamics is gauge
invariant and independent of the gauge fixing.

Additionally, in Sec. IX we observe that although H, is
defined on the lattice y, it is invariant under lattice refine-
ment and therefore has a trivial continuum limit, at least
when evaluating at homogeneous solutions. The effective
equations, predictions for the bounce, and critical density
are also invariant under lattice refinement, and so can
be understood as results at the continuum limit. The key
point here is that #(A) is defined around a surface with
fixed area and is invariant under lattice refinement.
This lattice independence of H, suggests that the theory
at the homogeneous solution is possibly a fix point of the
Hamiltonian renormalization in Ref. [34]. Moreover, this
invariance indicates scaling invariance from the viewpoint
of lattice field theory, and relates to conformal invariance in
three dimensions.

II. REDUCED PHASE-SPACE FORMULATION

Our work is based on the reduced phase-space formu-
lation of LQG. The reduced phase-space formulation
couples gravity to matter fields (clock fields), followed
by the deparametrization procedure that parametrizes the
gravity variables by clock fields. In this paper, we mainly
focus on two scenarios: coupling gravity to Brown-Kuchar
and Gaussian dust fields [31,35-37]. The following
briefly reviews the procedure in the reduced phase-space
formulation.

We denote the action of the Brown-Kuchar dust model as

SBKD:

SBKD [/]’ g/u/v T? Sj’ W]]

:—%/d“x |det(g)|pl¢*U, U, + 1], (2.1)

v,=-0,T+W;0,5, (2.2)
where the scalars 7, S/='23 form the dust coordinates of
time and space to parametrize physical fields. p, W; are
Lagrangian multipliers. p is interpreted as the dust energy
density. When we couple Sgip to gravity (or gravity coupled
to some other matter fields) and carry out a Hamiltonian
analysis [37], we obtain the following constraints:

L[ Pp

2 [ /det(q)

C=C+ + /det(q)p(¢*U,Us +1)| =0,

(2.3)
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C¥' = Cy+ PT .~ P;S, =0, (2.4)
2 P’ % 1

= 14 q*%U,U,)™", 2.5

P = Get(q) (144U, Up) (2.5)

W, =P;/P, (2.6)

where a, /3 are spatial coordinate indices, g, is the 3-metric,
P,P; are momenta conjugate to T, S/, and C,C, are
Hamiltonian and diffeomorphism constraints of gravity
(or gravity coupled to some other matter fields). First,
Eq. (2.5) can be solved as

p=¢ (1+q*UUp)7' 2, e==x1. (2.7)

det(q)

€ can be fixed to € = 1 by the physical requirement that U is
timelike and future pointing [30], so sgn(P) = sgn(p).
Inserting this solution into Eq. (2.3) and using Eq. (2.6)
leads to

C=—P\/1+49C,Cy/ P (2.8)
Thus, —sgn(C) = sgn(P) = sgn(p). When we consider dust
coupled to pure gravity, we must have C <0 and the
physical dust p, P > 0 to fulfill the energy condition, as
in Ref. [35]. However, we may couple some additional
matter fields (e.g., scalars, fermions, gauge fields, etc.) to
make C > 0; then, p, P < 0 corresponds to the phantom
dust, as in Refs. [30,31]. The case of phantom dust may not
violate the usual energy condition due to the presence of
additional matter fields. We can solve P, P; from Egs. (2.3)
and (2.4),

h hysical dust,
p— { phy h= /C2 _ C]aﬂCaC/},
—h phantom dust,
(2.9)

P; = —=S4(C, = hT ), (2.10)

which are strongly Poisson-commutative constraints. S% is
the inverse matrix of 9,5 (@ =1, 2, 3). In deriving the
above constraints, we find at an intermediate step that P =
C?—q¥ C,Cp > 0 constrains the argument of the square
root to be positive. Moreover, the physical dust requires
C < 0, while the phantom dust requires C > 0.

We use A%(x),E%(x) as the canonical variables of
gravity, where A%(x) is the Ashtekar-Barbero connection
and F%(x) = /det ge?(x) is the densitized triad. a = 1, 2,
3 is the Lie algebra index of su(2). Gauge-invariant Dirac
observables are constructed relationally by parametrizing
(A, E) with values of the dust fields T'(x) = 7, §/(x) = ¢/,

ie, A%(0,7) =AY (X)|r@)=esiy= and El(o,7) =
E2(X)|7(x)=c.5(x)=o’» Where o, 7 are physical space and
time coordinates in the dust reference frame. Here j = 1, 2,
3 is the dust coordinate index (e.g., A; = A,SY).

Both A%(s,7) and Ei(o,7) are invariant under gauge
transformations  generated by diffeomorphism and
Hamiltonian constraints on the constraint surface [38,39].
They satisfy the standard Poisson bracket in the dust frame:

. 1 .
{EL(0.), AL, 7)} = 5 5p0}88(0.0),

’ (2.11)

where f is the Barbero-Immirzi parameter [40] and x =
162G. The phase space P of A%(c,7), Eq(o,7) is free
of Hamiltonian and diffeomorphism constraints. All
SU(2) gauge-invariant phase-space functions are Dirac
observables.

The evolution in physical time 7 is generated by the
classical physical Hamiltonian H, given by integrating s
on the constant 7 = 7 slice S. The constant 7 slice S is
coordinated by the value of the dust scalars §/ = ¢/ and
thus is referred to as the dust space [31,37]. From Eq. (2.9),
we find that Hy, is negative for physical dust and positive
for phantom dust. We flip the direction of the time flow
7 — —r and thus Hy — —H,, for physical dust, so we have
a positive Hamiltonian in every case:

3
HO—Ld% C(a,r)z—%ZCa(G,r)z. (2.12)

a=1

Here C and C, = 2¢%C, (€% is the triad) are parametrized in
the dust frame. In terms of A%(s,7) and E4(o, 7),

1 E! E*
C=—[F% — (B*+ e g KK e 4y —2=—
K'[ Jjk (ﬁ ) det™ j k] b det(q)
2A
+ 7 vV det(q), (213)
4 ELEF
C,=—F) ——=—, (2.14)
kp " \/det(q)

where K ‘]‘ is the extrinsic curvature, F' ;‘k is the curvature of
Af, and A is the cosmological constant.

Coupling gravity to the Gaussian dust model can be
analyzed similarly, so we do not present the details here
(but details can be found in Ref. [37]). For Gaussian dust
the physical Hamiltonian has the simpler expression

H0:/d30'C(0',7).
S

In order to discuss both the Brown-Kuchar and Gaussian
dusts in a unified manner, we express the physical
Hamiltonian as

(2.15)
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H, :/d36h(6,1),
S

h(c,7) = | C(o,7)* -

3
Z C.(0,7)?,
a=1

AR

Brown-Kuchar dust,

a=1,
{ . (2.16)

a =0, Gaussian dust.
The physical Hamiltonian H, is manifestly positive in
Eq. (2.16). When C <0, Eq. (2.16) is different from
Eq. (2.15) by an overall minus sign and thus reverses
the time flow 7 — —r for the Gaussian dust.

In both scenarios, the physical Hamiltonian H, generates
the z-time evolution,

d

S rm),

: (2.17)

for all phase-space functions f of A%(c, 7) and El(c,7). In
particular, the Hamilton equations are

dAj(o.7) kB &My dEi(0,7) _kp  oH,
dr 2 5E)(0,7)’ dr 2 5A%(0. 1)
(2.18)

The functional derivatives on the right-hand sides of
Eq. (2.18) can be computed as

C aC
H, = 3ol =6C —==2 2.1
6H, /gd a<h5C 17 5Ca), (2.19)

where C/h is negative (positive) for physical (phantom)
dust. Comparing 6H to the variation of the Hamiltonian
Hgr of pure gravity in the absence of dust motivates us to
view the following as the physical lapse function and shift
vector:

N==, N,=---%

% C (2.20)

Therefore, N is negative (positive) for physical (phantom)
dust. The negative N for the physical dust is related to the
flip 7 — —7 that comes from making the Hamiltonian
positive.

Our framework in this work focuses on pure gravity
coupled to dusts, and thus we only work with physical dusts
in order to not violate the energy condition. The time gen-
erated by H, flows backward from the future to the past.

III. IMPROVED HAMILTONIAN

We propose to define the effective theory of LQG as a
discretization of the above reduced phase-space framework.

In the effective theory, dynamical variables are discretized
on a lattice, and their time evolutions are generated by H,
the discretization of the physical Hamiltonian H,,. In this
section and Secs. IV and V we describe a new discretization
of Hj, that is different from the existing procedure in, e.g.,
Refs. [31,32,41]. The new discretization turns out to be
crucial for the relation with ji-scheme LQC.

Our model is defined on a cubic lattice y partitioning S
which may be finite or infinite.' E(y) and V(y) denote the
sets of edges and vertices in y. For the purpose of relating
LQC at k = 0, we consider y to be a partition of a 3-torus.
The dynamical variables on y are holonomies /(e) and
gauge-covariant fluxes p?(e) [42], which discretize the

fields A%(r, o). Eh(z.0):

a

h(e) ::Pexp/A“%,

e

(3.1)

pie) = _Zﬁlaztr [T“A &;jpdo’
A 4olh(p, (o) By hip )| G2

where S, is a 2-face in the dual lattice y*, and 7¢ =
—i(Pauli matrix)“. p, (o) is a path starting at the beginning
point of e and traveling along e until e N S, then running
in S, until 6. @ is a length unit for making p“(e)
dimensionless. h(e) and p“(e) satisfy the holonomy-flux
algebra

a

{h(e).h(e')} =0.
{P(e) W)} = 7000y

K
{pa(e)’ pb(el)} = _Eée,e’eabcpc(e/)’

h(e').
(3.3)

where « = 162Gy. Our work is developed from the
reduced phase-space framework, so h(e) and p“(e) are
Dirac observables.

We focus on the deparametrized model of gravity
coupled to dust, and thus the discrete physical
Hamiltonian on y can be written as (see, e.g., Ref. [14])

H= Y H,,
veV(y)

'One may consider generalizing this work to noncubic graphs.
The generalization seems to be straightforward except that
analyzing the relation to pi-scheme LQC can become quite
involved.
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where C, and C,, are the discretization of C(s) and
C,(o) in Egs. (2.13) and (2.14). a = 1, 0 corresponds to
Brown-Kuchar or Gaussian dust. There are nonholonomic
constraints C, <0 and C;—-49C3, >0. We focus on
the physical dust with positive energy density, and the
|

2n }_7)(6 ;1 s ) : ﬁ(e IS )
R, = LI, s:;J,s (——n+arccos[ kil SR,
z z ( ! 2) a p(ev;lsl )p(ev;Jsz)

I#J s1,5,=%1

physical time flow is backward to make H positive, as
shown in Sec. II. We have included the cosmological
constant term AV, in the Hamiltonian. Here we employ the
regularization of C, from Refs. [43,44]. 3R, is the discrete
3-curvature:

(3.6)

l =)
Lv(17 Sl;J, 52) = V_ \/’Sabcpb<ev;1sl )pc(ev;.lsz)gab ¢ pb’(ei;;ls] )pc’(ev;Jsz>-

v

(3.7)

In our notation ey, with I = 1, 2, 3, s = +, and vertex v € V(y) denotes an edge starting at v oriented toward the (Z, s)
direction (see Fig. 1). >R, is motivated by the Regge calculus in three dimensions, and contains L as the length of the edge,
while the other part is related to the deficit angle hinged at the edge [43]. V, here is the 3-volume at v:

3
Qv — ﬂ a()gabc

4
a SﬂKzsl s

v, =(0.)" (3.8)
Pa (et';l+) - pa(ev;l—) Pb(ev;2+) - pb(ev;2—> pc(ev;3+) - pc(ev;3—) (3 9)
2 2 2 ' '
Standard discretizations of C,, C,, (used in, e.g., Refs. [14,31,41]) are given by
Z S]s2s3811[213Tr[7;4(h(Dv;llsl.Qsz) - h(Dv;llsl.lzsz)_l)
h,83==%1
X h(ev;1353>{h(ev;13S3)_1’ Vb}]’ (310)

Cv;2,+

Syyily +

/02 2511, ,U*
€v;3,-

vl + / Svish
v
Cuil,— Syl + V1 Gl +
€u;3,+
€v;2,—
FIG. 1. A neighborhood of a vertex v in the cubic lattice y. The

square bounded by red edges is S(A) of Planckian area A, while
the square bounded by blue edges is the minimal plaquette [].
The loop holonomy A(A) is along 9S(A).

|
where 4 =0, 1, 2,3, 7,=(1,7,) and 7, = —i(Pauli matrix),,.
h(O,.,5,1,5,) is the loop holonomy around a minimal
plaquette [,/ , 1,5, (bounded by e, e, ) iny.

H depends on two types of variables—the flux p“(e)
and loop holonomies /2(C1)—while i(e){h(e)~!, V,} leads
to an expression involving only fluxes:

h(ev;l,s){h(ev;l.s)_l s Vv}

3 4 a/n Xb X¢
_ Sgn(Q”)%gJMN - [72/ ] Mz(v) NZ(U)’
(3.11)
Xy (v) = p(epnrs) = PP (ermr—)- (3.12)

Note that, because p“(e) is a covariant flux, we have

1
pa(ev;IV—) = 5Tr[Tah(ev—i;I,-&-)_1pb(ev—7;1,+)1bh(ev—i;1,+)] ’
(3.13)

where ] is the lattice vector of y along the I direction.
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In the following, we are going to construct a new discrete
Hamiltonian H, as a discretization of H,. H, is different
from H in that it has different discretizations of Cy ,, C, .
The modification comes from a different regularization of
the curvature F,;(A) in C,,. The new regularization
replaces the loop holonomy /(1) by a different expression.

Given the smooth fields A4 and EJ, the loop holo-
nomy h([J) of A is related to F;; when the scale of the
plaquette [J is small (measured by the metric g;; deter-

mined by E)),

h(O) —

/Md
Fip

=————(v)Ar(0) =

et(h)do! A do? ~

Fip(v)A Ar(0)

h(O) (D)~ 1 . .
Mz—/Fide"/\d(ﬂ:/Fudal/\ddz,
2 2 O O

(3.14)

where we use [J = [, , as an example. We multiply and
divide the integrand +/det(}), where § is the metric on [J]

induced by the 3-metric g;; (determined by EY), and assume
that [J is small enough so that Fi, and det(}) are
approximately constant,

v)/D Vdet(})de! A do?

det()

gap: A = \gﬁf%. We may write A = [,

(3.15)

det(h(v)) A

In the last step, we multiply and divide a quantum area scale A ~ £

= fix which may be chosen as the LQG minimal area

\/det(h)ds' A do?, where S(A) is a small two-dimensional surface of Planckian

size (the square bounded by red edges in Fig. 1). In order to derive the discretization, we assume that the size of [ is fine
enough that F, and det(}) are approximately constant on [J and thus constant on the smaller surface S(A). We can repeat

the trick in Eq. (3.15),

V/det(})de! A do?

Ar(0) h(A) — h(A)™!

h(O) - h(O)~ Ar(@)  Fi(v)
2 A det(h(v)) Jsa)
N Ar(0J)

where /(A) is the holonomy along the boundary of S(A).
Here we set

Ar(Dv;hSl ,1252

ﬂazz \/p evl3s3

(13?“1’12)-

eL NER S3>

(3.17)

The error from the approximations (3.14)—(3.16) is
bounded by 0(/}),2 while h(A) —h(A)™' ~O(£%). As
an interesting perspective, the dependence on the lattice y is
only reflected by the plaquette area Ar([J), while h(A)
is independent of the sizes of plaquettes in y and thus is
invariant under lattice refinement. The price is that the free
parameter A has to be introduced. However, it seems to us
that A labels the UV energy scale where this theory is
defined.

*Given any two-dimensional integral of a bounded function
f(x) whose upper and lower bounds are f(a) = fmax.f () = fmins
we have | [(d%xf(x) = [(d®xf(v)| < [dx[f(x) = f(v)| <
Ar(S)|fmax — fmin] < CAr( )||a — b|| for some constant C,
where Ar(S) ~¢% and ||a — b|| ~ ¢p for S = S(A) or [I.

F,de! A do? ~
A A(A) 12

5 : (3.16)

|

We denote by h(A, s, 1,5,) the holonomy around the
Planckian surface S(A,.; s 1,5,) adapted in O, 1.
S(Ayps,1ps,) and g p, share the same vertex v.
Figure 1 shows a choice for S(A,. s ,5,) in which two
boundary edges of S(A,., 1,s,) are contained in lattice
edges e, ;, and e, ,,. Using the new holonomies /(A),
we define the new Hamiltonian H, as

3
[04
HA - Z HAM HA,I} = (C$)2 _ZZ(C$1/)27
veV(y) a=1
(3.18)
1 1 2 A
Ch = ?CS” - ;ﬂ R, +— Vo (3.19)
—4 Ar(Dr'I s1,0s )
CAD: slszs 8’ ]7[?#
" 3'6 2 S, r; +1 A
X Trlz, (M(Ayps,.1,s,) = h(Av;Illezsz)_l)
X h(ev;13s3){h(ev;1353)_17 VLH (320)
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The derivation in Eq. (3.16) assumes that the size of [ is
comparable to S(A). This indicates that H, is defined at the
UV or deep quantum level where Ar(C]) ~ A ~ ¢%. In the
semiclassical and continuum limit A ~#% — 0 and for
shrinking 0, the loop OS(A) shrinks and h(A)—

h(A)™ = 2[5 d:TAh())Flz(v), as well as Ar(0J)~

v/det(H(v) fD do! A do?. Then, we recover the classical
continuum expression of the physical Hamiltonian.

It is clear that H, in Eq. (3.18) is a different discretiza-
tion compared to H in Eq. (3.4). H, and H coincide only
when taking the continuum limit (ignoring the size of [
and A). In the continuum limit, both H, and H reduce to
the continuum expression Hy. Our new Hamiltonian H, is
more likely to be related to a quantum effective action
because H, explicitly depends on &p (in A). Indeed,
in Sec. VI we propose a candidate quantum effective
action for full LQG by using H,, and show in the fol-
lowing section that H, can lead to the fi-scheme LQC
effective dynamics, while the old Hamiltonian H can only
give the pg-scheme LQC effective dynamics (as shown
in Ref. [14]).

IV. HOLONOMY ALONG THE
PLANCKIAN SEGMENT

As preparation for defining 2(A) in H,, in this section
we construct the length-dependent holonomy /4 (8) along
the segment 8 whose length is fixed as v/A. We denote by
ha(8,5) with s =+/— the holonomy along 8 in the
positive/negative Ith direction at v. 8., ; C e,.; ; and shares
the same source v with e, ; (8, ; is the red segment along
e, in Fig. 1). In contrast to h(e,; ) (where the length
of e,;, is dynamical), h,(8,;,) has 8,;, with fixed

length \/K :

ha(8,5) Pexp[/ duzi 5(

VA = Aldu\/q”i;i;, (4.1)
|
do' Adet(q)
u - (EZ'E2)(E3'E3)—(E2'E3)2

where ¢/ (u) (J =1, 2, 3) is a parametrization of the
segment &, . such that the source and target of the seg-
ment correspond to u = 0, 1. For simplicity, we adapt the
coordinates ¢’ to the lattice y, such that the ¢/ coordinate
axis is along e, ; or 8, .. The tangent vector of 8, ; has
the only nonzero component do’/du (de’/du =0 for
J # I). We assume do' /du > 0 without loss of generality.
q1; = efeq are components of the 3-metric on S in the

/. The e¢ are related to E! by e¢ =

coordinate o¢”.
sgn(det(e)) ——L— e,k EJ EX . Equation (4.1) simpli-

| det(E)|
fies to

ha(8,0.) = Pex /ld 9 a6 (4).0.0) &

A\RPuvils) — pO uduldu” 2
(no sum in 1), (4.2)

1 do!
\/Z:/ dud—(z\/_q,,. (4.3)
0

Equation (4.3) can be solved as

Ve

where we have expressed the metric component g;; =

Adet(g
€1mnEb E" GIPquEq

(no sum in 1),

(4.4)

efef in terms of densitized triads EJ, using e
sgn(det(e)) \/—6‘, 1€“?“ B} EX Tt is clear that the solution
(q) J

to Eq. (4.3) is not unique. We make the choice (4.4) and
insert it into Eq. (4.2) as a definition of %,(8). Different
choices lead to different definitions of h(8), and thus
different definitions of H,. We prefer the present choice
since H, is related to ji-scheme LQC (see Sec. VII) and
leave the study of other choices to future work. Moreover,
we regularize do’/du to express it in terms of fluxes. For
instance,

Adet(q)

S61662606°

= 60! \/(E2 . EZ)(E3 . E3) -

(E? - E3)? 66'66° 60" 56°

19,1/ (Fa’)

- l\/[p(ev;Z,s) : p(ev;Z,s)] [p(e

1=

1/‘;3.5) : p(ev;S,s)] -

do!
ﬁl/Za

= ﬁ 51,80
[p(ev;Z,S) : p(ev;S,s)]z o

VA,
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where 86! is the coordinate scale of the 2-surface S,,, defining pleys). We set d¢! = 1 since the coordinate length
of e, is set to be 1. Thus, 4 is a constant. It is clear that s, ; reduces to do'/du when taking the continuum limit.

Similarly, we have

d 0.1/ (P
du =t A\/[mem,s) e llPlevas)  plevad] = [plevns) - pleva)l” w7
“w 0.1/ (P
T *\/ [P(enr ) P(ewn P (enns) - P(eras)] = [P(errs) - Plea )T -

We obtain the following result when inserting the above
ﬁv;[,s in hA(év;l.s)'

Lemma 4.1: A gauge transformation can lead to the
following expression for /4 (8,.,) while leaving h(e,.; )
invariant:

BB ) = Pt eca) 2,

é1;;1.s c eTi;[,S’ (49)

where 0“(e,.;) is given by the lattice edge holonomy
h(ev;l,s)7

h(eL‘;I.S) = eea(eﬁ;l.y)fu/z' (410)
Proof: We locally impose the following axial gauge to
the connection A along every edge e, ,, i.e., at a given
e,.1.5» the restriction of A along the edge, A, is fixed to be a
constant:
A?(a) = 9”(61,;1’5.), 3 S €yl (411)
Indeed, Eq. (4.11) can be obtained by a gauge trans-
formation from generic A:

9(e")A(a")g(o")™ = Oyg(a)g(0") ™! = O(e,s).  (4.12)

a a

where A;(6’) = A{(¢")S and O(e, ;) = 0(e,15) 5
Equivalently, the above gauge transformation is a first-
order ordinary differential equation of g(¢’) along e, :

819(‘71) = Q(GI)AI(GI) - e(eu;I,s)g(UI)- (4.13)

The solution to the above equation is given by3

g(e!) = e~'0ews) P exp {/U dO'”AI(a”)]. (4.14)
0

If the constant 6(e,.; ;) is chosen such that

The holonomy h(c') = Pexp[ [ do’ A (c")] satisfies
9;h(c") = h(a")A,(c").

1
69(61:;1..\) — Pexp |:/ dG/IAI(G/]):| = h(eli;[.s)9 (415)
0

we obtain that gauge transformations are identities at the
source and target of e, i,

(4.16)

Therefore, the gauge transformation g(c) leaves all lattice
edge holonomies (e, ) invariant, while locally trans-
forming the connection A. Inserting Eq. (4.11) and the
definition of ji,;, into hx(8,;,) gives Eq. (4.9). ]

V. LOOP HOLONOMY AROUND THE
PLANCKIAN PLAQUETTE

The curvature F(A) smeared on the Planckian size S(A)
is related to the loop holonomy /(A) along OS(A). Here we
assume the shape of S(A) to be a square, i.e., 9S(A) is
made by four edges (see Fig. 1), and h(A) is given by

h’(AU;IlelJZaSZ) = hA (Q’v;ll,sl )hA(Q’vl;Iz.sz)hA(Q’vz;Il‘sl )_1

X hA(g’n;Iz.h)_l’ (51)

where v}, v, are vertices of 0S(A) (see Fig. 1). hx(8,,, )
and hp(8,,,,,) with 8,  Ce, s, and 8,;, . Ce,p o,
are given by Eq. (4.9). However, h,(8,,,,) and
ha(8,,,, 5,) are based on segments 8, ., .8, . s, Which
do not belong to any edge in y. To construct these two
holonomies, we write

(5.2)

hA(gvz;ll’sl) = eX] ’ hA(gﬂl;lz,Sz) - exz,

and expand A(A) since the size of S(A) is Planckian:

h(Av;Il.sl,Iz,sz) =1 + (ﬂv;[,,sle(ev;ll,sl) - Xl)
- (ﬁv,]z,szg(ev;lz,sz) - XZ)
+ ﬁv;],,slﬂv,lz.sz [H(ev;ll,sl ), e(ev;lz,sz)]

+ 0(%%), (5.3)
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where we have ignored higher orders in size of S(A). h(A,;, ;, 1,5,) — | approximates the curvature integrated on S(A),

(ﬂv;ll.slg(ev;ll,sl) - Xl) - (ﬂv.lz.szg(ev;ll,sl) - XZ) + ﬁv;ll.slﬂv,lz,sz [g(ev;ll.sl )v 0<ev;12,sZ)]

1
~ 1 / do! A do'F),(3). (5.4)
2 JS(8 0y 1 105y)

On the other hand, the loop holonomy along the lattice edges can be expanded similarly,

h(Dv;Il,SI,IQ,sz) h( eul,, vl) (eersl?];Iz,sz)h(ewrsz?z;ll,s] )_lh(ev;lz.,sz)_l
~1 + (Q(eb Iy 51) - e(ev+5272;11_s1)) - (0(€ﬂ;12,32) - 0(61;—}—3171;12,3‘2))
[ ( €y A sl) e(ev;lz.sz)] (55)

up to higher orders in lattice size. The curvature integrated on the lattice plaquette [ is approximated by /(O 5, 1,.5,) — 1t

1 -
E/D do’ A dGJFIJ(G) = (Q(ev;ll,h) - 9(61)+s272;11,s1 )) - (9(617;12,52> - H(e’u-&-sl?l;lz.sz))

vily.51.07.59

+ [e(ev;ll’sl)’ H(ev;lz,h)]' (5.6)

Consistent with our regularization (3.15) and (3.16), F;;(6) are approximately constant on both S(A) and OJ. Therefore,

/ dOJ A dGJFIJ(E) ﬁﬂv;ll,slﬂv.lz.sz / do-l A dGJFIJ(g) (57)
S(A1l] 51,0 ‘2) O

vily.s1.0.52

This relation and comparing Egs. (5.4) and (5.6) suggest the following definitions of X; and Xj:
Xl = ﬂv;ll,sle(ev;ll,s1> - ﬂv;ll,slﬂv;lz,sz (9(60;11.31) - H(ev-&-sz?z;ll.sl ))’ (58)

XZ = ﬁ?);lz,Szg(eﬂ;Iz,.Sj) - ﬁi;;ll,slﬁv;lz,sz (Q(ev;lz,sz) - 9(£v+s171;12,s2))- (59)

With the above X, X, the holonomies a(8,,.7,5,) = €*1, ha(8,,.1,5,) = €* reduce to hx(8,.1, ,)> ha(8,.,5,) When the
connection A is constant on [, and reduce to h(e,, 7. ¢ )s he, 7.y ) When fiy o = fiy, s, = 1, ie., when OJ
coincides with S(A).

To interpret hp(8,,.1, ,,) and h15(8,,, 5,) as holonomies, we define the following connection field in the plaquette (], ; ;
bounded by e, s €., (I,J =1, 2, 3):

A@) = [(1 = 02)0(ep, ) + 0200, ., )do"
(1= 0")0(er, ) +010(e, 1,1, 0" (5.10)

R I, — R I, ;
Aj, reduces to 0(e,, ) (or (e, 7 ;) along e, ate™ =0(ore,  ; , ate? = 1), while A, reducestod(e,,,,)
R I, R I, . . .
(or0(e,,y1,1,5,)) along e, s, ate" =0 (ore,, ;. o ato' = 1). Therefore, A is an extension of the connection along

lattice edges to the plaquette [J. It may be generalized to a connection in the three-dimensional cube by

A(a.’) = [(1 - 62 - Gs)g(eﬂ;l.Jr) + 029(61}+2;1,+) + 639(e1;+§;1.+)]d01
+[(1=0' = 0))0(esnr) +0'0(e, 10,) + 0%0e, 55, ))do?
+[(1-0c'-6%)0(eys,) + 019(81/.“;3*) + 629(6y+2;3.+)]d63' (5.11)
The above proposed relation between A and 6(e) is not gauge invariant. One may notice that A in Eq. (5.11) satisfies
>3, 9;A; = 0 which cannot always be satisfied by all gauge transformations of A. Therefore, the expression of A in

Eq. (5.10) or Eq. (5.11) in terms of €(e) depends on a certain gauge fixing. Since we are going to apply H, to cosmology,
we impose the following gauge-fixing condition to (e):
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(5.12)

3
> 80 (eys) = 0.
a=1

In Sec. VII, when we perturb 6“(e,; ) from the homo-
geneous  variables  6(e,; ) = [0; + 60| (e, 1 )]0] +
664 (e,.1.1), where 609 (e,.; ,) is perpendicular to &, the
gauge condition fixes one component of 09 (e, . )
to zero.

In terms of the & coordinate, v = (0,0), v = (f,,.0),
Uy = (O’ﬁ@,Z,sz)’ and v* = (ﬁv,l,sl’ﬂvlsz)’ where v* is the
intersection between 8, .;, ., and 8, .; . Along 8, ., (or
8,,:1,.5,)» Ar, (Or Ap)) is constant:

Alz (ﬁv;[l,sl ’ 612) = [(1 - ﬁv;ll,sl )9(ev;lz,sz)
+ﬁv;ll,slg(ev-&-slil;Iz,sz)]along§v1;Iz,sy
(5.13)

AII (611 s ﬁv;lz,sz) = [(1 - ﬁr;;lz,sg)e(ev;ll,sl)
+ ﬁv;12.329(31;+s2?2;11,s1 )]alongéﬂz;h;s] :
(5.14)

Therefore, the holonomies along 8, ., . and 8, .
reproduce

do’

1
ha(8y,.1,.5,) = Pexp {A du WAIZ(F!U;II,SNGIZ)} = e,

(5.15)

I doh I = X
hA(gvzgllrsl) = Pexp du d Al] (5 l’/’tﬂ;lz,sz) =e",
0 u

(5.16)

where 1s the same as ji,; ; at v. Similarly, the connection
also reproduces the holonomies /15 (8., ;,) and 115 (8, 5,)
in Eq. (4.9).

In summary, we have obtained the following definition
of the loop holonomy h(A) around a Planckian-size
plaquette S(A):

h(Ar;;Il,sl,Iz,sz) = hA(g’b;Il,s] )hA(gvl;Iz,sz)hA(g’vz;Il,sl )_l hA

X (B0:1,.5,) 7" (5.17)
where holonomies along segments are given by
hA(gﬂ;ll,S]) — eﬁv;ll.s19<el,;ll.sl)’ (5.18)
hA(§v1;12,52>
— eﬁlzzlz..vze(nglz,xz >_/_41,;11 S1 ﬁn:lz,xz (0(617;12,32)_9(91 +:121 Ay .5y )) s
(5.19)

-1
hA (§7}2;]1 S )
— e_ﬁv;ll s ‘g(ex:;ll s )+ﬁ(;;ll 1Pty sy (6(61:;11 s >_9(e1;+3272;[] 51 )
b

(5.20)

ha(Brys,) ™ = €] (521)
h(A) is the loop holonomy of the connection A in
Eq. (5.10). Although h(A) contains holonomies that do
not along edges of the lattice y, we are able to expresses
h(A) in terms of lattice variables 6(e) = 6“(e)r*/2 and
p“(e) by the above construction. Inserting the above loop
holonomy into Egs. (3.18) and (3.20) defines the improved
Hamiltonian H,.

Simple expressions of h,(8) in terms of 6(e) [in

gs. (5.18)—(5.21)] rely on the expression of A [in
Eq. (5.10)], which depends on the gauge fixing. Although
a generic gauge transformation leaves H, invariant, it may
change the expressions of /1, (8) by adding terms with higher
orders in i to their exponents, as suggested by some
numerical tests.

Although H, with A, (8) in Egs. (5.18)—(5.21) depends
on the gauge-fixing condition, the effective dynamics of
cosmology derived from H turns out to be gauge invariant
[the Gaussian constraint is preserved by the dynamics; see
the discussions below Eq. (7.12)] and independent of gauge
fixing.

VI. EFFECTIVE EQUATIONS OF FULL LQG

We propose a discrete (canonical) effective action that
governs the effective dynamics of full LQG,

N+1

Z K(gH—l ’ gl

where g; = {gi(e)}eeE(y)» gi(e) = e (2772 and
i =1,..., N labels steps of discrete time evolution dz. a is a
length unit. The kinetic term in the action is implied by the
coherent-state path integral in Ref. [14]:

N
iK
Setelg, 1 _ZZ 6tHalgl.  (6.1)

Klgiong) = 3 [anie? = 3pia(e? - 3i(er.
- (6.2)
2ini(e) = arceos h(xp 1 (e)).
Kuonsle) = Stelgi (€)' aie)]. 63)

The effective action S is designed in analogy with the
“classical action” in the path-integral formula derived in
Ref. [14], while here we employ the improved Hamiltonian
H,. Due to the dependence of the scale A ~ f%, Sefr 1S
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viewed as an “quantum effective action” defined at the high
energy scale corresponding to A. S contains quantum
effects and depends on the scale A as an analog of the UV
cutoff in quantum field theory. The variables p“(e) and
0“(e) are vacuum expectation values (VEVs) satisfying
0Ser = 0. We expect that S, might be derived from the
path integral in Ref. [14] by the standard procedure of a
quantum effective action in quantum field theory.

The variational principle S, = 0 gives the follow-
ing equation of motion to determine the VEVs
p?(e),0%(e) [14]:

(1) Fori=1,...,N, at every edge e € E(y),
L[ zipri(e)tr[rgivi(e)gile)]
6t | \/xip1i(e) — 1y/xip4(e) + 1

pi(e)tr[fagi(e)Tgi(e)]} _ ik OH,[g7]
sinh(p;(e)) a* Oe“(e)

E:O'
(6.4)

(2) Fori=2,...,N + 1, at every edge e € E(y),

i Zi'i_1(e)tr[fagi(e)Tgi—l(e)]
6t [\/xiio1(e) = 1y/x;;-1(e) + 1

B pi(e)tr[ragi(e)Tgi(e)]} _ _ ik OH,[g5]
sinh(p;(e)) 2 0&(e) |-

(6.6)

The above equations of motion are understood as
quantum effective equations since they are derived from
the quantum effective action S.¢. These effective equations
determine the improved effective dynamics of full LQG.
These equations are complemented by the gauge condition
for defining H,.

VII. HOMOGENEOUS EFFECTIVE DYNAMICS

In order to make contact with LQC, we study solutions
of effective equations that are homogeneous (nonisotropic)
at every time slice S. We impose the following ansatz at
every S:

ea(ev;l,s) = SHI(T)(S?’ (71)

pa(ev;l.s) = Spl(f)étll’

(519’“( <v>>>: ip (cosw)
5p'(es(v) /) sinh(p) \ sin(6)

where p;(7),0,(z) (I = 1, 2, 3) are six constants on S that
evolve in time. It is easy to see that four /15 (8)’s in h(A)
reduce to the holonomies in ji-scheme LQC:

hA(gv;I,s> = exp sA
Pr+1P1+2

b 9,1,/2>, (7.2)

where 1,1+ 1,1 + 2 are defined mod 3.

We insert the homogeneous ansatz (7.1) into the effective
equations (6.4) and (6.5) and take the continuous limit
ot — 0. The effective equations reduce to differential
equations of homogeneous variables p;(z),0,(r). A part
of this computation is a simple generalization of the
computation for homogeneous and isotropic cosmology
in Ref. [14], and is sketched as follows.

First of all, inserting Eq. (7.1) into Egs. (6.4) and (6.5)
gives

.40, dp;|  ix OH 4 [¢]
‘5’[5*7] 20 (er(0)) s
do; dp; o ix OH A[Qg]
o [E"dr}‘ @08 (es(0) |y’ (73)

where e;(v) = e, ;.

Since H, is conveniently expressed as a function of
p“(e),0(e), we would like to write the right-hand sides
of Eq. (7.3) in terms of derivatives of p“(e),8(e).
Equation (6.6) can be rewritten in the polar-decomposition
form where we extract perturbations of p¢, 6%:

Fley(v)) = elOiPVTee" (ex()e* = pmip(es(0)e/2 g8 (er(1)¥/2
(7.4)

where p“, 8¢ contains longitudinal perturbations 5pH,59H
and transverse perturbations 6p¢, 609 witha =1+ 1,1+
2 mod 3,

p?(es(v)) =
0 (es(v) =

op| 7, 50“ 0f,and 6p1 , 66 are perpendicular and related to
£% up to O(¢?) by

(1 + py(er(0))16] + 6pi(e(v), (7.5)

(01 + 60, (e,(v))167] + 604 (e, (v)).  (7.6)

5p)(es(v)) = il (e;(v)) — & (e;(v))],

80 (es(v)) = €' (e;(v)) + & (e(v)), (7.7)
—sin(0) \ [ € (e;(v)) =& (e(v))
cos(6) ) <81+2(€](l})) — &2 (e;(v)) >’ (7.8)
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(591“(61(0))) _ 02 [(COS(WZ) —sin(9/2)> <€’“( er(v) + & (e (v)))
50 (ey(v)) ) sin(6/2) [\ sin(0/2)  cos(0/2) ) \e'**(e;(v)) + & (es(0v))
sin(0/2)  cos(0/2) (&t (er(v)) — & (er(v))
—cos(0/2)  sin(0/2) > (8’“(61(1})) &%(e(v)) )] 7
The above linear transformation between “ and dp, 66 is nondegenerate. By changing variables, Eq. (7.3) reduces to the

following:
(1) The diagonals a = I give time evolution equations,

+ itanh(p/2) (

dr 285P||( e/(v)) 59:5p:07 a8 a* 960 (e;(v)) 50=5p=0
(2) The off-diagonals a # I give constraint equations,
OH,[g°] OH,[g]
YRR RN, =0, 7 = =0, a#l (7.11)
95p (e1(v))|s9=5p=0 9667 (e;(v)) | s0=s5p=0

The gauge condition (5.12) sets some components of 60, to zero. So Eq. (7.11) only needs to take into account
derivatives of nonzero 60 | . However, we can show (below) that Eq. (7.11) is satisfied for all 66, even without imposing the
gauge condition. Moreover, the (discrete) Gauss constraint (namely, the closure condition)

=3 pie)+ D ALBi(e)pi(e) = 0. where /2002 = Ag(B)e (7.12)

e,s(e)=v et(e)=v

is satisfied by the ansatz at all z. Therefore, when we find a solution (as shown below) by inserting the ansatz into Egs. (6.4)
and (6.5), the effective dynamics implied by the solution is gauge invariant since the Gauss constraint is preserved by the
dynamics.

Computing derivatives of H, leads to the following result.

Theorem 7.1. The time evolution equations (7.10) are equivalent to the following Hamiltonian equations:

do, K 0 S dp, Kk 0
N = H, (8, 7.13
dr a’?Op, a(0.p) dr %00, a(0.p). (7.13)

where H, (60, p) = |C$H69=§p=0’

- 16(13 . 92/1]72 . 9';/1P3 . 91/1191 . Hz/lpz
HA(0,p) = —»—/|Ip1P2P3] s1n<7 sin| —| + sin| —— | sin| ——
3kp'2A |p1p2psl VIp1paps VIp1papsl VIp1paps

+ sin< il ) sin< 954p3 ) ——ﬁzA/\Sgn(Pll’zP%)

VIP1paps| VIpipapsl/ 16

while Eq. (7.11) is satisfied automatically.
Proof: For a shorthand notation, &4 = (6p““(e), 5pi(e),00(e),50, (e)) denotes a vector of all perturbations. We have
the following expansion:

och
H:;\/H:p 8§A

where |, means evaluation at &4 = 0. The contributions to dC% /92|, only come from the Euclidean Hamiltonian and
cosmological constant terms in C3. *R, does not contribute because *R, = O(&?). Moreover, C#,|, =0 so the

(7.14)

OCasl a o]’
o] e o] |

) (7.15)

2«
05A+o<¢2>] ——[c;‘,v|o+

diffeomorphism constraint has no contribution to the linear order in &4, and the result is independent of a. We expand
H and ignore O(£?),
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H:Z (82 + 202,257 e 4 o)

agA

A
=3 ien |O+ngn () 5ot aC o)
= Z'CA|0| - Z agA | &4 o). (7.16)

>, 0C5 /04, can be obtained by a straightforward
Mathematica computation (the Mathematica code can be
downloaded at Ref. [45]):

A A
&SpL er(v — 9667 (e1(v))]o
o|Cy| | _ 0HA(0.p)
— 96pii(er(v))]o opr -
a|CA| _ OH, (6. p) (7.18)
—060(e,(v)ly 00, '

where HA(é,ﬁ) is given by Eq. (7.14). Equation (7.17)
implies that the constraint equations (7.11) are automati-
cally satisfied, while Eq. (7.18) implies Eq. (7.13). [

The absolute values in the square roots in Eq. (7.14) may
be related to Refs. [46,47]. sgn(p;p,op3) in the cosmo-
logical constant term is anticipated because, in the absence
of a cosmological constant (A = 0) the Hamiltonian con-
straint C,|,_, discretizes sgn(e)C|,_, instead of C|,_.
where C|,_, denotes the classical smooth Hamiltonian
constraint without A, and sgn(e) = +1 is the sign of the

determinant of the triad e, [1]. The presence of the parity-
odd factor sgn(e) is due to Thiemann’s trick of regularizing
Cla—o [sgn(e) shows up when introducing the Poisson
bracket of A¢ and volume in C[,_o]. However, the dis-

cretization of the cosmological constant term A./detg
gives AV,, where V, is the volume but does not involve
sgn(e). When the cosmological constant is included,
C, = C,|p—o + AV, is a discretization of sgn(e)C|,_o +
Ay/detq. Due to C2 in H, flipping sgn(e) changes the sign
of the cosmological constant. It suggests that here A is
related to the cosmological constant up to a sign. Even if
one fixes A > 0, the effective dynamics still contain both
positive and negative cosmological constants, which are
related by parity transformation.

To make contact with the effective dynamics in the
Bianchi-I model of LQC [48], we define

=4 P =2 ‘ P2 ,
pap3 P1pP3
A
g =) |2 J= \1//2_ (7.19)
P1P2 p'ca

In terms of the conventional variables C;, P; used in LQC,

Py

91 = Ch P = W’ (7.20)

\/_ ‘P2P3 \/_ ‘PP3
7.21
V&[] (7.21)

Then, H, (6, p) is reduced to the effective Hamiltonian in
LQC up to an overall sign:

16a 1

38°°k \/|p1p2p3]

. — 9 . 5 9
x (sm(ﬂl ) Sln({lz 2) p1P2 + cyclic termS>

HA(évﬁ) :’

Hy M
B2

(7.22)

—sgn(p1paps) |P1P2p3)

’16 1

136 /[P, P,Py]
N (sm (#,Cy) sin (i, C5)
H Ho

PP, + cyclic terms)

— Sgn(P1P2P3) (723)

A
—V|P1PyP3]|.
K

The absolute value here comes from the fact that the
physical Hamiltonian is always positive definite, which is
due to the choice of physical dust and 7 flowing backward,
corresponding to a negative lapse (see Sec. Il for details).

VIII. COSMIC BOUNCE IN THE g SCHEME

We set A > 0 and simplify to the homogenous and
isotropic cosmology by identifying p; = p and 6; = 6 for
I =1, 2, 3. Equations (7.13) and (7.14) reduce to

do Kk 0 dp « 0
e 0.0 g06.0). (81
&= " a20p a(O.p). 5= 55Ha0.p).  (8.1)
Hy(0.p) = 2 Ha(6.5) 6a”_ fiol
7p =5 7p YV N
4 378 pi=p.0,=0 3ﬂl/2KA
2AA
X {Sin2 (—/1 9) (p)ﬂ ] (8.2)
VIpl 16

It is convenient to make the following change of variables:

= (Ipla®p)*, (8.3)
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H, reduces to the LQC Hamiltonian up to a possible
overall sign:

16

. A
A= 3WWVsmz(b) —sgn(p) § V.

(8.4)

In terms of (V, b), the evolution equations become

dV  8Vsin(2b)

db AN+ 8cos(2b) — 8

& p/A T dr 2pVA
(8.5)
H, is conserved in the time evolution:
16 . A E pv
———Vsin?(b) - —V =2="—, 8.6
e S — V=37 (8.6)

where p is the energy of the physical dust. This conserva-
tion law can be used to solve for sin(b), whose solution can
be inserted into the first evolution equation. The resulting
equation in terms of the scale factor a = V!/3 gives the
modified Friedmann equation

(5002

PAN)  PRAR
1— -
TP ( 8 16

pﬂ, (8.7)

where @ = da/dr or da/d(—7). The modified Friedmann
equation reduces to the standard Friedmann equation (up to
a rescaling 7) at low density p < 1, with the renormalized
gravitational constant ¥ and cosmological constant A:

[ PAA - PAA
K—K(l— 2 ), A—A<1— T ) (8.8)

The backward time evolution stops at a = 0 and gives the
Planckian critical density

16 — PPAA
2= 8.9
Pe 7 Ax (8.9)

which is a nonzero constant independent of the conserved
quantity &, in contrast to the ug-scheme effective dynamics
obtained in Ref. [14]. A nonzero p, at a = 0 indicates that
the big bang singularity is resolved and replaced by a
bounce.

IX. LATTICE INDEPENDENCE

In this section we focus on the homogeneous variables
(7.1) and study the behavior of H, by refining the cubic
lattice y. We focus on the cubic graph because the cubic
graph is preferred by the semiclassical analysis of the

canonical LQG, [33], and because of the close relation
between this work and Ref. [14].

We define a sequence of cubic lattices y,, r =0, 1,2, ...,
with yo = y. If edges in y have unit coordinate lengths,
every edge in y, has a coordinate length r~! in the same
coordinate system. The continuum limit is given by r — .

A key observation in the improved Hamiltonian H, is
that the loop holonomy A(A) is invariant under lattice
refinement. By definition, #(A) is a holonomy around a
surface with fixed area and thus is independent of the lattice
size. More specifically, for homogeneous variables, we
have on y,

‘95” =r70,, Pgr) =r"pr, ﬁﬁ’)

= r/_l[, (9 1)
where the superscript (r) labels quantities on y,. h5(8) in

Egs. (5.18)—(5.21) are indeed invariant under lattice refine-

ment. Consequently, sin(\/%) in Eq. (7.14) does not

scale under refinement. Therefore, C% scales the same as a
volume,

) =3¢, (9.2)
cy (") is constant at all v by homogeneity, while the number

of vertices scales as |V(y,)| = r*|V(y)|. We obtain the
invariance of the Hamiltonian

(9.3)

Therefore, the continuum limit of H, is trivial for homo-
geneous variables. Evaluating H, on any cubic lattice is
equivalent to the evaluation on the continuum.

Because H, in Egs. (7.13) and (8.1) is equal to —C%
evaluated for homogeneous variables, the scalings (9.1) and
(9.2) imply that Eqgs. (7.13) and (8.1) are invariant under
lattice refinement. Therefore, the cosmological effective
dynamics, the predictions for the bounce, and the critical
density are independent of the lattice refinement, and thus
can be understood as results at the continuum limit.

If there exists an operator H,") such that HX) =
(AL [p()) with a sequence of states ") represent-
ing the homogeneous spatial geometry in the LQG Hilbert
space on y,, Eq. (9.3) becomes

W HL ) = OH O O), (9.4)
which suggests that H, for homogeneous variables is a
fixed point in the Hamiltonian renormalization proposed in
Ref. [34]. However, constructions of the operator and states
such as H A and (") are beyond the scope of this paper.

Interestingly, from the viewpoint of lattice field theory,
the triviality of the lattice refinement (9.3) suggests that
the theory is scaling invariant. Then it is conformal
invariant at the state of homogeneous and isotropic spatial
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4 . . . . .
geometry.” This three-dimensional conformal invariance
might be related to the AdS/CFT correspondence.

X. OUTLOOK

In this section, we discuss a few interesting perspectives
which have not yet been addressed in this paper, but will be
studied and reported in the future.

First, as mentioned a few times in the above discussion, it
is useful to develop an operator formalism for H, and find
a series of semiclassical states w(’) to realize Eq. (9.4), in
particular from the perspective of the Hamiltonian
renormalization.

Moreover, we conjecture that S.y, being a quantum
effective action, should be related to the path-integral
formulation derived in Ref. [14]. This path-integral formula
contains a ‘“classical action” S, while S, can be seen as S
plus quantum corrections of O(¢%). A quantum derivation of
Serr from this path-integral formula is currently underway.

Second, another topic of active research is to generalize
the effective dynamics from homogeneous cosmology to
other spacetimes, since the effective equations we obtained
in Sec. VI are for the full theory. We have applied these
equations to study, e.g., cosmological perturbations and
spherically symmetric black holes (in both Kantowski-
Sachs foliation and global Kruskal foliation). This direction
has two strategies:

(1) Similar to the present strategy, we may implement an

ansatz that respects the symmetry of the expected
solution, and then simplify and solve the effective

4 . . . . . .
Scaling, translational, and rotational invariance imply con-
formal invariance.

equations [49,50]. It is also similar to the strategy of
analytically solving the Einstein equation to obtain,
e.g., black holes and cosmology.

(2) A different strategy is similar to numerical rela-
tivity. We are developing a numerical code that
implements the effective equations (6.4)-(6.5) of
the full theory. Equations (6.4) and (6.5) can be
cast into a formulation similar to the evolution
equations used in numerical relativity, and thus
standard numerical methods such as fourth-order
Runge-Kutta methods can be applied to our
effective equations. Numerical solutions can be
generated by specifying suitable initial conditions
of p?(e) and 6“(e). As an initial application of
the numerical code, we find that the cosmological
solution is unique for homogeneous and isotropic
initial data [51] (see also [52]). The path integral
in Ref. [14] has a unique critical point when
initial and final cosmological coherent states can
be related by effective equations (and thus has an
oscillatory behavior as ¢t — 0), or has no critical
points if they are not related by effective equa-
tions (and thus is exponentially suppressed
as t — 0).

Last, the analysis of this paper focused on improving the
Hamiltonian whose Lorentzian part is the scalar curvature,
as in Refs. [43,44]. The next step may be the generalization
to Thiemann’s Lorentzian Hamiltonian which involves K
as the commutator between the Euclidean Hamiltonian and
volume.
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